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Abstract 

Magnesia, alumina, spinels and yttria are of considerable interest for their wide 

applications in various technological fields including electrochemistry, catalysis 

or microelectronics, aerospace, automotive, personnel protection, nuclear 

materials, chemicals, biomaterials, host material in rare-earth-doped lasers, etc 

[5-18, 36-39]. To increase the proper use of these minerals in various scientific 

applications it requires further understanding of the crystal structural, electronic, 

and optical properties in a systematic way. First-principles density functional 

theory (DFT) and molecular dynamics (MD) techniques have become popular as 

they allow us to retain an accurate description of electronic cohesion of the 

atoms/ions even including the dynamics associated with elevated temperatures 

[56, 57]. In this thesis first-principles DFT within the local density approximation 

(LDA) and generalized gradient approximation (GGA-PBE) was applied to study 

the crystal structural and electronic properties of MgO, Al2O3 (α-, θ-, and γ-

Al2O3), MgAl2O4 and Y2O3. The electronic and optical properties of MgO and 

Al2O3 (α-, θ-, and γ-phases) are improved by state-of-art GW0 approach over 

DFT.  

For the γ-Al2O3, various existing models from the literature were examined. The 

distribution and interactions between cation and vacancies with all possible 

vacancy configurations were explored homogeneously. The present study 

concluded that the spinel type hexagonal γ-Al2O3 with Al vacancies at the 

octahedral sites is more stable rather than other models.  

The composition-dependent structure and properties of the Al2O3 rich spinels in 

MgAl2O4 to γ-Al2O3 solid solution have been studied in this thesis. A formula 

[Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (x = 0 to 1) was developed with distribution rules 

of cations, vacancies and anions in the defected structure in a systematic way. 
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The structural chemistry and electronic properties of MgO and γ-Al2O3 surfaces 

were studied in a systematic way in this thesis. The present study showed good 

indication of reliability of the method to study for complex surfaces.  

The six different structures of Y2O3 (i.e., cubic, monoclinic, hexagonal, F-Er2S3-

type monoclinic, α-Al2O3-type hexagonal, and fcc phases) have been discussed 

in detail with their chemical bonding and energetics. The calculations show that 

C-Y2O3 is the ground state phase.  

The overall results in this thesis will help to resolve many properties of magnesia, 

alumina, spinels and yttria regarding the interpretation of numerous applications 

in various aspects.  
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Chapter One 

Introduction: 

In this thesis, first-principles calculations are applied to quantitatively predict the 

structural properties and interrelationships in detail of several metal oxides: 

magnesia, alumina, spinels, and yttria. This chapter will introduce the background 

and importance of these metal oxides in section 1.1. The atomic simulation 

techniques to study the crystal structure and properties will be introduced in 

section 1.2.  

1.1 Background of the magnesia, alumina, spinels, and yttria 

Magnesia and alumina are the most common minerals found in the earth’s mantle 

[1-3]. Magnesia or magnesium oxide (MgO) is representative of the rocky 

materials comprising the mantles of terrestrial planets, such that its properties at 

high temperatures and pressures reflect the nature of planetary interiors [1]. It is 

an endmember of ferropericlase, (Mg, Fe)O which is thought to be the major non-

silicate oxide of the earth’s lower mantle, as well as super-earths (extra-solar 

planets with masses up to 10 times that of the earth) [1-4]. Alumina or aluminum 

oxide (Al2O3) occurs in nature in a variety of minerals, including boehmite, 

bayerite, corundum, diaspore, and gibbsite [2, 3]. Among the alumina polyforms, 

corundum (i.e., α-Al2O3) is the second hardest naturally occurring mineral [2]. 

Aside from being the major constituent of the outer crust of the earth, magnesia 

and alumina are of considerable interest for their wide applications in various 

technological fields including electrochemistry, catalysis or microelectronics, 

aerospace, automotive and personnel protection [5-18]. For example, in 

automotive industries, manufacturers start looking for lighter materials like 

aluminum and magnesium [6]. The automotive industry is currently gearing up 

to improve the performance and fuel economy at the same time the cost of their 
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products [19]. As a result, the demand for lightweight materials is increasing day 

by day, the magnesium and aluminum alloys have become the key materials in 

achieving a new era of lighter, more efficient vehicles [6]. The casting is an 

important process in the automotive industry to achieve fine-grain structures for 

alloys. In casting to enhance the nucleation process, the presence of a solid 

(catalytic) substrate nucleation is identified as heterogeneous and it promotes the 

nucleation process to get fine grain structure [7]. The recent experimental and 

theoretical observations revealed that alumina (includes α- and γ-Al2O3 phases), 

magnesia (MgO), and spinel MgAl2O4 have non-trivial influences on the 

mechanical performance of the cast parts and may act as potential nucleation sites 

to achieve effective grain refinement during the casting process [7, 20-22]. 

In recent years, another naturally occurring mineral Y2O3 [32, 33] has also 

attracted great research interest due to its diverse applications such as electronics, 

catalysts, photonics, nuclear materials, chemicals, biomaterials, host material in 

rare-earth-doped lasers, and substrate for superconductive thin films, etc [36-39]. 

It is known as starting material for the manufacture of YVO4: Eu and Y2O3: Eu 

phosphors used to produce the red color in television tubes [39, 40]. In the 

aerospace field, Y2O3 has been used to improve the mechanical properties of the 

Fe–Cr–C alloy systems [41]. Therefore, a better understanding of MgO, Al2O3, 

MgAl2O4, and Y2O3 would stimulate further advances in many related 

applications. 

1.2 Introduction of atomic simulation techniques  

There has been a significant increase in the use of computational simulation 

methods within the scientific community over the last few decades to study 

crystal structure at the atomic level. Through a combination of the histrionic 

increase in computational processing power (a phenomenon described by 

Moore’s Law [48]) and continuing algorithm development, atomic scale 
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modelling has become a valuable asset, providing a useful insight into the 

behaviour of atoms on a scale which often inaccessible to traditional experimental 

investigation. 

Atomic simulations can be broken down into two categories, classical 

calculations, and quantum mechanical calculations. Classical 

calculations/simulations use empirically derived potential parameters to describe 

the interactions between ions at macroscopic levels [49]. For example, classical 

pair potential based on the Born model [50, 51] combined with long-range 

electrostatic interaction (ΦLR) (also known as Coulomb interaction) [3] and the 

short-range interaction (ΦSR) can be useful for predicting trends in atomic 

structure and defect processes as well as predicting macroscopic properties, such 

as the bulk modulus.  

Quantum mechanics-based simulations such as electronic density functional 

theory (DFT) give a large quantity of information relating to the electronic 

structure of the system [52, 53] by solving the many-body Schrödinger equation 

[54]. For the simplest cases, quantum mechanical calculations are formally exact, 

however, as larger systems are studied various approximations have to be 

employed to make the calculations amenable. Among many atomic quantum 

mechanical simulation techniques, the first-principles molecular dynamics 

(FPMD) approach developed by Car and Parrinello [55], where they combined 

first principles (ab initio) DFT and MD to perform simulations of complex 

chemical systems become more popular now-a-days. The recent explosion in the 

popularity of first-principles methods is, to a large part, due to the success of DFT 

in providing a fairly accurate description of the ground state properties of 

materials at a reasonable computational cost [56, 57]. The parameter-free first 

principles DFT-MD is especially appealing as it allows us to retain an accurate 

description of the cohesion while including the dynamics of the atoms/ions 

associated with finite temperatures [56, 57]. Despite the success of DFT, it is 
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intrinsically a ground state theory, though the time-dependent versions of DFT 

are used increasingly to describe excited states in molecules and finite 

nanostructures [58]. One theory that goes beyond DFT for excited states in 

extended solids is the GW approximation [59–63]. The GW approximation to the 

one-electron self-energy, Σ = iGW, has been very successful in accounting for 

quasi-particle (QP) energies for a wide range of solids, as well as for isolated 

atoms and molecules [59-63]. Application of the GW approximation requires the 

input of initial guess QP energies and wave functions, which are generally taken 

from preparatory DFT calculations [64, 65]. Therefore, the GW approximation is 

characteristically referred to as a perturbation theory improvement to DFT [64, 

65]. In recent years the DFT and GW become the methods of choice in chemistry, 

physics, and materials science to calculate the structural and electronic properties 

of many-body solids [64-66]. The detailed theoretical methods of the first 

principle DFT and GW are described in Chapter four. 
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Chapter Two 

Overarching aim 

This chapter will describe the principal aim of the thesis. The motivation with key 

open questions that are objective to address, formulate the relevant hypothesis are 

discussed. The appropriate methods that are believed applicable to the intended 

thesis are also discussed in this chapter. 

2.1 Uncertainty surrounding γ-Al2O3 spinel 

Despite the industrial significance, much uncertainty surrounds the precise 

structure of γ-Al2O3. At present the γ-Al2O3 is generally considered to have a 

cubic spinel-type structure [28] and additional cation vacancies have to occur at 

the cation sites in the γ-Al2O3 lattice to ensure the correct stoichiometry. The Al 

atoms occupy both tetragonal (Tet) and octahedral (Oh) sites created by the 

oxygen sublattice [28]. Therefore, the main uncertainty arises about whether 

vacancies can reside on either the Td or Oh positions, as well as whether a random 

distribution of Td and Oh vacancies can exist. The previous experimental and 

computational studies to determine the bulk structure of γ-Al2O3 are summarised 

in Table 2.1. 

Table 2.1: Summary of previous experimental and computational models for the 

bulk structure of γ-Al2O3. 

Spinel-like structure 

Experiment 

Author(s) Method Outcomes 

E. J. W. Verwey (1935) 

[28] 

XRD  Proposed γ-Al2O3 has a defective spinel 

structure, vacancies are mainly at octahedral 

sites. 

H. Saafeld et. al (1965) 

[128] 

XRD Cubic spinel structure, vacancies to reside on 

tetrahedral sites. 
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C. S. John et al (1983) 

[129] 

NMR Cubic spinel structure, vacancies to reside on 

tetrahedral sites. 

V. Jayaram et. al (1989) 

[130] 

TEM Determined vacancies to reside on tetrahedral 

sites. 

R.-S. Zhou et. al (1991) 

[114] 

XRD Determined vacancies to reside on tetrahedral 

+ octahedral sites. 

J. Wang et. al (1999) [132] XRD, NMR Determined vacancies to reside on tetrahedral 

+ octahedral sites. 

C. Pecharromán et. al 

(1999) [131] 

NMR, IR Determined vacancies to reside on tetrahedral 

sites. 

G. N. Kryukova et. al 

(2000) [127] 

HREM It was shown that the intrinsic feature of γ-

Al2O3 structure is a presence of almost 

hexagonal closed loops formed due to the 

ordering of cation vacancies over octahedral 

positions on (110) and (111) planes. 

L. Smročk et. al (2006) 

[122] 

XRD Cubic spinel structure, vacancies to reside on 

tetrahedral sites. 

H. O. Ayoola et. al (2020) 

[123] 

TEM Determined cubic spinel structure, vacancies 

to reside on octahedral sites. 

Theoretical 

Author(s) Method Outcomes 

S. Blonski et. al (1993) 

[142] 

Molecular dynamics 

using interatomic pair 

potentials 

Determined vacancies to reside on tetrahedral 

sites. 

Shang-Di Mo et. al (1997) 

[105] 

Empirical pair 

potential calculation 

and first principles 

electronic structure 

studies 

Cubic spinel structure [(Al8)tet(Al13V3)ohO32] 

with 56 atoms, 3 vacancies at octahedral sites. 

The cation anion ratio 21:32. 

F. H. Streitz et. al (1999) 

[137] 

Interatomic pair 

potentials 

Determined vacancies to reside in octahedral 

sites, but said tetrahedral vacancies possible 

G. Gutiérrez et. al (2001) 

[138] 

ab initio DFT (LDA) Primitive (Rhombohedral) unit cell with 40 

atoms, determined vacancies to reside in 

octahedral sites. 

H. P. Pinto et. al (2004) 

[139] 

ab initio DFT (GGA-

PW91) 

Primitive (Rhombohedral) unit cell with 40 

atoms, determined vacancies to reside in 

octahedral sites. 

E. Menéndez-Proupin et. 

al. (2005) [140] 

ab initio DFT (LDA-

USPP) 

Primitive (pseudo-hexagonal) unit cell with 40 

atoms, determined vacancies to reside in 

octahedral sites. 
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F. Maglia et. al (2008) 

[144] 

DFT (LDA, using 

pair potentials) 

Primitive (pseudo-hexagonal) unit cell with 

160 atoms, determined vacancies to reside in 

tetrahedral + octahedral sites. 

Y. Liu et. al (2014) [141] First principle DFT, 

LDA, Fritz-Haber-

Institute (FHI) 

pseudopotentials with 

Troullier-Martins 

scheme. 

Hexagonal unit cell with 40 atoms, determined 

vacancies to reside in octahedral sites. 

Non-spinel-like structure 

Experiment 

Author(s) Method Outcomes 

G. Paglia et. al (2003) 

[134] 

TEM, NMR  

 

Proposed γ-Al2O3 with I41/amd space group 

symmetry, a maximal subgroup of Fd3m. 

a=5.616 Å, c=7.835 Å 

V.P. Pakharukova et. al 

(2017) [135] 

 

HRTEM, XRD. Proposed tetragonally distorted structure 

Theoretical 

M. Diagne et. al (2004) 

[145] 

DFT, GGA-PW91 Compared spinel and non-spinel model and 

proposed non-spinel-based structure. (40 

atoms cell). 

G. Paglia et. al (2005) 

[146] 

Empirical and First 

Principles 

Calculations 

tetragonal c symmetry-based non-spinel 

model. (Unit cell contains 160 atoms, 

a=b=5.616 Å, c=7.835 Å) 

A. R. Ferreira et. al (2011) 

[120] 

The Gauge-Including 

Projector Augmented 

Wave (GIPAW) 

method, within the 

DFT GGA(PBE) 

proposed the non-spinel model structure with 

Fd3m symmetry from Paglia et. al. Model (160 

atoms). 

M. F. Peintinger et. al 

(2014) [119] 

 

Hybrid DFT 

functional PW1PW, 

exchange functional 

is a mixture of 20% 

Hartree-Fock (HF) 

and 80% PW91 

exchange. 

Compared spinel and non-spinel model and 

concluded diffraction patterns of non-spinel-

based structure agree very well with 

experiment. For non-spinel model they 

proposed Paglia et. al. Model (160 atoms). 

S. Blancka et. al (2020) 

[147] 

DFT, GGA-PBE, 

mixed Guassian and 

plane wave approach 

(GPW) 

Proposed non-spinel model (followed Digne 

et. al. Model-40 atoms). 
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As shown in Table 1, most works focused on simple structural models, such as 

primitive, face-centered cubic and hexagonal cell with two vacancies, and 

conventional cubic cell. These models exhibit beauty from physics: simple and 

small. However, in these models there are two weak points.  

i) The vacancies distribute not in a homogeneous way. This causes unfavourable 

chemical bonding; and  

ii) The distances between the vacancies might be too short. This may cause strong 

interaction between vacancies. 

To overcome the above issues and get a reliable γ-Al2O3 structural model one 

needs to solve these questions:  

i) distribution of the cations,  

ii) vacancy-vacancy interaction, and  

iii) local atomic coordination and chemical bonding?  

Another issue is that in most of the theoretical work, the γ-Al2O3 structure 

developed from the cubic MgAl2O4 spinel crystal structural model by replacing 

2Al3+ ions with 3Mg2+ ions in tetragonal sites [105, 137-142, 144]. Therefore, 

some intermediate structural models have also been possible from MgAl2O4 to γ-

Al2O3 solid solution, but arise some questions:  

i) the reasonable structural formula for the intermediate structural models,  

ii) the distribution rules for the proportion of Al3+ ions and vacancies in 

tetrahedral (Tet) and octahedral (Oh) sites and  

iii) the validity of the distribution rules of Al3+ ions.  

The γ-Al2O3 surface structure is important for catalysis and solidification 

applications. To investigate the feasible γ-Al2O3 surface structure, the two main 

questions have to be solved:  
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i) is the polar surface stable for the system, and  

ii) what are the structural models for the non-polar surfaces?  

The solution to these questions will assist in the subsequent understanding of the 

surface structure of γ-Al2O3 and lead to the further development of many related 

applications. 

2.2 Stability and structures of Y2O3 phases 

The yttria (Y2O3) or yttrium oxide is another bixbyite type [VIA2][
IVO3] mineral, 

which becomes the most research interest for many industrial applications [36-

40]. According to the literature, this precious compound also could exhibit many 

structural polymorphisms such as cubic, monoclinic, hexagonal, and fcc [36-40, 

176-180]. For such a growing number of uses for this oxide, the better 

understanding of Y2O3 is a prerequisite and the following questions need to be 

solved:  

i) the possibility of different structural phases,  

ii) the ground state phase,  

iii) chemical bonding in the Y2O3 phases and  

iv) the mechanical properties and electronic properties of the Y2O3 phases.  

2.3 Appropriate method to study the crystal chemistry 

Despite the valuable information one can obtain from the experiments, there are 

also phenomena and insights into the system hard to be interpreted due to the 

complexity of the system and the coupling of multiple interactions.  Therefore, a 

theoretical approach beyond the experiment is crucial to predict the unobservable 

properties and improve the interpretation of the experimental data for atomic-

level structural analysis. Quantum mechanics methods can be used to solve some 

of the problems and by applying different theoretical methods, most of the 
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molecular behavior can be predicted. For example, the structures and the relative 

energies of a molecule or solid can be calculated to obtain the knowledge of stable 

atomic structures of a system. The modeling of the structural properties by means 

of first-principles Density functional theory (DFT) calculation has become a very 

useful tool for understanding the properties of materials, from molecules, and 

crystalline solids to amorphous systems. Density functional theory (DFT) has 

been implemented in various computational codes, including VASP. The Vienna 

Ab-initio Simulation Package (VASP) uses a plane wave basis set [204]. The 

package includes the use of the Monkhorst Pack method to sample the Brillouin 

zone [204]. The self-consistency iteration approach is used to calculate the 

electronic Kohn-Sham ground state in VASP and is very efficient and robust. 

Therefore, in this thesis, the first-principal DFT and MD simulation by VASP 

code are used for structural analysis. The state-of-art GW0 correction to the 

standard DFT functionals has been applied to improve the electronic and optical 

properties. 

