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Abstract—This paper addresses the particle filtering problem
for a class of nonlinear/non-Gaussian systems with quantized
measurements and multiple degrading sensors. A degradation
variable described by the Wiener process is proposed to describe
the phenomenon of sensor degradation that is often encountered
in engineering practice. The measurement output of each sensor
is quantized by a uniform quantizer before being sent to the re-
mote filter. An augmented system is constructed which aggregates
the original system state and the degradation variables. In the
presence of the sensor degradation and the quantization errors,
a new likelihood function at the remote filter is calculated by
resorting to all the transmitted measurements. According to the
mathematical characterization of the likelihood function, a novel
particle filtering algorithm is developed where the parameters of
both the degradation processes and the quantization functions
are exploited to obtain the modified importance weights. Finally,
the effectiveness of the proposed method is shown via a target
tracking example with bearing measurements.

Index Terms—Particle filter; sensor degradation; multiple
sensors; uniform quantization; Wiener process.

I. INTRODUCTION

For decades, the sequential Bayesian filter algorithm has
been well recognized to be an effective way of estimating the
real value of an observed variable that evolves in time. For
a class of linear systems with additive Gaussian noises, the
renowned Kalman filter serves as a kind of optimal sequential
Bayesian filter and, to deal with more comprehensive systems,
many minimum-variance filters [4], [10], [12], [25] have
been developed as variants of the Kalman filter. In practice,
however, it is often the case that the underlying systems
are inherently nonlinear/uncertain that undergo non-Gaussian
noises. In these systems, it is prohibitively complicated, or
even intractable, to calculate the probability density functions

This work was supported in part by the National Natural Science Foundation
of China under Grants 61933007 and 61873148, the U.K. Engineering and
Physical Sciences Research Council (EPSRC) Established Career Fellowship
under Grant EP/T005734/1, the Shandong Provincial Natural Science Foun-
dation of China under Grant ZR2020MF071, the Alexander von Humboldt
Foundation of Germany. (Corresponding author: Zidong Wang.)

Yang Liu, Cunjia Liu, Matthew Coombes and Wen-Hua Chen are
with the Department of Aeronautical and Automotive Engineering, Lough-
borough University, Loughborough LE11 3TU, United Kingdom (e-
mails: y.liu6@lboro.ac.uk; c.liu5@lboro.ac.uk; m.j.coombes@lboro.ac.uk;
w.chen@lboro.ac.uk).

Zidong Wang is with the College of Electrical Engineering and Automation,
Shandong University of Science and Technology, Qingdao 266590, China;
and is also with the Department of Computer Science, Brunel University
London, Uxbridge, Middlesex, UB8 3PH, United Kingdom (e-mail: Zi-
dong.Wang@brunel.ac.uk).

(PDFs) of the system states conditioned on the measurements,
and an alternative would then be to use approximations and
suboptimal solutions to obtain the PDFs.

Among those approximation-based filters developed in the
literature, the particle filter (PF), also known as sequential
Monte Carlo (SMC) filter, has been extensively investigated
[1] due to its design flexibility, ease of implementation,
and the capability of handling a wide range of practical
systems. In PF algorithms, a group of particles with impor-
tance weights is used to approximate the posterior PDF of
the system state, and such an approximation enables PF to
deal with nonlinear/uncertain/non-Gaussian systems. In recent
years, there have been fruitful results on the analysis and
improvement of PF methods. For example, an auxiliary PF has
been designed in [14] for nonlinear/non-Gaussian stochastic
systems under inequality state constraints, where the weights
of the particles which are remote from feasible areas have
been lowered in a probabilistic sense. A novel event generator
has been constructed in [16] such that only the informative
measurements can be selected and used by the PF, thereby
reducing unnecessary transmission burden.

Performance deteriorations of sensors are inevitable in many
practical situations due to reasons such as aging, abrasions and
environmental disturbances, and such deteriorations may lead
to eventually complete failures [2], [19]. Because of its adverse
effects on the system performance, the phenomenon of sensor
degradation has received considerable research attention in
many disciplines. For example, much effort has been devoted
to predicting the remaining useful life of sensors with different
degradation models [26], and some fault-tolerant control meth-
ods have been proposed to compensate the negative influences
from the degradations [17].

