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Abstract—This paper is concerned with the problem of finite- EDS
horizon energy-to-peak state estimation for a class of networked FHqgtp
linear time-varying systems. Due to the inherent vulnerability RPXa
of the network-based communication, the measurement signals
transmitted over a communication network might be intercepted R”
by potential eavesdroppers. To avoid the information leakage, by g7 ~ 9
resorting to an artificial-noise-assisted method, we develop a novel P> 9
encryption-decryption scheme to ensure that the transmitted =
signal is composed of the raw measurement and an artificial- MT
noise term. A special evaluation index named secrecy capacity is_—1
employed to assess the information security of signal transmis- Amin {7}
sions under the developed encryption-decryption scheme. The ~™in
purpose of the addressed problem is to design an encryption- Amax{< }
decryption scheme and a state estimator such that: 1) the desired Prob{s}
secrecy capacity is ensured; and 2) the required finite-horizof,— E{z}

I performance is achieved. Sufficient conditions are established ~

on the existence of the encryption-decryption mechanism and diag{---}
the finite-horizon state estimator. Finally, simulation results are H(IH
proposed to show the effectiveness of our proposed encryption- I
decryption-based state estimation scheme.

Index Terms—Eavesdropping, encryption-decryption scheme,
energy-to-peak state estimation, artificial-noise-assisted tech-
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The past several decades have witnessed the growing pstate estimation is addressed by using a dynamic transmission
ularity of networked systems as a result of their distinacheduling policy for the sensor measurements. For the latter
advantages (e.g. easy installation and low cost) and succesef#, the security of signal transmissions is protected by
applications in various fields. Nevertheless, it is worth notingncrypting the original plaintext into ciphertext based on the
that the employment of communication networks would givereset secret key. In general, the encryption-decryption-based
rise to the so-called network-induced phenomena (e.g. packetchanism can achieve a satisfactory information security
dropouts, signal quantizations, packet disorders, cyber-attackhen the secret key is sufficiently safe. Nevertheless, it should
and fading measurements), and hence damage the reliablliey pointed out that the corresponding results on the FHEtP
and integrity of the transmitted measurement signals. As suekate estimation problem against eavesdropping have been
it is imperative to consider the networked state estimatigarely reported, which motivates us to shorten such a gap.
problems in the presence of various network-induced phenomSummarizing the discussions made so far, in this paper, we
ena. Along this direction, a great deal of remarkable researsthive to challenge the FHEtP state estimation problem in the
results have been available in the literature see e.g. [1§resence of eavesdroppers by using the encryption-decryption-
[21] and the references therein. For example, an unbiasednégsed mechanism. Two essential challenges are identified as
constrained least squares state estimator has been develdpimlvs: 1) how to design the FHEtP state estimator under
in [22] for a class of time-varying stochastic systems witthe effect of encryption-decryption-based mechanism? and 2)
missing measurements under the Round-Robin protocol. how to design the encryptor parameters and thus guarantee the

On another research frontier, the network-associated secdesired information security? In response to these identified
ty has been attracting a growing research interest due primaghyallenges, the primary novelties of this research are highlight-
to the ever-increasing system complexities and safety demattias follows:1) the FHEtP state estimation issue is, for the
[23], [24]. For networked systems, the security issue mainfirst time, considered for time-varying systems in the presence
arises from the inherent vulnerability of the network-basesf eavesdroppers; 2) an artificial-noise-assisted encryption-
communication technique, i.e., the signal transmissions owdcryption scheme (EDS) is developed to guarantee the in-
shared communication channels are prone to the cyber-attaigtmation security of the network-based signal transmissions;
and information leakage. It should be pointed out that thend 3) the desired time-varying estimator parameter, derived
network-associated security issue would pose additional chial-terms of the solutions to certain recursive linear matrix
lenges to the design of networked state estimation schemeagqualities, is suitable for online computations.

More specifically, when it comes to the case of cyber-attacks,The rest of this work is outlined as follows. In Section I,
the malicious attackers might launch miscellaneous attackswe first introduce the framework of the encryption-decryption-
interfere with the signal transmissions over communicatiddased communication mechanism, and then formulate the
networks, thereby giving rise to the deteriorated estimatigfHEtP state estimation problem for networked systems against
performance or the damage of entire system. To deal wigavesdropping. In Section Ill, an EDS is designed to preserve
such an issue, a rich body of results has been reported in the information security of the transmitted data. Moreover,
literature, see e.g. [25]-[29] and the references therein.  the desired time-varying estimator parameter is obtained by