2.4 Aims and Objectives 

The primary aim of the present work was to advance knowledge of and make new 

insights into the structure of γ-Al2O3. This study also comprises the relationships 

between the composition, structural and electronic properties of spinel MgAl2O4 

to γ-Al2O3 solid solution. I also make efforts to study systematically the structural, 

electronic, and optical properties of magnesia, alumina, and yttria. To perform a 

detailed study of crystal structure and properties, the research program was 

divided into the following steps: 

➢ First, study the crystal structural, electronic, and optical properties of MgO 

and α-Al2O3 by first-principles density functional theory (DFT) within the 

LDA and GGA(PBE) approximations to verify the methods. Then improve 

the electronic and optical properties by the state-of-art GW method. 
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➢ Investigate the occupations and distribution of cations at various sites in γ-

Al2O3 and develop a structural model based on the spinel (MgAl2O4). Also, 

apply the GW approach to describe the electronic and optical properties of 

the developed γ-Al2O3 structure. Compare the crystal structural, electronic, 

and optical properties of θ-Al2O3 and γ-Al2O3 with α-Al2O3 in detail. 

➢ Investigate the lattice variation of the transition compositions of MgO-rich 

spinel MgAl2O4 to Al2O3 rich γ-Al2O3 solid solution system. Also, study 

the influences of temperature effect on the stability of MgAl2O4 and γ-

Al2O3 by first-principles MD simulation. 

➢ Investigate the γ-Al2O3 surfaces. The polarity of the ionic oxide surfaces 

will be taken into account.  

➢ Study the different phases of Y2O3 systematically using the first-principles 

Density Functional Theory (DFT). 

The contents of the thesis are organized as follows: 

Chapter three provides the literature review of the crystal structures and 

properties of MgO and Al2O3 (including α-, θ- and γ-Al2O3 phases), with stress 

on the γ-Al2O3 structure, problems associated with the correlation between 

spinels MgAl2O4 and γ-Al2O3, stability of γ-Al2O3 surfaces and different phases 

of Y2O3. 

Chapter four gives details of the theoretical techniques i.e., first-principles density 

functional theory (DFT) including the local density approximation (LDA), 

generalized gradient approximation (GGA), GW approximation, basis sets with 

k-point sampling, pseudopotentials, optical properties calculation techniques, 

molecular dynamics (MD) simulation technique, and VASP code. 

Chapter five presents the results and discussion of the formation and stability of 

crystal structural, electronic, and optical properties of MgO and α-Al2O3 
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calculated by first-principles DFT within LDA and GGA(PBE) approximations. 

The resultant improved electronic and optical properties by GW approximation 

have also been discussed. 

Chapter six presents the results and discussions of revisited existing structural 

models of γ-Al2O3 including their formation and stability with local chemical 

bonding in detail. This chapter also compares and discusses the structural, 

electronic, and optical properties of θ- and γ-Al2O3 phases with stable ground 

state α-Al2O3. 

Chapter seven presents the study of composition-dependent structure and 

properties of the Al2O3 rich spinels MgAl2O4 to γ-Al2O3 solid solution, 

developing reasonable formula [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (x= 0 to 1) with 

distribution rules of cation and anion in the defected structure. The results with 

discussions are presented in detail. The influences of temperature effect on the 

stability of MgAl2O4 and γ-Al2O3 at elevated temperatures also be investigated 

and discussed using the first principle MD simulation technique. 

Chapter eight presents a detailed analysis of structural chemistry and electronic 

properties of γ-Al2O3 surfaces. At first, the stability and atomic structure of MgO 

(001) and (111) surfaces have been studied. The methods were then applied to 

study the γ-Al2O3 surface analysis.  

Chapter nine presents a detailed analysis of crystal chemistry and properties of 

Y2O3. Different phases of Y2O3 have been studied with their local chemical 

bonding and energetics. The electronic properties of the stable cubic Y2O3 phase 

have been discussed using the first-principles DFT within GGA-PBE and GW 

approximation. 

Chapter ten presents the summary of the main conclusions and recommendations 

for future work. 
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Chapter Three  

Literature Review 

In Chapter one, we have seen that the magnesia, alumina and yttria have diverse 

applications in modern technology, such as, from nanoscale materials to 

automotive industries, medical instruments to armours, fuel reactors, etc [5-47]. 

New and demanding applications have generated intense interest to the 

knowledge of the crystal structural, electronic and optical properties of these 

oxides. 

This chapter will briefly review the crystal structure and properties of MgO, 

Al2O3 (including α-, θ- and γ-Al2O3 phases), MgAl2O4 and different phases of 

Y2O3 from previous experimental and theoretical works in the literature [67-180]. 

Sub-section 3.2.3 will also raise the problems associated with determining the 

structural model of γ-Al2O3. 

3.1 Magnesia (MgO): 

Magnesia or magnesium oxide (MgO) has been considered as an ideal ionic 

crystal [67-72]. The crystal structure of MgO consists of a lattice of Mg2+ cations 

and O2- anions held together by ionic bonding [Figure 3.1].  
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Figure 3.1: Schematic structure of MgO with face centered cubic (fcc) lattice. 

Magnesium ions are octahedrally coordinated by oxygen ions. Red spheres 

represent oxygen atoms, yellow spheres are magnesium, and the oxygen 

octahedron is shown in light gray [73]. 

The MgO has cubic rocksalt (NaCl) type structure at room temperature, belongs 

to space group Fm3m [74]. From experimental works by X-ray diffractometer 

(XRD) the obtained lattice parameter ranging from 4.210-4.220 Å [75-80], 

whereas the theoretical works include density functional theory (DFT) show the 

smaller lattice parameter (ranging from 4.125-4.190 Å) compared to experimental 

results [73, 81-87]. Using Ultraviolet spectroscopy Anderson obtained its bulk 

modulus is 162.2 GPa [79]. Whereas the theoretical results for the bulk modulus 

from DFT calculations are 156.0-182.0 GPa [81, 83-85, 88]. The electronic 

energy gap is 7.77 eV [80] and 7.8 eV [82] from Ultraviolet Spectroscopy and 

Reflection Electron Energy Loss Spectroscopy (REELS) experimental works 

respectively. But the electronic energy gaps from theoretical DFT calculations 

vary, 5.21 eV [85], 4.51 eV [86] and 4.835 eV [87]. Note that it is not unusual for 

a standard density-functional approximation to underestimate the band gap of a 

semiconductor or an insulator [58-66, 85]. Later J. G. Smith et al [73] and G. 

Cappellini et al [85] improved the band gap to 7.5 eV and 8.88 eV respectively 

by employing the Hedin’s GW scheme for self-energy corrections over DFT.  

The simple cubic crystal structure, atomic and electronic arrangement and well 

understood properties have resulted in MgO being utilized as a test material for 

many experimental analysis and computer simulations [67-88]. Therefore, in this 

thesis, MgO is used as a model system for testing calculation settings.  

3.2 Alumina (Al2O3): 

Alumina has a rich variety of crystal chemistry. Besides the stable phase α-Al2O3, 

alumina exhibits several different metastable polymorphs or transition phases at 
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elevated temperature, such as γ, κ, λ, η, θ, and χ alumina [10, 89-91]. All the 

metastable phases usually are formed prior to corundum, when an oxide is 

obtained via the dehydration process, and they can be stable up to 1100°C [90]. 

The sequence 𝛾→𝛿→𝜃→α occurs as the temperature increases when the alumina 

is obtained from either hydroxide (boehmite) or melt [89].  

Among these alumina polymorphs, α- and θ- Al2O3 play an important role in the 

performance of the early oxidation of nickel–aluminium alloys in thermal barrier 

coatings (TBCs) [92-94]. The metastable θ- and γ-Al2O3 are used as catalyst and 

catalytic supports because of their lower surface energies [95]. To better 

understand the effect of metastable θ- and γ-Al2O3 on the performance of 

nucleation site, catalyst, catalytic supports, etc., knowledge about the crystal 

structural, electronic and optical properties is a prerequisite. 

3.2.1 α-Al2O3: 

The structure of the ground-state phase α-Al2O3 has been first reported by Linus 

Pauling in 1925 [96]. The α-Al2O3 belongs to the trigonal crystal system having 

a rhombohedral lattice with space group R3̅c.  The reported lattice parameter, arh 

= 5.13 Å and angle, αrh = 55.10° [97]. The equivalent hexagonal cell has the lattice 

parameters, ah = 4.760 Å and ch = 12.995 Å obtained from XRD experiment by 

L. Lutterotti et al work [98]. The conventional unit cell [Figure 3.2 (a)] in the 

hexagonal representation contains six formula units (30 atoms) [99, 100]. The 

Al3+ cations, occupy two thirds of the octahedral interstices, i.e., they have six 

oxygen nearest neighbours and forms two sublayers along its (0001) axis [Figure 

3.2 (a)]. There is thus only one coordination (octahedral) for Al3+ and one for O2- 

anion with four surrounding Al3+ ions [Figure 3.2 (b)]. The oxygen sublattice 

follows hexagonal close packed (hcp) ABAB stacking [101] [Figure 3.2 (c)].  
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Figure 3.2: (a) Schematic structure of the hexagonal α-Al2O3 conventional unit 

cell where pink and red balls represent Al and O atoms, respectively [100]. (b) 

The Al-O bonds and (c) Polyhedra of ABAB stacking where, Al in blue polygons 

and O in red [101]. 

From X-ray diffractometer experiments, the bulk modulus is 254.4 GPa obtained 

by H. d’Amour et al [102]. N. Ishizawa et al observed the two independent Al-O 

bond lengths: 1.971 Å and 1.880 Å at 300K by means of XRD analysis [103]. R. 

H. French et al obtained the electronic energy band gap 9.57 eV from Vacuum 

Ultraviolet Spectroscopy (VUV) [104].  

Many theoretical calculations have been performed including first-principles 

DFT to get inside into the crystal structural and electronic properties of α-Al2O3 

[105-110]. The lattice parameters and bulk modulus from theoretical calculations 

[105-110] show close values (within ±5%) with experimental obtained results 

[100-104]. But the electronic band gap from theoretical calculations using DFT 

are 6.26 eV [105] and 6.60 eV [107] which are notably smaller (within 30%) than 

the experimental value 9.57 eV [104]. S. J. Mousavi et al investigated the 

electronic structure of α-Al2O3 by first-principles calculation in the framework of 

DFT and the full potential linearized augmented plane wave (FP-LAPW) with the 

Engle-Vosco approximation (EVA) and their calculated value for the band gap is 
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7.2 eV [108], which is 20% smaller than experimental result [104]. Using state-

of-the art GW correction over DFT-LDA, T. Biswas et al improved the band gap 

to be 9.1 eV [110] which is in close agreement (within 5%) with the experimental 

band gap 9.57 eV [104].  

3.2.2 θ-Al2O3: 

The metastable θ phase of alumina (i.e., θ-Al2O3) transforms into α phase at about 

1050°C, when the alumina is obtained from either hydroxide or melt [89, 90, 

111]. Owing to its high crystallinity and clear X-ray diffraction pattern, its 

structure was first reported by J. D. Kohn et al work in 1957 [112]. The θ-Al2O3 

structure belongs to the monoclinic crystal system with a space group of C2/m 

[113]. The monoclinic θ-Al2O3 unit cell is defined by the a, b, and c lattice 

parameters and the angle β between a and c axis [90, 109, 111-119] [Figure 3.3 

(a)]. From XRD experiment G. Yamaguchi et al obtained the lattice parameters, 

a=11.813 Å, b=2.906 Å, c=5.625 Å and angle β=104.10 [113].  

                           

Figure 3.3: (a) Schematic structure of monoclinic θ-Al2O3 unit cell where blue 

and red balls represent Al (Al in pink polygons) and O atoms, respectively, (b) 

Al(tet)-O and (c) Al(oct)-O bonds [109]. 

The θ-Al2O3 structure can be described as a distorted cubic closest-packed array 

of oxygen anions in which the aluminum cations occupy one-eighth of the 
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tetrahedral interstices and half of the octahedral ones [109, 117, 118]. The crystal 

structure of θ-Al2O3 has been investigated by various experimental techniques, 

including x-ray and electron diffraction, scanning electron microscope (SEM), 

high-resolution transmission electron microscopy (HRTEM), and vibrational 

spectroscopy [113-116]. R. Franchy et al obtained the electron energy gap 7.4 eV 

using electron energy loss spectroscopy (EELS) [116]. On the theory side 

including DFT, the crystal structural and electronic properties of θ-Al2O3 have 

been investigated [90, 109, 117-119]. Z. Zhang et al calculated the bulk modulus 

using DFT within GGA(PBE) is 187.4 GPa [109]. S. -Di Mo et al calculated the 

electronic energy gap by DFT within the LDA is 4.98 eV [118]. Meanwhile M. 

F. Peintinger et al using the hybrid DFT method where exchange functional is a 

mixture of 20% Hartree–Fock (HF) and 80% PW91 exchange calculated the 

energy gap is 6.9 eV [119] which is 7% smaller than the experimental obtained 

value 7.4 eV [116]. Like α-Al2O3, θ-Al2O3 is an ordered phase, so its electronic 

and optical properties can be calculated unambiguously [118]. But in the case of 

the α phase there are experimental results available for several quantities, while 

such are absent for θ-Al2O3. Good understanding of the electronic and optical 

properties of θ-Al2O3 would certainly aid to many potential optoelectronic 

applications of this alumina phase such as solar energy devices, semiconductor 

industry etc. 

3.2.3 γ-Al2O3: 

Based on the literature, γ-Al2O4 is the first formed metastable phase when the 

alumina is obtained from either hydroxide (boehmite) or melt aluminium, even 

during the liquid-dealing and casting of Al-based melts [89-91]. γ-Al2O3 is 

regarded as one of most prominent material in various industrial applications such 

as, acting as an adsorbent, a catalyst and catalyst support [10–13, 120, 121]. The 

experimental observation revealed that this native oxide particle has nontrivial 

influences on the mechanical performances of the cast parts and may act as 
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heterogeneous nucleation sites during solidification processes of Al metals and 

Al- based alloys [7, 22, 91]. Significant applications of γ-Al2O3 imply that this 

material needs a clear description of its bulk structure as well the electronic and 

optical properties. Despite the vast amount of experimental and theoretical works 

into γ-Al2O3 have been done [28, 105, 107, 114, 119, 120-147] the fundamental 

questions about its accurate crystal structure with cation, anion and vacancy 

distributions are still in discussion. 

In 1935 the crystal structure of γ-Al2O3 was first introduced as a defective cubic 

spinel with space group Fd3m, where the oxygen anions have the same cubic-

close-packing arrangement as in spinel MgAl2O4 and the Al cations being 

coordinated both tetragonally and octahedrally by oxygen [Figure 3.4] [28, 89, 

122, 123]. The lattice parameter of cubic spinel γ-Al2O3 structure is 7.938 Å from 

Smročk model using XRD experiments study [122].  

                                        

Figure 3.4: Schematic representation of spinel type cubic γ-Al2O3 structure, 

where the green, blue and red balls represent the octahedral, tetrahedral 

coordinated Al atoms and O atoms respectively, the dotted black lines represent 

the unit cell of the cubic lattice [123].  

The crystal structure of an ideal spinel is cubic with chemical formula AB2O4, in 

which the A2+ divalent and B3+ trivalent cations occupying the tetrahedral (Tet) 

and octahedral (Oh) interstitial sites respectively and the ratio of cations to anions 
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is 3:4. But in the cubic γ-Al2O3 structure the ratio of cations to anions is 2:3. As 

a result, additional cation vacancies have to occur in the γ-Al2O3 unit cell to 

ensure the correct stoichiometry.  

Based on the analysis from X-ray diffraction (XRD) [28], nuclear magnetic 

resonance (NMR) [124], Transition Electron Microscope (TEM) [123, 125] and 

High-Resolution Transmission Electron Microscope (HRTEM) [126, 127] 

experimental measurements, it was concluded that the vacancies reside mainly in 

octahedral sites. Meanwhile, other XRD [128], NMR [129, 131] and TEM [130] 

experimental studies suggested the preference of vacancies in tetrahedral sites. 

Based on NMR analysis a disordered structure having 60% of the vacancies at 

the tetrahedral sites and 40% at the octahedral sites have also been proposed 

[132]. From HRTEM studies, it was also shown that the intrinsic feature of γ-

alumina structure is a presence of almost hexagonal closed loops formed due to 

the ordering of cation vacancies over octahedral positions on (1 1 0) and (1 1 1) 

planes [127]. Images of high-resolution transmission electron microscopy (HR-

TEM) revealed that the γ-Al2O3 plates exhibit hexagonal shapes and are (1 1 1)-

faceted [90, 133]. Considering tetragonally distorted structure later non-spinel 

model has also been proposed from TEM and NMR [134] and XRD [135] 

analysis. These experimental results might provide only statistically averaged 

structure because the atomic arrangements of Al vary in the γ-Al2O3 samples from 

different preparations. To get more accurate structural information, many 

theoretical approaches have been applied in γ-Al2O3. Several computational 

studies including first-principles DFT with different approximations (i.e., LDA, 

GGA-PW-91, GGA-PBE, pair potential, etc.) employed different unit cells 

observed preferential location of cation vacancies on octahedral sites [118, 136-

141]. Using first-principles DFT with LDA and GGA(PW-91) approximations E. 

Menéndez-Proupin et al reported that optimized primitive structure of the spinel 

γ-alumina resulting in a kind of pseudo-hexagonal cell with octahedral vacancies 
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[140]. Vacancy ordering on tetrahedral sites is supported by the molecular 

dynamics (MD) simulation using interatomic pair potentials [142]. However, ab 

initio DFT within LDA produced calculations support vacancy distribution 

among both octahedral and tetrahedral positions [143, 144]. Applying DFT with 

different potentials and approaches (i.e., GGA-PW91, GGA-PBE, hybrid 

functionals, mixed Guassian and plane wave approach etc.) non-spinel model of 

γ-Al2O3 structure was also proposed [119, 120, 145-147]. Most of the theoretical 

work in the literature focused on simple models, such as primitive cell containing 

only 40 atoms (Al16O24) [136-144, 145, 147]. There are a few theoretical 

calculations using larger supercell models of γ-Al2O3 structure [119, 120, 144, 

146]. There are also first-principles calculations for a non-spinel γ-Al2O3 model 

[119, 120, 146]. F. Maglia et. al used the pseudo-hexagonal larger supercell (160 

atoms) of spinel γ-Al2O3 model, applied DFT with LDA based on pair-wise 

interatomic potentials [144]. They concluded that larger supercell of spinel γ-

Al2O3 preferred random distribution of tetrahedral and octahedral vacancies 

[144].  