When it comes to the filtering problem for systems with sen-
sor degradations, there have been some initial results available
in the literature [7]. In [30], stochastic variables obeying time-
invariant distributions have been employed to characterize
the stochastic sensor gain degradations, and some statistical
information of the variables has been used to design the
filter in the minimum mean-square sense. Such mathematical
formulations of the sensor gain degradations appear to be a bit
overly simplified because of the negligence of the relationship
between the actual degradation processes and the operating
time. In fact, the degradation should evolve in time and its
dynamics should be captured by using differential/difference
equations, and this motivates us to design the filter that reflects
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certain dynamic properties of the degradation variables.
It is worth mentioning that, the introduction of dynamical

degradation models would pose significant challenges to the
filter analysis and synthesis because of the difficulties in quan-
tifying degradation-induced changes on system parameters. As
such, many classical filters (e.g. minimum-variance, H∞, set-
membership filters) are no longer applicable to systems with
sensor degradations. By contrast, the approximation-based PF
method emerges as a particularly suitable candidate to handle
the degrading sensors, where the weights of particles can
be determined according to the dynamics of the degradation
variables. In this regard, a novel nonlinear state-dependent
model has been established in [19] for the actuator degradation
process, and the PF has been designed to simultaneously
estimate the system state and the degradation variable. It
is worth mentioning that only actuator degradations have
been considered in [19] for systems with linear measurement
functions and Gaussian noises, and the PF design problem
for systems experiencing sensor degradations and nonlinear
measurements still remains open.

With advances in sensor and wireless communication tech-
nologies, it has become more and more common to monitor
a system of interest with multiple sensors, which collect
information from the system and transmit the data to a remote
monitor/filter [5], [15], [27], [29]. A typical example is the
localization and tracking problem with spatially distributed
sensors [9], [11]. In the multi-sensor situations, some PF
algorithms have been developed to cope with measurements
from different sensor nodes, where the PF has been combined
with the probability hypothesis density filter to solve the multi-
target tracking problem, and the data association problem
has been circumvented via estimating all the potential targets
[13]. In the context of developing PF algorithms under multi-
ple and possibly heterogeneous sensors, a novel independent
Metropolis Hasting resampling algorithm has been adopted in
the distributed PF proposed in [23] to improve the robustness
and efficiency of the signal tracking via avoiding the particle
degeneracy and impoverishment. In [24], the distributed PF
and the interacting multiple model have been used to track
a speaker in distributed microphone networks, and multiple
time differences of arrivals have been used to determine the
weights of the particles to eliminate the adverse influences
from reverberations and noises. Unfortunately, all the existing
PF methodologies with multiple sensors have overlooked the
sensor degradation phenomenon, and one of our motivations is
therefore to shorten such a gap, which is technically non-trivial
because the appearance of the degradation variables would
influence the likelihood functions and importance weights in
the desired remote PF.

In communication channels with finite bandwidth, it is
ubiquitous that the word size for the transmitted data is
limited and, as a result, quantization is needed to map the
original signal to a set with finite elements, thereby bringing
in unavoidable quantization errors at the receiving end which
might degrade the system performance. So far, there has been
a rich body of literature on the control/filtering problems
with quantization effects [18], but the PF-related results have
been really scattered. In [21], a PF has been designed to

process multiple measurements with companded quantizers. A
modified Kalman-like PF has been established in [20] with a
new likelihood function calculated based on the quantization
process. With quantized measurements, PF approaches have
also been developed to estimate the phase information in
a digital phase-locked loop [3] and identify parameters for
controlled auto-regressive systems [6]. Note that the likelihood
functions in these papers have been revised in the presence of
the quantization errors. Yet, the degradation processes have not
been considered in existing results, and this has necessitated
the current investigation on the particle filtering problem for
systems with quantizations and multiple degrading sensors.

Motivated by the discussions above, in this paper, a novel
PF is to be designed for a class of systems with quantized mea-
surements and multiple degrading sensors. The Wiener process
is employed to describe the dynamics of the sensor degradation
variables. The measurement outputs are subject to uniform
quantization effects before being sent to the remote filter. The
likelihood functions are calculated in consideration of sensor
degradations and quantizations, and the weights of the particles
are updated according to the novel likelihood functions. The
effectiveness of the proposed method is illustrated with a target
tracking example.

