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Abstract—The traditional deep learning-based bearing fault
diagnosis approaches assume that the training and test data
follow the same distribution. This assumption, however, is not
always true for the bearing data collected in practical scenarios,
leading to significant decline to fault diagnosis performance. In
order to satisfy this assumption, the transfer learning concept
is introduced in deep learning by transferring the knowledge
learned from other data or models. Due to the excellent capability
of feature learning and domain transfer, deep transfer learning
methods have gained widespread attention in bearing fault diag-
nosis in recent years. This article presents a comprehensive review
of the development of deep transfer learning-based bearing fault
diagnosis approaches since 2016. In this review, a novel taxonomy
of deep transfer learning-based bearing fault diagnosis methods
is proposed from the perspective of target domain data properties
divided by labels, machines, and faults. By covering the whole
life cycle of deep transfer learning-based fault diagnosis and
discussing the research challenges and opportunities, this review
provides a systematic guideline for researchers and practitioners
to efficiently identify suitable deep transfer learning models based
on the actual problems encountered in bearing fault diagnosis.

Index Terms—Bearing fault, deep transfer learning, fault
diagnosis

I. INTRODUCTION

Bearing, a key tribological part used to reduce friction and
enable elements to run smoothly, is widely applied in almost
all kinds of rotating machinery, such as transmission, steel
rolling mills, wind turbines, high-speed train etc. The normal
operation of rotating machinery is highly dependent on the
health state of bearings. Compared with other mechanical
elements, bearing is prone to faults due to prolonged exposure
to harsh working conditions, such as high temperature, high
rotational speed, and high load. According to statistics, about
45-55% of mechanical faults were caused by bearing failure,
reflecting the importance and necessity of bearing fault diagno-
sis [1–8]. In order to reduce the maintenance cost and avoid
casualties, it is necessary to diagnose the faults timely and
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accurately before the occurrence of immeasurable loss [9–13].
With the advanced development of artificial intelligence and
sensor technologies, many intelligent bearing fault diagnosis
approaches have been proposed in the past few years (with
examples shown in [14–21]), providing significant improve-
ments in this field. According to current research, the existing
intelligent fault diagnosis methods can be roughly divided into
three categories: conventional machine learning methods, deep
learning methods, and transfer learning methods [22].

Conventional machine learning-based fault diagnosis ap-
proaches typically include three main steps: data collection,
feature extraction, and fault classification. In data collection
step, various sensors, such as vibration, current, temperature,
and acoustic emission, are applied to collect raw data reflect-
ing bearing health state. In feature extraction step, the data
attributes are analyzed and the features are manually selected
and extracted based on predefined formulas designed from ex-
pert knowledge [23–30]. This non-automatic feature extraction
step may bring in irrelevant or redundant features from data
that do not contribute to the accuracy of classification model.
In fault classification step, the mapping relationship between
features and faults is established using intelligent methods,
including but not limited to decision tree [31], support vector
machine [32], k-nearest neighbor [33], artificial neural network
[34] and hidden Markov model [35].

With the advent of the Internet of Things, an unprecedented
volume of data can be acquired easily, providing more fault-
related information than ever before and boosting the accu-
racy of fault diagnosis [22]. Furthermore, the conventional
machine learning-based fault diagnosis methods rely on the
manual selection of valuable features for fault classification,
but such a labor-intensive approach is time-consuming with
massive data. In order to construct accurate fault diagnostic
models and minimize the cost of manual feature extraction,
deep learning methods are proposed to directly construct
the mapping between fault signal and fault category. The
deep learning-based fault diagnostic models can automatically
learn fault features from input data and output health state
without a priori knowledge. The typical deep learning models
include but are not limited to convolutional neural network
(CNN) [14, 36, 37], recurrent neural network [38], restricted
Boltzmann machine [39], auto-encoder [40, 41], deep belief
network [42], and their variants.

Remarkable success has been achieved in deep learning-
based fault diagnosis in the past few years, but there are
still two major issues to be considered: data distribution and
data availability. Firstly, deep learning models assume that the
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Fig. 1. The differences among conventional machine learning-based, deep learning-based and transfer learning-based fault diagnosis methods.

training and test data follow the same distribution. However,
the working conditions such as loads and rotational speeds
vary significantly according to different tasks in practical
scenarios. Therefore, the distribution of test data collected
from different working conditions is different from that of
training data. In addition, if the test data are collected from
different equipment, the fault diagnosis accuracy of deep
learning models may drop significantly even if the fault types
are the same [43–47]. Secondly, the performance of deep
learning models mainly relies on the amount of labeled data
to tune the model weights and biases. However, it is time-
consuming and laborious to collect and label a large amount of
fault data. In addition, it is not recommended to keep machines
working under faulty conditions for data collection, which
may decrease the equipment lifespan and increase the risk of
casualties and property loss [22, 47]. If the data collection and
labeling problems in different working conditions cannot be
properly addressed, the general performance of deep learning-
based fault diagnosis models cannot be guaranteed.

Transfer learning, introduced in 1995 to deal with life-long
learning problems by reusing previous knowledge, relaxes the
restriction that training and test data must follow the same
distribution [46, 48]. As a promising method to leverage the
knowledge learned from different but related tasks to tackle
new problems, the idea of transfer learning is inspired by
human learning mechanism to reuse the knowledge or skills
summarized from tasks in other fields. For example, if one
has learned how to ride a bicycle, then the skills of riding
a bicycle will help in riding a motorcycle. The core idea of
transfer learning is to find the shared characteristics of two or
several correlated but not identical learning tasks and apply the
shared knowledge to tackle new problems [49, 50]. In practical
bearing fault diagnosis scenarios, the amount of normal data
collected from bearing is usually far more than the amount of
fault data, because it is usually prohibited by regulations to
operate practical machines with faulty bearing for long time.
Such an insufficient fault data problem can significantly reduce

the diagnostic performance of deep neural networks [51–54].
Therefore, it is crucial to introduce transfer learning to resolve
the challenge of insufficient data. The differences between
transfer learning and the above-mentioned fault diagnosis
methods are shown in Fig. 1. In transfer learning-based fault
diagnosis, the diagnostic model will firstly be pre-trained with
source domain data and task, then the learned knowledge such
as fault features or model parameters can be reused for the
target domain fault diagnosis task.

To summarize the existing research works of transfer learn-
ing and intelligent fault diagnosis, comprehensive reviews
have been conducted in recent few years. Pan et al. [48] and
Weiss et al. [55] presented very detailed surveys in transfer
learning in 2009 and 2016 respectively and provided precise
definitions of transfer learning which are still widely used
by other researchers. Zhuang et al. [56] surveyed more than
forty homogeneous transfer learning methods to give readers
a comprehensive and intuitive overview on transfer learning.
For intelligent fault diagnosis, Liu et al [57] reviewed the
applications of artificial intelligence algorithms in rotating
machinery fault diagnosis in 2018, mainly focusing on con-
ventional machine learning methods. To reflect the state-of-
the-art methods in intelligent fault diagnosis, Zhang et al.
[58] conducted a comprehensive review on the applications
of conventional machine learning algorithms and state-of-the-
art deep learning algorithms on bearing fault diagnosis, in
which the classification accuracies of different deep learning
algorithms were compared on Case Western Reserve Uni-
versity open access bearing dataset to provide readers with
an intuitive insight. Lei et al. [22] systematically reviewed
the development of intelligent fault diagnosis from the cradle
to the bloom, and classified the research into three phases:
traditional machine learning-based, deep learning-based and
transfer learning-based intelligent fault diagnosis. In 2019,
Zheng et al. [59] presented the first review on knowledge-
based cross-domain fault diagnosis, classifying the existing
research into instance re-weighting methods, feature transfer
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methods, classifier adaptation methods, deep learning-based
methods and adversarial-based methods. Li et al. [44] reviewed
the applications of transfer learning on fault diagnosis in
recent years and classified the existing research into four
main categories, including transfer component analysis, joint
distribution adaptation, deep adaptation network, adversarial
domain adaptation. Yan et al. [60] provided a review on
knowledge-based rotary machine fault diagnosis, and divided
all methods into four parts by specific problems: transfer
between multiple working conditions, locations, machines,
and fault types. Zhao et al. [61] focused on unsupervised
deep transfer learning on bearing fault diagnosis and provided
baseline accuracy of widely used transfer learning methods
on bearing and gearbox datasets. Li et al. [62] classified
the current research on transfer learning-based fault diagnosis
into four application scenarios: generalization performance
improvement, partial domain fault diagnosis, emerging fault
detection and compound fault decoupling.

Although previous reviews have summarized the remarkable
achievements, most of the reviews divide the research prob-
lems from the perspective of the methodology, instead of the
perspective of data in practical applications such as bearing
fault diagnosis. Aiming to provide an appropriate suggestion
on transfer learning method selection for researchers and prac-
titioners, the authors reviewed the research progress of deep
transfer learning-based bearing fault diagnosis since 2016,
classified the publications in this topic from the perspective of
target domain data properties, and provided a comprehensive
analysis and discussion on the widely used deep transfer
learning methods. The contributions of this survey to bridge
the gap in the current literature are summarized as follows:

1) This review focuses on the development of deep transfer
learning on bearing fault diagnosis in recent six years, and
offers a systematic guideline for researchers in bearing fault
diagnosis. By covering the whole life cycle of deep transfer
learning including source domain data selection and transfer
learning model selection, this works allows readers to system-
atically grasp the general steps of deep transfer learning-based
bearing fault diagnosis and its research advance.