Generally speaking, information leakage refers to the phesorting to certain recursive linear matrix inequalities. A
nomenon that certain confidential information is revealed tmulation example is given in Section IV to illustrate the
the unauthorized parties, e.g. eavesdroppers. In networksgfctiveness of the developed EDS and FHEtP state estimation
state estimation problems, the potential eavesdroppers mighjorithm. Finally, some conclusions are drawn in Section V.
infer the private information of the system through overhearing
the transmitted signals over communication networks. There
is no doubt that the phenomenon of information leakage
poses serious threats to the so-calieébrmation security A. Plant and encryption mechanism

and ”.‘ay lead _to seyere losses. In this sense,_ It 'S.' prgctlcal!)fn this research, we focus our attention on the networked
meaningful to investigate the secure state estimation issue

) sigtte estimation issue (as shown in Fig. 1), where the signal
the presence of potential eavesdroppers, and some elegan

results have appeared in the literature, see e.g. [30]-[35]. Ornsm|SS|ons might be intercepted by potential eavesdroppers.

instance, a state-secrecy encoding scheme has been developed
in [32] to preserve the information security of the remote

()
) . . Measurement ‘ Ciphertext
state estimation procedure in the presence of an eavesdropper. oUPUE o ( Fncryption }Jeeeemceer;

In [30], an optimal encryption scheduling scheme has been

designed to protect the system privacy and guarantee the C"“]:I':t‘:‘;i?(ﬁ"“
estimation performance. (@)
State

It is worth noting that there are mainly two mechanisms t0 imates State A -
deal with the secure state estimation issues against eavesdrop-
ping, namely, the transmission-scheduling-based mechanism
[30], [36]-[38] and the encryption-decryption-based mecha-

nism [32], [39]. For the former one, a notable result has been (Eavesdropper)4---—------------------3
presented in [37], where the security issue of the networked

Il. PROBLEM FORMULATION AND PRELIMINARIES

Fig. 1: Networked state estimation with an eavesdropper.
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The plant under consideration is modeled by the followinghown to be an effective method to enhance the information
linear time-varying system with time delay defined on thsecurity against eavesdropping [40]-[42]. For the encryption
finite horizon|[0, N]: mechanism (2), theinpredictability of the artificial random
variable ¢, and the ADV 1, can greatly reduce the risk of

Tt = AgTy + BiZi—r + Brok information leakage.

Yk = Crxk + Dy (1) Rewriting the secrete key &= [s1 s2 -+ sp, the
2 = Mpxp ANT can be reformulated as'®(&;)nr = 7¢,.x5¢,, Where
i =Y_4, t=-T,—7+1,---,0 e,k represents thé,-th element of the vectayy. It is obvi-

) ous that the artificial random variab§g denotes the direction
wherex;, € R™, y,. € R™ andz, € R” stand for, respectively, yector from the secret keg, and the ADVy;, determines the
the system state vector, the measurement output and the Si%rf'ﬁlryption strength of the encryption mechanism. As such,
to be estimatedw;, € I»([0, N|;R?) and v € I5([0, N[;R")  the scalan, ;. with a relatively large value will give rise to a
represent, respectively, the process noise and measurendgyiificant difference between the original measurement data

noise.7 is a known constant positive scalaty, Bi, C, Dk, 4, and the encrypted das, thereby misleading the potential
Ej, and M), are known time-varying matrices with appropriat@ayesdropper in an effective way.

dimensions.
In traditional scenarios, the state estimates are generated i ) i
based on the received measurements that are directly trams-Pecryption mechanism and state estimator
mitted over the communication network. Nevertheless, owingIn this subsection, we shall introduce the following decryp-
primarily to the inherent vulnerability of the network-basetion mechanism to “remove” the effects of the ANT.
communication, the transmitted measurement signals mighDecryption scheme:Based on the received cipherteyt
be intercepted by the potential eavesdroppers [37], [39]. Th > 0) and the secret key, the decrypted measurement data
protect the information security, as shown in Fig. 1, afi.e., %) is generated through the following calculations:
encryption-decryption-based communication scheme is em- - . .
ployed to preserve the privacy of the measurement data during Sk = argmin Fi(®(0))
the sigr_w_ll transmission process. _ _ Jr =S — (I)(gk))STﬂk
Specifically, the encryption-decryption-based communica-

tion scheme can be divided into the following three steps. Firghere ¢, stands for the estimate of,, 7. denotes the
an encryptor is utilized to transform the original measuremediécrypted measurement data, afg{®(i)) is the decryption
data (i.e., the original plaintext) into the encrypted data (i.unction to be designed.
the ciphertext). Then, the encrypted data is transmitted over theccording to the encryption-decryption mechanism intro-
communication network. Finally, a decryptor is employed afuced in (2) and (3), we are now in a position to deal with
the state estimator side to re-transform the received encrypted issue of information security. To this end, by resorting to
data into the decrypted one (which might be slightly differenhe instantaneous received signal-to-noise ratios (SNRs) [43],
from the original measurement data). Under such a scheri&s so-calledsecrecy capacitys mathematically defined as
the information security is protected in the sense that thellows [44]:
potential eavesdropper is unable to acquire the accurate state