The main contributions of this paper are highlighted as
follows: 1) sensor degradations are considered to reflect engi-
neering practice in the framework of particle filtering; 2) novel
likelihood functions are obtained by incorporating degradation
variables and quantization functions; and 3) a modified PF
algorithm is proposed for a class of nonlinear/non-Gaussian
systems in the simultaneous presence of multiple degrading
sensors and uniform quantizations.

The rest of the paper is organized as follows. Section II
formulates the particle filtering problem for nonlinear/non-
Gaussian systems with multiple degrading sensors and uniform
quantizations. The PF design problem is investigated based on
newly obtained likelihood functions in Section III. A target
tracking simulation example is presented in Section IV to
show the validness of the developed methods, and the paper
is concluded in Section V.

Notations. The notation used in the paper is fairly standard
except where otherwise stated. Rn denotes the n-dimensional
Euclidean space. E{x} is the expectation of the stochastic
variable x. px(·) denotes the PDF of the random variable x.
p(x|y) stands for the conditional PDF of a stochastic variable
x given y. xa:b represents the trajectory of x from time step a
to time step b. N (µ,Σ) denotes the Gaussian PDF with mean
µ and covariance Σ. ∥x∥ is the Euclidean norm of vector x.
The notation ∝ stands for “be proportional to”.

II. PROBLEM FORMULATION

Consider the following nonlinear system with N sensor
nodes: {

xk+1 = f(xk) + wk,
yi,k = hi(ϕi,k, xk) + vi,k, i = 1, . . . , N

(1)

where xk ∈ Rn is the system state, yi,k ∈ Rmi is the
measurement output of the ith sensor node, and ϕi,k ∈ R is
the time-varying degradation variable that reflects the health
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degree of the ith sensor at time step k. wk ∈ Rn and
vi,k ∈ Rmi are the plant noise and the measurement noise
of the ith sensor node, respectively. It is assumed that wk,
vi,k, and the initial condition x0 are independent of each
other with known prior densities pwk

(·), pvi,k
(·) and px0(·).

f(·) : Rn → Rn and hi(·, ·) : R × Rn → Rmi denote,
respectively, the state transition function and the measurement
function of the ith sensor node.

The actual degradation process for a sensor is generally
continuous, and the following widely adopted Wiener-process-
based degradation model is used to formulate the continuous
degradation variable ϕi(t) for the ith sensor node:

ϕi(t) =ϕi(0) + µit+ σiB(t), (2)

where ϕi(0) is the initial value, µi > 0 is the drift coefficient,
σi > 0 denotes the diffusion coefficient, and B(t) represents
standard Brownian motion. The drift coefficient µi stands for
the degradation rate because

dE {ϕi(t)}
dt

= µi.

The term σiB(t) characterizes the stochasticity in the degrada-
tion process. ϕi(0), µi, and σi are all assumed to be available.

Since a discrete-time degradation variable ϕi,k is needed in
(1), let us discretize the continuous model (2) with sampling
time ∆t and establish the following iterative equation for ϕi,k:

ϕi,k+1 =ϕi,k + µi∆t + ϵi,k, (3)

where ϵi,k ∼ N(0, σi

√
∆t).

To estimate the degradation variable and the system state at
each time step, an augmented state is constructed as follows:

zk =


xk

ϕ1,k

...
ϕN,k

 . (4)

Based on (1) and (3), we have{
zk+1 = f̂(zk) + ŵk,

yi,k = ĥi(zk) + vi,k,
(5)

where

f̂(zk) =


f(xk)

ϕ1,k + µ1∆t

...
ϕN,k + µN∆t

 , ŵk =


wk

ϵ1,k
...

ϵN,k

 ,

ĥi(zk) = hi(ϕi,k, xk).

As illustrated in Fig. 1, in this paper, each sensor sends
the quantized measurement to the remote filter, where a
uniform quantizer is used at each sensor in the proposed data
transmission process. For the original measurement output of
the ith sensor node

yi,k =
[
y
(1)
i,k , . . . , y

(mi)
i,k

]T
,

a given scaling parameter si > 0, and a positive integer di,
the quantization region is set to be

R =
{
yi,k ∈ Rmi :