2) This review provides a novel taxonomy of deep transfer
learning on bearing fault diagnosis from the perspective of the
property of target domain data, which can help researchers and
practitioners efficiently choose suitable deep transfer learning
models based on the actual problems encountered in fault
diagnosis.

3) This review provides a systematically comparative anal-
ysis on the widely used deep transfer learning algorithms
from six criteria. In addition, the future works, including
transferability assessment, transfer with distinct labels, transfer
under abnormal data quality, multi-source transfer, incipient
fault diagnosis and novel applications in transfer between
different machines, are also discussed in this paper.

The rest of this review is organized as follows. An intro-
duction to the definitions and fault diagnosis procedure using
transfer learning is provided in Section II. The commonly used
source domain datasets on bearing fault diagnosis are intro-
duced in Section III. In Section IV, the deep transfer learning-
based fault diagnosis methods since 2016 are explained in

detail from the perspective of target domain data properties
divided by labels, machines, and faults. Following on from
Section IV, four kinds of typical transfer learning methods
are qualitatively analyzed in Section V. In Section VI, the
challenges and opportunities in existing methods are provided
and discussed. Finally, the conclusion is presented in Section
VII.

II. DEFINITIONS AND FAULT DIAGNOSIS PROCEDURE

Before reviewing the development of deep transfer learning
in bearing fault diagnosis, the definitions and diagnosis proce-
dures need to be introduced and explained in detail to provide
a clear overview.

A. Definitions and Notations

To maintain the consistency with other surveys, the defini-
tions and notations of transfer learning are provided here with
references to two surveys in [48] and [55]. Transfer learning
involves two main concepts: domain and task. A domain D
can be defined by two components: a feature space X and a
marginal probability distribution P (X), where X refers to a
specific learning sample X = {x|xi ∈ X , i = 1, . . . , n}, n is
the number of feature vectors and xi represents ith feature
vector. For bearing fault diagnosis, X is the space of fault
features, X is a sampled signal, and xi refers to the ith faulty
feature vector.

For a given domain D = {X , P (X)}, a task T can
be represented by T = {Y, f (·)}, where Y is a label
space and f (·) is a predictive function. Predictive function
f (xi) is a learner to predict fault labels by learning the
latent relation between the input and output from data and
label pairs {xi, yi|xi ∈ X , yi ∈ Y}, where xi and yi denote
the ith feature vector and faulty label respectively. From a
probabilistic point of view, f (x) can also be denoted by
P (y|x).

In transfer learning, the domains are usually divided into
source domain and target domain respectively. According to
the definitions above, the source domain data can be repre-
sented as Ds = {(xs, ys)|xsi ∈ Xs, ysi ∈ Ys, i = 1, . . . , n},
where xsi and ysi refer to the feature vector and corresponding
faulty label respectively, and n is the number of source
samples. Equally, target domain data can be represented as
Dt = {(xt, yt)|xti ∈ Xt, yti ∈ Yt, i = 1, . . . ,m}, where xti

and yti refer to the feature vector and corresponding fault label
respectively, and m is the number of target samples. In most
cases, the number of source samples is much larger than the
number of target samples, i.e. n ≫ m ≥ 0. By the same token,
the source task is represented as Ts = {Ys, fs (·)} and target
task is represented as Tt = {Yt, ft (·)}, where Ys and Yt refer
to the source and target label spaces respectively, and fs (·)
and ft (·) refer to the source and target predictive functions
respectively. Furthermore, if the target label is inaccessible, the
target domain data is represented as Dt = {xt1 ,xt2 , . . . ,xtm},
and the target task is represented as Tt = {ft (·)}.

Based on the above definitions and notations, the transfer
learning for bearing fault diagnosis is illustrated in Fig. 2 and
can be defined as follows:
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Fig. 2. An illustration on transfer learning-based fault diagnosis.

Transfer learning: given a source domain Ds with corre-
sponding source fault diagnosis task Ts, and target domain Dt

with corresponding target fault diagnosis task Tt, the transfer
learning for bearing fault diagnosis aims to learn a mapping
relationship fs−→t (·) to minimize the faulty feature difference
by leveraging the faulty feature gained from source domain
Ds, and improve the target fault diagnosis function ft (·),
where Ds ̸= Dt or Ts ̸= Tt.

B. Diagnosis Procedure of Deep Transfer Learning for Bear-
ing Fault Diagnosis

This review focuses on the development of deep transfer
learning in bearing fault diagnosis and provides a new taxon-
omy from the perspective of the property of target domain
data. When researchers and practitioners encountered with
cross-domain bearing fault diagnosis problems, the general
procedure of bearing fault diagnosis based on transfer learning
can be categorized into two steps: 1) source domain data
selection and preprocessing; 2) transfer learning method se-
lection. The overall steps of transfer learning for bearing fault
diagnosis are shown in Fig. 3.

1) Source Domain Data Selection and Transformation:
The outstanding performance of traditional deep learning
algorithms highly relies on sufficient labeled data. However,
the labeling process is time-consuming and labor-intensive; it
is also hazardous to collect fault data with faulty bearings due
to the risk of property loss and casualties. Fortunately, the
shared knowledge between the source and target domains can
be utilized by transfer learning to resolve such a challenge.
However, if there is no common feature between the source
and target domains, the knowledge transfer cannot provide a
positive impact in transfer learning, eventually affecting the
target predictive function performance. Therefore, it is of great
importance and high priority to select an appropriate source
dataset for the target task.

Seven commonly used open-source bearing fault datasets
are introduced in this review, covering vibration, current, and

temperature signals to provide researchers with auxiliary data
to select from. These datasets are categorized into two groups
according to the occurrence of faults: seeded fault dataset and
run-to-failure dataset. Seeded fault data are collected from test
rigs with various seeded fault components, and run-to-failure
data denote that the faults are collected from the accelerated
degradation experiments.

Although deep learning algorithms can realize “end-to-end”
fault diagnosis, it is not efficient to directly feed the complex
raw data into the training model [63]. The data transformation
can provide alternative data properties by transforming the
representations of raw signal, boosting the accuracy of fault
diagnosis [64–66]. Time domain analysis [22, 67], frequency
domain analysis [68–71] and time-frequency domain analy-
sis [72–77] are widely used in fault diagnosis. In addition,
image analysis is also popular in deep transfer learning
fault diagnosis field. Recent studies showed that the image
datasets are helpful in improving the performance of CNN
networks on bearings fault diagnosis problems [75, 76, 78–
80]. By converting one-dimensional time-series signals into
two-dimensional grayscale [80–83] or RGB images [79, 84],
researchers applied the pretrained CNN structure using large-
scale image datasets such as ImageNet [85] for bearing fault
diagnosis. Some researchers also applied FFT to convert the
time domain data into frequency domain first, then transformed
into two-dimensional spectral images [86–88] for bearing fault
diagnosis.

2) Transfer Learning Method Selection: Different from
previous reviews, in this review, a novel taxonomy from
the perspective of the property of target domain data is
presented to guide researchers and practitioners to efficiently
identify suitable deep transfer learning methods based on the
actual problems encountered in fault diagnosis. The taxonomy
is based on three considerations: inductive or transductive
transfer learning, transfer between different or same machines,
transfer between different or same faults, as shown in Step 2
in Fig. 3.

The selection of transfer learning method depends on
label availability in the source and target domains, and
is generally divided into three categories: inductive trans-
fer learning, transductive transfer learning, and unsuper-
vised transfer learning [48]. In inductive transfer learning,
the labels are available in both source and target domain
data, i.e., Ds = {(xs1 , ys1) , . . . , (xsn , ysn)} and Dt =
{(xt1 , yt1) , . . . , (xtm , ytm)}, where n and m are the number
of source and target domain samples respectively. Further-
more, inductive transfer learning is divided into two sub-cases:
supervised transfer learning where all the target domain data
are labeled and semi-supervised learning where few target
domain data are labeled and the remaining large amount
of data are unlabeled. In transductive transfer learning, the
source domain labels are available, but the target domain labels
are unavailable, i.e., Ds = {(xs1 , ys1) , . . . , (xsn , ysn)} and
Dt = {xt1 , . . . ,xtm}. Since leveraging the labeled source
datasets to provide inheritable faulty characteristics for target
diagnosis task is a popular approach in transfer learning-based
fault diagnosis, there is no related research, to the best of
the authors’ knowledge, on unsupervised transfer learning in
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Fig. 3. Diagnosis procedure of deep transfer learning for bearing fault diagnosis.

bearing fault diagnosis, thus unsupervised transfer learning is
not considered in this review.

In practice, generating faulty data from experiment platform
and leveraging historical faulty data collected from other
machine types are feasible approaches to address cross-domain
bearing fault diagnosis problems, as the experimental data
and historical data contain inheritable features. However, as
the time and frequency domain characteristics of bearings are
greatly affected by machine types and structures, the feature
distributions of different machines can be very different.
Therefore, transfer between same or different machines should
be regarded as two totally different application scenarios.