Although, the previous experimental and theoretical studies have sheded light on 

the configuration of the oxygen sublattice, the uncertainty about the positions of 

the aluminium cations and vacancies within the unit cell is still a topic of 

continuing debate over the γ-Al2O3 structure. Without a clear description of pure 

bulk γ-Al2O3 structure, clarification of many experimental data will be difficult 

or even misleading. In this purpose, careful theoretical calculations on a well 

defined structural model of γ-Al2O3 can provide much of the missing information 

and can be used to accurately interpret the data for more complex and 

nonstoichiometric samples in material industries.  
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3.2.4 Summary: 

As shown in the above subsections (i.e., 3.2.1-3.2.3), there are many experimental 

and theoretical efforts to describe the crystal structural and electronic properties 

of α-, θ- and γ-Al2O3 [89-147]. Though the calculated structural properties from 

theoretical DFT works of α-, θ- and γ-Al2O3 are in agreement with those obtained 

from experimental works, but large differences were observed for bulk modulus 

and electronic band gaps. Also, the chemical bonding nature in α-, θ- and γ-Al2O3 

phases relates to their crystal structural, electronic and optical properties. The 

study of crystal structure with chemical bonding nature in detail as well electronic 

and optical properties of these alumina phases using a systematic procedure of 

computational investigation could open up many aspects in research industry. In 

the case of ground state α-Al2O3 there are experimental results available, while 

such are absent for metastable θ- and γ-Al2O3. Particularly for γ-Al2O3 there are 

controversy still exists over its crystal structure. Therefore, to resolve the 

uncertainty and properties of θ- and γ-Al2O3 it is prerequisite to acquire proper 

knowledge about these alumina phases. 

3.3 Structural correlation between spinel MgAl2O4 and γ-Al2O3 

MgAl2O4 is known as the prototype of the spinel group. It has the cubic structure 

with the space group Fd3m [148]. The O atoms are at 32e (point symmetry, 3m), 

the Mg atoms at 8a (point symmetry, 43m) and the A1 at 16d (point symmetry, 

3m) [88]. The lattice parameter of spinel MgAl2O4 is 8.09 Å [149]. 
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Figure 3.5: Schematic structure of fcc MgAl2O4 conventional unit cell where red, 

green, and blue spheres represent O, Al and Mg atoms, respectively. Mg and Al 

ions are tetrahedrally (yellow polyhedra) and octahedrally (green polyhedra) 

coordinated by oxygen ions respectively [150]. 

Following the ideal spinel structure AB2O4, in MgAl2O4 crystal structure the Mg 

cations occupy the A tetrahedral sites, and the Al cations occupy the B octahedral 

sites [148, 150] [Figure 3.5]. Spinel MgAl2O4 is the only ternary phase with a 

temperature below 1300 K in the MgO-Al2O3 phase diagram and does possess a 

spinel type solid solution MgO.nAl2O3 (0.6 ≤ n ≤ 9.1) [29]. Besides this, 

MgAl2O4, can be usually non-stoichiometric, with composition of MgO.nAl2O3 

(here, n > 1) [151]. Such non-stoichiometric character makes them convenient to 

tune many properties by modifying their composition [152-154]. The non-

stoichiometric MgO-n.Al2O3 (n = 1.2, 2.5) showed higher transmission of visible 

light than stoichiometric MgAl2O4 [152, 153].  

In the literature, most of the theoretical models of γ-Al2O3 spinel like structure 

were based on the spinel MgAl2O4 cubic cell by substitute Al cations in both 

tetrahedral (Mg) and octahedral sites [136-144]. The previously mentioned [in 

subsection 3.2.3] cation vacancies are required to maintain the stoichiometry of 

γ-Al2O3. Moreover, the frames of both structures are based on distorted FCC O 
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sublattices. With the similar base structure there is a structural relationship 

between spinel MgAl2O4 and γ-Al2O3 which can be determined by substituting 

Al or Mg and cation vacancies.  

The disordered MgO·nAl2O3 spinel-type solid solution forms by two Al3+ ions 

substituting for every three of the Mg2+ ions (i.e., 3Mg2+<--> 2Al3+ replacements) 

to ensure the charge neutrality, which results in a vacant lattice sites and non-

stoichiometric structure. So, both tetrahedral (Wyckoff site 8a) and octahedral 

interstices (Wyckoff site 16d) within the oxygen sublattice are occupied by more 

than one type of cations or vacancies. Despite plenty of studies on cation 

distributions in oxide spinels have been done in literature [29, 151-157], there is 

still a lack of knowledge about the local structure such as the distribution rules 

between Al3+ and Mg2+ cations and vacancies. From electron paramagnetic 

resonance (EPR) experimental data and MgO-x(Al2O3) samples (1<x<3.4), A. 

Ibarra et al have assumed the vacancy distribution in both octahedral and 

tetrahedral sites in non-stoichiometric structure [155]. Based on alumina-rich 

spinel (MgO.nAl2O3; n≥1) first principle DFT studies in literature proposed a 

solid solution of MgAl2O4 and Al8/3O4 (i.e., γ-Al2O3) with the formula of Mg(1-

x)Al2(1+x/3)Vx/3O4  (0≤x≤1) [156, 157], where the Al3+ cations distribution in 

tetrahedral and octahedral interstitial sites are absent. 

However, the complicated composition and the coupling effect between the two 

kinds of polyhedra (i.e., tetrahedra and octahedra) have brought about challenge 

for exploring such relationship for spinel‐type compounds. As for a solid solution 

system, the distribution rules of ions can be found out by calculating as many 

configurations models as possible, comparing the energy difference with 

structural and electronic properties of those configurations, and thus the 

reasonable models can be screened out more efficiently [138]. Moreover, to gain 

insight into the crystal structure of the solid solution, it is also important to 

analyse the mechanisms behind the occupancy rules for ions.  
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3.4 Stability and structural properties of γ-Al2O3 surfaces 

Considering the technological importance of γ-Al2O3, it is also a prerequisite to 

developing and understanding structural models for the surfaces of this 

metastable alumina phase. The surface of a material is an extension of its bulk, 

and many applications depend on its surface structure and properties, e.g., as 

ultra-hard coatings, microporous catalysts, and in electroluminescent flat-screen 

displays, etc [158]. γ-Al2O3 surfaces are found very active in the activation of C-

H bonds of methane (CH4) [159, 160]. A high-resolution TEM experiment has 

shown that the γ-Al2O3 particles have the (1 1 1) facets matching the same planes 

of Al grains in the pure Al melts and enhance the heterogeneous nucleation during 

solidification [22]. Therefore, adequate knowledge about γ-Al2O3 surface 

structure is a necessity for many extensive applications. However, the surface of 

γ-Al2O3 is very complicated and there is also controversy concerning the surface 

structure as the bulk [161-168].  

The γ-Al2O3 has a cubic lattice with the Al cations being coordinated both 

tetragonally and octahedrally by O anions [28, 89, 122]. In the γ-Al2O3 along (1 

1 1) orientation, O ions form two-dimensional (2D) distorted hexagonal 

sublattices and Al ions occupy the interstitial sites of the neighbouring O layers 

in two different ways. From Figure 3.6, at the Al(Oh) layer, which is below the 

O1 layer, the Al ions occupy two thirds of the octahedral sites [139]. The Al(Tet) 

layer below the O2 layer (Figure 3.6) is composed of three sublayers: a sublayer 

of octahedrally coordinated Al(Oh) or vacancies being sandwiched by two 

tetragonally coordinated Al(Tet) sublayers [Figure 3.6]. This implies that the 

smooth surfaces of γ-Al2O3 along (111) axis with an O termination or Al 

termination contain net charges, being polar which leads to an electric dipole 

moment in the direction perpendicular to the surface.  
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Figure 3.6: Schematic representation of γ-Al2O3 along (1 1 1) axis, the octahedral 

and tetrahedral Al atoms are green and blue balls, while the oxygen atoms are red 

balls respectively, the dotted black lines represent the unit cell [139].  

But such polar surfaces are not stable for large crystal systems at ambient 

conditions [169-171]. Because bulk terminated polar surface has an infinite 

surface energy from alternating layers of oppositely charged ions produce a large 

dipole moment perpendicular to the surface [172]. To investigate feasible (111) 

surfaces, defective surfaces need to be constructed in a systematic way, as in the 

cases of oxides [168-171]. Thus γ-Al2O3 surface structure deserves to be 

examined with more possible configurations.  

3.5 Crystal chemistry of Y2O3 phases: 

Yttrium oxide also known as yttria (Y2O3) has attracted great research interest 

owing to its excellent properties which led to many attractive applications [36-

47]. Experimental observations revealed that a small amount of yttrium doped 

influences both the properties and the microstructures of α-Al2O3, which is called 

yttrium effect [173, 174]. Though Yttria itself is a compound, it can be the end 

member of many pseudo-binaries: M2O3-Y2O3 (M=Al, La, B, etc.) [32].  

The crystal structure of Y2O3 belongs to the bixbyite type [VIA2][
IVO3], which is 

body-centered cubic (bcc) [175]. The lattice parameter of yttria is 10.603 Å [176]. 

This compound could exhibit three different structural polymorphisms: cubic 
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(space group Ia3, No. 206), monoclinic (space group C2/m, No. 12) and 

hexagonal (space group P3m1, No. 164) structures, commonly known as C-Y2O3, 

M-Y2O3 and H-Y2O3 respectively [176-179]. Recently, based on TEM 

experiments S. Wang observed that fcc-Y2O3 is formed on MgO in liquid Mg 

alloys which might be a high-temperature phase [180]. To justify their 

observations, calculations on structural models with formation energies and bulk 

modulus in a systematic way are required. Based on the first-principles DFT 

calculations with structural and electronic properties, we may estimate the phase 

stability and transition of Y2O3. 
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Chapter Four  

Theoretical Methods 

This chapter introduces the methodology of density functional theory (DFT) in 

detail, as well as the state-of-art GW approach and MD simulation techniques 

used throughout this thesis. A brief introduction of each topic to specify what 

approximations are made and what basis functions are used is described in this 

chapter. First, we start with the basic concepts of the many-body Schrödinger 

equation [54] that governs the wave function of a quantum mechanical system.  

4.1 The Schrödinger equation and the Hamiltonian 

In quantum mechanics, the exact theory for a system of ions and interacting 

electrons is based on solving the many-body Schrödinger equation [54] of the 

form, 

                 𝐻𝛹([𝑅𝐼; 𝑟𝑖]) = 𝐸𝛹([𝑅𝐼; 𝑟𝑖])                …………………    (4.1) 

where, H is the Hamiltonian operator [181], which contains all of the kinetic and 

potential energy operators arising as a result of the ion-ion, electron-electron and 

ion-electron interactions, 𝛹([𝑅𝐼; 𝑟𝑖]) is the many-body wavefunction of the 

system and E is the eigen energy of the system. RI and ri are the position of the 

ion and electrons, respectively.  

The total kinetic energy (KE) of the system can be written as the sum of the kinetic 

energies of each particle (ion or electron) in the many-body system from 

following equation [182], 

                 𝐾𝐸 = − ∑
ℏ2

2𝑀𝐼
𝛻𝑅𝐼

2
𝐼 − ∑

ℏ2

2𝑚𝑒
𝛻𝑟𝑖

2
𝑖       …...………………..   (4.2) 

Here, ℏ is the Plancks’s constant, MI is the mass of the ion I, and me is the mass 

of the electron.  
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The total potential energy (PE) can be written from the interactions of the charges 

in a system using the following equation [182], 

       𝑃𝐸 = − ∑
𝑍𝐼𝑒

|𝑅𝐼−𝑟𝑖|𝑖𝐼 +
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖𝑗(𝑗≠𝑖) +
1

2
∑

𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|𝐼𝐽(𝐽≠𝐼)      …………..  (4.3) 

The − ∑
𝑍𝐼𝑒

|𝑅𝐼−𝑟𝑖|𝑖𝐼  term in equation (4.3) represents the attraction between the 

electrons with its constituent ions, the 
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖𝑗(𝑗≠𝑖)  and 
1

2
∑

𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|𝐼𝐽(𝐽≠𝐼)  

represents the repulsive term due to electron-electron and ion-ion interactions 

respectively in the system. 

In the mass between ions and electrons as it is sensitive to consider the ions as 

moving very slowly and the electrons ‘instantaneously’ responding to any ionic 

motion [181]. By applying Born-Oppenheimer approximations [183], kinetic 

energies of the nuclei can be avoided and to discount the ion-ion interactions as 

this can be constant for any given electron. Taking these Born-Oppenheimer 

approximations [183] into account the Hamiltonian can be described by Equation 

(4.4),  

     𝐻 = − ∑
ℏ2

2𝑚𝑒
𝛻𝑟𝑖

2
𝑖 + ∑ 𝑉𝑖𝑜𝑛(𝑟𝑖)𝑖 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖𝑗(𝑗≠𝑖)       ………………. (4.4) 

where, 𝑉𝑖𝑜𝑛(𝑟𝑖) is the ionic potential experienced by every electron, i. 

Therefore, according to the Born-Oppenheimer approximation [183], it is only 

necessary to construct Ψ based on the electron positions. But in reality, this 

complicated many-particle Equation (4.4) is not separable into simpler single-

particle equations because of the interaction term 
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖𝑗(𝑗≠𝑖)  [184, 185]. 

Electronic Density-Functional Theory (DFT) provides an appealing method for 

solving the many-body Schrödinger Equation (4.1), being much more versatile, 

as it provides a way to systematically map the many-body problem 

with 
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖𝑗(𝑗≠𝑖) , onto a single-body problem without 
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖𝑗(𝑗≠𝑖)  [184, 
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185]. The core concept of DFT is to reformulate the problem in terms of the total 

density, n(r), of the electrons rather than by dealing with the many-body 

wavefunction, 𝛹(𝑟𝑖) [184, 185].  DFT can be able to calculate electronic structure 

of many-body problem using spatially varying electron density n(r). The 

following section describes the DFT method in more detail. 

4.2 First-principles density-functional theory (DFT) 

First-principles density functional theory (DFT) is a method to determine the 

ground-state properties of a many-electron system by expressing its total energy 

as a functional of the electron density. DFT was first introduced by Hohenberg-

Kohn and Kohn-Sham in two of the seminar papers in 1960s [184, 185]. Since 

then, the theory has attracted a lot of research interest in improving the adaption 

of the method for practical computational use. The real specialty of DFT is its 

favorable performance ratio compared with electron-correlated wave function-

based methods such as Møller–Plesset perturbation theory or coupled cluster 

[186-188]. Thus, larger (and often more relevant) molecular systems can be 

studied with sufficient accuracy, thereby expanding the predictive power inherent 

in electronic structure theory [188-190]. As a result, DFT is now the most 

extensively used electronic structure method. The huge importance of DFT in 

physics and chemistry is evidenced by the 1998 award of the Nobel Prize to 

Walter Kohn ‘for his development of the density- functional theory’ [190]. DFT 

was formerly framed on basic two theorems of Hohenberg and Kohn (HK) [184].  

4.2.1 The Hohenberg-Kohn (H-K) theorems 

4.2.1.1 Theorem One: 

The first Hohenberg-Kohn theorem states that if there are N interacting particles 

in a system and they are moving in an external potential 𝑉𝑒𝑥𝑡(𝑟), is uniquely 

determined by the ground state particle density 𝜌0(𝑟), except a constant. That 

mean there is a one-to-one mapping relation between the electron density and the 
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external potential, and every property of the many-body system is a functional of 

the ground state charge density [184]. 

Hence, the external potential 𝑉𝑒𝑥𝑡(𝑟), and the total energy is a unique functional 

of the electron density 𝜌(𝑟): 

        𝐸[𝜌(𝑟)] = ∫ 𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝜌(𝑟)]           …………………....   (4.5) 

4.2.1.2 Theorem Two: 

The second Hohenberg-Kohn theorem establishes a variational principle for the 

total energy functional so that the ground state energy can be achieved by 

minimizing the energy over all possible densities, which is valid for any applied 

external potential [184]. Hence the density that minimises the total energy is the 

ground state density: 

                              𝐸[𝜌(𝑟)] ≥ 𝐸0[𝜌0(𝑟)]         ………………………….   (4.6) 

But the H-K theorem is an existence proof that the many electron wavefunction 

can be substituted by the electron charge density as a basic variable, it does not 

provide an explicit mathematical form [184, 185]. 

4.2.2 Kohn-Sham (K-S) Approximation 

In 1965, Kohn-Sham proposed new approach to express the kinetic energy in 

terms of independent electron single particle wavefunctions [185]. This fictitious 

non-interaction electron system in an effective potential consisting of the external 

potential and the exchange correlation interaction is equivalent to the actual 

interacting system in the sense that it provides the same density. Then one arrives 

at the following set of equations, named the Kohn-Sham (K-S) equations 

𝐻𝑒𝑓𝑓𝜓𝑖(𝑟) = (−
1

2
𝛻2 + 𝑉𝑒𝑓𝑓(𝑟)) 𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟) 

                          𝑉𝑒𝑓𝑓(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + ∫ 𝑑3𝑟′ 𝜌(𝑟′)

|𝑟−𝑟′|
+ 𝑉𝑥𝑐[𝜌(𝑟)]  
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                           𝜌(𝑟) = ∑ |𝜓𝑖(𝑟)|2𝑁𝑒
𝑖  

                                                                            ………………………   (4.7) 

Where, 𝑉𝑒𝑓𝑓(𝑟) is the effective potential of the non-interacting system, 𝑉𝑒𝑥𝑡(𝑟) is 

the external potential generated by the nuclei, 𝜌(𝑟) is the electron density, and 

𝑉𝑥𝑐[𝜌(𝑟)] =
𝛿𝐸𝑥𝑐[𝜌(𝑟)] 

𝛿𝜌(𝑟)
 is the functional derivative of the exchange between the 

correlation energy 𝐸𝑥𝑐[𝜌(𝑟)] with respect to 𝜌(𝑟). Finally, once these equations 

are solved for 𝜌(𝑟) then the total ground state energy can be expressed as  

  𝐸0(𝑟) = ∑ 𝑛𝑖𝜀𝑖𝑖 − ∬
2𝜌(𝑟′)

|𝑟−𝑟′|
𝑑3𝑟′ − ∫

𝛿𝐸𝑥𝑐[𝜌(𝑟)] 

𝛿𝜌(𝑟)
𝑑3𝑟 + 𝐸𝑥𝑐[𝜌(𝑟)]  …..  (4.8) 

Although the KS-DFT is in principle an exact theory, the exact exchange-

correlation functional 𝐸𝑥𝑐[𝜌(𝑟)] is not known. So, if know the exact functional 

of  𝐸𝑥𝑐[𝜌(𝑟)] then one can solve the exact solution of the many electron system. 

Therefore, further approximations are required for generating a more accurate 

functional [186-188]. 

4.2.3 The exchange-correlation functional 

Choosing the correct form of exchange-correlation functional 𝐸𝑥𝑐[𝜌(𝑟)] is 

important in order to reduce the error in the total ground state energy calculations. 

For this purpose, first, we should understand the physical meaning of 𝐸𝑥𝑐[𝜌(𝑟)]. 