∥∥∥y(j)i,k

∥∥∥ ≤ si, j = 1, . . . ,m1

}
,

Fig. 1. Block diagram of the system with multiple sensors and quantizers

and the quantization process qi(·) : Rmi → Rmi is defined as:

qi(yi,k) =
[
q
(1)
i

(
y
(1)
i,k

)
, . . . , q

(mi)
i

(
y
(mi)
i,k

)]T
, (6)

where

q
(j)
i

(
y
(j)
i,k

)
=

{
ρi,h, ρi,h − si

di
≤ y

(j)
i,k < ρi,h + si

di
,

ρi,di−1, y
(j)
i,k = si,

(7)

and the quantization levels are given by

Li =

{
ρi,h : ρi,h = −si +

(2h+ 1)si
di

, h = 0, . . . , di − 1

}
,

(8)

for h = 0, . . . , di − 1 and j = 1, . . . ,mi.
At the remote filter end, the signal after quantization

can be received. Denote the received signal as ŷk =[
ŷT1,k, . . . , ŷ

T
N,k

]T
, where ŷi,k = qi (yi,k).

Remark 1: Due to its advantage of formulating nonmono-
tonic and nonlinear processes, the diffusion process has been
extensively employed in existing literature to describe degra-
dation processes in practical cases such as rolling element
bearings [28], dielectric strength of insulators [22], aircraft
piston pumps [8], and so on. In this paper, the Wiener process,
which is a typical diffusion process, is selected to model
the sensor degradation process. The degradation variable ϕi,k

makes it difficult to analyze the variation of the measurement
function since ϕi,k is usually unavailable and subject to
stochastic disturbances. As a consequence, for the addressed
nonlinear/non-Gaussian system (5) (even if the measurement
noise vi,k is Gaussian distributed, the sensor degradation
would render the system non-Gaussian), the approximation-
based PF method is adopted to tackle the filtering problem for
systems with degrading sensors.

Remark 2: In the paper, measurement data are collected
from multiple sensors, which can provide abundant infor-
mation for the system monitoring. The value of the scaling
parameter si can be determined based on the normal working
condition and the measurement equation of the addressed
system. A uniform quantizer is considered for each sensor,
and the quantization error will influence the calculation of the
importance weights in the PF method to be developed. The
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consideration of the multiple degrading sensors and quanti-
zations leads to some extra challenges in the design of the
PF.

The purpose of this paper is to develop a particle filtering
algorithm for the multi-sensor system with quantizations and
sensor degradations. With the quantized measurement infor-
mation ŷ1:k, the system state and the degradation variables
will be jointly estimated at the remote filter in the sense of
minimum mean-square error (MMSE).

III. ALGORITHM DESIGN AND DISCUSSION

In practical situations, it is almost intractable to calculate
the marginal posterior PDF p (zk|ŷ1:k) for nonlinear (uncer-
tain or non-Gaussian) systems, and thus the MMSE estimate
cannot be accurately obtained. To solve this problem, a set of
weighted particles is used in the PF algorithm to approximate
the posterior PDF expression as follows:

p (z0:k|ŷ1:k) =
M∑

m=1

Wm
k δ (z0:k − zm0:k) , (9)

where M is the number of the particles, and δ(·) denotes
Dirac delta function. The particles {zm0:k} are drawn from an
importance density q (z0:k|ŷ1:k), and the importance weights
Wm

k can be determined as

Wm
k ∝ Wm

k−1

p (ŷk|zmk ) p
(
zmk |zmk−1

)
q
(
zmk |zm0:k−1, ŷ1:k

) . (10)

Since the measurement noises vi,k are independent from
each other, we have

p (ŷk|zmk ) =

N∏
i=1

p (ŷi,k|zmk ) . (11)

Substituting (11) into (10) yields

Wm
k ∝ Wm

k−1

(
N∏
i=1

p (ŷi,k|zmk )

)
p
(
zmk |zmk−1

)
q
(
zmk |zm0:k−1, ŷ1:k

) . (12)

As a frequently adopted proposal distribution, the impor-
tance density in this paper is selected as

q
(
zmk |zm0:k−1, ŷ1:k

)
= p

(
zmk |zmk−1

)
, (13)

and (12) becomes

Wm
k ∝ Wm

k−1

(
N∏
i=1

p (ŷi,k|zmk )

)
. (14)

It is obvious that the measurement ŷi,k received by the
remote sensor is dependent on both the sensor degradation and
the uniform quantization. As a result, the likelihood function
p (ŷi,k|zmk ), which is necessary in the calculation of Wm

k , is
related to the degradation variable ϕi,k and the quantization
process qi(·). In the sequel, the likelihood function will be
extensively investigated under the effects of ϕi,k and qi(·). The
consideration of the degradation and the quantization distin-
guishes the proposed method and the conventional sequential
importance sampling approaches.