In addition, whether the target domain faults are the same
as the source domain faults also affects the choice of transfer
learning method in fault diagnosis. If the faults of two domains

are identical, the main challenge of transfer learning is to learn
the domain-invariant features, and the pre-trained classifier
in source domain can be directly used to predict the target
faults; if the faults of two domains are not identical, the
transfer learning model needs to identify both the common
faults of two domains and the source-private or target-private
faults to prevent potential negative transfer. Therefore, the fault
consistency in the source and target domains is also a key
factor in transfer learning model establishment.

III. OPEN-SOURCE BEARING FAULT DATASETS

Intelligent fault diagnosis methods require massive labeled
training data. Although it is difficult to obtain sufficient fault
data to train the diagnostic model in real industrial machines
[89, 90], the labeled fault data in laboratory machines are easy
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TABLE I
SUMMARY OF OPEN BEARING FAULT DATASETS.

Categories Dataset Signal type Number of working
conditions

Faulty states

Seeded fault
dataset

CWRU Vibration 4 Normal, outer race fault, inner race fault, ball fault

MFPT Vibration 9 Normal, outer race fault, inner race fault

UofO Vibration 4 Normal, outer race fault, inner race fault

PU Current, vibration 4 Outer race fault, inner race fault

Run-to-failure
dataset

IEEE PHM 2012 Vibration, temperature 3 -

XJTU-SY Vibration 3 Outer race fault, inner race fault, cage fault, mixed faults

IMS Vibration 1 Outer race fault, inner race fault, ball fault

PU Vibration 4 Outer race fault, inner race fault, mixed faults

to collect and can be used to resolve fault diagnosis tasks
in industrial machines. The laboratory data are collected in a
controlled environment with pre-set mechanical structure and
variable working conditions, and faults are introduced in two
ways: artificial bearing damages and accelerated degradation
experiments. Artificial bearing damages are based on the work
experience of engineers and researchers, so the seeded faults
may occur in practical industrial scenarios. The accelerated
degradation experiments are efficient ways to acquire degra-
dation data similar to industrial scenarios, which reveal the
complete degradation process of bearings from healthy to fail-
ure. What is more, the bearing faults in accelerated degradation
experiments occur in the same way as the faults in industrial
environments. Therefore, the inheritable fault features in the
public datasets collected from laboratory machines are feasible
to be reused to diagnose bearing fault diagnosis problems of
other machines.

A. Dataset Summary

In this part, seven widely used open-source bearing fault
datasets are introduced, including: Case Western Reserve Uni-
versity (CWRU) dataset [91], Society for Machinery Failure
Prevention Technology (MFPT) dataset [92], University of
Ottawa (UofO) dataset [93], Paderborn University (PU) dataset
[94], IEEE PHM 2012 Data Challenge dataset [95], Xi’an
Jiaotong University and Changxing Sumyoung Technology
(XJTU-SY) dataset [96], and Center for Intelligent Mainte-
nance Systems (IMS) dataset [97]. The seven datasets cover
vibration, current and temperature signals:

1) Vibration signals are the most widely used signals
for bearing fault diagnosis. Sensors, such as accelerometers,
are placed on bearing casing to monitor abnormal vibration
patterns caused by bearing faults. The abnormal impulse
response generated every time the rolling elements pass over
the surface of bearing faults can be monitored by sensors for
fault diagnosis.

2) Motor current signal gains great attention on bearing fault
diagnosis in recent years. Bearing faults influence vibrations
that appear at characteristic frequencies in the motor current,
analyzing the current patterns can predict fault types [94]. In
addition, the advantages of motor current monitoring technique
are not requiring additional sensors to measure but can be
collected via existing device (such as current transducers).

3) The temperature signals can also be applied in bearing
fault diagnosis, as the temperature of bearing elements tends

to increase when working in an abnormal condition. Thermal
sensors are placed inside holes close to the bearing external
ring to monitor temperature changes and detect faults [95].

According to the occurrence of faults, the above datasets are
categorized into two groups: seeded fault dataset and run-to-
failure dataset. The detailed information of the seven datasets
is shown in Table I.

B. Seeded Fault Dataset

The seeded fault bearing dataset is usually generated by
applying artificial damages to bearings for condition monitor-
ing [94]. As one of the most popular seeded fault datasets,
the CWRU dataset contains vibration signals collected from
accelerometers under different motor loads, with faults seeded
on the outer race, inner race, and ball of bearings by electrical
discharge machining with different fault diameters. The MFPT
and UofO datasets are also vibration signal-based datasets
that provide normal, outer race, and inner race fault data
under different loads. The PU dataset contains two subsets:
seeded fault dataset and run-to-failure fault dataset, where the
seeded faults are caused by electrical discharge machining,
drilling, and manual electric engraving, and the run-to-failure
faults are collected from the outer and inner races of bearings
under different rotational speeds, loads, and radial forces.
The seeded fault data in PU dataset consist of both current
signals collected by current transducers installed between
motor and frequency inverter, and vibration signals measured
for reference purpose.

C. Run-to-failure Dataset

The run-to-failure dataset is generated from the accelerated
degradation experiments of bearings under various working
conditions, reflecting the complete life cycle of bearing from
new to complete failure. Different fault locations such as outer
race, inner race, ball and cage can be obtained at the end of
accelerated degradation experiments. The IEEE PHM 2012
dataset is a typical run-to-failure dataset containing two types
of signals: vibration and temperature, with two accelerometers
and one temperature sensor for data monitoring under different
working conditions. For the other three run-to-failure datasets
(XJTU-SY, PU, and IMS datasets), only vibration signals are
avaiable: the fault data in XJTU-SY and PU datasets are
collected from multiple working conditions, and the fault data
in the IMS dataset are collected from single working condition.
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IV. DEEP TRANSFER LEARNING IN BEARING FAULT
DIAGNOSIS

Deep transfer learning has gained wide attention and has
been successfully applied in the field of bearing fault diagnosis
since 2016. In this section, the literature focusing on resolving
cross-domain bearing fault diagnosis problem is systematic
reviewed. To give readers a comprehensive overview, the
mentioned references are summarized in Table II.

A. Inductive Transfer Learning

Inductive transfer learning can be divided into two cases: su-
pervised transfer learning and semi-supervised transfer learn-
ing. Supervised transfer learning requires all the target domain
labels to be available. Semi-supervised transfer learning allows
a large amount of target domain data to be unlabeled with few
target domain data labeled during training. Furthermore, su-
pervised and semi-supervised transfer learning are categorized
into transfer between different machines and transfer between
same machines in this survey according to the fault data origin,
as shown in Table III.

1) Supervised Transfer Learning: Supervised transfer
learning requires labels to be available in both the source and
target domain. Common fault diagnosis tasks based on super-
vised transfer learning can be divided into transfer between
different and same machines (see Table III).

a. Transfer between different machines
In this transfer scenario, the fault data in the target domain

are collected from different machines from source domain.
Since the mechanical structures, bearing types, working con-
ditions etc. vary in different machines, the distributions of
fault data are different. The fault diagnosis model trained
using the source domain data can not achieve satisfactory
performance without any knowledge transfer. Fine-tune-based
methods are widely used when the target domain data are
available. The basic idea of fine-tune-based methods are to
leverage the diagnostic model from source domain and transfer
the model and/or parameters learned to new scenarios in
target domain to deal with fault diagnosis problems. Instead
of training from scratch, a relatively small learning rate is
usually adopted in the re-training of the diagnostic model for
the target task. In bearing fault diagnosis, the open-source
datasets such as CWRU were utilized by researchers to pre-
train deep learning models, which were further fine-tuned by
available data collected from real industrial scenarios for target
task [98, 99]. In addition, some researchers also attempted
to apply non-machinery datasets, such as ImageNet, to pre-
train transfer learning models. The top layer of the pre-trained
model was replaced to match the number of target labels,
then the bearing fault data were applied to fine-tune the pre-
trained model for fault diagnosis [75, 80]. It is worth noting
that Zhang et al. [80] used vibration and current signals for
bearing fault diagnosis, they did not specially design signal
preprocessing methods and transfer learning models. Although
the fault data collected by different sensors represent the same
or similar fault information, the fault data distribution, physical
meaning or feature embedding can be very different due to the
difference in signal types. Therefore, taking into account the

difference of signal types when aligning the source and target
domain features may avoid misalignment.

The above fine-tune-based methods require a certain amount
of labeled target data, but such a requirement in label avail-
ability can be quite difficult in practical scenarios. In order
to address the limited labeled data problem, He et al. [100]
investigated a scenario with only one labeled fault sample
available in the target domain and proposed an enhanced deep
auto-encoder model to improve the quality of the extracted
s. Besides the labeled data issue, the features extracted by
the frozen layers during the transfer may be irrelevant to the
target task, as the existing fine-tune-based studies freeze the
network mainly based on experience instead of quantitative
analysis. Therefore, Zheng et al. [83] introduced two factors
in fine-tune strategy: mean square error (MSE) and structural
similarity (SSIM), to assess the similarity of source and target
features in each layer. If MSE is low and SSIM is high, then
the source and target domain data share common features in
the current layer and the layer parameters can be frozen for
transfer.

b. Transfer between same machines
In this transfer scenario, the source and target domain

data are collected from the same machine but under different
working conditions. The existing deep transfer learning-based
fault diagnosis methods in literature can be divided into two
categories: fine-tune-based and few-shot-based methods.