-

®)

logy (1 + fix) — logy (1 + k), i fik > fik

information based on the transmitted ciphertext. e _
0, if i < i

To begin with, let us introduce the following encryption
scheme by utilizing a special noise injection mechanism. where/i; andiy are, respectively, the instantaneous received
Encryption scheme: For anyk > 0, the ciphertexty, is SNRs at the legitimate receiver (i.e., the state estimator) and
generated by the eavesdropper. As discussed in [43], a sufficiently large
B secrecy capacity can guarantee the security of the network-

g = E(yk) = Y+ SO(&k) e () based communication.

where S € R™*™ is an orthogonal matrix and referred to as The SNR is defined as the ratio between the power of the
the secret keyd (&) £ diag{d(1 — &), 0(2— &), -+ ,0(m — signal and the power of noise. In this paper, it is assumed that
£.)} denotes a parameter-dependent matrix in whighe there is no channel noise in the process of signal transmission.
{1,2,-- ,m} is an artificial random scalar. Note thi },>o  Letting ex = yi — 7 be the encryption-decryption error, the

is a sequence of independent and identically distributed (i.i.§3lues ofji, and i, can be calculated as follows:

random variables with the occurrence probabilitesb{¢, = on yel? |2

it=p; (1=1,2,---,m). g € R™ is an artificial disturbance M = o — e = BN
vector (ADV) to be designed. In this research, the secret key 9 9

S is known to the remote state estimator but unknown to the i 2 Ly ”_ s = Iy .
eavesdropper. vk = el 1S (Ek)nell

Actually, the encryption mechanism (2) iseochastic map-  As discussed in [39], the SNR is an important index to
ping, where a special artificial-noise term (ANT)® (&), reflect the signal transmission performance. A lower SNR for
is introduced to protect the information security. It shoulthe eavesdropper would effectively prevent the eavesdropper
be pointed out that the artificial-noise-assisted scheme Hesm obtaining real observations through the network-based
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communication. A sufficiently large secrecy capacity meanehereCy, = [C,, 0 0 --- 0] and
that the SNR for the state estimator is much higher than the

SNR for the eavesdropper. In this paper, the secrecy capacity A 0 0 Ej B Yo

is adopted to evaluate the information security in the signal 0 0 0 0 P

transmission process. Ay 2|0 T - 00 pa T g s |
Remark 1:It can be observed from (3) that the constructed T

EDS would result in certain encryption-decryption errors (i.e., 0O 0 --- I 0 0 G

k) on the measurement data, thereby degrading the estimation
performance. In this sense, the enhancement of informatiorNow, let us recall the definition of uniform observability and
security against eavesdropping is at the expense of a sliffiitoduce some necessary assumptions which will be utilized
performance degradation in terms of state estimation. in the derivation of main results. B
In this paper, based on the values,fgfandgk, the proposed  Definition 1: [45] Let the time-varying matriceg’;, and

time-varying state estimator is of the following structure: A be given. The matrix paifA, Cy,) is said to be uniformly

. N R S, =, o . observable if there exist two positive scalats X and an

i1 = Aue + Exdi—r + Li(&) (G — (&) Critr) integer N > 0 such that the following condition is satisfied
Zp = M2y, forany0 < k < N — N:
2;,=0, i=-7,—7+1,---,0

(4) RI< My SRI
where &(&,) £ S(I — ®(&,))S”, 2 and @, represent, Where
respectively, the estimates af andxy. L (&x) is a parameter- k+N
dependent time-varying estimator parameter to be designed. My Nk = Z G kC’ Ci¥,r,
We are now ready to introduce the main purposes of this
research: N Ai—lAi—Q c Ay, ifi>k
1) Design the ADVy, and the decryption functiodFy(-) Vi = I T
such that the secrecy capacity is greater than a given ’
thresholda (i.e., Cx > «) for all k > 0. Assumption 1The matrix pair(Ay, Cy,) is uniformly ob-