With the nonlinear model (5) and the quantization process
(7), p (ŷi,k|zk) is given by

p (ŷi,k|zk) = p

 mi∩
j=1

(
ŷ
(j)
i,k − si

di
≤ y

(j)
i,k < ŷ

(j)
i,k +

si
di

)∣∣∣∣∣∣ zk
 ,

(15)

where ŷ
(j)
i,k is the jth component of ŷi,k.

Algorithm 1 The proposed quantized particle filtering with
multiple degrading sensors
Step 1. Particle initialization

Draw M particles from the initial prior probability density
function zm0 ∼ pz0(·) and all importance weights are set
to be 1

M . Furthermore, set the maximum simulation step
K.

Step 2. Measurement collection
Collect the quantized measurement ŷi,k from each sensor
at the current time instant.

Step 3. Importance sampling
For each m = 1, . . . ,M , draw particle zmk from the
transition probability density function p

(
zmk |zmk−1

)
.

Step 4. Weight calculation
According to (12), calculate the importance weights Ŵm

k as

Ŵm
k = Wm

k−1

(
N∏
i=1

p (ŷi,k|zmk )

)
for each m = 1, . . . ,M ,

and normalize the weights as Wm
k =

Ŵm
k

M∑
l=1

Ŵ l
k

.

Step 5. State estimate update

Calculate the state estimate ẑk =
M∑

m=1
Wm

k zmk .

Step 6. Resampling
Resample a new set of particles with equal weights from
M∑

m=1
Wm

k δ (zk − zmk ).

Step 7. If k < K, then set k = k + 1 and go to Step 2;
otherwise go to Step 8.

Step 8. Stop.

The analytical expression of the p (ŷi,k|zk) can be obtained
only in some special situations. For example, when ŷi,k is a
scalar and vi,k ∼ N(µi,k, σ

2
i,k), we have

p (ŷi,k|zk) = p

(
ŷi,k − si

di
≤ yi,k < ŷi,k +

si
di

∣∣∣∣ zk)
= p

(
η
i,k

≤ vi,k < η̄i,k

∣∣∣ zk)
= Φ

(
η̄i,k − µi,k

σi,k

)
− Φ

(η
i,k

− µi,k

σi,k

)
, (16)

where

η
i,k

= ŷi,k − ĥi(zk)−
si
di
,

η̄i,k = ŷi,k − ĥi(zk) +
si
di
,

and Φ(·) is the cumulative distribution function of the standard
normal distribution. The above calculation can be extended to
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deal with multi-dimensional measurements, each component
of which is subject to uncorrelated Gaussian noise. When
the measurement ŷi,k is a vector and the noise vi.k is non-
Gaussian, the approach described in the above example is no
longer suitable, and a Monte-Carlo method proposed in [16]
can be adopted here to approximate the likelihood function
p (ŷi,k|zk). Specifically, for each particle zmk , H samples
denoted as

{
ŷm,h
i,k

}
(h = 1, . . . , H) can be drawn from

measurement equation (5) and the quantization process (7).
With these samples, p (ŷi,k|zmk ) can be approximated as

p (ŷi,k|zmk ) =
1

H

H∑
h=1

1{ŷm,h
i,k =ŷi,k}, (17)

where 1{ŷm,h
i,k =ŷi,k} is an indicator function defined as

1{ŷm,h
i,k =ŷi,k} =

{
1, if ŷm,h

i,k = ŷi,k,

0, otherwise.
(18)

The implementation of the proposed particle filtering with
multiple degrading sensors and quantized measurements is
outlined in Algorithm 1 on the previous page.