• Fine-tune-based
In the scenario of transfer between same machines, the

features extracted from previous working conditions are quite
different from those extracted from new working conditions,
causing the problem of feature shift in cross working condi-
tions. In addition, the data are also limited in new working
environments. To deal with the feature shift and limited
data problems, the fine-tune-based methods are adopted by
researchers to improve the performance of diagnostic models
in new working environments by transferring the model and/or
parameters learned from other working conditions (see Fig.
4(1)). Hasan et al. [101] applied S-transform to convert the
time domain data into the time-frequency domain to get better
transfer performance, and used CNN-based transfer learning
method to diagnose bearing faults. Zhao et al. [102] proposed a
novel multiscale neural network to improve the performance of
transfer learning by constructing three modules with different
dilated convolution kernels to learn domain-invariant features.
In the transfer learning stage, the pre-trained multiscale mod-
ules were frozen to extract target domain features, and the
other parts were fine-tuned based on the limited labeled data.
To decide the number of layers for fine-tuning with limited
data, Han et al. [103] proposed three fine-tune strategies and
suggested the optimal results can be achieved by fine-tuning
specific layers and freezing the others. Zhao et al. [104]
introduced an ensemble adaptive CNN to realize accurate fault
diagnosis and good generalization, by applying pre-trained
parameters to initialize the whole network.

Besides the normal factors in working conditions such as
rotating speed and working load, the number of sensors is also
an important factor in bearing fault diagnosis. Most existing
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TABLE II
SUMMARY OF LITERATURE ON DEEP TRANSFER LEARNING-BASED BEARING FAULT DIAGNOSIS.

Reference Public dataset(s) Source data Target data Transfer between different
or same machines

Transfer between different
or same faults

Transfer strategy

[27] / Labeled Unlabeled Same Different Statistic-based
[50] CWRU Labeled Unlabeled Same Same Statistic-based
[51] CWRU, IMS Labeled Unlabeled Same Same Hybrid
[63] CWRU Labeled Unlabeled Same Different Adversarial-based
[69] CWRU Labeled Unlabeled Same Same Statistic-based
[70] CWRU Labeled Unlabeled Different Same Statistic-based
[71] PU Labeled Unlabeled Same Same Adversarial-based
[72] CWRU Labeled Unlabeled Same Same Statistic-based
[73] CWRU Labeled Unlabeled Same Same Hybrid
[75] CWRU Labeled Labeled Different Same Fine-tune-based
[83] IMS Labeled Labeled Different Same Fine-tune-based
[84] CWRU Labeled Labeled Same Same Fine-tune-based
[86] CWRU, PU, XJTU-SY Labeled Unlabeled Different Different Adversarial-based
[88] CWRU Labeled Unlabeled Same Same Statistic-based
[89] CWRU Labeled Unlabeled Different Same Statistic-based
[98] CWRU Labeled Labeled Different Same Fine-tune-based
[99] CWRU, IMS Labeled Labeled Different Same Fine-tune-based
[100] CWRU, IMS Labeled Labeled Different Same Fine-tune-based
[101] CWRU Labeled Labeled Same Same Fine-tune-based
[102] CWRU Labeled Labeled Same Same Fine-tune-based
[103] IEEE PHM 2009 Labeled Labeled Same Same Fine-tune-based
[104] / Labeled Labeled Same Same Fine-tune-based
[108] CWRU Labeled Labeled Same Different Fine-tune-based
[109] CWRU Labeled Labeled Same Different Fine-tune-based
[110] PU Labeled Labeled Same Same Few-shot-based
[111] CWRU Labeled Unlabeled Same Same Adversarial-based
[113] CWRU, IMS Labeled Limited labels Different Different Statistic-based
[114] CWRU Labeled Limited labels Different Same Statistic-based
[115] CWRU, IMS Labeled Limited labels Different Same Statistic-based
[117] CWRU, IMS Labeled Limited labels Different Same Adversarial-based
[118] CWRU, PU Labeled Limited labels Different Different Adversarial-based
[119] CWRU, IMS Labeled Limited labels Different Different Adversarial-based
[120] CWRU, IMS Labeled Unlabeled Different Same Statistic-based
[123] CWRU, IMS, XJTU-SY Labeled Unlabeled Different Same Statistic-based
[124] CWRU, PU Labeled Unlabeled Different Same Statistic-based
[125] CWRU Labeled Unlabeled Different Same Statistic-based
[126] PU Labeled Unlabeled Different Same Statistic-based
[127] CWRU, IMS Labeled Unlabeled Different Same Statistic-based
[128] CWRU Labeled Unlabeled Different Same Statistic-based
[129] CWRU, IMS Labeled Unlabeled Different Same Few-shot-based
[130] CWRU Labeled Unlabeled Different Same Hybrid
[131] CWRU, MFPT Labeled Unlabeled Same Same Statistic-based
[132] CWRU Labeled Unlabeled Same Same Statistic-based
[133] CWRU, PU Labeled Unlabeled Same Same Statistic-based
[134] / Labeled Unlabeled Same Same Statistic-based
[135] CWRU Labeled Unlabeled Same Same Statistic-based
[136] CWRU Labeled Unlabeled Same Same Statistic-based
[137] CWRU, MFPT Labeled Unlabeled Same Same Statistic-based
[138] CWRU Labeled Unlabeled Same Same Statistic-based
[140] CWRU Labeled Unlabeled Same Same Statistic-based
[141] CWRU Labeled Unlabeled Same Same Statistic-based
[142] CWRU Labeled Unlabeled Same Same Statistic-based
[143] / Labeled Unlabeled Same Same Statistic-based
[144] CWRU Labeled Unlabeled Same Same Statistic-based
[145] CWRU Labeled Unlabeled Same Same Statistic-based
[146] CWRU Labeled Unlabeled Same Same Statistic-based
[147] IEEE PHM 2009 Labeled Unlabeled Same Same Adversarial-based
[148] CWRU Labeled Unlabeled Same Same Adversarial-based
[149] CWRU Labeled Unlabeled Same Same Adversarial-based
[150] CWRU Labeled Unlabeled Same Same Adversarial-based
[151] / Labeled Unlabeled Same Same Adversarial-based
[152] / Labeled Unlabeled Same Same Adversarial-based
[153] CWRU Labeled Unlabeled Same Same Adversarial-based
[154] CWRU, PU Labeled Unlabeled Same Same Hybrid
[155] CWRU Labeled Unlabeled Same Same Hybrid
[156] CWRU Labeled Unlabeled Same Same Adversarial-based
[157] CWRU Labeled Unlabeled Same Same Adversarial-based
[158] PU Labeled Unlabeled Same Same Adversarial-based
[159] CWRU Labeled Unlabeled Same Same Few-shot-based
[161] / Labeled Unlabeled Same Same Hybrid
[162] CWRU Labeled Unlabeled Same Different Adversarial-based
[163] CWRU Labeled Unlabeled Same Different Adversarial-based
[164] CWRU Labeled Unlabeled Same Different Adversarial-based

* / represents no public dataset mentioned in Section III is used in the reference, limited labels represent few target domain data labeled
and the remaining are unlabeled, none represent target domain data are not available.
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TABLE III
SUMMARY OF INDUCTIVE TRANSFER LEARNING IN BEARING FAULT DIAGNOSIS.

Inductive transfer learning scenario Methods References

Supervised transfer learning

Transfer between
difference machines

Fine-tune-based [75],[80],[83],[98],[99],[100]

Transfer between
same machines

Fine-tune-based [84],[101],[102],[103],[104],[107],[108],[109]
Few-shot-based [110]

Semi-supervised transfer learning Transfer between
difference machines

Statistic-based [113],[114],[115]

Adversarial-based [117],[118],[119]

Weight sharing

Source label

Source data

Target label

Target data

Weight sharing

Source label

Source data

Target data

Distance 

metric

Weight sharing

Source label

Source data

Target data

Domain label

Frozen

Discriminator

Few-shot training set

Support set Query set

Few-shot test set

Query setSupport set

(1) (2)

(3) (4)

Weight sharing

Fig. 4. Basic frameworks of four typical deep transfer learning models: (1) fine-tune-based methods, (2) statistic-based methods, (3) adversarial-based methods,
(4) few-shot-based methods.

bearing fault diagnosis methods are mainly based on the
measurement of single sensor only, but one sensor may not
be able to provide comprehensive information for better fault
diagnosis result, as the amplitude and phase of measurement
is significantly affected by the sensor location. In addition, one
sensor is easily disturbed by external noise and interference,
which may lead the collected signals to become unreliable
for fault diagnosis and fail to reflect complex fault features.
Multi-sensors placed at different positions provide additional
information of bearing status to avoid misdiagnosis. However,
multi-sensors also bring redundant and irrelevant features, the
determination of optimal sensor location is very challenging,
especially considering the contributions of sensors at different
locations. Di et al. [107] proposed voting strategies to transfer
valuable faulty information from several sensors and showed
that multisensor signal with voting strategies could achieve
accurate diagnosis using only one labeled target data.