2) Design the time-varying estimator parameltgrsuch that servable with the known positive scalats® and integer/.
the following finite-horizorl,-I.. estimation performance  assumption 2:Consider the time-varying matrice(é,[j] N
requirement ®(i)Cy in which ®(i) £ (I — ®(i))ST. The following

sup E{[|zx — 2]1?} inequalities hold for ald <k < N — N:

N]

relo: )
N (C ) Cl > wClC,, i=0,1,---,m
< 2 2 ) -
=7 <kzo (”wk” 11l ) wherew is a known positive constant.
Assumption 3The values of the initial system statg and
+ Z = 2)TQ (s — ii)) (5) the energy-bogpded disturbances (e,g.andwy) satisfy the
e following conditions:
holds for all nonzero noisesiand wy, wherey > 0 Zoll < x,  lwill <@, vl < 7,

denotes the energy-to-peak performance index (or the

prescribed,-l., disturbance attenuation level),_; (i = wherey, v andw are known positive constants.

—7,—7 + 1,---,0) are the given weighting matrices Based on Assumptions 1-2, the input-output model for the

satisfying@; > 0. plant (1) and the ciphertext, is constructed in the following

proposition.
[1l. MAIN RESULTS Proposition 1:Consider the time-varying system (6). Under
A. Design of the decryption function Assumptions 1-2, for any € {0,1,---,m}, the encrypted
In this paper, the required finite-horizénl.. performance Measurement sequentg;}i>o satisfies the following condi-

is independent from the ANT®(&,)n. In this regard, we 10N

shall design the decryption functiaf,(-) such thats, = &, Tir1(D(1) = L1 (2(0)), if k>N
and remove the effects of the ANI® (&, ), in the estimation B(i)y — $(i)h TR (7)
process. v)Yk+1 k+1,

Before introducing the design of(-), we first consider where

the input-output model for the pIant (1% and the ciphergxt €0 s]
Letting 7, = [z} «{_, --- «f_.]", the plant (1) and . C; -N
the ciphertexty, can be rewritten as foIIows. C SNy
P U Fy & | RN TEENFLEEN | o A 9 (g )y,
Tp+1 = AxZr + Brwy ©) :
Uk = CrZ + Dyvi + SO (&) é;[fk]q’k,kfj\?
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N
T (®(0)) 2 ®(0)grsr — > Hlp 1 (& 5o N0

7=0
i—1
hi £ &+ Divi+oi, @ 2C; > Wiy B,
s=k—N
j—1
hj & C;V; 0% + C; Z\IJJ 1.iBiw; + Djvj + o5,
1=0
[l a Al -1
Hy,k+1 = k+1‘1’k+1,k—N(Fk Fk)
€k N+5] T -
X ( k_k]\’[lt:; k—N+J,7€—N) ) (.] =0,1, aN)

with S0 (+) = 0.
Proof: We first consider the case > N. According to
Assumptions 1-2, it is clear that

Fk_ Z \IJsz7

i=k—N

which means that the time-varying matd¥’ F, is invertible.
Define the following time-varying matrlcesH,[cJrl (G =

1,2,---,m):

& | gyli (4]

= [Ho,k-l—l Hl k+1

= C'l[ﬂrllllk-l—l k—N (F Fk)_

Then, it follows from the definition of7 "

H}JL

i1 that

H [1]

(] _
k1 F Ck+1\11k+1.,k—Na

which means that

N
i 13 ] =i
ZHJ[,]kHCk kNEJ Vi Ntjh-N = Cl[c-]i-lqjk-i-l,k—ﬁ-

(8)
=0
Post-multiplying (8) byz,_ 5, we have
N
ZHM C[fk N+J]\I] = _
Jk+1" k—N+j k—N+j,k NTp—N
=0
N
= HJ[T];CH (i) vV Njh NI N
=0
=) Crs1¥)p1 N TR N - ()]
Note that
Y- Nvj — Dk—N+ij—N+j — Ok—N+j

5

=Ch N4+ Ve N+ b= NTh—N T TN

from which we have

‘i)(fk N-‘r_])ck N+7‘I’k N+jk—NLk—N

N
_ZHj['?]k-flq)(gk—N-ﬁ-])(yk N+_]_Dk N+_]Vk N+j

7=0
— Ok—N+j wk—N-i-j) ) (10)
and
(i) Cri1 Vi1 p- NIk N
=®(i) (Ye+1 — Dig1Vrt1 — Oks1 — Grg1).  (11)
Then, it follows from (9)-(11) that
® (i) (§k+1 — Diy1Vpq1 — Opy1 — Ojk-i-l)

N
= ZHa[]k ‘I)(fk N+])<yk N+j — D) N+jVk—N+j
j=0

(12)