Let us consider an electron sitting in the electron cloud, which does not simply 

see an average charge density around itself. That is because the other electrons 

try to avoid this site due to the Pauli exclusion principle and electron repulsion as 

well. So, the region around that particular electron has a so-called exchange-

correlation hole. And the exchange-correlation energy is basically the interaction 

of the electron with its surrounding exchange-correlation hole. In sorts, we can 

say that the exchange energy is the quantum mechanical energy resulting from 

the antisymmetry of the many-electron wavefunctions and the correlation energy 

is the dynamical interaction energy between electrons in a quantum system. Local 
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Density Approximation (LDA) [188] and Generalized Gradient Approximation 

(GGA) [191, 192] are two useful functional to obtain the exchange correlation 

energy, 𝐸𝑥𝑐[𝜌(𝑟)] in the ground state which are described in the following 

subsections 4.2.3.1-4.2.3.3.  

4.2.3.1 Local Density Approximation (LDA) 

The local density approximation (LDA) relates to the assumption that the 

exchange-correlation energy at each point in space depends only on the density 

at that point. I n a homogeneous electron gas, the density 𝑛 is constant and the 

exchange correlation energy 𝐸𝑥𝑐[𝜌(𝑟)] has been calculated in various limits, e.g. 

at low density by Wigner [186] and high density by Gell-Mann and Brueckner 

[187], and interpolation formulas between these regimes exist. LDA starts from 

computing the ground state of the homogeneous electron gas as accurately as 

possible and then constructing the exchange-correlation energy per particle, 

𝜀𝑥𝑐 = 𝐸𝑥𝑐[𝜌(𝑟)]/𝑁 as a function of electron density 𝜌(𝑟) = 𝑁/𝑉 [188]. Then we 

apply the same expression at each point locally in the actual inhomogeneous 

system and by integration we get  

                     𝐸𝑥𝑐
𝐿𝐷𝐴 = ∫ 𝑑3𝑟𝜌(𝑟)𝜀𝑥𝑐 (𝜌(𝑟))   ……………………...     (4.9) 

The LDA exchange-correlation potential can be written as 

                              𝑉𝑥𝑐
𝐿𝐷𝐴 =

𝜕(𝑛𝜀𝑥𝑐)

𝜕𝑛
             ……………………….     (4.10) 

Although the LDA is composed based on the assumption of a slowly varying 

density, it works remarkably well even for some realistic systems where the 

density is not slowly changing. This has been shown to be related to the 

fulfillment of certain sum rules [189]. LDA successfully predicts the total energy, 

lattice constant, equation of state and relaxations of atomic coordinates around 

defects and at surfaces within≈5% of accuracy [190]. Nevertheless, in the case of 

electronic excitation energy calculation LDA is unsuccessful because it is a 

theory for the ground state total energy, not for the excitations. The other problem 
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is that even for ground state properties, LDA may not succeed for systems which 

have localized electrons such as d and f electrons. It also fails near surfaces or for 

molecules and free atoms because the electron density changes too rapidly from 

a typical density inside the material to a low density outside. That is because the 

homogeneous electron gas is no longer a good approximation due to the large 

charge fluctuations [190]. 

4.2.3.2 Generalized Gradient Approximation (GGA) 

In the LDA, we obtained the exchange correlation energy from the uniform 

electron gas expression at every point in space, but the charge density is 

nonuniform in the real system. Thus, the actual 𝐸𝑥𝑐[𝜌(𝑟)] can differ significantly 

from the LDA results. This difference can be expressed in terms of the gradient 

and higher spatial derivatives of the total charge density. So, generalized gradient 

approximation or GGA goes one step beyond LDA by taking the density and also 

its gradient at each point in space [191]. So, in the GGA we can write the 

exchange correlation energy in terms of the electron density and the electron 

density gradient 𝛻𝜌(𝑟) as 

                           𝐸𝑥𝑐
𝐺𝐺𝐴 = 𝐸𝑥𝑐[𝜌(𝑟), 𝛻𝜌(𝑟)]       …………………….    (4.11) 

This improves the exchange-correlation energy in situations when the density 

varies rapidly [191]. 

4.2.3.3 GGA-PBE 

PBE by Perdew, Burke and Ernzerhof is a new version of GGA. The exchange 

energy of PBE approximation can be defined as an integral over the exchange 

density [192] 

                      𝐸𝑥𝑐
𝑃𝐵𝐸 = ∫ 𝑑3𝑟𝜌(𝑟)𝜀𝑥𝑐

𝑃𝐵𝐸 (𝜌(𝑟), 𝑠(𝑟))  ……………….    (4.12) 

where, 𝑠 = |𝛻|/(2𝑘𝐹𝜌) is the reduced gradient with 𝑘𝐹 = (3𝜋2𝜌)
1

3.  
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The PBE exchange energy density is the product of LDA exchange and 

enhancement factor 𝐹𝑥
𝑃𝐵𝐸  which depends on 𝑠(𝑟), and is defined in explicitly 

PBE functional. 

    𝜀𝑥
𝑃𝐵𝐸(𝜌(𝑟), 𝑠(𝑟)) = 𝜀𝑥

𝐿𝐷𝐴(𝜌(𝑟)) × 𝐹𝑥
𝑃𝐵𝐸(𝑠(𝑟))   ………………     (4.13) 

            𝐹𝑥
𝑃𝐵𝐸(𝑠) = −

8

9
∫ 𝑦𝑑𝑦𝐽𝑃𝐵𝐸(𝑠, 𝑦)

∞

0
         ……………………    (4.14)      

                     where, 𝐽𝑃𝐵𝐸(𝑠, 𝑦)is the PBE exchange hole [204]. 

It has been shown that GGA-PBE gives a better description of the exchange-

correlation hole and gives a more realistic account of energy barriers and 

adsorption energies for molecules [192]. Although GGA-PBE produces very 

good results for molecular geometries, ground state total energies and surface 

energies, though it is not clear that GGA-PBE is an improvement over LDA for 

all ground state properties. Therefore, for any calculation in DFT it is 

recommended to apply both LDA and GGA approximations and compare the 

results with available experimental works. LDA and GGA-PBE are basically 

designed to study ground state properties: there is no real justification to interpret 

the KS one-electron eigenvalues (𝜀𝑖 of equation 4.8) as excitation energies, i.e. 

the energy to extract or add an electron to the system. They are usually not 

applicable for systems with strongly associated electrons and not completely self-

interaction free. Thus, in the next section we will discuss Green’s function 

methods as a tool to study both ground state and excited state properties of the 

many-body problem. 

4.3 GW Approximation 

The K-S eigenvalues cannot represent the quasiparticle band structure measured 

by direct and inverse photoemission because LDA and GGA including GGA-

PBE suffer from an incomplete cancellation of artificial self-interaction and lack 

the discontinuity of the exchange-correlation potential with respect to the number 

of excited electrons [59, 193]. To overcome these deficiencies, the proper 
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addition of both dynamical and non-local effects by the GW approach was 

introduced to improve LDA and GGA results [193]. It was originally proposed 

by Hedin [59] and named after its construction of the electron self-energy from 

the Green’s function (G) and the screened interaction (W). 

4.3.1 Green’s Function 

Generally, the Green’s function is known as a propagator or the probability 

amplitude for a particle to travel from position r, at time t to another position 𝑟′ 

at time 𝑡′ [66]. First, let us define field operators, 𝜓†(𝑟′, 𝑡′) and 𝜓(𝑟, 𝑡) as 

creation and extermination operators respectively written in the time dependent 

position basis. When these field operators functionate on an exact ground state 

wavefunction of N electron system |𝑁, 0⟩ one will get N+1 or N−1 electron 

wavefunctions which are not necessarily in the ground. 

⟨𝑁, 0|𝜓(𝑟, 𝑡)𝜓†(𝑟′, 𝑡′)|𝑁, 0⟩ defines a propagator 𝑖𝐺𝑒(𝑟𝑡, 𝑟′𝑡′) for an extra 

electron transmitting from (𝑟′, 𝑡′) to (𝑟, 𝑡), in contrast, 

⟨𝑁, 0|𝜓†(𝑟′, 𝑡′)𝜓(𝑟, 𝑡)|𝑁, 0⟩ = 𝑖𝐺ℎ(𝑟′𝑡′, 𝑟𝑡, ) is a propagator measuring a 

missing electron (hole) which transmits from (𝑟, 𝑡) to (𝑟′, 𝑡′). Thus, the one-

electron Green’s function can be written as [62] 

𝑖𝐺𝑒(𝑟𝑡, 𝑟′𝑡′) = ⟨𝑁, 0|𝑇[𝜓(𝑟, 𝑡)𝜓†(𝑟′, 𝑡′)]|𝑁, 0⟩ 

                                                   =  ⟨𝑁, 0|𝜓(𝑟, 𝑡)𝜓†(𝑟′, 𝑡′)|𝑁, 0⟩ 𝑓𝑜𝑟 𝑡 > 𝑡′. 

                                                  = −⟨𝑁, 0|𝜓†(𝑟′, 𝑡′)𝜓(𝑟, 𝑡)|𝑁, 0⟩ 𝑓𝑜𝑟 𝑡′ > 𝑡      

                                                                                           ……………    (4.15) 

Where, T is the time-ordering operator which rearranges operators from right to 

left after increasing time and includes a minus sign for every interchange of 

fermion operators. Let us consider the field operator in the Heisenberg 

representation is 𝜓†(𝑟, 𝑡) = 𝑒𝑖𝐻𝑡𝜓†(𝑟)𝑒−𝑖𝐻𝑡 and insert the closure relation into 
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equation (4.15). Also note that the limiting energy for injection of electrons or 

holes is the chemical potential µ. Thus, we can rewrite equation (4.15) as 

𝑖𝐺(𝑟, 𝑟′, 𝜏) = ∑ ⟨𝑁, 0|𝜓(𝑟)|𝑁 + 1, 𝑛⟩⟨𝑁 + 1, 𝑛|𝜓†(𝑟′)|𝑁, 0⟩𝑒−𝑖𝐸𝑛𝜏,𝑛  𝜏 > 0, 𝐸𝑛 ≥ 𝜇       

                     = − ∑ ⟨𝑁, 0|𝜓†(𝑟′)|𝑁 − 1, 𝑚⟩⟨𝑁 − 1, 𝑚|𝜓(𝑟)|𝑁, 0⟩𝑒−𝑖𝐸𝑚𝜏,𝑚  𝜏 < 0, 𝐸𝑚 < 𝜇 

                                                              ………………………..      (4.16) 

Where, 𝜏 = 𝑡 − 𝑡′, n and m represent quantum numbers to indicate the state, 

which is not the ground state, 𝐸𝑛 = 𝐸𝑛
𝑁+1 − 𝐸0

𝑁 and 𝐸𝑚 = 𝐸0
𝑁 − 𝐸𝑚

𝑁−1. Equation 

(4.16) can be Fourier-transformed into the frequency representation as 

𝑖𝐺(𝑟, 𝑟′, 𝜔) = ∫ 𝑖𝐺
∞

−∞

(𝑟, 𝑟′, 𝜏)𝑒𝑖𝜔𝑡𝑑𝜏 

= ∑ ⟨𝑁, 0|𝜓(𝑟)|𝑁 + 1, 𝑛⟩ ⟨𝑁 + 1, 𝑛|𝜓†(𝑟′)|𝑁, 0⟩ ∫ 𝑒𝑖(𝜔−𝐸𝑛+𝑖𝜂)𝜏
∞

0

,

𝑛

 𝐸𝑛 ≥ 𝜇 

= − ∑ ⟨𝑁, 0|𝜓†(𝑟′)|𝑁 − 1, 𝑚⟩ ⟨𝑁 − 1, 𝑚|𝜓(𝑟)|𝑁, 0⟩ ∫ 𝑒𝑖(𝜔−𝐸𝑚−𝑖𝜂)𝜏
0

−∞

,

𝑚

 𝐸𝑚 < 𝜇 

                                                                     …………………………       (4.17) 

The infinitesimal η ensures that 𝐺(𝑟, 𝑟′, 𝜔) has the correct analytic properties.  

If the quasiparticle amplitudes of any excited state s as 

            𝑓𝑠(𝑟) = ⟨𝑁, 0|𝜓(𝑟)|𝑁 + 1, 𝑠⟩ 𝑓𝑜𝑟 𝐸𝑠 = 𝐸𝑠
𝑁+1 − 𝐸0

𝑁 , 𝐸𝑠 ≥ 𝜇  

              𝑓𝑠
∗(𝑟′) = ⟨𝑁 − 1, 𝑠|𝜓†(𝑟′)|𝑁, 0⟩ 𝑓𝑜𝑟 𝐸𝑠 = 𝐸0

𝑁 − 𝐸𝑠
𝑁−1, 𝐸𝑠 < 𝜇  

                                                                          …………..……………     (4.18) 

and work out the integrals in the equation (4.17), then we get 

                       𝐺(𝑟, 𝑟′, 𝜔) = ∑
𝑓𝑠(𝑟)𝑓𝑠

∗(𝑟′)

𝜔−𝐸𝑠±𝑖𝜂𝑠  …………………………….     (4.19) 
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where the sum is over both electrons and holes and the ± signs correspond to 

electrons and holes respectively. And the poles of the Green’s function represent 

the single-particle excitations or the quasiparticle energies [59]. 

Later, an explicit expression for the single-particle Green’s function was 

developed by Hedin [59, 194]. Starting from the Heisenberg equation of motion 

for the field operator [66] 

                                  𝑖
𝜕𝜓(𝑥)

𝜕𝑡
= [𝜓(𝑥), 𝐻]       .……………………..      (4.20) 

Where, 𝑥 contains the variables: space (𝑟), spin (𝜎), and time (𝑡). The 

Hamiltonian, H is split into the non-interaction part 𝐻0 and the interaction part. 

𝐻 = ∫ 𝑑𝑟𝜓†(𝑥)𝐻0(𝑥)𝜓(𝑥) +
1

2
∫ 𝑑𝑟𝑑𝑟′𝜓†(𝑟, 𝑡)𝜓†(𝑟′, 𝑡)𝑣(𝑟, 𝑟′)𝜓(𝑟′, 𝑡)𝜓(𝑟, 𝑡) 

                                                                         ……………………………     (4.21) 

But the problem arises when second part in equation (4.21) inserted in equation 

(4.20) there involves a two-particle Green’s function and includes all two-body 

correlations in the system, which in turn introduces the three-particle Green’s 

function [66]. Applied iteratively, this procedure creates an infinite series of 

higher order Green’s functions and in practice, however, the resulting recurrence 

relation for the nth order Green’s function is impossible to solve for large n [66]. 

Then, we must somehow decouple this part introducing the non-local, time-

dependent self-energy 𝛴̅(𝑥, 𝑥′) 

∫ 𝑑𝑥"𝛴(𝑥, 𝑥")𝐺(𝑥", 𝑥′) = −𝑖 ∫ 𝑑𝑟"𝑣(𝑟, 𝑟")⟨𝑁|𝑇[𝜓†(𝑟", 𝑡)𝜓(𝑟", 𝑡)𝜓(𝑟, 𝑡)𝜓(𝑟′, 𝑡′)]|𝑁⟩ 

                                                                        …………………………….      (4.22) 

and from the well-known equation (4.20), an equation of motion for the Green’s 

function can be derived as 

  [𝑖
𝜕

𝜕𝑡
− 𝐻0(𝑥)] 𝐺(𝑥, 𝑥′) − ∫ 𝑑𝑥"𝛴(𝑥, 𝑥")𝐺(𝑥", 𝑥′) = 𝛿(𝑥 − 𝑥′)  …………   (4.23) 
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One can put the average Coulomb interaction, 𝑉𝐻, into the non-interacting part, 

and the equation of motion for the Green’s function can be written as 

[𝑖
𝜕

𝜕𝑡
− 𝐻0(𝑥) − 𝑉𝐻(𝑥)] 𝐺(𝑥, 𝑥′) − ∫ 𝑑𝑥"𝛴(𝑥, 𝑥")𝐺(𝑥", 𝑥′) = 𝛿(𝑥 − 𝑥′) 

                                                                                   ……………………..      (4.24) 

The self-energy, 𝛴 = 𝛴̅ − 𝑉𝐻 can be defined from the equation (4.24). Hedin used 

Schwinger’s functional derivative method to derive a set of equations for the self-

energy in terms of the screened Coulomb interaction [59, 62, 194]. The physical 

idea is that the electron-electron interaction can screened by itself. Because the 

screening reduces the interaction and expressing everything in the screened 

interaction will lead to a better-converging approximate method. In Hedin’s 

equations, the exact self-energy is 𝛴 = 𝑖𝐺𝑊𝛤 [66]. With the replacement 

𝛤(1, 2, 3) = δ(1,2)δ(1,3), Hedin’s approximation gives 𝛴 = 𝑖𝐺𝑊, hence the name 

of the GW approximation [66]. Eventually, one can arrive at the set of equations 

[64, 66] 

∑(1, 2) = 𝑖 ∫ 𝑑(3, 4)𝐺(1, 4)𝑊(1+, 3)𝛤(4, 2, 3)    ∶ 1 ≡ (𝑟1, 𝜎1, 𝑡1) ……..(4.25a) 

𝐺(1, 2) = 𝐺0(1, 2) + ∫ 𝑑(3, 4)𝐺0(1, 3)∑(3, 4)𝐺(4, 2) ………………….   (4.25b) 

𝑊(1, 2) = 𝑣(1, 2) + ∫ 𝑑(3, 4)𝑣(1, 3)𝑃(3, 4)𝑊(4, 2)  …………………..   (4.25c) 

𝑃(1, 2) = −𝑖 ∫ 𝑑(3, 4)𝐺(2, 3)𝛤(3, 4, 1)𝐺(4, 2)     ……………………….   (4.25d) 

𝛤(1, 2, 3) = 𝛿(1, 2)𝛿(2, 3) + ∫ 𝑑(4, 5, 6, 7)
𝛿∑(1, 2)

𝛿𝐺(4, 5)
𝐺(4, 6)𝐺(7, 5)𝛤(6, 7, 3) 

                                                                                ………………………     (4.25e) 

where W, Γ and P are the screened Coulomb potential, the vertex function and 

the polarization function respectively.  
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These Hedin equations (4.25a-4.25e) can be solved self-consistently until the 

results of Green’s function coincides with the starting one [194-196].  

4.3.2 GW correction to standard density functionals  

In practice the GW approximation is applied as a perturbation approach to 

calculate the excitation energy from KS-DFT eigenfunctions and eigenvalues 

[58-66, 193, 194]. In other words, it is just a one-shot correction to LDA. 