In bearing fault diagnosis, it is normal to have different
fault labels between target domain and source domain. To
resolve such a label inconsistency problem, the fine-tune-based
methods were adopted by replacing the output layer of the pre-
trained model with a new one of the same dimension as target
labels [108, 109]. Besides replacing the output layer, Kim et
al. [108] also proposed a selective parameter freezing (SPF)

strategy to freeze output-sensitive parameters while tuning the
model. The test results showed that the SPF strategy could
acquire better performances compared with other fine-tune
strategies, such as freezing, partial freezing, and basic fine-
tune.

• Few-shot-based
In some extreme scenarios, only a small amount of fault data

are available, restricting the accuracy of the data-driven fault
diagnosis model. As a promising machine learning method,
few-shot learning can generalize to unseen but related tasks
from limited instances. In addition, few-shot learning methods
do not require a large amount of labeled data to achieve
satisfactory prediction results and reduce data collection and
computational cost. Therefore, when encountering fault diag-
nosis problems with limited data, researchers usually apply
few-shot learning methods to address domain shifts between
different working conditions or machines. Few-shot-based
transfer learning is a kind of representative few-shot learning
methods [110], which commonly use limited source domain
data to pre-train fault diagnosis models and predict unseen
but related faulty labels based on a prior knowledge (see Fig.
4(4)). To deal with such a limited sample problem in practical
fault diagnosis scenarios, Wu et al. [110] proposed a meta
relation network with a feature encoder and a metric learner:
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the feature encoder mapped the input data into a unified feature
space, and the metric learner adaptively learned a distance
metric function according to extracted features. The test results
demonstrated that the proposed meta relation network achieved
good performance with extremely few-shot instances.

2) Semi-supervised Transfer Learning: Semi-supervised
transfer learning combines the situation where few fault data
are labeled with a large amount of unlabeled data in the target
domain, which provides an efficient way to utilize both labeled
and unlabeled data. Introducing massive auxiliary unlabeled
data in the target domain enables transfer learning models to
exploit common latent features belonging to the source and
target domain data. Existing semi-supervised transfer learning
methods can be classified into statistic-based and adversarial-
based methods (see Table III).

• Statistic-based
The basic idea of statistic-based transfer learning aims at

learning the domain-invariant representation by minimizing
the distribution discrepancy of source and target domains
(see Fig. 4(2)). Maximum mean discrepancy (MMD) is the
most commonly used metric to evaluate the data distribution
distance, as shown in (1):

MMD2(Xs,Xt) =

∥∥∥∥∥∥ 1n
n∑

i=1

ϕ(xs
i )−

1

m

m∑
j=1

ϕ(xt
j)

∥∥∥∥∥∥
2

Hk

(1)

where Xs = {xs
1, · · ·xs

n} and Xt = {xt
1, · · · ,xt

m} denote
source and target data, ϕ denotes kernel function that maps the
source and target data into reproducing kernel Hilbert space
(RKHS), and n and m are the number of source and target
samples respectively [111, 112].

Tzeng et al. [112] firstly applied MMD in deep domain con-
fusion (DDC) network for transfer learning. By minimizing the
classification loss and MMD which measures the distribution
discrepancy of two domains simultaneously, DDC network can
learn domain-invariant features of the source and target domain
data, with the loss function shown in (2):

L = LC(XL, y) + λMMD2(Xs,Xt) (2)

where LC(XL, y) is the classification loss on data XL and
ground truth label y, MMD2(Xs,Xt) refers to the distance
between the source data Xs and target data Xt, and λ is a
trade-off parameter.

In order to address the problem of transfer between different
machines, Li et al. [113] proposed a two-stage knowledge
transfer scheme. First, an auto-encoder network with an aux-
iliary classifier was built to extract common fault features
between the source and target domain data in a supervised
manner. Second, the pre-trained encoder was used to predict
feature distribution and MMD was introduced to measure the
feature distribution discrepancy. Discrepancy criterion plays
a critical role in statistic-based methods, Zhou et al. [114]
proposed that in addition to measure distribution, conditional
distribution should also be considered during domain adapta-
tion. The proposed joint statistic metric was tested on nine
transfer learning tasks and the experimental results verified
their assumptions. To address the problem of few labeled data

in the target domain, Wu et al. [115] proposed to generate
auxiliary data from the labeled source domain using a batch-
normalized long-short term memory. Next, a transfer maxi-
mum classifier discrepancy criterion was designed to align the
generated auxiliary data with the unlabeled target domain data.

• Adversarial-based
Adversarial-based methods were inspired by generative

adversarial neural network, a promising machine learning
algorithm in the form of a zero-sum game (see Fig. 4(3)). To
extract domain-invariant features from the source and target
domain data, Ganin et al. [116] proposed domain adaptation
neural network (DANN), an adversarial-based deep transfer
learning method, with three modules: feature extractor, domain
discriminator, and classifier. The feature extractor extracts
domain-invariant representations from the source and target
domain data, and the classifier and domain discriminator
predict the class and domain labels respectively [105, 106].
The loss function of DANN is shown as follows:

L(θf , θy, θd) =
N∑
i=1

Li
y(θf , θy)− λ

N∑
i=1

Li
d(θf , θd) (3)

where Li
y(·) and Li

d(·) are the losses of classifier and dis-
criminator at the ith training example respectively, θf , θy ,
and θd denote the parameters of feature extractor, classifier,
and discriminator respectively, and λ refers to the trade-off
parameter. The goal of domain adversarial-based methods is
to seek the parameters θ̂f , θ̂y , and θ̂f that deliver a saddle
point of loss function (3):

(θ̂f , θ̂y) = arg min
θf ,θy

L(θf , θy, θ̂d) (4)

θ̂d = argmax
θd

L(θ̂f , θ̂y, θd) (5)

Based on DANN model, Wang et al. [117] proposed to
apply labeled source domain data and limited labeled target
domain data to train the feature extractor and classifier in a
supervised manner. To learn the domain-invariant features, a
discriminator is employed to align latent features. Considering
the extremely limited fault data scenario such as single sample,
Han et al. [118] proposed multiple domain discriminators to
enhance the domain-invariant feature extraction and improve
the fault diagnosis performance. Diverse from [118], Li [119]
used multiple classifiers to achieve accurate fault prediction
leveraging label information. A discriminator was also applied
to align the source and target features.

B. Transductive Transfer Learning

In this review, the existing transductive transfer learning
methods in bearing fault diagnosis are divided into transfer be-
tween different machines and transfer between same machines
according to the origin of the target domain data. In addition,
the methods under transfer between different/same machines
scenarios are further categorized into transfer between same
faults and transfer between different faults according to the
fault label property.
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TABLE IV
SUMMARY OF TRANSDUCTIVE TRANSFER LEARNING BETWEEN

DIFFERENT MACHINES IN BEARING FAULT DIAGNOSIS.

Transductive transfer
learning scenario

Methods References

Transfer between
same faults

Statistic-based [70],[89],[120],[123],[124]
[125],[126],[127],[128]

Few-shot-based [129]
Hybrid [130]

Transfer between
different faults

Adversarial-based [86]

1) Transfer Between Different Machines: The time and
frequency domain characteristics of bearing signals are greatly
affected by machine types and structures, so the feature distri-
butions of different machines can be very different. In order
to resolve the feature difference problem between different
machines, researchers have proposed various methods using
deep transfer learning techniques, including statistic-based,
adversarial-based and few-shot-based methods, as shown in
Table IV.

a. Transfer Between Same Faults
• Statistic-based methods

Statistic-based methods have received ample attention in
recent years in bearing fault diagnosis. Zhao et al. [70] and
Guo et al. [120] applied MMD to measure the distribution
discrepancies of the source and target bearing datasets. Nev-
ertheless, the authors did not consider the impact of internal
covariate shift and only aligned the data distribution of the
source and target domain data in the fully connected layer
[121]. Therefore, Yang et al. [89] proposed a multilayer
domain adaptation bearing fault diagnosis model by applying
MMD in each layer to minimize the distribution discrepancy
of the source and target domain data. The goal of the above
methods is to reduce the marginal distributions between the
source and target domain data, based on the assumption that
the conditional distributions between the two domains are the
same. However, previous study claimed that minimizing both
marginal and conditional distributions is vital to constructing
a robust transfer learning model [122–124]. Based on this
viewpoint, Wu et al. [125] applied joint distribution adaptation
to match marginal and conditional distributions by MMD for
bearing fault diagnosis, and the test results on CWRU and IMS
datasets demonstrated that minimizing joint distribution can
achieve effective fault diagnosis with few fault data. However,
for fault diagnosis problem, healthy state data account for a
large proportion of the collected data samples as equipment is
healthy most of the time. Previous methods ignore the class
difference and assume that the number of training samples
for each class is equal. Cao et al. [126] found that neglecting
the class weight difference can cause performance decline in
MMD-based methods, thus, they added a class probability
penalty term to MMD to address the category imbalance
problem. Li [127] et al. claimed that single source to single
target transfer learning tasks can not provide comprehensive
fault features for target fault diagnosis tasks. Therefore, they
proposed a reinforcement ensemble deep transfer learning
method with various kernel MMD to learn fault features

from different sources. Most deep transfer learning-based fault
diagnosis methods aim to learn domain invariant features of
two domains and neglect the generalization of models on the
target domain, therefore, Zhang et al. [128] proposed to use an
MMD loss to minimize global domain distribution discrepancy
and a supervised contrastive learning loss to realize class-level
alignment.