According to the definitions of/;4+1(:), Lx+1(-) and i,
it follows from (12) that the following equality holds for all
i=1,2,---,m

T4 1(2(1)) = Lrg1(P(3)). (13)
Next, let us move on to consider the casé < k < N.
Obviously, it follows directly from (6) that
k

\Iijrl,OjO + Z \Ilk.,sBsws;
s=0

Tht1 =

which implies that

k
O (i) ki1 = P(1)Chr1Wk11,0%0 + P())Crir Y Wi, s Bows
s=0
+ ®(i) Dit1 Vi1 + B(1)0p+1
=P (i) hpet1. (14)
The proof is now complete. |

Remark 2:1t should be noted that the condition (7) is
an input-output model reflecting the relationship between the
ciphertexty;, and the external inputs (i.e., the process noise
wg, the measurement noisg and the ADVy). Accordingly,
the sequence§yy }>o0 can be utilized to evaluate the effects
induced by the external inputs, thereby contributing to the
identification of¢&y.

In what follows, we are going to design the decryption
function F,(®(i)) such that the equalitg, = & holds for
all k > 0.

Theorem 1:Under Assumptions 1-3, design the decryption
function F,(®(7)) as follows:

FACION]
()5l

if k>N+1

_ 15
if k<N+1 (15)

Fel@(0)) 2 {
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where

N
k= D H

7=0

Tk(®(i)) = O(i)

(& Ntjm1)Jh—N4j—1-

Then, the conditiort;, = & holds for allk > 0 if nixl >
max{7, 7}, Vi € {1,2,--- ,m}, where

v 62aN+g+1 ) -
é <<N+1+Z R aé max {HAkH}a

0<k<N

A cx + ¢ ifa<l1 _

S RN L PR
2(cax + Cy), ifa>1 0Sk<N

= A

22 max (14}, 42 max (1D},

II/\

j—1
¢G=ey abw+dv, (j=0,1,---,N+1).
s=0
Proof: To begin with,
Lioer (B(0)) and B(i)fy 1. )
Case 1:i = &1 In this case, we havé(i)og+1 = 0.

According to the definitions ofi, b and ¢, we are easy

to verify that, for anyk > N, the condition Fl F, >
wM,, ,—y > @wXI holds, which implies that
QC—LNJerrl

H!
I =

7y k+lH = (16)

holds for anyi € {1,2
obtained from the def|n|t|on afj; that

65— 45 SéZan (17)

Accordingly, noting that|®(i)| <
(17) that the following condition

L1 (@) ]|
N
<@l + 1Davill + > IH L (15554
§=0
+ 1Dy N+jVk— N+J||)
i 24 N+J+1( Ji )

7=0 s=0

t\‘

N
< éZasBa) +dp +
s=0

N _o_ 7 .
2gN+i+1

holds if ®(&,_ ;)05 x4, =0( =0,1,--- ,N).
On the other hand, for any < N, it is obvious that
1@ () Akt ]| < ||l < @@ x + Gepr <0.50.  (19)

Case 2:i # &,41. In this case, we havé (i)og1 # 0.
Noting that

(i)(i)OkJrl =
we have

| Lrsr(®

(I = @) P (k1)1 = P(Er1)Mh+1,

@)

-,m}. Furthermore, it can be

1, it follows from (16)-

6

N
> (| (1) e || — (m-n + 3 IHD (15 55l

7=0
D sail) + 1D
> max{7,7} — 0.57 > 0.5, k>N (20)
and
19 (i) k1| > 0.57, k< N. (21)

In what follows, by resorting to thmathematical induction
we will prove the assertion thgt, = & holds for all0 < k£ <
N.

Initial step. For 0 < k < N, it is immediately concluded
from (15), (19) and (21) that

Fi(®(@) = | @(@)gkl = [ @(i)hw]l > 0.50, if i # &
Fi(®(@) = [ @()gk| = [ @(i)he]| < 0.55, if i =&

let us consider the norms ofwhich implies that

€ = argmin F.(2(i)) = &. (22)

Inductive stepNote that the assert|of)C & holds for all
0 < k < N. Then, assuming thag’gC &k holds for allk < x
wherex > N, we are going to show th@tﬁl Eor1-

From the definition ofF,(®(:)), it is obvious that

Fri1(®(0) = | T2 (R(0))I| = | T2 (R (0))]]
= [[Lo+1(2(0))]l-
Then, it follows from (18) and (20) that

{fm( (1) = [[Lr41((D)]| > 0.57, if i # Eepa 23)
For1(P(2) = [[Los1(P(0))[| <057, if = &1’
which means that