Although in previous section 4.3.1, quasi particle excitations were defined in 

terms of the poles of the Green’s function, one can also introduce a quasiparticle 

wavefunction and energy. They obey the equation, 

  (−
𝛻2

2
+ 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟)) 𝜙𝑖(𝑟) + ∫ 𝑑𝑟′𝛴(𝑟, 𝑟′, 𝜀𝑖

𝐺𝑊)𝜙𝑖(𝑟, 𝑟′) = 𝜀𝑖
𝐺𝑊𝜙𝑖(𝑟)       

                                                                        …………………………     (4.26) 

Although it looks very similar to the K-S equation 

    (−
𝛻2

2
+ 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟)) 𝜙𝑖

𝐿𝐷𝐴(𝑟) + 𝑉𝑥𝑐
𝐿𝐷𝐴(𝑟)𝜓𝑖

𝐿𝐷𝐴(𝑟) = 𝜀𝑖
𝐿𝐷𝐴𝜓𝑖

𝐿𝐷𝐴(𝑟)  

                                                                          ……………………….     (4.27) 

Where the self-energy (Σ) is a non-local and energy-dependent operator in 

equation (4.26) and is not a Hermitian operator [193, 194], its energies can be 

complex. Their imaginary part (𝜀𝑖) represents the lifetime of the particle [193, 

194]. Nevertheless, we can find solutions of equation (4.26) by means of 

perturbation theory if we assume the wavefunctions of equation (4.26) are the 

same as those in equation (4.27). Then one can correct DFT-LDA eigenvalues by 

a using first-order perturbation treatment [193] 

𝜀𝑖
𝐺𝑊 = 𝜀𝑖

𝐿𝐷𝐴 + ⟨𝜓𝑖
𝐿𝐷𝐴|∑(𝑟, 𝑟′, 𝜀𝑖

𝐺𝑊) − 𝑉𝑥𝑐
𝐿𝐷𝐴(𝑟)|𝜓𝑖

𝐿𝐷𝐴⟩    ……………     (4.28) 

To summarize, equation (4.28) gives us the energy shift of the one-particle 

excitations from the K-S eigenvalues and the imaginary parts. Within the GW 
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approximation, by Fourier transforming equation (4.25a) over time, the self-

energy ∑ is given as 

 ∑(𝑟, 𝑟′, 𝜀) =
𝑖

2𝜋
∫ 𝑑𝜀′𝑒−𝑖𝛿𝜀′

𝐺(𝑟, 𝑟′, 𝜀 + 𝜀′)𝑊(𝑟, 𝑟′, 𝜀′)   …………..      (4.29) 

Where, 𝜀 is the dielectric function [66]. In the so-called one-shot G0W0, G can be 

approximated by the independent particle 𝐺0    

                     𝐺0(𝑟, 𝑟′, 𝜀) = ∑
𝜓𝑖

𝐿𝐷𝐴𝜓𝑖
𝐿𝐷𝐴∗

𝜀−𝜀𝑖
𝐿𝐷𝐴±𝑖𝜂𝑖            ………………………     (4.30) 

By using the Random Phase Approximation (RPA), then the screened Coulomb 

interaction W can be estimated as 𝑊0 [62] 

                        𝑊0 = 𝑣𝜀−1 = 𝑣(1 − 𝑣𝑃)−1          …………………….     (4.31) 

Here, 𝑊0 is expressed by a schematic notation and can be calculated from the 

bare Coulomb interaction 𝑣 and the inverse dielectric function 𝜀−1 via Equation 

(4.31). The commonly used 𝐺0𝑊0 approach calculates G and W (and then the 

self-energy via Equation (4.25a)) based on the K-S eigenvalues 𝜀𝑖
𝐿𝐷𝐴 and wave 

functions 𝜓𝑖
𝐿𝐷𝐴 from some form of DFT via Equation (4.30), where 𝜂 is an 

infinitesimal positive number [64]. To introduce self-consistency beyond 𝐺0𝑊0, 

two approaches can be employed [64]. The first one is the energy-only self-

consistent approach, in which the eigenvalues are updated only in G (𝐺𝑊0) or in 

both G and W (GW), while the QP wave functions are kept fixed at the K-S ones 

[64]. 
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Figure 4.1: Schematic of Hedin’s full set of equations (a) and Hedin’s GW 

approximation (b, c). (a) All five quantities are iterated to self-consistency. (b) 

Self-consistent GW (scGW), Γ is set to a single spacetime point and the remaining 

four quantities are determined self-consistently. (c) One iterates G to self-

consistency in Equation (4.25b) but does not update W0 [66]. 

The GW approximation is an enormous step forward from the K-S theory for 

calculating excitation energies [195, 196]. The results of GW approximations 

depend on other approximations made such as pseudopotentials to describe the 

interaction between valence and core electrons, and also depends on the accuracy 

of the starting point [195, 196]. 

4.4 Basis sets 

Before solving the Kohn-Sham equations in DFT, first the form of the 

wavefunctions 𝜓𝑖 must be chosen [197]. The wavefunction is extended into a set 

of basis functions, 𝜙𝑗 with coefficients 𝑐𝑖𝑗                           

                                𝜓𝑖 = ∑ 𝑐𝑖𝑗𝜙𝑗𝑗            …………………….        (4.32) 

The type of the basis set is important because it affects how computationally 

expensive it is to converge the system with the required accuracy. The choice of 

the basis set is also dependent on the type of system. For a crystalline solid the 

basis set will obey Bloch’s theorem since the system is periodic. Due to the 

periodicity the potential 𝑉(𝒓) will have the form 

                             𝑉(𝒓) = 𝑉(𝒓 + 𝓡)       ………………………      (4.33) 

Where, 𝓡 = 𝑛1𝚊1 + 𝑛2𝚊2 + 𝑛3𝚊3 is the direct lattice vector, with 𝚊1,2,3 the unit 

cell vectors of the system. Based on this the basis functions 𝜙𝒌(𝒓) = 𝑢𝒌𝑒𝑖𝒌.𝒓 will 

satisfy the relation 

                        𝜙𝒌(𝒓 + 𝓡) = 𝑒𝑖𝒌.𝓡𝑢𝑛𝒌(𝒓)      ……………………      (4.34) 
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where k is the reciprocal space wave vector, 𝑢𝒌 are arbitrary functions which obey 

the periodicity of the lattice and n is the band index. A set of plane waves fulfil 

this condition and are commonly used for a system with periodic boundary 

conditions [197]. Then the one-electron wavefunctions 𝜓𝑖 can be expanded in 

them as 

                        𝜓𝑖,𝒌(𝒓) = ∑ 𝑐𝑖,𝒌𝑮 (𝑮)𝑒𝑖(𝑮+𝒌).𝒓      …………………      (4.35) 

Here, 𝑮 = 𝑚1𝒃1 + 𝑚2𝒃2 + 𝑚3𝒃3 is the reciprocal lattice vector and 𝑐𝑖,𝒌(𝑮)are 

expansion coecients. The benefits of using plane waves is that they are orthogonal 

and Fast Fourier Transforms can be used in the calculation of the coefficients 

𝑐𝑖,𝒌(𝑮). Though for large systems many plane waves are needed when using a 

plane wave basis set [66]. Therefore, plane waves are used in combination with 

pseudopotentials or the projector-augmented-wave methods [198] to approximate 

the effect of the core electrons [66]. The basic concept of pseudopotential is 

described in section 4.4.2. 

4.4.1 k-point sampling 

So far, the quantities discussed in above sections have been considered for an 

infinite k-space sampling in the first Brillouin zone [199]. However, in practice 

the size of the k-mesh should be limited. Also, in order to integrate a function 

over the Brillouin zone, specific number of k-point sampling must be used. For 

example, the electron density is given by 

                    𝜌(𝒓) =
1

𝛺𝐵𝑍
∑ ∫

𝐵𝑍
𝑜𝑐𝑐
𝑛 |𝜓𝑛(𝒓)|2𝑑3𝒌       …………………     (4.36) 

where the sum is performed over all occupied states in the Brillouin zone and 𝛺𝐵𝑍 

is the volume of the Brillouin zone. In this case, only a finite number of k-points 

are possible, and the number required depends on the system in question.  

In terms of computational economy, for larger supercells a smaller k-mesh is 

applied, often employ just one k-point which, for the sake of additional 
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computational savings, is often chosen to be the Γ-point (i.e., the origin in 

reciprocal space). And inversely for small cells greater number of k-points can be 

used. In case of metals, more k-points are needed as the interaction between the 

conduction electrons are long ranged. By examining the convergence of total 

energy with k-points the size of the k-mesh can be determined. And for this, one 

can uses automatically generated, very dense k-point sets that allow one to reach 

an accuracy of the total energy better than 1 meV per atom [199]. In the simplest 

case, a k-point grid is specified by a product of three integer numbers, e.g., a 10 

× 10 × 10 grid. But the number of reducible k-points is given by the product of 

these three numbers (1,000 in the present example). Therefore, in an actual DFT 

calculation, only a smaller number of k-points, the irreducible k-points, are used. 

These irreducible k-points that remain after all equivalences between k-points 

due to point group symmetries and time-reversal symmetry have been exploited, 

which helps to reduce the required computational resources considerably. 

Generally, k-points are determined using the Monkhorst-Pack method [200]. The 

Monkhorst-Pack k-point sets (which are defined to avoid high-symmetry points) 

show fast convergence, both as a function of k-point density and as a function of 

the computational effort [199]. 

4.4.2 Pseudopotentials 

In atoms, the electrons are classified into two groups: inner core electrons and 

valence electrons [197]. The inner core electrons are strongly bound to the 

nucleus and play a limited part in the chemical bonding with other atoms. On the 

other hand, the valence electrons are screened from the effects of the nucleus by 

the core electrons and are involved in bonding. During bonding the 

wavefunctions of the core electrons are only slightly affected as they remain 

strongly localised around their cores and for this reason, they are considered as 

essentially inert. These inner core electrons along with the nucleus can be treated 

with non-variational wavefunctions to simplify the method. This method is 
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known as the frozen core approximation [197]. DFT and GW calculations within 

the PAW schemes usually employ the frozen core approximation [201, 202]. 

The valence electrons are required to be orthogonal to the core electrons within 

the core region, which causes the spin orbitals of the valence electrons to oscillate 

in the core region [197]. And because of these oscillations, many basis functions 

are required to describe them correctly. Therefore, when using a plane wave basis 

set, a large value of the cut-off radius, i.e., Gmax is needed (see equation (4.35)), 

with a high energy cut-off E-cut for the wavefunctions 𝐸𝑐𝑢𝑡 = ℎ2𝐺𝑚𝑎𝑥
2 /2𝑚. This 

enhances the computational effort. 

To reduce the number of required basis sets, pseudopotentials are used to describe 

the Coulomb potential of the valence electrons as shown in Figure 4.2. Common 

forms of the pseudopotentials include the norm-conserving, ultrasoft 

pseudopotentials (USPP) and the projected-augmented wave method (PAW) 

[198]. The PAW method (used in VASP) allows an effectively all-electron 

calculation with frozen core orbitals (the other methods are based on valence 

pseudo-wavefunctions) [66, 197, 198].  
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Figure 4.2: The pseudopotentials Vpseudo replaces the Coulomb potential V and as 

a result the oscillating core wavefunctions 𝜓 are replaced by the pseudo-

wavefunctions 𝜓pseudo which are smooth inside the core region. 

4.5 Optical properties calculation: 

The optical processes such as absorption, reflection and transmission are observed 

in solids which can be quantified by several parameters [203]. At microscopic or 

quantum mechanical level in bulk solids the complex dielectric function is closely 

connected with the electronic (i.e., band structure) structure. The frequency 

dependent of complex dielectric function is defined as ε(ω)=ε1(ω)+iε2(ω), where 

ε1(ω) and ε2(ω) are the real and imaginary part of the dielectric functions, 

respectively. The imaginary part ε2(ω) of the dielectric function can be expressed 

from the momentum matrix elements between the occupied and the unoccupied 

electronic states and can be calculated directly using [203, 204] 

  𝜀2(𝜔) =
4𝛱2𝑒2

𝛺

1

𝑞2 lim
𝑞→0

∑ 2𝑐,𝑣,𝑘 𝓌𝑘𝛿(𝜖𝑐𝑘 − 𝜖𝑣𝑘 − 𝜔) × 〈𝑢𝑐𝑘+𝑒𝛼𝑞|𝑢𝑣𝑘〉 〈𝑢𝑣𝑘|𝑢𝑐𝑘+𝑒𝛽𝑞〉  

                                                                       ………………………..       (4.37) 

here the indices c and v refer to conduction and valence band states respectively, 

and uck is the cell periodic part of the orbitals at the k-point. The real part of the 

dielectric function is obtained by the usual Kramers-Kronig transformation: 

                𝜀1(𝜔) = 1 +
2

𝛱
𝑃 ∫

𝜀2(𝜔΄)𝜔΄

𝜔΄2−𝜔2+𝑖𝜂
𝑑𝜔΄

∞

0
       …………………..       (4.38) 

                              where P denotes the principle value.  

The refractive index 𝑛(𝜔), extinction coefficient 𝑘(𝜔), reflectivity 𝑅(𝜔), 

absorption coefficient 𝛼(𝜔),  and energy loss spectra 𝐿(𝜔), can be calculated by 

using the following equations [203, 205-207]: 

          Refractive index, n(𝜔) =[
√𝜀1

2+𝜀2
2+𝜀1

2
]1/2       …………………..      (4.39) 
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         Extinction coefficient, k(ω) =[
√𝜀1

2+𝜀2
2−𝜀1

2
]1/2   ………………..   (4.40) 

         Reflectivity, 𝑅(𝜔) = 
(1−𝑛)2+𝑘2

(1+𝑛)2+𝑘2               ……………………….  (4.41) 

         Absorption coefficient, α(ω) = 4𝜋𝑘/(𝑙𝑛10) …………….........  (4.42) 

         Energy loss spectra, 𝐿(𝜔)  = 
𝜀2

𝜀1
2+𝜀2

2       ………………………..  (4.43) 

        Conductivity, σ(ω) = 𝑛(𝜔) × 𝛼(𝜔) × 𝑐/4𝜋  ………………….  (4.44) 

                                             Where, c = velocity of light (i.e., 108m/s). 

4.6 Molecular Dynamics 

To determine the kinetics of various important chemical processes it is necessary 

to be able to evolve the dynamical motion of a system of atoms or molecules over 

an incremental time interval. A simple way to do this is utilizing a molecular 

dynamics (MD) simulation technique. In MD simulations, the forces on each 

atom are determined using density functional theory or classically with empirical 

potentials. If a force Fi acting on atom i, the motion will evolve with classical 

mechanics according to: 

                     𝐹𝑖 = 𝑚𝑖𝑣̇𝑖       &       𝑣𝑖 = 𝑟̇𝑖        …………………..     (4.45) 

And the forces required for solving the equations of motion are derived from the 

atomic potential energy field. Then the Newtonian equations of motion are solved 

to evolve the system of N atoms at each time step dt. This size of the time steps 

limits standard MD simulations to a total simulation time of microseconds when 

using empirical potentials and to femtoseconds or picoseconds when using DFT 

calculated forces. 

There are different statistical ensembles i.e., NVE or NVT are used in MD 

simulation depending on the quantities of interest in the system. In NVE also 

known as microcanonical ensemble the number of particles N, the volume V, and 
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the total energy E are constrained [204]. In this ensemble the exchange between 

kinetic energy and potential energy of the atoms can be followed, however the 

total energy is constant. 

The canonical ensemble known as NVT is more suitable in some scenarios as the 

temperature T may be constrained, but the pressure is allowed to vary. The NVT 

[204] is useful for replicating experimental scenarios where high temperatures 

may be required.  

4.6.1 Canonical ensemble: NVT 

In the canonical ensemble to maintain the correct temperature a thermostat needs 

to be applied to all or some of the atoms in the system [204]. This kind of 

simulation corresponds to the one in which a fragment of the whole system is 

attached to the rest of it (very large), which is treated as a heat bath at constant 

temperature T. Hence adding or removing energy from the boundaries of the 

system, when necessary, can be facilitated. During the simulation it is important 

to preserve the correct thermodynamics of the system and ensure that the 

dynamics is realistic. CM: The meaning of NVT should be given. 

4.6.1.1 Nosé-Hoover thermostat 

In the Nosé-Hoover thermostat the temperature T is controlled by the addition of 

an extra artificial degree of freedom, s to the equations of motion [208, 209]. This 

performs as a heat reservoir to exchange thermal energy with the system. The 

extra degree of freedom and the corresponding Hamiltonian are selected in such 

a way that the collective system might microcanonical; but, after the extra degree 

of freedom is integrated over, the system is exactly canonical. The Hamiltonian 

becomes as [204] 

       𝐻𝑁𝑜𝑠𝑒 = ∑
𝐩𝐢

2𝑚𝑖𝑠2
𝑁
𝑖−1 + 𝑈(𝑟𝑁) +

𝑝𝑠
2

2𝑄
+ 𝑛𝑘𝐵𝑇 𝑙𝑛 𝑠    ...………………(4.46) 
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where Q is an effective mass related to the additional degree of freedom s and n 

is the number of degrees of freedom, n =3N +1. It then follows that the momentum 

ps of s is equal to Qṡ. In equation (3.46), the third and fourth terms are related to 

the “kinetic” and “potential” energy of the artificial degree of freedom, 

respectively. The choice the effective mass Q is important because it controls the 

coupling of the system to the reservoir. If Q is too large the coupling with the bath 

is decreased and the correct temperature will only be achieved after a long time. 

And if Q is too small the temperature will fluctuate significantly. 

4.7 The first-principles’ code VASP 

Vienna ab initio simulation package (VASP) [204] is a package of computer 

programs was used for first principle DFT and MD simulation in this thesis. It 

has a flexibility of using either density functional theory or Hartree-Fock 

approximation while computing solutions of Schrödinger’s equation. Further, 

hybrid functionals, Green’s functions method and many-body perturbations 

theory are also available in VASP [204]. VASP uses plane wave basis set and 

interactions between electrons and ions are addressed using ultrasoft pseudo 

potentials (USPP) or projector augmented wave (PAW) method [66, 204]. 

VASP is accurate and efficient for relaxation and geometry optimization. VASP 

has few choices in controlling how the ions are updated and moved in the process 

of relaxation. A quasi-Newton (or variable metric) algorithm, which use forces 

and stress tensor to search directions to equilibrium positions, is faster but can 

lead to wrong results if the structure is approximate and far from the equilibrium. 

On the other hand, conjugate-gradient approximation is slower but is better 

choice for approximate structures which are far from the equilibrium.  

The projector augmented wave (PAW) method [198] are used for all the 

calculations as supplied in the VASP distribution package in this thesis. For 

exchange correlation functional, a gradient correction as developed by Perdew, 
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Burke and Ernzerhof (PBE) [192] are used in this thesis. The exact computational 

details vary per system and will therefore be addressed in the respective chapters. 

In general, VASP needs four basic input files named as INCAR, KPOINTS, 

POTCAR and POSCAR [204]. The POTCAR file contains the pseudopotential 

for each atomic species used in calculations. If there are two or more than two 

atomic species, then the pseudopotentials of atomic species are simply 

concatenated in POTCAR file. The order of the atomic species should be 

according to the POSCAR file. The POSCAR file consists of lattice vector and 

fractional coordinates of atomic positions of the system to be used in calculations. 