• Few-shot-based methods
As discussed before, few-shot learning can predict fault

labels based on limited samples. To conduct bearing fault
diagnosis with small data, Lu et al. [129] constructed a
transfer relation network with FeatureNet and RelationNet: the
FeatureNet learns fault feature representations from the sample
and query sets, and the RelationNet computes the relation
score of feature vectors. According to the proposed transfer
relation network, a query vector from the unlabeled target
domain is classified into the category with the highest rela-
tion score. The experimental results on three public datasets
demonstrated that the proposed method could efficiently pre-
dict faulty labels in the case of small data.

• Hybrid methods
Global domain adaptation is widely used in cross-domain

bearing fault diagnosis, and the pre-trained source classifier
can theoretically predict target faults. However, only aligning
the global data distribution while ignoring the distribution
differences between each class may lead samples near the
classification boundary to be misclassified to other classes.
Therefore, Liu et al. [130] proposed a global domain and
subdomain jointly adaptation method for cross-domain bearing
fault diagnosis problems. An adversarial-based network was
proposed to extract global domain invariant features from input
data, and a local MMD module was applied to minimize
subdomain distribution discrepancy. Experiments were carried
out on the CWRU dataset and a self-designed platform, and
the experimental results showed that the proposed global
domain and subdomain jointly adaptation method achieved
better performance compared with global domain adaptation
methods.

b. Transfer Between Different Faults
The great success of cross-machine bearing fault diagnosis

is mainly based on the assumption that the target label space
is the same as the source label space. However, the target
fault information is unseen in most practical industrial sce-
narios, which brings a new challenge for knowledge transfer
between different machines and different faults. To address
the inconsistent label and insufficient data problems, Deng et
al. [86] introduced a double layer attention-based discriminator
for bearing fault diagnosis. The proposed attention mechanism
enabled the model to determine which discriminator should
be concentrated and which part of the source domain feature
should be shared with the target domain and avoid negative
transfer.

2) Transfer Between Same Machines: Transfer between
same machines under different working conditions is the most
common transfer learning scenario. The existing studies can
be categorized into two branches: transfer between same faults
and transfer between different faults. Transfer between same
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TABLE V
SUMMARY OF TRANSDUCTIVE TRANSFER LEARNING BETWEEN SAME

MACHINES IN BEARING FAULT DIAGNOSIS.

Transductive transfer
learning scenario

Methods References

Transfer between
same faults

Statistic-based

[47],[50],[69],[72],[88],[131],
[132],[133],[134],[135],[136],
[137],[138],[140],[141],[142],

[143],[144],[145],[146]

Adversarial-based
[71],[111],[147],[148],[149],

[150],[151],[152],[153],[156],
[157],[158]

Few-shot-based [159],[160]

Hybrid [51],[73],[154],[155],[161]
Transfer between

different faults
Statistic-based [27]

Adversarial-based [63],[162],[163],[164]

faults contains statistic-based, adversarial-based, and hybrid
methods, and transfer between different faults only contains
adversarial-based methods, as shown in Table V.

a. Transfer Between Same Faults
• Statistic-based methods
As mentioned in previous paragraphs, MMD and its variants

are widely used in statistic-based transfer learning methods
[50, 69, 111, 126, 131, 132]. In addition to MMD and
its variants, many other metrics are also used to compute
the distribution discrepancy, including: moment discrepancy
[133, 134], high order Kullback–Leibler divergence [135],
correlation alignment (CORAL) [72], maximum variance dis-
crepancy [136], Wasserstein distance [137], etc. Due to the
limited representation ability of single kernel MMD [139],
some researchers applied multiple kernel MMD to balance
multiple kernel functions in measuring the distribution dis-
crepancy between two datasets [84, 131, 140], as shown in
(6):

K :=

{
k : k =

m∑
u=1

βuku,
m∑

u=1

βu = 1, βu ≥ 0,∀u

}
(6)

where βu is the trade-off parameter and ku is a positive kernel
function.

Most existing statistic-based methods focused on aligning
marginal distributions, that is, minimizing the distribution
discrepancy of the whole domain. By considering condi-
tional distributions, Wang et al. [88] developed a conditional
distribution-based adaptive network with MMD to minimize
the intra-class distribution discrepancy between the source and
target domain data. Furthermore, by considering both contri-
butions of domain alignment and categories alignment, some
researchers proposed a joint distribution adaptation (JDA)
method to align both marginal and conditional distributions
in bearing fault diagnosis [137, 138, 141, 142], and achieved
better performance than aligning marginal distribution only
based on experimental results. In addition, Pang et al. [143]
and Kang et al. [144] proposed to minimize the distribution
divergence and geometrical distance together to align the two
domain features. The experimental results showed that jointly
reducing distribution divergence and geometrical distance can
effectively increase transfer learning performance compared
with methods that consider only distribution divergence. Tian

et al. [145] proposed that multiple source domain data col-
lected from different working conditions can provide com-
prehensive fault information compared with a single source
domain, therefore a multi-branch neural network was built to
fuse each source domain features. Experimental results verified
the effectiveness of the proposed multi-source transfer learning
method for cross-domain bearing fault diagnosis problems.

• Adversarial-based methods
Adversarial-based transfer learning methods have been

widely applied in cross working condition transfer tasks. To
tackle the challenge of limited labeled data, researchers applied
deep adversarial convolutional neural network to learn domain-
invariant features for bearing fault diagnosis [146–148]. In
order to improve the transfer capability, researchers proposed
both multidiscriminator adversarial network and multilayer
adversarial network to learn domain-invariant features and
recognize feature discrepancy between the source and target
domain data [149, 150]. It is worth noting that the above
methods only focus on aligning the global characteristics
of source and target domain data, but neglect the category
information of different faults. To deal with the above problem,
Jiao et al. [151] proposed a double-level adversarial transfer
learning model to promote both domain-level and class-level
distribution alignments in bearing fault diagnosis. In order to
address the equilibrium issue of adversarial-based methods,
Xia et al. [152] proposed a perceptual loss to align the source
and target domain distribution to increase the stability of
training. In addition, most deep transfer learning bearing fault
diagnosis methods focus on single-task-domain and neglect
the scenario where multi-target-domain in practical applica-
tions. The complex data distribution structure of multi-target
may cause samples close to the decision boundary to be
misclassified. To bridge this gap, Deng et al. [153] proposed
a multi-target-domain adaptation method with a correlation
regularization mechanism to suppress negative transfer of
ambiguous samples.

• Few-shot-based methods
Few-shot-based transfer learning methods have made excel-

lent progress in limited faulty data problems. Zhang et al. [159]
applied a Siamese neural network-based few-shot learning
method to deal with cross-working condition fault diagnosis
problems, and the performance of the proposed method was
verified by CWRU dataset in cross-working conditions.

When there is no data available in the target domain, the
few-shot problem degenerates into the zero-shot problem.
As a special case of few-shot learning, zero-shot learning
can predict samples that are not observed during training
without any target data or identical distribution requirements.
To recognize faults in unknown working conditions, Gao et al.
[160] proposed a contractive stacked autoencoder based zero-
shot learning method, and the experimental results showed
that the proposed method can achieve better performance than
conventional fault diagnosis methods.

• Hybrid methods
In order to further improve fault diagnosis performance,

some researchers proposed hybrid methods by combining
several transfer learning approaches. For example, adding the
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statistic distribution discrepancy onto the loss function of
adversarial-based transfer learning methods as a penalty term
to minimize domain distribution shift. Shao et al. [73] and Wan
et al. [51] integrated MMD and adversarial domain adaptation
strategy to extract domain-invariant features of two domains.
Wu et al. [155] proposed to use domain adversarial training
with an intra-class MMD loss to minimize the marginal
and conditional distribution of the source and target domain.
Considering the effect of noise in transfer learning, Qian
et al. [161] used convolutional autoencoder as the feature
extractor by integrating class, domain, and CORAL losses in
the adversarial-based transfer learning model, to reduce the
impact of noise and minimize the distribution discrepancy
between the source and target domain data. Numerous deep
transfer learning fault diagnosis methods can not perform well
when lacking of enough labeled data, Fan et al. [154] proposed
a weighted quantile discrepancy metric to access the influence
of different quantiles on domain transfer and integrated it into
adversarial-based methods to realize accurate fault prediction.

b. Transfer Between Different Faults
• Statistic-based methods
Most transfer learning methods for bearing fault diagnosis

assumed that the source and target domains have identical
label space. Nevertheless, it is normal to have different fault
labels between target domain and source domain in practical
scenarios. For example, the bearing faults in the source domain
may not cover all the faults in the target domain, leading
to the source domain data can not provide comprehensive
fault information for target fault diagnosis tasks. To address
this problem, Yang et al. [27] proposed a multi-source do-
main transfer strategy to take advantage of multiple source
domain fault information. Specifically, a partial distribution
adaptation sub-network with an unseen fault identify neuron
was proposed to avoid misalignment. Next, multiple partial
distribution adaptation sub-networks were weighted fused to
release the effects of the source and target domain label spaces
inconsistent.