€n+1—3rgm1n}—ﬁ+1( ()) Ert1- (24)

We can now conclude thﬁrC =&, holdsforallo < k£ < N,
which completes the proof. |

Remark 3:Up to now, we have designed the decryption
function F,(-) and analyzed the value gf in Theorem 1. It
can be observed that the scalasg, (¢ = 1,2,---,m) with
large values will contribute to the correct identificationspf

i.e., gk = gk

B. Design of the ADV),

In this subsection, we will design the AD), based on the
condition established in Theorem 1 (i.€y x| > max{7,7})
and the requirement on the secrecy capacity (e «). The
design of sequencgyy } x>0 is detailed through the following
theorem.

Theorem 2:Given the thresholdx < 1 for the secrecy
capacity, design the ADV);, as follows:

e = max{max{7, N}, pr}L1n + €x (25)

where
o el

N T
Pk \/ﬁ’ Gk—[El,k €2k Em,k]

)
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and ¢ (¢ = 1,2,---,m) are arbitrary positive numbers.C. Design of the estimator parametérg(gk)

Then, the conditiong;, = & andC > a hold for all k£ > 0. Based on the designed decryption function and ADV, the es-
Proof: First, it follows from Theorem 1 and (25) thattimation error dynamics can be characterized via the following

|m,%] > max{7, 7}, which implies that§), = &, holds for all parameter-dependent time-varying system:
k> 0.

Considering the decrypted measurement dataone has ent1 = (Ax — Lk(fk)q)gszci)ek + Exer—r
. - + Brwy — L (&k) P (&) Divk (31)
e = S(I — ®(&))ST s M
S(I — ®(E,))ST (yr + SO(&x)m) e
=S — @(&))S™ (yk k) k
- whereey, £ z, — & is the estimation error ang, £ zj, — i

=y = SO(&)ST Yk + ST — (&) D(&r)mk; stands for the output estimation error.
In what follows, we shall present sufficient conditions to
ensure the desired estimation performance in the following
i = yr — S®(E)S Ty (26) theorem.
Theorem 3:Given the estimation error dynamics (31) and
holds if & = &. Moreover, the decrypted measurement dathe parameter-dependent time-varying estimator daifs.).

from which we conclude that

is independent from the ADVj, if &, = &. under Assumptions 1-3, the required finite-horiZeti., esti-
From (25) and Theorem 1, we have obtained fiat ¢,. Mation performance is achieved if there exist positive definite
Then, it follows from (26) that matricesR, (—7 < k < N)and P, (i = 1,2,---,m,
. 0 < k < N) satisfying the following recursive matrix
ek =Yk — Gx = SP(&)S i, inequalities
which implies that O %12 %13 %14
0,2 ¥ Yoo Yoz Yoy <0 32
ol lwl? R T ey 6y 59
lerll®  |S® (&) STys2 * ok ko By
[PAR B 1 and the constraints
= & VT2 2 &\ QT2 _
||S‘I’(§k)f 1% [y 1S (&) ST Py < ’YQQO, R_; < '72ij (j=0,1,---,7) (33)
= - > 1. 27 P> MM 34
N (S (E)ST) G0 Pz Mol ] &9
foralli =1,2,---,m, whereP. 1 = 3" p;Pj 11 and

On the other hand, the value gf; is calculated by
@11 —AszkJrlAzk‘i‘Rk ’Lka

_ llye]l? (74l
= = . 28 -y
= S0 E)mIE 72 lse 8 01,2 AP B,
913 £ Al} Pry1 By,
Noting thatS™ S = I = [s]'s;] . itis easy to find that 0,42 — AT, Pyy Ly(E:)B(i) Dy
|[si|* = 1 holds for alli = 1,2,---,m. Hence, it follows SR )
from (25) and (28) that O99 = Ej; Poy1Ex — Ry,
A
Hka2 ”kaz . Aiyk Ay — Lk(fk) ( )Clm
M= S, 2otk (29) Oy4 & —Eff Poy1 Li(€)B(i) Dy,
. ! O35 £ B Ppy1 By —°1
In light of the definition about the secrecy capacity, we = - .
derive%hat A O34 £ —B[ Pry1 Li (&) (i) Dy,
~ - Oy £ Ej Pyy1 By,
Cr = logy(1 + fix) — logy(1 4 fir) > 1 —logy(2°7%) :(go) 0,2 DT(I)( )LT(ik)PkHLk(ﬁk) ())Dy, — 721
h . let . Proof: First, define the following Lyapunov-like function:
e proof is now complete.
; : k-1
Remark 4:From the design process of the ADY; in AT T
Theorem 2, it is not difficult to see that a vectar with Vie = ex Pirer + ; ej lje;,
j=k—1