Remark 3: The PF method has been designed for a class
of nonlinear systems with multiple degrading sensors and
quantizations. The effects of the sensor degradation have been
reflected by ϕi,k(i = 1, . . . , N) in the augmented system state
zk, and the quantization process has been considered in the
calculation of the likelihood function p (ŷi,k|zk). The proposed
method can also handle other types of quantization processes
by appropriately adjusting the likelihood function, and thus
the applicability of the presented strategy can be enhanced.
The position of the degradation and the quantization-induced
modification of the likelihood function constitute the main
difference between the filter developed in this paper and that
designed in [19]. If we neglect the variable ϕi,k in the problem
formulation (1), then the proposed algorithm is also applicable
to the situation where the sensor degradation is not considered.
Wm

k is the actual weight after the normalization of Ŵm
k ,

and the normalization can guarantee that
M∑

m=1
Wm

k = 1. In

addition, if the addressed plant is subject to degradation as
well, i.e., f(·) is also affected by a degradation variable,
a new system state can be constructed by augmenting the
original system state and actuator/sensor degradation variables,
and corresponding PF algorithm can be developed analog to
Algorithm 1.

Remark 4: When the approximation-based method (17) is
adopted to calculate the likelihood function, it can be seen
that H×M samples are needed at each time step, which may
result in heavy calculation burden. To guarantee the feasibility
of the proposed method in practice, the values of H and M
cannot be set to be overly large. To effectively execute our
filtering algorithm, the computational resources of the remote
filter are assumed to be sufficient. This assumption is fairly
reasonable for a filter which needs to monitor the addressed
system with multiple sensors.

IV. NUMERICAL STUDY

In this section, the effectiveness of the proposed quantized
PF algorithm with multiple degrading sensors is illustrated in
a two-dimensional target tracking example. The system state
represents the coordinate value of the target and is defined
as xk = [xp

k, y
p
k]

T , where xp
k and ypk are the X- and Y-axis

positions, respectively. A uniform circular motion trajectory
under disturbance is considered, and the discrete-time model
is established as follows:

xk+1 = c+ r

 cos

[
arctan

(
ypk − cy
xp
k − cx

)
+ 2π

T

]
sin

[
arctan

(
ypk − cy
xp
k − cx

)
+ 2π

T

]
+ wk,

(19)

where c = [cx, cy]
T is the center of the circle, r > 0 is the

radius, T > 0 is the period of the circular motion, and wk is
an additive noise.

Bearing-only measurements are considered in our simula-
tion. Set the coordinate of the ith sensor to be[

xsensor
i,k , ysensori,k

]T
.

Due to the existence of the sensor degradation, the target-
sensor distance in the calculation of the bearing is assumed to
be subject to an additive disturbance, whose coefficient is the
degradation variable. Then, the bearing measurement of the
ith sensor can be formulated as follows:

yi,k = arctan

(
ypk − ysensori,k + ϕi,ksx,i,k

xp
k − xsensor

i,k + ϕi,ksy,i,k

)
+ vi,k, (20)

where sx,i,k, sy,i,k, and vi,k are noises which are independent
of each other and all satisfy standard normal distribution.

The following root mean-square error (RMSE) is adopted
to evaluate the accuracy of the filtering scheme:

RMSEk =

√√√√ 1

L

L∑
l=1

[(
xp,l
k − x̂p,l

k

)2
+
(
yp,lk − ŷp,lk

)2]
,

(21)

where L is the total number of the Monte Carlo runs,(
xp,l
k , yp,lk

)
is the realization of (xp

k, y
p
k) in the lth Monte Carlo

run, and the respective estimate is denoted by
(
x̂p,l
k , ŷp,lk

)
.

In each independent Monte Carlo run, the initial value of
the actual trajectory is drawn from x0 ∼ N([200,−250]T , I2).
The maximum simulation time K and the sampling period
∆t are set to be 100s and 1s, respectively. The period of the
circular motion is T = 100s. The center of the circle is c =
[150,−250]

T m, and the radius of the trajectory r = 50m. The
additive noise satisfies wk ∼ N(02×1, I2).

In our example, the number of the sensors is three, and the
parameters of the sensors and quantizers are listed in Table I.
The noises vi,k all obey standard normal distribution for i =
1, 2, 3. The particle number is selected to be 100. Because all
the three measurements are scalars and the noises are assumed
to satisfy Gaussian distribution, (16) can be directly used to
calculate p (ŷi,k|zk) in our simulation.
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TABLE I
PARAMETERS OF THE SENSORS AND QUANTIZERS

Parameters Values
i 1 2 3

ϕi,0 0 0 0
µi 0.2 0.4 0.6
σi 5 3 1
si π π π
di 2 3 4
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Fig. 2. True target trajectory and its estimate obtained by PF-SD-UQ in one
trial.