The KPOINTS file contains k-mesh used in calculations. The INCAR file is very 

important file and determines what and how to calculate. It consists of relatively 

large number of parameters, and one always should be careful while assigning 

them. Most of the parameters have adequate default values so, in most cases, only 

a few of them need to be addressed in INCAR file. According to the purpose of 

any specific calculation and the corresponding tags in the INCAR file, certain 

output files are generated. Some of these are OUTCAR, OSZICAR, CONTCAR, 

CHGCAR, DOSCAR and XDATCAR [204]. The OUTCAR is the most 

important output file generated. It contains information of all the input files, 

positions of ions and the forces directed to them in each ionic relaxation step, 

eigenvalues of the system, the total ground state energies, and the information of 

the computing time it took to perform the calculation [204]. The information 

about the convergence speed and the current step are written to the OSZICAR 

file.  
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Chapter Five 

Formation, stability, and properties of MgO and α-

Al2O3 

5.1 Introduction: 

Magnesia (MgO) and α-Al2O3 have received a great deal of attention from both 

academia and industry due to their broad applications which have already been 

discussed in chapter one. MgO and α-Al2O3 form in Mg, Al metals, respectively 

in many Al (-Mg) alloys during melting and liquid metal handling in the casting 

processes [7, 22-24]. These newly-formed oxide particles have nontrivial 

influences on the mechanical performances of the cast parts. They may also act 

as nucleation sites during casting [22-24]. 

Chemically, both MgO and α-Al2O3 are ionic compounds corresponding to the 

large differences in the electronegativity values between the metals (1.31 for Mg 

and 1.61 for Al, in Pauling scale) and O (3.44) [210]. The structure and properties 

of a crystal is determined by the interaction of the valence electrons of the 

elements in the crystal. Therefore, the goal of the calculations done in this chapter 

is to provide a systematic procedure of first-principles density functional theory 

(DFT) investigation for MgO and α-Al2O3 and later be applied to study the θ- and 

γ-Al2O3 and Y2O3 as well.  

Figure 5.1(a) represents the optimized rock salt type MgO crystal structure in a 

conventional unit cell (8 atoms). The structure consists of close packed O atoms 

filled by Mg atoms at the octahedral hole sites. The topological bond structure of 

MgO is shown in Figure 5.1 (b), where each Mg atom in MgO is bonded to six O 

atoms with equivalent bond distance (2.12 Å).  
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The crystal structure of ground-state phase α-Al2O3 belongs to the rhombohedral 

lattice with space group R3̅c. Figure 4.1(d) shows schematically the α-Al2O3 

structure (30 atoms) in a hexagonal lattice. The structure consists of six layers of 

close packed O atoms filled by Al atoms at the octahedral hole sites; the Al3+ 

cations and the O2- anions are located at the 12c (z=0.3522) and 18e (x=0.3061) 

Wyckoff positions, respectively. The Al layer consists of 2 sublayers, the Al1 and 

the Al2 as labelled in Figure 5.1(d). The relaxed topological bond structure of α-

Al2O3 is shown in Figure 5.1(c); where each Al atom in α-Al2O3 is bonded to six 

O atoms with two non-equivalent bond distances. 

 

Figure 5.1: Schematic crystal structure of (a) fcc MgO unit cell, (b) and (c) the 

Mg-O and Al-O bonds, respectively, (d) hexagonal α-Al2O3 unit cell. The orange 

spheres represent Mg, the silvery Al and the red O. The labels Al1, Al2 in (d) 

represent the Al sublayers in the structure. 

5.2 Methods: 

5.2.1 Computational details 

All the calculations were performed by first-principles density functional theory 

(DFT) with VASP code [204]. In electronic structures calculations of solids, the 

energy cut-off and the number of k-points in the Brillouin zone are two important 
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parameters which have to be selected very carefully beyond the density 

functionals. Best practices in this field usually demand a convergence study of 

the quantity of interest with respect to these parameters prior to production runs. 

For this purpose, the cohesive energies and structural properties of the elemental 

solid Mg, Al and molecule O2 were calculated as tests of reliability of our 

approach [Appendix: Table A.5.1]. The calculated results using LDA [190] and 

GGA-PBE [192] were compared with the experimental results. 

The test calculations showed a good convergence is reached with the following 

settings: The cut-off energy for the wave functions (i.e., Encut) is 500 eV and for 

the augmentation (i.e., Enaug) wave functions is 750 eV. The wave functions were 

sampled according to a Monkhorst-Pack scheme [211] with dense k-meshes, e.g. 

24×24×24, 22×22×22, 20×20×20 and 20×20×12 k-meshes for hexagonally-close 

packed (hcp) Mg, fcc Al, fcc (conv) MgO, and hcp α-Al2O3 unit cell respectively 

in the irreducible Brillouin zone (BZ). Both the coordinates of atoms and the 

lattice parameters of the unit cells were fully relaxed. Tests for the k-meshes and 

cut-off energies provided accuracy within 0.001 eV. In the case of applying GW0 

approach, the results are found to be particularly sensitive to the k-point 

convergence and computationally expensive. Therefore, after the self-

consistency convergence were achieved within 16×16×16 and 16×16×8 k-points 

grid and a total of 192 and 416 bands are enough for fcc MgO and hcp α-Al2O3 

structures respectively. All calculations are valid for a temperature of 0 K and a 

pressure of 0 Pa. 

5.2.2 Formation energy: 

The following chemical reactions are used as the basis for the calculation of the 

formation energies for magnesia and alumina: 

Mg(s) + 1/2O2(g) = MgO(s)      …………………………………         (5.1) 
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2Al(s) +3/2O2(g) = Al2O3(s)      …………………………………         (5.2) 

Therefore, with the help of the above equation (1) and (2) the following formulas 

were used to calculate the formation energy, EF (eV/f.u.) for fcc MgO and hcp α-

Al2O3:  

𝐸𝐹(𝑀𝑔𝑂) = 𝐸𝑇(𝑀𝑔𝑂) − [𝐸𝑇(𝑀𝑔) +
1

2
𝐸𝑇(O2)]    ………………    (5.3) 

𝐸𝐹(𝐴𝑙2𝑂3) = 𝐸𝑇(𝐴𝑙2𝑂3) −[2𝐸𝑇(𝐴𝑙) +
3

2
𝐸𝑇(O2)]  ……………….    (5.4) 

Where, ET is the total energy of the compound per formula unit. 

In the present work Mg and Al were used as hcp and fcc solid, respectively and 

oxygen was used as O2 molecule in a large simple cubic supercell of volume of 

20×20×20 Å3. Structural optimization produced a triples solution, and the O-O 

bond length is 1.222 Å. The results of total energy for hcp Mg is -1.804 eV/f.u. 

from the LDA and -1.501 eV/f.u. from the GGA-PBE approximations, for fcc Al 

is -4.018 eV/f.u. from the LDA and -3.756 eV/f.u. from the GGA-PBE 

approximations, respectively. The calculations in this work provide the triplet 

solution for an isolated O2 molecule with a magnetic moment of two Bohr unit 

per molecule. The calculated results of total energy for O2 molecule is -3.789 

eV/f.u. from the LDA and -3.378 eV/f.u. from the GGA-PBE approximations. 

5.3 Results and discussions: 

5.3.1 Crystal chemistry of MgO and α-Al2O3  

The calculated results include equilibrium lattice parameters, bond lengths, 

equilibrium volume, formation energies and bulk modulus obtained from the 

present work are listed and compared with other theoretical and experimental 

results in Table 5.1 for fcc MgO and hcp α-Al2O3.  
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Table 5.1: Comparison of calculated bulk properties (lattice parameters, 

formation energies, etc.) of fcc MgO and hcp α-Al2O3 with experiments and other 

DFT work. 

fcc MgO 

Space group: 

fm3m (Nr 225) 

LDA 

[This work] 

GGA-PBE 

[This work] 

DFT-HSE06 

[73] 

DFT-LDA 

[88] 

Experiment 

[79] 

Lattice 

parameter (Å) 

4.115 4.216 4.19 4.183 4.21 

Bond lengths of 

Mg-O (Å) 

2.102 2.118 2.1 2.091  

Volume 

(Å3/molecule) 

17.38 18.73  18.3  

Formation 

energy,  

EF (eV/f.u.) 

-6.74 -6.10    

Bulk Modulus 

(GPa) 

 166.2  179.0 162.0 

hcp α-Al2O3 

Space group: 

R3c (Nr 167) 

LDA 

[This work] 

GGA-PBE 

[This work] 

DFT-GGA, 

FPLAPWa, 

EVAb [108] 

DFT-GGA-

PBE-HFc 

[109] 

High 

pressure 

experiment  

[98, 214] 

Lattice 

parameter (Å) 

a=4.735, 

c=12.903 

a=4.804, 

c=13.107 

a=4.759, 

c=12.992 

a=4.806, 

c=13.113 

a=4.760, 

c=12.996 

[98] 

Bond lengths of 

Al-O (Å) 

1.856-1.956 1.872-1.990  1.873-1.990  

Volume 

(Å3/molecule) 

41.756 43.445 43.8   

Formation 

energy,  

EF (eV/f.u.) 

-41.554 -37.762    

Bulk Modulus 

(GPa) 

 250.5 243.4  239.0 [214] 

aFull Potential Linear Augmented Plane Waves. 
bEVA: Engle-Vosco approximation. 
cHF: Hybrid Functional. 

From Table 5.1, the calculated lattice parameters in this work for fcc MgO is 

4.115 Å and 4.216 Å from the LDA and GGA-PBE respectively. The GGA-PBE 

results shows closer to experimental results (within ±1%) [79] (Table 5.1). The 

Mg-O bond lengths are 2.102 Å and 2.118 Å from our calculated LDA and GGA-

PBE results respectively. The GGA-PBE result of bond length is close to other 

DFT work (within 1%) [73, 88]. The calculated formation energy (EF) from 

GGA-PBE is -6.10 eV/f.u.  which is smaller than the LDA result i.e., -6.74 eV/f.u. 
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and is close to the other first principle DFT results i.e., -6.18 (eV/f.u.) and -6.30 

(eV/f.u.) (within 5%) [211, 212].  

For hcp α-Al2O3 from Table 5.1, the calculations produced the lattice parameters, 

𝑎0=4.804 Å, 𝑐0=13.107 Å by GGA-PBE, which are close to experimental [98] 

and the other first principle DFT results [99, 108-110, 139, 215]. The Al-O bond 

lengths are in the range of 1.872-1.990 Å by our GGA-PBE calculations, which 

are close to the GGA-PBE (HF) result of Z. Zhang et. al work (1.873-1.990 Å) 

[109]. The calculated formation energy (EF) off α-Al2O3 is -37.762 eV/f.u. for the 

GGA-PBE which is smaller than that from the LDA (-41.554 eV/f.u.). Such 

difference is not unusual in standard DFT calculation [140].  

The bulk modulus was calculated using the Birch-Murnaghan Equation of States 

(EOS) from the energy vs volume curve [Appendix: Figure A.5.1 and A.5.2]. The 

calculated bulk modulus for fcc MgO from GGA-PBE is 166.2 GPa, which is 

overestimated (within 2%) from experimental results 162.2 GPa at 230C [79] and 

163.93 GPa at 300 K [78] but lower from other DFT results [81-83, 87]. For hcp 

α-Al2O3 calculated bulk modulus by GGA-PBE from the present work is 250.5 

GPa, which is overestimated (within 4%) from the high-pressure experiment 

measurement [214], and from DFT-GGA within FPLAPW-EVAb method [108].  

5.3.2 Electronic Properties by GGA-PBE 

The electronic structure calculations are performed for fcc MgO and hcp α-Al2O3 

using GGA-PBE approach. Analysis of the electronic density of states (DOS) 

curve is useful to specify the electronic properties of matter. The calculated total 

density of states (TDOS) and partial density of states (PDOS) for fcc MgO and 

hcp α-Al2O3 are shown in Figure 5.2. 
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Figure 5.2: The total (TDOS) and partial (PDOS) density of states of (a) MgO 

and (b) α-Al2O3 from GGA-PBE calculations.  

From partial DOS (PDOS) of Mg and O for fcc MgO in Figure 5.2 (a), it can be 

clearly seen that there are enormous differences between the PDOS of Mg and O. 

For Mg, the main differences are in the CB (conduction band), whereas for O, the 

differences are mostly in the VB (valence band) region. The PDOS for the O can 

be clearly divided into two segments, the upper 2p band (0 to −5.0 eV) and the 

lower 2s band (−15.8 to −17.4 eV). The top of the VB is derived mostly from the 

2p states of O atom/ion. The O 2p and O 2s states are 1.8 eV and 4.8 eV wide 

respectively which are close to DFT-GGA(PBE) results (1.54 and 4.51) [216]. 

The intervalence band gap (i.e., O 2s - O 2p) is 17.4 eV which is close from 

Electron momentum spectroscopy result 17.6 eV and DFT-GGA(PBE) calculated 

result 17.10 eV [216]. The peak in the lower valence band (LVB) is situated 

between −17.4 and −15.8 eV from the top of the valence band [Figure 5.2 (a)].  

For α-Al2O3 [Figure 5.2(b)], the calculated width of the lower-valence-band 

(LVB) is 3.16 eV which are mostly from 2s states of O atoms. The LVB has two 

peaks located between −19.16 and −16.00 eV from the top of the valence band. 
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The width of the upper valence band (UVB) is 6.9 eV and are mostly from 2p 

states of O atoms [Figure 5.2(b)]. There is small amounts of Al (3s and 3p) states 

are also observed in valence band regions [Figure 5.2(b)]. In the upper valence 

band (UVB) region there are many peaks [Figure 5.2 (b)], which are the sources 

of electrons that can make transitions to the conduction band. The width between 

the UVB and LVB is about 9.0 eV from GGA-PBE calculations. The conduction 

band presents contributions mainly from Al (3s and 3p) states with some 

contribution from O atoms as well. The calculations indicate ionic nature of this 

compound as the valence bands are dominated by O 2p and the lower part of 

conduction band by Al characters. 

Table 5.2: The comparison of band widths and band gaps (eV) from GGA-PBE 

calculated results of fcc MgO and hcp α-Al2O3 with the previous theoretical and 

experimental data. 

 Upper VB width 

    (O 2p) 

     (eV) 

Lower VB width 

    (O 2s) 

     (eV) 

Differences 

(O 2s - O 2p) 

      (eV) 

Band gap 

   (eV) 

fcc MgO     

This work, DFT-GGA(PBE) 4.8 1.8 17.4 4.9 

Ultraviolet Spectroscopy 

[80] 

   7.7 

Reflection Electron Energy 

Loss Spectroscopy [82] 

   7.8 

Electron momentum 

spectroscopy [216] 

3.3 1.1 17.6  

Spectrophotometer [217]     7.5 

DFT-GGA(USPPd) [86]     4.5 

DFT-GGA(PAW) [87]    4.8 

DFT-GGA(PBE) [216] 4.51 1.54 17.10  
hcp α-Al2O3     

This work, DFT-GGA(PBE) 6.9 3.16 9.0 6.3 
X-ray photoelectron 

 spectroscopy [125] 

   9.57 

Vacuum ultraviolet  

spectroscopy [206]  

 6.0  8.8 

DFT-LDA-FPLMTOe 

[107] 

7.2 3.0 8.8 6.6 

DFT-FPLAPW-EVA [108] 6.53 3.1 9.71 7.2 
dUSPP: Ultrasoft Pseudopotentials. 
eFPLMPO: full potential linear muffin-tin-orbital.  
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The calculated bandgap for fcc MgO from our DFT-GGA(PBE) between UVB 

and conduction band is 4.9 eV, which is close to 4.5 eV from other DFT-

GGA(USPP) calculation [86]. But the band gap from our DFT-GGA(PBE) 

calculations is within 30% smaller than experimental results [80, 217]. For hcp 

α-Al2O3 our calculated band gap is 6.30 eV from GGA-PBE calculation. This 

value is close to 6.60 eV for DFT (LDA+FPLMTO) work done by R. Ahuja et al 

[107] and 6.24 eV for DFT (LDA+OLCAO) done by S -D Mo et al [105], 

whereas the experimental gap is 9.57 eV from XPS (X-ray photoelectron 

spectroscopy) data of B Ealet et al work [125] and 8.8 eV from vacuum ultraviolet 

spectroscopy measurement from R. H. French et al work [206]. In case of our 

electronic band gap calculations for MgO and α-Al2O3, there is large differences 

between our DFT-GGA(PBE) calculated results with experimental results from 

literature. This discrepancy arises, because of the inability of DFT to describe 

excited states [73, 85, 87]. The experimental measurements of the electronic 

properties, such as band gaps, are related to excitations of electrons [85, 87]. To 

describe such excitations another scheme needs to be used, such as the GW 

approximation (whereby the self-energy is obtained from the Green’s functional 

G and the electronic screening effect W) which describes well the eigenstates of 

one-electron quasiparticle (QP) levels and relates to electronic excitations [204].  

5.3.3 Accurate calculation of band gap by GW0 correction 

To improve calculations for the electronic properties of fcc MgO and hcp α-Al2O3 

the self-consistence GW0 correction, a beyond-DFT approach was applied in this 

work. The calculations show that the GW0 correction has improved the K-S 

energy gap from DFT-GGA(PBE) significantly and about 3 iterations are enough 

to reach convergence [Appendix: Figure A.5.3 (a) and (b)]. The Fermi level was 

set at 0 eV. 
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Table 5.3: The comparison of widths and band gaps (eV) of fcc MgO and hcp α-

Al2O3 by DFT-GGA(PBE) and GW0 potential from our calculation with the 

previous experimental data. 

 Upper VB (O 2p) 

width (eV) 

Lower VB (O 2s) 

width (eV) 

Differences 

(O 2s-O 2p) 

    (eV) 

Band gap 

   (eV) 

fcc MgO     

This work, DFT-GGA(PBE) 4.8 1.8 17.2 4.9 

This work, GW0 5.1 2.0 17.8 7.3 

Spectrophotometer [217]     7.5 

hcp α-Al2O3     

This work, DFT-GGA(PBE) 7.0 3.0 9.0 6.3 

This work, GW0 8.5 4.0 10.7 9.8 

X-ray photoelectron 

spectroscopy [125] 

   9.57 

Vacuum ultraviolet  

spectroscopy [206] 

   8.8 

Figure 5.3: Calculated total density of states (TDOS) of (a) MgO and (b) α-Al2O3 

using both GGA(PBE) and GW0 functionals. 