relatively large norm leads to the improvement of the secrecy

capacity. Nevertheless, such a “big” vector would amplifyyhere; 2 gk
the value of the ciphertexg, thereby increasing the com- Calculating the difference ofj, (i.e., AVi = Vi1 — Vi),
munication burden. As such, in practical applications, thge have

proper upper bounds on the positive numberg should be

selected to achieve a tradeoff between the secrecy capacity AV

and communication burden. =ef 1P pyrent1 —ep (P — Ri)ex — ef_  Ri_re—r
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er 17 61 @12 @13 Q14 e
_|ek—r ¥ Oz O3 Ol |ep—r
N Wk * * 633 634 Wk

Vk * * % Oy Vi

+ 72 lwrl? +9* lw?

where
i G,
6, & A-T P g1 Aik + Ry — Py,
612 £ AL Py i1 B,
é34 £ _Bk Pi,k+1Lk(gk) (i )Dkv
é14 £ _Az?:kpi,kﬁ-ll’k( )‘f)( ) D,
613 £ Al P 11 Br,

~
O©23 = Ej F; 41 B,

é24
B33 2 B
é22

[I>

B Py En
O44 2 DIB() LY (E) P oy L () B () Dy — 77
By noticing thatPy1 = 7" pj Pjx1 = E{F;

~EBl'P; 1 Li(€)®(i) Dy,

gpi,k+1Bk - 7215
_Rk T

follows from (32) and (35) that

E{AV,|I} =

T
CL CL
CL— CL—
T @Lk " T
k
Vi Vi

<y wrl® 4 vl

(35)

o1 1o it

+ 7 lwrll* + 72l

(36)

wherel £ {i, e, e, wr, v }. Hence, we hav&{AV,} <

V2 lwr]* + 72

[|v]|?, which implies that

k—1 k—1
E{Vi} —E{Vo} = > E{AV;} <2 > (llwxll® + lxll?)

=0 =0
N

<> (llwonll® + llvell?).-
=0

(37)

8

there exist positive definite matricdd ;, (¢ = 1,2,---,m,
0<k<N+1), R (—7 <k < N) and real-valued matrices
L, satisfying the following recursive matrix inequalities

11 0 0 0 615
* égg _O 0 @25
Oir = | = * O33 0 O3] <0 (38)
* * * ®44 ®45
* * * * 655

and the constraints (33)-(34), where

©11 £ Ry — Py,

O15 2 (Pry1Ar, — Li 1 8(i )Ck) ,
O & — Ry,

O35 £ By Pry1,

Os3 £ —7°1,

Ous = %I,

045 2 —DIO() LT,

Os5 = —Pry,

Oos £ Bl Pyt

Moreover, the desired time-varying estimator gain parameter
at time instantt is calculated as follows:

Lk(gk) - pl;rllﬁi,k (39)

wherei £ &.

Proof: By using the Schur Complement Lemma, the proof
is straightforward based on Theorem 3, and thus omitted here
for brevity. [ |

Remark 5:By now, we have handled the design issues
of the EDS and the FHEtP state estimator. To guarantee
the required finite-horizon energy-to-peak performance, a
parameter-dependent time-varying state estimation algorithm
and a measurement-data-based decryption fungfjgn have
been constructed to decouple the estimation error from the
ANT S® (& )nx. Then, the ADV . has been designed to
achieve the desired secrecy capacity, under which the satis-
factory information security can be ensured. Compared with

According to the conditions (33) and (34), we are ndhe existing literature, the main novelty of this research can
difficult to conclude that

N
iglgE{HikIIQ} <E(Vi} <) (lonll® + lvall?) +E{Vo}
= j=0

which indicates that the required finite-horizonl,, estima-
tion performance is achieved. The proof is now complese.

0

N
<9 (lwonl® + llwel?) +

j=0 i=—7

Z e Qi€

be emphasized from the following three aspects: 1) this paper
has made one of the first attempts to deal with the FHEtP
state estimation issue in the presence of eavesdroppers; 2) a
novel encryption-decryption-based communication scheme has
been constructed to ensure the desired secrecy capacity; and
3) an input-output-model-based method has been developed to
design the decryption function and the ADV sequence.