In the simulation, the following four algorithms are evalu-
ated and compared:

1) PF-SD-UQ: the proposed PF with sensor degradation and
uniform quantization;

2) PF-SD: a PF considering the sensor degradation but
neglecting the quantization;

3) PF-UQ: a PF considering the quantization but neglecting
the sensor degradation; and

4) PF: a conventional PF neglecting the quantization and the
sensor degradation.

In Fig. 2, one realization of the true circular trajectory, its
estimate obtained by the proposed PF-SD-UQ, as well as the
sensor positions are depicted. To better present the tracking
performance in a run, the tracking results for X- and Y-axis
positions are illustrated in Figs. 3 and 4, respectively. It can
be observed that tracking performance of the PF-SD-UQ is
satisfactory. The original and quantized measurements from
the three sensors are shown in Figs. 5-7. The effects of the
uniform quantization on the measurements are clearly reflected
in the figures. In the presence of the information loss in the
quantization process, the PF method has been revised with a
novel likelihood function in our algorithm.

The RMSEs obtained with the PF-SD-UQ, PF-SD, PF-UQ,
and PF are demonstrated in Fig. 8 with 20 Monte Carlo
runs. It can be seen that the proposed PF-SD-UQ method
has the best target tracking performance among the four
approaches. This is due to our way of calculating the weights
for each particle in consideration of sensor degradations and
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Fig. 3. True X-axis position and its estimate in one trial.
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Fig. 4. True Y-axis position and its estimate in one trial.
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Fig. 5. Original and quantized measurements at sensor 1.
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Fig. 6. Original and quantized measurements at sensor 2.
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Fig. 7. Original and quantized measurements at sensor 3.

uniform quantizations. The increase of the RMSE stems from
degradation-induced noises, which become larger with time.

Now, let us discuss the effects of the sensor degradation on
the filtering performance.In the comparative simulations, the
variable σ is set to be the same for the three sensors. Fig. 9
depicts the RMSEs obtained with different σs from 20 Monte
Carlo runs. It is clear that a smaller σ leads to a better tracking
result. This is natural since the degradation variable with a
small variance can be estimated accurately, and the estimation
performance for the system states can also be improved.

The relationship between the RMSEs and the drift coef-
ficients is reflected Fig. 10 from 20 Monte Carlo runs. A
larger µ, which means a larger average value of the noise
in the arctan function of the measurements, results in a larger
filtering error.

Finally, we are going to investigate the relationship between
the quantization process and the filtering performance. From
Figs. 5-7, it can already be seen that dense quantization
levels can reduce the quantization error between the original
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Fig. 8. RMSEs obtained with the PF-SD-UQ, PF-SD, PF-UQ, and PF.
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Fig. 9. RMSEs obtained with different σs.
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Fig. 10. RMSEs obtained with different µs.
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Fig. 11. RMSEs obtained with different ds.

measurement and the quantized measurement. With the same
d for each sensor, Fig. 11 illustrates the RMSEs obtained
with different ds from 20 Monte Carlo runs. It can be readily
concluded that a larger d gives rise to a smaller quantization
error and a more accurate tracking result. It should also be
noted that, a larger d also brings in a larger word length
for each transmitted measurement, so a trade-off between
the filtering accuracy and the transmission load needs to be
achieved by adjusting the quantization parameters.

V. CONCLUSION

In this paper, the quantized PF design problem has been
studied for a class of nonlinear/non-Gaussian systems with
multiple degrading sensors. The Wiener process has been
used to formulate the dynamics of the degradation variables.
A uniform quantizer has been introduced at each sensor to
reduce the word length of the transmitted signal and thus can
lower the transmission burden in the links. A new likelihood
function has been obtained under the influences of the sensor
degradation and the uniform quantization, and the recursion
for importance weights has been established in the proposed
PF. Finally, a target tracking example has been provided to
illustrate the effectiveness of the proposed algorithm. Because
of our effort in dealing with the sensor degradation and
the uniform quantization, the tracking performance of the
proposed PF-SD-UQ algorithm has shown to be satisfactory.
One possible future task is to apply the developed filtering
approach to systems with more network-induced phenomena
and more general degradations (such as nonlinear degradation
and multi-phase degradation).
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