When the GW0 approach was applied to fcc MgO and hcp α-Al2O3 structure 

[Figure 5.3 (a) and (b)] all states in the conduction band are shifted toward higher 

energy, which causes increasing in the band gap. The calculated band gap for fcc 

MgO by the GW0 correction is 7.3 eV which is in very good agreement (within 

2% smaller) with experimental one 7.5 eV measured from spectrophotometer 

[217]. Also, for α-Al2O3 the calculated band gap by the GW0 approach is 9.8 eV 

which is close to the experimental value 9.57 eV observed from X-ray 

photoelectron spectroscopy by B. Ealet et. al work [125].  
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5.3.4 Optical properties 

The study of the optical properties of oxides with different photon energies is 

crucial for a better understanding of the electronic structure of that compound. 

Therefore, the optical properties of MgO and α-Al2O3 have been calculated by 

both GGA-PBE and sc GW0 approach and the obtained results are compared with 

available experimental data in the literature. The optical functions of both oxides 

including real 𝜀1(𝜔) and imaginary 𝜀2(𝜔) part of dielectric constants, refractive 

index n(ω), extinction coefficient k(ω), reflectivity R(ω), absorption coefficient 

α(ω), energy loss functions L(ω) and conductivity σ(ω) are calculated for the 

photon energies by using equation (4.39)-(4.44) which are described in the 

methodology part (i.e., Chapter Four). The calculated optical properties for MgO 

and α-Al2O3 are plotted in Figure 5.4 and Figure 5.5 respectively. 

                                        

              



62 
 

               

Figure 5.4: The optical functions of MgO i.e., dielectric constants of real part 

𝜀1(𝜔) and imaginary part 𝜀2(𝜔) from (a) experiment [213], (b) and (c) this 

theoretical work, (d) refractive index n(ω), (e) extinction coefficient k(ω), (f) 

absorption coefficient α(ω), (g) conductivity σ(ω), reflectance from (h) 

experiment [213] and (i) this theoretical work, energy loss spectra from (j) 

experiment [213] and (k) this theoretical work respectively. The direct band gap 

at 4.9 (7.26) eV for GGA_PBE (GW0) is marked by a vertical green (red) line in 

Figure 5.4 (a) and (b). 
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Figure 5.5: The optical functions of α-Al2O3 structure from experimental work 

[218, 219] and the present GGA_PBE and GW0 calculations: Dielectric constants 

of (a) real part 𝜀1(𝜔), (b) imaginary part 𝜀2(𝜔), (c) refractive index n(ω), (d) 

extinction coefficient k(ω), (e) reflectivity R(ω), (f) absorption coefficient α(ω), 

(g) conductivity σ(ω) and (h) energy loss spectra L(ω). 

The real part of the dielectric function 𝜀1(𝜔) gives information about the 

electronic polarizability of material. The static dielectric function is inversely 

dependent on the band gap values. The static dielectric constant 𝜀1(0) under 
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GGA(PBE) and GW0 for fcc MgO and hcp α-Al2O3 are given in Table 5.4, and 

for comparison with the experimental results, 𝜀1(𝜔) is also estimated at 5 eV 

corresponding energy. The interesting feature of the 𝜀2(𝜔) curve is its first 

critical point, also known as optical absorption edge. Figure 5.4 and 5.5 reveal 

that the optical absorption edge is found at 4.9 eV (GGA-PBE), 7.26 eV (GW0) 

for MgO and 6.3 eV (GGA_PBE), 9.8 eV (GW0) for α-Al2O3 respectively. The 

higher peaks spectrum of absorption edge from 𝜀2(𝜔) curves are observed in 

between 5.0-18.4 eV (GGA_PBE), 7.5-20.8 eV (GW0) for fcc MgO and 8.0-16.0 

eV (GGA_PBE), 9.8-20.0 eV (GW0) for hcp α-Al2O3 respectively. From 

imaginary spectra, the peak positions of the distinct features and plasmonic 

resonance for MgO at 12.5 eV from GW0 calculation which is close to 13.4 eV, 

M. L. Bortz et al experimental work [217]. For hcp α-Al2O3 the sharp peak 

observed from imaginary spectra at 12.5 eV from GW0 calculation coincide with 

W. Tews et al experimental work [218]. For both oxides, GW0 produced spectra 

shows higher absorption in UV (ultra-violet) energy region compares to GGA-

PBE.  

Table 5.4: The important optical parameters for MgO and α-Al2O3 compared with 

the previous theoretical and experimental results. 

Parameter                 fcc MgO                  hcp α-Al2O3 

GGA(PBE) GW0 Reference GGA(PBE) GW0 Reference 

ε1(0) 3.00 2.80 3.20 (Exp) [213] 

2.84 (DFT-GGA) 

[256] 

 

3.10 2.96 3.00 (Exp) [218] 

3.20 (DFT) [107] 

 

ε1(5) 4.00 3.10              - 3.80 3.30 3.30 (Exp) [218] 

R(0) 0.08 0.06 0.08 (Exp) [213] 0.08 0.07 0.07 (Exp) [219] 

R(5) 0.20 0.08 0.09 (Exp) [213] 0.10 0.10 0.09 (Exp) [219] 

n(0) 1.80 1.65 1.68 (DFT-GGA) 

[256] 

1.80 1.70 1.75 (Exp) [218] 

1.79 (DFT) [107] 

n(5) 1.90 1.70               - 1.90 1.86 1.86 (Exp) [218] 

From Figure 5.5, for hcp α-Al2O3, there are more weak peaks are observed from 

GW0 corrections for imaginary part 𝜀2(𝜔) at around 18.00-20.00 eV region 

which are also observed at 17.00 eV-19.00 eV from GGA-PBE calculation. These 

weak peaks are also observed from experimental data from E. T. Arakawa et al 



65 
 

work, and they described these peaks are due to interband transitions from Al 3p 

to Al 3s states [207].  

The refractive index of an optical medium is a dimensionless number to describe 

how light or any other radiation propagates through the medium. The static 

refractive indices for MgO are 1.80 and 1.65 from GGA-PBE and GW0 

respectively. From Figure 5.4 and 5.5, it is noticed that the refractive indices of 

both magnesia and aluminum oxides show higher in the UV (5.00-20.00 eV) 

region and then gradually tend to decrease. The calculated values of the ordinary 

refractive index n(0) for the α-Al2O3 is 1.70 from GW0 calculations, which is 

comparable to the experimental value (1.75) from W. Tews et al [218].  

The extinction coefficient 𝑘(𝜔) is also calculated under GGA-PBE and GW0 

considerations. This is evidence that the overall behavior of 𝑘(𝜔) is close to that 

of the imaginary part of the dielectric functions ε2(ω) [Figure 5.4 and 5.5]. The 

extinction coefficient k(ω) shows higher energy peak around 5.0-20.0 eV and 9.0-

25.0 eV energy region for MgO and α-Al2O3 [Figure 5.4 and 5.5] respectively 

from GW0 correction. This indicates practically negligible loss of energy of 

electro-magnetic (EM) wave within this energy range while passing through the 

fcc MgO and hcp α-Al2O3. 

From the reflectivity spectra [Figure 5.4 and 5.5] as a function of incident light 

energy, there few sharp peaks in between the photon energy range 5.0-22.0 eV 

for fcc MgO from both GGA(PBE) and GW0 calculations, which are close to D. 

M. Roessler et al experimental work [213]. For α-Al2O3 from both GGA(PBE) 

and GW0 calculation most of the higher peaks are observed from 9.0 eV-22.0 eV 

region which can be related to the excitonic peak, also close to M. L. Bortz et al 

experimental work [219]. In addition to this, for hcp α-Al2O3, the experimental 

spectrum from M. L. Bortz et al [219] spectrophotometer experimental work 

shows features at 9.0, 12.0, 13.0, 14.9, 17.4, 19.0 and 21.8 eV, which are in good 
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agreements with those from our GW0 calculations 9.5, 11.5, 12.9, 18.0 and 21.0 

eV respectively. Also, in Figure 5.4 and 5.5, there are a sharp peak at 21.0 eV and 

20.8 eV region for MgO and α-Al2O3 respectively from GW0 approach and after 

that the reflectance spectrum falls off rapidly because of the exhaustion of the 

upper valence-to-conduction band transition. 

The absorption coefficient spectrum, α(ω) provides important information about 

optimum solar energy conversion efficiency and it indicates how far light energy 

(wavelength) can penetrate the material before being absorbed [205]. From 

Figure 5.4 (f), fcc MgO has largest peaks at 8.0-18.4 eV and 6.9-20.0 eV region 

from GGA-PBE and GW0 calculation respectively besides having shoulder at 

lower energy. From the absorption spectra of α-Al2O3 in Figure 5.5 (f) the 

consecutive peaks are observed between 11.0-18.5 eV and 10.0-23.3 eV region 

from the GGA-PBE and GW0 calculation respectively. Clearly the GW0 

produced spectra shows higher absorption in UV (ultra-violet) energy region for 

both oxides compare to the GGA-PBE. 

In case of conductivity spectrum from Figure 5.4 (g), the observed optical 

photoconductivity spectra have several maxima and minima from GW0 

calculation within 7.3-17.2 eV energy range whereas the GGA-PBE produced 

shows less peaks for fcc MgO. From the Figure 5.5 (g), the prominent peaks are 

at 10.0-17.5 eV energy ranges from GW0 calculation hcp α-Al2O3 which is close 

to experimental observation 9.2-16.9 eV [219].  

The electron energy loss function of materials is a key optical parameter to 

describe the energy loss of a fast electron passing through a material is usually 

large at the plasma frequency [205]. From Figure 5.4 (k), the prominent peak for 

fcc MgO at 20.0 eV from GGA-PBE which is increased to 22.4 eV from GW0 

calculation and close to experimental value 22.2 eV [213]. And there are some 

weak peaks are also observed which indicates rapid reduction in the reflectance. 
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The prominent peaks started for hcp α-Al2O3 phase after 20.0 eV [Figure 5.5 (h)] 

from GW0 calculation which is close to experimental spectrophotometer 

measurement [218]. Therefore, the calculated plasmon energy from GW0 

calculation shows close to experimental value for both oxides. 

5.4 Conclusion 

In this chapter the systematic bulk, electronic and optical properties for fcc MgO 

and hcp α-Al2O3 are calculated from first-principles DFT calculation within 

GGA_PBE approximation. The resulting equilibrium bulk properties (i.e., lattice 

parameters, volume, bulk modulus, formation, etc.) obtained from GGA-PBE are 

consistent with the available experimental and theoretical results from literature 

indicating the accuracy and reliability of the modeling elements used in this study.  

The electronic and optical properties have been studied by GGA(PBE) and state-

of-art GW0 correction. Overall, the self-consistent GW0 corrections described 

well the electronic and optical properties for both oxides that the obtained results 

are in excellent agreement with experimental observations.  
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Chapter Six 

Crystal chemistry and physical properties θ- and γ-

Al2O3 

6.1 Introduction 

θ- and γ-Al2O3 have been extensively used in protective coatings and many 

catalysis applications [92-95]. Recent experimental observations revealed that γ-

Al2O3 can be used as potential nucleation sites in solidification of Al-based metals 

and alloys [22, 91, 133]. In the case of the stable ground state α-phase there are 

experimental results available, while such are absent for θ- and γ-Al2O3. Specially 

in case of metastable γ-Al2O3 there is still controversy about its crystal structure 

[28, 105, 107, 114, 119-147].  

In this chapter the structural, electronic and optical properties of θ- and γ-Al2O3 

will be investigated using the first-principles density function theory (DFT) 

within the GGA_PBE approximation. In previous chapter (chapter Five) the 

results for the electronic and optical properties of fcc MgO and hcp α-Al2O3 have 

been successfully enhanced by the GW0 correction over DFT. Therefore, for θ- 

and γ-alumina phases we present the electronic and optical properties by 

DFT(GGA-PBE) with the state-of-art GW0 correction. The obtained results for 

optical properties of alumina phases from this study will help experimentalists 

for various potential optoelectronic applications such as solar energy devices, 

semiconductor parts etc. 

6.2 Methods 

6.2.1 Computational details: 

All the calculations were performed in this chapter using the first-principles DFT 

within GGA-PBE [192] approximations. The obtained results are compared with 
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the experimental results. According to our test calculations, the plane wave 

pseudopotential with energy cut-offs, Encut= 500 eV and Enaug = 750 eV was 

applied. Convergence of the geometry optimization was considered when the 

difference of total energies between the last iterations did not exceed 1.0×10-4 eV 

and the forces on each ion was 1.0x10-3 eV/Å. The electronic wave function was 

sampled on 12×12×8 with 350 and 8×8×6 with 114 k-mesh for θ-Al2O3 and γ-

Al2O3 in the irreducible Brillouin zone (BZ), respectively generated by the 

Monkhorst-Pack algorithm [211] [Figure A.6.1]. In case of GW0 approach, the 

self-consistency convergences were achieved within 8×8×4 k-meshes for both 

monoclinic θ- and hexagonal γ-alumina phases to balance the accuracy of the 

results and the computational capability. Numbers of 400 and 468 bands are 

enough for monoclinic θ-Al2O3 and hexagonal γ-Al2O3 structures respectively. 

All calculations are valid for a temperature of 0 K and a pressure of 0 Pa. 

6.2.2 Formation energy calculation: 

The following chemical reactions are used as the basis for the calculation of the 

formation energies for θ- and γ-alumina phases: 

2Al(s) + 3/2 O2(g) = Al2O3(s)  ……………………………………    (6.1) 

Therefore, with the help of the above equation (6.1) the following formula was 

used to calculate the formation energy, EF (eV/f.u.) for θ- and γ-Al2O3: 

𝐸𝐹(𝐴𝑙2𝑂3) = 𝐸𝑇(𝐴𝑙2𝑂3) −[2𝐸𝑇(𝐴𝑙) + (3/2)𝐸𝑇(O2)] …………..   (6.2) 

Where, ET is the total energy of the compound per formula unit. 

The total energy for fcc Al is -3.756 eV/f.u., for an isolated O2 molecule is -3.378 

eV/f.u. for its triplet solution from GGA-PBE calculations. These energies are as 

references used to calculate the formation energy of alumina. 
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To compare the stability of different alumina phases in this work, the energy 

differences were calculated between the stable α-Al2O3 and metastable θ-, γ-

Al2O3 using the following formula:  

            ΔE = [ET(□-Al2O3)-ET(α-Al2O3)] eV/f.u.     ………………… (6.3)  

Where, ET refers to the total ground state energy per formula unit for the α-, θ- 

and γ-Al2O3 compounds, □ denotes for θ and γ. 

6.3 Results and discussions 

6.3.1 Crystal structural properties 

6.3.1.1 θ-Al2O3 

The θ-Al2O3 has a monoclinic lattice with space group C2/m. All the ions located 

at 4i (x, 0, z) Wyckoff sites. Figure 6.1 (a) shows schematically the θ-Al2O3 unit 

cell which contains 20 atoms. The Al atoms occupy four octahedral and four 

tetrahedral interstitials sites [Figure 6.1 (b) and (c)]. θ-Al2O3 has three different 

types of O coordination [Table 6.1].  

                  

Figure 6.1: Schematic structure of lattice topology and polyhedra of the (a) 

monoclinic θ-Al2O3, where Altet and Aloct bonded with four and six O anions 

respectively. The surrounding bond arrangements and the bond lengths are shown 
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for (b) Altet and (c) Aloct. The silvery spheres represent Al and dark blue O 

atom/ion. 

The calculated coordinates of Al and O atoms are listed in Table 6.1. The 

calculated values agree well with those by E. Husson et. al for Al: Altet (0.101   0   

0.794) and Aloct(0.352   0   0.687) and those for O: O1 (0.163   0   0.123), O2 

(0.489   0   0.261), O3 (0.830  0  0.439) [115]. 

Table 6.1: Crystallographic data for computed monoclinic θ-Al2O3 structure by 

GGA-PBE 

θ-Al2O3: Monoclinic 

Space group: C2/m 

Atom                                      Wyckoff notation                   x                        y                     z  

Altet                                                        4i                          0.0903             0.0000          0.7958 

Aloct                                                        4i                          0.3422            0.0000          0.6829 

O1                                                           4i                          0.1606            0.0000          0.1092 

O2                                                           4i                          0.4948            0.0000          0.2570 

O3                                                           4i                          0.8266            0.0000          0.4331 

Bond lengths (Å): Altet-O:   1.768-1.813 

                             Aloct-O:   1.888-2.018 

Table 6.2: Comparison of calculated bulk properties of θ-Al2O3 crystals with 

experiments and other DFT work 

Monoclinic θ-Al2O3 Lattice parameter (Å) 

And angles (0) 

Bond lengths of 

Al-O (Å) 

ΔE(θ-α) 

(eV/f.u.) 

Bulk Modulus 

(GPa) 

This work, GGA-PBE a=11.905 Å, b=2.938 Å,  

c=5.667 Å 

β=104.0120 

Altet: 1.768-1.813 

Aloct: 1.888-2.018 

0.043 185.5 

References-Experiment     

XRD [114] a=11.854 Å, b=2.904 Å,  

c=5.622 Å 

β=103.8300 

Altet: 1.710-1.811 

Aloct: 1.896-2.025         

  

TEM, XRD [126] a=11.790 Å, b=2.91 Å,  

c=5.620 Å 

β=103.8000 

   

References-Theoretical     

DFT-GGA-PW91 [90] a=11.853 Å, b=2.923 Å,  

c=5.631 Å 

β=104.0340 

  0.030  

DFT-GGA-PBE (HF) 

[109] 

a=11.922 Å, b=2.940 Å,  

c=5.668 Å 

β=104.0000 

Altet: 1.770-1.813 

Aloct: 1.888-2.021         

0.047  

DFT-LDA [136] a=11.860 Å, b=2.929 Å,  

c=5.657 Å 

β=104.0000 

  0.040  
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From Table 6.2, the calculations produced the lattice parameters, a=11.905 Å, 

b=2.938 Å, c=5.667 Å and β=104.0120 by GGA-PBE, which are close to 

experimental [114, 126] and the other first principle DFT results [90, 109, 136]. 

The Al-O bond lengths are in the range of Altet-O: 1.768-1.813 Å and Aloct-O: 

1.888-2.018 Å from the GGA-PBE calculation, which are also close to the GGA-

PBE (HF) result of Z. Zhang et al DFT within Hartree-Fock (HF) work [109]. 

The calculated bulk modulus in this work is 185.5 GPa by GGA-PBE calculation 

using Birch-Murnaghan EOS [Figure A.6.2]. 

The energy difference per formula unit between α-Al2O3 and θ-Al2O3 is 0.043 

eV/f.u. from GGA-PBE calculation [Table 6.2], which is consistent with results 

from previous reports at Z. Zhang et al (0.047 eV/f.u.) [109] and C. Wolverton et 

al (0.04 eV/f.u.) [136]. 