• Adversarial-based methods
Another scenario where the source and target domain label

spaces are inconsistent is that the target domain only contains
part of the source domain faults. Li et al. [63] proposed a class-
weighted adversarial network to address the partial transfer
learning problem in bearing fault diagnosis, by assigning
different weights to the source domain classes according to
the discriminator output to indicate the similarities between
the source and target domain data. Then the source domain
classes with low weights were neglected, and only partial
source domain knowledge was transferred to the target domain
for fault diagnosis.

In practical fault diagnosis scenarios, the target domain
data may contain some unknown classes that do not exist
in the source domain or only a source domain dataset is
accessible, bringing challenges for domain adaptation. In order
to address unknown fault problem in the target domain, Li
et al. [162] proposed a stacked autoencoder transfer learning
method for fault diagnosis, with a trained encoder to extract
latent common features between the source and target domain

data, and a binary classifier to recognize new faulty label in
the target domain. Zhang et al. [163] introduced an outlier
classifier on original domain adversarial neural network [116]
to recognize unknown faults in the target domain. Based
on previous work, Zhang et al. [164] further investigated
universal domain adaptation problems by proposing class-level
alignment mechanisms to recognize the target unknown faults
while aligning the shared faulty features. The proposed method
can not only correctly classify the target instances that are
included in the source domain but also mark the outliers as
unknown.

V. QUALITATIVE ANALYSIS

Many works showed that deep transfer learning-based bear-
ing fault diagnosis is effective and can achieve higher accuracy
than training from scratch when the target domain data are
limited, or the distributions of the source and target domain
data are different. Inspired by [165], the author introduced
six criteria to assess their characteristics in Table VI: 1) label
dependency: if the method requires the target labels; 2) data
scalability: if the method requires large datasets to train the
model; 3) deployment difficulty: if the method is difficult to
deploy; 4) efficiency: the computational cost of the method; 5)
extensibility: if the method can be modularized and expanded
by replacing the existing modules or adding new modules to
resolve more complex problems or achieve better performance;
6) performance: diagnostic accuracy of the method.

1) Fine-tune-based methods: Fine-tune-based methods can
be theoretically used to solve most transfer learning problems
in bearing fault diagnosis if the following two assumptions
are satisfied: sufficient target domain data, and all target labels
are available. On one hand, as fine-tune-based methods have
a strong dependence on the target domain labels because the
pre-trained model needs to tune the parameters in a supervised
manner. Correspondingly, the model can also realize high
diagnostic accuracy on the target diagnosis tasks with the
guidance of the target label. On the other hand, the quantity of
available data can significantly influence model performance.
When the data distribution discrepancy between two domains
is large, insufficient target domain data may leave the model
stuck in a local minimum and can not generalize well. In
addition, fine-tune-based methods freeze partial parameters
during tuning, which do not require as much training data
as statistic-based and adversarial-based methods. Therefore,
the data scalability and computational efficiency are medium
compared with the other three methods. Due to the diagnosis
model being pre-trained on the source domain data and the
target domain labels being available, the pre-trained model
can be re-used to learn target fault features in supervised
learning, so fine-tune-based methods are easy to deploy on
various fault diagnosis tasks. In terms of extensibility, fine-
tune-based methods can be easily used to resolve the label-set
inconsistency problem between the source and target domains
by replacing the top layer according to the target tasks.

2) Statistic-based methods: Statistic-based methods usually
introduce a metric to measure the feature distribution discrep-
ancy between the source and target domains in the embedding
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TABLE VI
COMPARISON OF DIFFERENT TRANSFER LEARNING METHODS (*: LOW, **: MEDIUM, ***: HIGH).

Methods Label dependency Data scalability Deployment difficulty Efficiency Extensibility Performance
Fine-tune-based *** ** * ** ** ***
Statistic-based * *** ** * * ***

Adversarial-based * *** *** * *** ***
Few-shot-based * * ** *** * **

space. When the feature distribution discrepancy is less than a
certain threshold, the features of the source and target domains
are considered to be similar. Therefore, the classifiers trained
on the source domain data can be shared with the target fault
diagnosis tasks, without any label requirement on the target
domain data. In addition, most of the statistic-based methods
only need a metric to measure the distribution discrepancy
of two domains and do not need any additional modules in
the pre-trained model or change in the structure of the pre-
trained model, which means the statistic-based methods are
not as difficult to deploy as adversarial-based methods. To
achieve high diagnosis accuracy on the target domain data,
enough unlabeled target data are necessary for feature extrac-
tion and fault classification. Therefore, statistic-based methods
have a high demand on data scalability, and accordingly, the
cost on computational resources also increases. In terms of
extensibility, it is difficult for most statistic-based methods to
resolve complex fault diagnosis problems, such as label-set
inconsistency problem, due to the limited hyperparameters in
the statistic-based methods and the pre-trained classifier can
not perform well on unseen target faults. Although the method
structures are not complicated, these methods can still realize
satisfying performance if the metric and structure are well-
designed [165, 166].

3) Adversarial-based methods: The success of generative
adversarial network has motivated many researchers to apply
adversarial strategy to resolve domain shift problems, such as
intelligent fault diagnosis. Adversarial-based methods aim to
generate source and target common features in the form of a
zero-sum game by introducing an additional discriminator to
distinguish extracted features, the common feature extractor
tries to generate domain-invariant features to fool the dis-
criminator. Although adversarial-based methods do not need
the target labels, they have high dependencies on data scale
and computational resources. On one hand, the introduction
of an additional domain discriminator module increases the
amount of parameters, which also increases computational
cost; on the other hand, the performance of adversarial-
based methods relies on the convergence of a zero-sum game
between the feature extractor and discriminator, which is
difficult to optimize on small datasets [165]. Furthermore, the
additional discriminator and the gradient reversal layer make
the adversarial-based methods difficult to deploy compared
with the other three methods, but the complexity leaves more
room for improvement to improve diagnosis accuracy or
address complex fault diagnosis tasks, such as label inconsis-
tent problems [86, 118, 163, 164]. In terms of performance,
adversarial-based methods always have high prediction results
in various machines and working conditions with sufficient

training data [104].
4) Few-shot-based methods: Few-shot-based methods pro-

vide a new paradigm, different from the above mentioned
methods, by learning knowledge of how-to-learn to resolve
the given fault diagnosis tasks. Few-shot learning can address
uncommon fault diagnosis cases that conventional deep learn-
ing models cannot solve, such as zero or limited faulty data,
getting rid of the cumbersome and expensive data collection
and labeling process. Therefore, few-shot-based methods have
low dependency on data label and data scalability, expen-
sive fault data collection and labeling works are eliminated.
Furthermore, less data quantity means training the fault diag-
nosis model does not require large amount of computational
resource. Notably, although few-shot-based methods do not
require large amount of training data, they need to construct
various training tasks and test tasks to build a generalized
model (see Fig. 4(4)). The deployment of few-shot-based
methods is not as easy as fine-tune-based methods that inherit
pre-trained models, but not as difficult as adversarial-based
methods that require additional modules. Limited by the size
of training data, the general performance of few-shot-based
methods cannot compete with the three methods mentioned
above.

VI. CHALLENGES AND OPPORTUNITIES

Deep transfer learning has received much attention in
bearing fault diagnosis since 2016. The introduction of deep
transfer learning methods alleviates the challenge of insuffi-
cient data in the target domain to a certain extent by reusing
the knowledge learned from the source domain. Neverthe-
less, there are still some unsolved problems in deep transfer
learning-based bearing fault diagnosis. In order to further im-
prove the accuracy of diagnostic models in cross-domain tasks
and promote the implementation of deep transfer learning,
the possible challenges and opportunities are discussed in this
section.

A. Transferability Assessment

Deep transfer learning aims to leverage the transferable fea-
tures learned from different but related tasks to address prob-
lems such as limited sample. Unfortunately, the effectiveness
of deep transfer learning highly relies on the following two
assumptions: 1) the data distributions in the source and target
domains are similar; 2) the learning tasks of both domains are
similar. If a priori knowledge is transferred from an unrelated
field, the performance of transfer learning can be greatly
affected, as not all the knowledge extracted from the source
domain effectively improves the performance of the target
task [167, 168]. Therefore, the assessment of knowledge or
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data transferability is critical for building accurate and robust
deep transfer learning models. The transferability assessment
can avoid negative transfer and provide proper guidance for
choosing appropriate diagnostic knowledge from the source
domain for target tasks [169, 170]. To the best of the authors’
knowledge, there is no comprehensive study discussing the
knowledge transferability of source domain data in bearing
fault diagnosis. Therefore, transferability assessment should
be given much attention in the future work of deep transfer
learning-based bearing fault diagnosis. Designing an effective
matrix to evaluate the transferability of the source domain
samples, features or pre-trained models rather than aligning
the whole datasets would effectively improve the transfer
model performance and computational efficiency. For example,
introducing weights on feature-level or model-level to assess
whether the source domain features and/or model parameters
can be transferred to resolve the target tasks.