IV. AN ILLUSTRATIVE EXAMPLE

Up to now, sufficient conditions have been derived in Theo- In this section, an illustrative example is provided to exam-
rem 3 to guarantee the required finite-horizer.. estimation ine the effectiveness and correctness of our proposed FHEtP
performance for the plant (1) and the proposed EDS. Next, \wate estimation algorithm as well as the EDS.
shall proceed to design the parameter-dependent time- varme—he plant under consideration is modeled by the system (1)

estimator gal

Corollary 1: Given the estimation error described by the
dynamical system (31), under Assumptions 1-3, the requirgd —
finite-horizon I5-1,, estimation performance is achieved if

n matrlmk(gk)

where the corresponding parameters are given as follows:

0.1+ 0.01sin(0.3k) 0.1 0.1
0 0.2+ 0.1cos(0.1k) 0.1 |,
—0.6 0 -0.7
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[0 05 —06 0.2
E, =108 —-0.2 —-04|,B;= —0.3 T =1, 500 \ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
03 06 04 0.1+ w ool o
[—0.06 —0.08 —0.14 0.1 s00
Cp = |-0.08 006 —0.02|,Dy= [0.1]|, M, =05I. ol
| 0.1 0.1 0.2 0 ol

It is clear that the time-varying parameters satisfy

Amplitude
o

40

a= og}%XN{Ak} =1.4881, b= OISI}CBéXN{Bk} = 0.4123, :ZOO .

¢ = Cp} =03, d= Dy} = 0.1414. 0

¢ OISI}%XN {Cr} ’ OISI}CIEXN{ K wop

The measurement disturbance and process disturbance "‘0"14010 - -
respectively, set to be, = 0.4sin(0.3k) andw;, = 0.1 sin(k). 00—
The energy-to-peak performance index is setas0.8. The Time (k)
secret keyS and the occurrence probabilitips (i = 1,2) are Fig. 3: The values ofz1 x }o<k<ny and {Z1,x }o<w<n-
set to be

—-0.6 —0.8 0
S=1-08 06 0|, pr=p3=0.3, py=04. =
o 0 1 | 22¢

Clearly, S is an orthogonal matrix. 300

Based on the given parameters, it can be verified th 200}

Assumptions 1-2 hold by lettingc = 0.28, N = 5 and
N = 0.0166. Moreover, the threshold for the secrecy capacit
is selected to bex = 0.5. Calculating the sequendeyx }+>0

100

Amplitude

based on Theorem 2 and designing the decryption functi ol
Fi(®(4)) according to (15), the corresponding trajectories ¢ 0
&, andé&;, are depicted in Fig. 2. It can be observed that ot~ [ .,
developed decryption mechanism is able to identify the vall awor
of &, exactly. O e S

Time (k)

Flg 4: The values O{Ig,k}ogkgj\r and {ig,k}ongN.

800

L3k
L3k

600

\ \ \
0 5 10 15 20 25 30 35 40 45 50 a00 |
200
e
Z 0
= 50
-200 -
0
-400 -
° \ \ \ \ \ \ \ \ \ 50
0 5 10 15 20 25 30 35 40 45 50
Ti k L
ime (k) 600 400
. o 10 15 20
Flg. 2: The values O{Sk }OSkSN and {{k}ongN .

78000 5 1‘0 1‘5 2‘0 . 2‘5<k> 3‘0 3‘5 4‘0 4‘5 50
The detailed simulation results are given in Figs. 3-i.
Among them, Figs. 3-5 plot the state trajectories and their
corresponding estimates under the designed time-varying s-

tate estimator (4). Fig. 6 shows the trajectory@f which

implies that the resultant secrecy capacity is greater than the
given thresholda. Fig. 7 displays the trajectory ofz||?, In this article, we have addressed the FHEtP state estimation
from which we can see that the desired finite-horiZzeh,, problem for linear time-varying systems in the presence of
estimation performance is satisfied. All the simulation resulesivesdroppers. A novel artificial-noise-assisted encryptor has

confirm that the main objectives of this paper are achievedbeen developed to enhance the information security against

Fig. 5: The values ofzs 1, fo<k<n and{Zsx fo<k<n.

V. CONCLUSION
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eavesdropping, under which the raw measurement signals Bré
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Fig. 7: The trajectory of the output estimation erts,||>. [17]

transformed into the ciphertexts before being transmitted. In
addition, particular attention has been devoted to the desigf
of the decryption function and the time-varying estimator gain

parameter. Finally, the correctness and effectiveness of our no. 2, pp. 951-963, Jun. 2021.

derived results have been demonstrated through a numerié@l

simulation example. Some interesting topics for future study
include: 1) the secure state estimation issue for networked
nonlinear systems against eavesdropping [46], [47]; and 2}
the fusion state estimator design for networked systems in the
presence of an eavesdropper [48].
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