B. Transfer With Distinct Labels

In most scenarios, the fault types of the target domain are
unknown, and the fault data may be inaccessible or unavailable
too. When the fault labels in the target domain are different
from those in the source domain, such a label inconsistency
problem increases the difficulty of knowledge transfer, espe-
cially when the diagnostic knowledge needs to be transferred
from the artificial faults to the real faults. Therefore, the
inconsistency between the source and target label spaces is
a very challenging problem in deep transfer learning-based
bearing fault diagnosis. The challenge of transfer with distinct
labels requires accurate recognition of valuable features in
the source domain and proper classification of new faults
in the target domain. It is worth noting that when target
labels are different from source labels, understanding the
feature alignment mechanism of each category can potentially
contribute to an accurate fault diagnosis model. From literature
review, although some research has been carried out on the
problem of distinct labels between the source and target
domains [86, 98, 118, 119], far too little attention has been
paid to unseen faults during transfer learning. For example,
most of the authors regarded the target implicit samples as
“unknown” class without identifying what faults they were.
Therefore, transfer with distinct labels is still a challenging
problem in fault diagnosis, which requires new breakthroughs
not only in the performance of known classes but also in
identifying unknown classes.

C. Transfer Under Abnormal Data Quality

Bearings usually run in harsh environments with heavy
loads and high speeds, it is inevitable that the collected bearing
status signals contain a large amount of background noise
generated by the friction and collision among mechanical
elements. Especially for incipient faults, fault signals with
small magnitudes are submerged in background noise, the fault
features are too weak to be extracted by diagnosis models for
fault diagnosis. When the data is extremely noisy with outliers,
such as the vibration signal in practical mechanical system,
deep learning models may not be able to effectively extract

fault features, and will eventually affect the performance of
fault diagnosis. Such an abnormal data quality problem is
very common in bearing fault diagnosis, and is highly related
to the signal-to-noise ratio and signal segmentation in data
collection and preprocessing [171–176]. Current works usually
employ signal filtering algorithms or robust models to increase
fault diagnosis accuracy, but rarely apply transfer learning to
address noise problems in bearing fault diagnosis. Generally, it
is convenient and feasible to obtain enormous source domain
data from equipment in the laboratory. Therefore, the domain
invariant features extracted from the source domain in the
laboratory can provide additional knowledge for the target
tasks with abnormal data quality. As a result, it is important
to investigate further on the deep transfer learning methods
to reduce the impact of abnormal data quality and transfer
knowledge from laboratory equipment to practical system.

D. Transfer between different signal types

In recent years, sensor technology has developed rapidly,
and different types of sensors are widely used in bearing fault
monitoring [7]. But for deep transfer learning-based bearing
fault diagnosis, most researchers focus on transfer between
different working conditions, machines or faults using the
same signal types but neglect the scenario where transfer
between different signal types. In some scenarios, the source
domain signal types are different from the target domain
signal types. For example, if the source domain data are
vibration signals, but only current or temperature signals
are available in the target domain. Although the fault data
collected by different sensors represent the same or similar
fault information, due to the difference of signal types, the fault
data distribution, physical meaning and feature embedding are
different. Therefore, the pre-trained diagnosis model using
different signal types can not be directly used to predict
bearing faults. Applying transfer learning methods to reduce
signal distribution discrepancy can address distribution shift
problems and reduce computational costs rather than training
from scratch. It is worth noting that directly aligning the
fault signals collected from different sensor types may cause
negative transfer since representations of different signal types
are inconsistent. A potential method to avoid misalignment is
to project different signal types into a common feature space,
followed by feature alignment.

E. Multi-source Transfer

Most existing deep transfer learning-based fault diagnosis
methods only used a single source dataset in the learning
stage, but such a single-modal transfer may be deficient when
significant data distribution divergence exists between source
and target domains. In addition, a single source dataset is
easily effected by external noise and interference, which may
lead diagnosis models to fail to extract complete features
from fault data. Therefore, the multi-source transfer learning
strategy should be considered as a promising research direction
for bearing fault diagnosis. The general multi-source transfer
strategies in bearing fault diagnosis include multiple sensor
locations, multiple sensor types (vibration sensors, temperature

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TIM.2023.3244237, IEEE Transactions on Instrumentation and Measurement



16

sensors, current transducers, etc.), or both. First of all, multiple
data sources provide more comprehensive data characteristics
for the feature extractor compared with single data source.
Secondly, multiple data sources can help increase the data
diversity and reduce the risk of overfitting during the pre-
training process [177, 178]. In addition, large volumes of
source data can take advantage of deep neural networks and
enable the feature extractor to learn valuable features from the
source domain. Thirdly, if some modalities are missing or un-
available, the remaining modalities can still provide sufficient
inheritable knowledge. Lastly, multiple modalities increase
signals’ diversity. Each modal provides unique fault features
that cannot be obtained from other modalities. However, it is
worth noting that although multi-source transfer may provide
more information than a single source, it may also bring
redundant features that can eventually weaken the performance
of transfer learning models. In addition, different modalities
have varied contributions for different target fault diagnosis
tasks, and unnecessary source domain data may cause negative
transfer. Therefore, the impact of redundant features on the
target task should not be neglected, and it is important to strike
a balance between data diversity and redundancy during the
investigation of multi-source transfer learning in the future.
A straightforward way is to design efficient feature fusion
technologies to fuse common knowledge in feature-level [179].
The authors believe that choosing limited and appropriate data
sources is an effective and feasible approach to avoid data
redundancy instead of blindly increasing the number of data
sources.

F. Incipient Fault Diagnosis

According to the literature review, existing deep transfer
learning-based fault diagnosis methods mainly focus on the
permanent or serious faults, but the incipient faults are rarely
considered. However, it is already known that many severe
faults in rolling bearing actually evolve from incipient faults
with small magnitudes first, therefore the incipient fault di-
agnosis is of great importance for efficient component main-
tenance or replacement. However, the incipient fault, due to
its small magnitude, is easily interfered by intense background
noise which increases the difficulty of incipient fault diagnosis
[180–182]. The slight difference between normal features and
incipient fault features also brings challenge to extract knowl-
edge reflecting incipient faults, making the incipient fault
diagnosis of rolling bearing extremely challenging [42]. As a
result, the conventional machine learning-based fault diagnosis
methods may not be sensitive to incipient faults. With the help
of extracted incipient fault features from the source domain
data (such as laboratory), the diagnostic knowledge sensitive
to incipient faults can be transferred to the target domain
to deal with incipient fault diagnosis tasks. Therefore, the
investigation on applying deep transfer learning techniques on
the incipient fault diagnosis is a promising research direction
in the fault diagnosis of rolling bearings.

G. Novel Applications in Transfer Between Different Ma-
chines

Transfer between same machines but different working
conditions has received wide attention since 2016, and has
achieved good performances due to the close relationship
between two domains [59, 70]. Affected by various factors
such as machines, sensors, and data collection, transfer be-
tween different machines is of greater practical importance
and more difficult than transfer between same machines in
applications. Nevertheless, the existing studies in transfer
between different machines are much fewer than the studies
in transfer between same machines in the literature. Due to
the significant differences in mechanical structures, working
environments, and bearing types of different machines, the
diagnostic knowledge learned from the source domain (such
as laboratory) is always challenging to be reused in a different
machine in the target domain. Serious problems such as
negative transfer may happen if the diagnostic knowledge
learned from the source domain does not match the target
domain. Therefore, it is of great practical value to have further
investigation on the transfer between different machines in
fault diagnosis in the future, and develop more novel appli-
cations for accurate and efficient transfer. A robust neural
network is important to improve the performance of model
on diverse application scenarios [183]. However, most current
works focus on extracting similar knowledge of the source
and target domain data to improve the performance of transfer
learning model, but neglect the importance of robust transfer
learning models. Improving the robustness of transfer learning
models would be promising direction to solve transfer between
different machines’ problems.

VII. CONCLUSION

This review has provided a comprehensive survey of the
development of deep transfer learning-based bearing fault di-
agnosis since 2016. A systematic guideline for researchers and
practitioners who will begin or extend their works on bearing
fault diagnosis is provided in detail, by covering the whole
life cycle of deep transfer learning, including source domain
data selection, data transformation, and transfer learning model
selection. Seven open-source bearings datasets and commonly
used data transformation methods have been introduced and
discussed to provide researchers and practitioners with the
choice of appropriate data selection and transformation. In
addition, a novel taxonomy of deep transfer learning-based
fault diagnosis methods from the perspective of target domain
data properties divided by labels, machines, and faults has
been provided, which can help researchers and practitioners
efficiently find suitable deep transfer learning models based
on the actual problems encountered in fault diagnosis. Finally,
the research challenges and opportunities of future works have
been discussed, including transferability assessment, transfer
with abnormal data quality, multi-source transfer, incipient
fault diagnosis, and novel applications in transfer between
different machines. In summary, this review systematically
expounds on the development of deep transfer learning-based
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bearing fault diagnosis since 2016, and provides valuable guid-
ance for the research development and important implications
for future practice in this field.
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