6.3.1.2 γ-Al2O3  

6.3.1.2.1 Structural model of γ-Al2O3 

Here four different existing spinel models [122, 138, 140, 144] and one non-

spinel model [145] for γ-Al2O3 are revisited. The dependence of total energy on 

the cation (Al) vacancies positions is examined. This study also includes the local 

structure contribution including cation (Al), anion (O) distributions to the total 

energetics and the charge distribution using Bader charge approach [220-222] in 

the spinel γ-Al2O3 structure.  

Model-1 was built based on the primitive unit cell of γ-Al2O3 which is 

rhombohedral [138]. The lattice vectors are ap = a0 (0, 1/2, 1/2), bp = a0 (1/2, 0, 

1/2) and cp = a0 (1/2, 1/2, 0) are used, where a0=7.938 Å [122] is the lattice 

parameter of the cubic γ-Al2O3 phase [see Figure A.6.3]. The primitive unit cell 

then tripled c-axis to get the supercell with 40 atoms and 2 vacancies [Figure 6.2 

(a)]. This model followed from the work by G. Gutiérrez et al [138]. The small 
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size of the cell may affect the chemical composition of cation, anion and vacancy 

distribution. 

Therefore, Model-2 was prepared with a 1a0×1a0×3a0 supercell followed from L. 

Smročk et al [122] cubic unit cell. This supercell contains 160 atoms. It was built 

up by stacking three fcc MgAl2O4 cells into z-direction, replacing all the Mg with 

Al and finally extracting 8 Al atoms (i.e., vacancies) to maintain stoichiometry 

[Figure A.6.4]. Meanwhile, the distribution of cation (Al) at the interstitial sites 

requires investigations [Figure 6.2 (b)]. This Al distribution is related to several 

factors, including distances between Al vacancies, occupations at the tetrahedral 

and octahedral sites, the repulsive Coulomb interaction between vacancies, etc.  

The γ-Al2O3 structure in a hexagonal unit cell was also prepared and named 

Model-3 [Figure 6.2 (c)]. The hexagonal lattice vectors are ah = a0 (-1/2, 1/2, 0), 

bh = a0 (0, -1/2, 1/2) and ch = a0 (1, 1, 1), here a0 =7.938 Å is the lattice parameter 

of the cubic γ-Al2O3 phase [see Figure A.6.5]. This hexagonal unit cell contains 

six layers of close-packed O layers with Al atoms positioned at the tetrahedral 

and octahedral interstitial sites. This model contains 40 atoms with 2 vacancies. 

The relatively small cell might cause strong interaction between the vacancies. 

To avoid that issue, another Model-4 was prepared, with a hexagonal 

2ah×2ah×1ch supercell that contains 160 atoms with 8 vacancies [Figure 6.2 (d)].  

In the models (1 to 4) the introduction of Al vacancies breaks the symmetry of 

the lattices. All the built models have the space group P1 as shown in Table 6.3.  

One non-spinel γ-Al2O3 structure was also prepared based on a monoclinic unit 

cell as used by Digne et al [145]. The non-spinel γ-Al2O3 unit cell contains 40 

atoms, and the structure was named as Model-5 [Figure 6.2 (e)].  

The unit cells of the models considered in this work are shown in Figure 6.2 with 

their relevant structural aspects summarized in Table 6.3. 



74 
 

     

 

Figure 6.2: Different structural models for γ-Al2O3: (a) Model-1: 1ap×1ap×3ap 

primitive (rhombohedral) supercell, (b) Model-2: 1a0×1a0×3a0 conventional fcc 

supercell, (c) Model-3: 1ah×1ah×1ch hexagonal cell, (d) Model-4: 2ah×2ah×1ch 

hexagonal supercell, (e) Model-5: Monoclinic non-spinel cell [145]. The green 

and silvery spheres represent the Al(tetrahedral) and Al(octahedral), and dark 

blue balls represent O atom/ion. 

Table 6.3: Relevant structural details including lattice parameters (input), 

symmetry, number of atoms and vacancies. 

Different structural Models Symmetry Numbers of atoms 

and vacancies 

Lattice parameter and 

Angles [Inputs] 

References 

Model-1:  

Primitive  

(Rhombohedral) cell  

P1 40 atoms with 2 

vacancies 

a=b=5.613 Å,  

c=16.839 Å 

α=β=γ=60.000 

G. Gutiérrez et al 

[138] 

Model-2:  

Conventional fcc supercell 

P1 160 atoms with 8 

vacancies-oh 

a=b=7.938 Å,  

c=23.814 Å 

α=β=γ= 90.000 

L. Smročk et al [122] 
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Model-3:  

Hexagonal unit cell 

P1 40 atoms with 2 

vacancies 

a=b=5.613 Å,  

c=13.749 Å 

α=β=90.000, γ=120.000 

E. Menéndez-Proupin 

et al [140] 

Model-4:  

Hexagonal supercell 

P1 160 atoms with 8 

vacancies-oh 

a=b=11.226 Å,  

c=13.749 Å 

α=β=90.000, γ=120.000 

F. Maglia et al [144] 

Model-5:  

Non-spinel  

(monoclinic) cell  

P21/m 40 atoms  a=5.576 Å, b=8.398 Å, 

c=8.068 Å 

α=γ=90.000, β=90.530 

M. Digne et al [145] 

From all 4 spinel structures, total 12 different spinel structural models were 

created in this work with different vacancy distributions (i.e., vac-Tet, vac-Tet-

Oh, vac-Oh). This work then examined the dependence of total energy for all 12 

spinel models on the cation (Al) vacancies positions homogeneously and one non-

spinel model. The local structure contribution including cation (Al), anion (O) 

distributions to the total energetics were also analysed. The following subsections 

6.3.1.2.2 and 6.3.1.2.3 will describe the obtained results for all models using first 

principle DFT within GGA-PBE calculations in detail. 

6.3.1.2.2 Formation, stability, and chemical bonding in different models 

The results include equilibrium lattice parameters, bulk modulus and energy 

differences per unit formula for different optimized γ-Al2O3 structural models 

with respect to the α-Al2O3 obtained from the present work are listed and 

compared with other theoretical and experimental results in Table 6.4. 

Table 6.4: Calculated results (lattice parameters, volume, bulk modulus etc.) of 

our different structural models of γ-Al2O3. 

Different structural Models Lattice parameter and Angles ΔE(γ-α) eV/f.u. Bulk modulus 

(GPa) 

Model-1:     

Pr-1a (vac-Tet) a=b=5.664 Å, c=17.032Å 

α=β=60.080, γ=60.000 

0.409  

Pr-1b (vac-Oh-Tet) a=b=5.676 Å, c=17.042Å 

α=β=60.030, γ=60.000 

0.359  

Pr-1c (vac-Oh) a=b=5.655 Å, c=16.868 Å 

α=β=59.150, γ=59.800 

0.198  

Ref: DFT-GGA(PW-91) (40 atoms cell, vac-oh) [139] a=b=5.663 Å, c=13.710 Å 

α=β=90.600, γ=60.400 

0.180 209.00 

Model-2:     

Conv-1a (vac-Tet) a=8.053 Å, b=8.054 Å, c=24.061 Å 0.357  
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α=β=89.990, γ=90.000 

Conv-1b (vac-Oh-Tet) a= 8.050 Å, b=8.036 Å, c=24.167 Å 

α=β=89.940, γ=89.970 

0.332  

Conv-1c (vac-Oh) a=7.968 Å, b=7.978 Å, c=23.943 Å 

α=β=89.780, γ=90.290 

0.129  

 

Ref: Experiment: XRD (vac-oh) [122] a=b=c=7.938 Å     -  

Model-3:     

Hex-1a (vac-Tet) a=b=5.663 Å, c=13.925 Å 

α=β=89.940, γ=120.050 

0.312  

Hex-1b (vac-Oh-Tet) a=b=5.670 Å, c=13.852 Å 

α=β=89.420, γ=120.240 

0.254  

Hex-1c (vac-Oh) a=b=5.642 Å, c=13.664 Å 

α=β=90.640, γ=119.620 

0.112 205.67 

Ref: DFT-LDA+USPP (40 atoms cell, vac-oh) [223] a=b=5.606 Å, c=13.482 Å 

α=β=90.000, γ=120.000 

 204.00 

Model-4:     

Hex-2a (vac-Tet) a=12.089 Å, b=12.085 Å,  

c=13.920 Å 

α=β=90.240, γ=120.060 

0.313  

Hex-2b (vac-Oh-Tet) a=12.042 Å, b=12.040 Å,  

c=13.877 Å 

α=β=89.880, γ=120.090 

0.220  

Hex-2c (vac-Oh) a=11.895 Å, b=11.893 Å,  

c=13.442 Å 

α=β=89.960, γ=119.940 

0.086 209.73 

Ref: DFT+pair potential (160 atoms cell, vac-oh-tet) [144] a=b=11.190 Å, c=13.700 Å 0.390 208.00 

Model-5: a=5.576 Å, b=8.398 Å, c=8.068 Å 

α=γ=90.000, β=90.530 

0.294  

Ref: DFT-GGA(PW-91) (40 atoms cell) [145] a=5.587 Å, b=8.413 Å, c=8.068 Å 

α=γ=90.000, β=90.590 

 171.00 

The energy dependences on cation (Al) vacancy positions for 12 spinel structural 

models with different possible configurations (vacancy sites: Tet-Tet, Oh-Tet, 

Oh-Oh) and for one non-spinel model are summarized in the following Figure 

6.3. Figure 6.3 shows the variation of formation energy difference, ΔE (eV/f.u.), 

between different possible γ-Al2O3 structural models and α-Al2O3 phases as a 

function of vacancy positions used in DFT-GGA(PBE) approach. 
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Figure 6.3: The energetics of the structural models of γ-Al2O3 with respect to that 

of α-Al2O3 (Equation 6.3). 

From Figure 6.3 and Table 6.4, the γ-Al2O3 hexagonal 2×2×1 supercell (160 

atoms) with octahedral (Oh) vacancies from Model-4 shows the most stable phase 

because of having lowest energy difference (ΔE) with stable ground state α-Al2O3 

(i.e., 0.086 eV/f.u.), while the other models show the higher energy difference 

and less stable. The bulk modulus of the most stable hexagonal γ-Al2O3 2×2×1 

supercell structure is 209.73 GPa [see Appendix Figure A.6.6] which is close to 

208.00 GPa from Maglia et al work [144] and larger from non-spinel model 

(171.00 GPa) proposed by Digne et al [145].  

Figure 6.4 shows the variation of formation energy difference, ΔE (eV/f.u.), 

between different possible γ-Al2O3 structural models and α-Al2O3 phases as a 

function of volume (Å3/f.u.). 

               

Figure 6.4: Formation energy difference, ΔE (eV/f.u.) for different γ-Al2O3 

structural models as a function of volume (Å3/f.u.). 

From Figure 6.4, there is a strong correlation between vacancy site preference, 

unit cell volume and formation energies. The structure contains Oh vacancies 

yield smaller volume than Tet and Tet+Oh vacancies structure for all spinel 
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models studied in this work, in agreement with Wolverton and Hass [136]. In 

ideal spinel (MgAl2O4) structure, the octahedral sites are geometrically larger 

(Oh–O distance: 1.932 Å) than the tetrahedral sites (Tet–O distance: 1.811 Å) and 

the lattice, most likely, can relax and shrink to a larger extent around the Oh 

vacancies and yield lower volume [144]. The γ-Al2O3 2×2×1 hexagonal supercell 

(160 atoms) with Oh vacancies from Model-4 shows the most stable phase having 

smaller volume than other structures [Figure 6.4], also having larger Al(Oh)-O 

bonds (Average: 2.017 Å) than the Al(Tet)-O bonds (Average: 1.806 Å) [Figure 

6.5 (b) and (c)]. 

             

Figure 6.5: Schematic crystal structure of (a) 2×2×1 hexagonal γ-Al2O3 supercell 

with Oh vacancies (160 atoms), (b) Altet (green) and (c) Aloct (silver) bonded with 

four and six O anions, respectively. O atom/ion (dark blue) bonded with 

Al(oh/tet) cations by (d) CN-4 and (e) CN-3 [here, CN-Coordination Number]. 

The bond valence for the proposed γ-Al2O3 2×2×1 hexagonal supercell (Oh 

vacancies) from Model-4 was also calculated to observe chemical bonding in the 

compounds using Brown bond theory [224, 225]. The obtained bond valence 2.64 

valence units (vu) for Al(Tet) atoms and 2.96 (vu) for Al(Oh) atoms from this 

work which is close to 3.00 (vu) for Al(Oh) atoms in an ideal spinel MgAl2O4 
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[88] and is reasonable. This indicates bond valences are strong in spinel 

hexagonal γ-Al2O3 model and the structure is more ionic. 

The coordination number (CN) of O atom/ion to cation is normally 4 (i.e. CN-4) 

in an ideal spinel MgAl2O4 structure. But in spinel γ-Al2O3 structure to maintain 

the charge balance for ionic distribution vacancy introduced and therefore, O2- 

loses some bonds with Al3+ creating CN-3 of O-Al bonds [Figure 6.5 (d) and (e)] 

and releases some energies according to work-force law which should increases 

total ground state energy (i.e., more stable structure). Therefore, more CN-4 of 

O-Al bonds mean the structure should have lower energy and less stable. Figure 

6.6 shows the energetics for all our spinel γ-Al2O3 structural Models after relaxing 

the structures as function of the ratio of CN-4:CN-3 of O anions. 

                

Figure 6.6: Formation energy difference, ΔE (eV/f.u.) for different γ-Al2O3 

structural models as a function of CN-4:CN-3 of O anion. 

From Figure 6.6, the coordination number (CN) of O anion affect the lattice 

energy and the proportion of CN-4 and CN-3 should be equal to get more stable 

structure. Because if we look in γ-Al2O3(conv) structure containing Oh vacancies, 

from Model-2 the CN-4 of O anion is more than CN-3 (i.e., CN-4:CN-3 is 1.13:1) 

and have less stable structure (energetically) compared to hexagonal γ-Al2O3 with 
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Oh vacancies from Model-3 and Model-4. Again, more CN-3 means there are 

more O2- anions lost the bonds with Al3+ cations and create the structure more 

unstable due to charge difference. We have also done the Bader charge analysis 

to check charge neutrality due to CN-4 and CN-3 for our most stable hexagonal 

γ-Al2O3 2×2×1 supercell and compared with α-Al2O3. The calculated Bader 

charges of Al(Oh) is +2.14 in our hexagonal γ-Al2O3 2×2×1 supercell which is 

close to +2.19 of α-Al2O3. The calculated Bader charges varies for O anion, with 

CN-4 (i.e. -1.37 to -1.45 eV) are more negative than O atoms/ion with CN-3 (-

1.34 to -1.39 eV). These different variation of charge distribution of Al(Tet), 

Al(Oh) and O for CN-4 and CN-3 with their total number of proportions in 

hexagonal γ-Al2O3 2×2×1 supercell makes the structure charge neutral as well as 

stable.  

6.3.1.2.3 Distribution of vacancies between layers in the structure 

In the spinel γ-Al2O3 unit cell of primitive (Rhombohedral) and hexagonal 

structure, Al consists of 2 different configuration atomic layers, the Al1 layer, 

where Al ions occupy two thirds of the octahedral sites i.e. pure Al(Oh) layer. 

Another Al2 i.e. mixed Al(Oh+Tet) layer is composed of three sublayers: a 

sublayer of octahedrally coordinated Al being sandwiched by two tetragonally 

coordinated Al sublayers [Figure 6.7]. Therefore, when choose the Al vacancies 

for octahedral (Oh) sites, the vacancies can recite either only in pure Al1(Oh) 

layer or in Al2(Oh+Tet) layer or from two mixed (Al1 and Al2) layers. To see the 

distribution of vacancies between the layers homogeneously, 9 different 

structures for Oh vacancy sites from primitive (Model-1), hexagonal 1×1×1 

(Model-3) and hexagonal 2×2×1 supercell (Model-4) models are created and 

compared in this work. 
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Figure 6.7: Schematic crystal structure of spinel γ-Al2O3 with Oh vacancies for 

(a) Model-1: primitive (Rhombohedral) cell, (b) Model-3: hexagonal 1×1×1 unit 

cell, (c) Model-4: hexagonal 2×2×1 supercell. Altet (green) and Aloct (silver) 

bonded with four and six O anions, respectively. The dark blue represents O 

atom/ion. The orange lines represent the axis of the unit cell. The labels Al1, Al2 

and O represent the Al sublayers and O layer in the structure, respectively.  

               

Figure 6.8: Formation energy difference, ΔE (eV/f.u.) as a function of volume 

(Å3/f.u.) for Primitive (Rhombohedral), Hexagonal (1×1×1) cell and Hexagonal 

(2×2×1) supercell of γ-Al2O3 structural models respectively with Oh vacancies 

distributed at different layers. 
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From Figure 6.8, most stable structure is hexagonal γ-Al2O3 2×2×1 (160 atoms) 

supercell from Model-4 with Oh vacancies where the vacancies introduced from 

different atomic configurations layers (i. e., from layer Al1 and Al2) and yield the 

lower volume (46.15 Å3/f.u.) as well. Therefore, the vacancies (Oh) in hexagonal 

γ-Al2O3 spinel like structure preferred to be situated different configurational 

layers rather than from same type of layer [Figure 6.8].  

6.3.1.2.4 Summary 

From all the different structural models of γ-Al2O3 calculation, the total energy 

calculations showed that spinel type γ-Al2O3 within the hexagonal supercell 

containing 160 atoms (Model 4) is intrinsically favored at ambient conditions. 

The vacancies are preferred in octahedral sites as well. 

From present works analysis, for coordination number (CN) of O atoms with Al 

atoms showed that any configuration involving less or too many O-Al missing 

bonds in the spinel structure (i.e. O ion having more or less CN-3 than CN-4) is 

energetically unfavorable. The proportion of CN-4 and CN-3 for O anion/atom 

in spinel γ-Al2O3 should be 1 to have the more ionic charge neutral stable 

structure. The vacancies distribution between layers in the spinel γ-Al2O3 also 

shows correlation between the stability of the structures. The present study 

showed that γ-Al2O3 hexagonal supercell with octahedral (Oh) vacancies from 

different atomic configurations layers [i.e., from mixed Al2(Oh+Tet) layers and 

pure Al1(Oh) layers] is energetically favorable.  

From the overall careful observations of different existing γ-Al2O3 structural 

models, present study proposed spinel γ-Al2O3 hexagonal structure with Oh 

(octahedral) vacancies have a stable uniform structure compared to traditional 

primitive (rhombohedral) and tetragonal cell. 
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According to formation energy and stability analysis it has been seen that there is 

very little difference (ΔE=0.026 eV/f.u.) between hexagonal 1×1×1 (40 atoms) 

and 2×2×1 (160 atoms) supercell which means the structures are close to each 

other. Therefore, the hexagonal γ-Al2O3 1×1×1 (40 atoms) cell were used in rest 

of my work in this thesis. 

6.3.2 Electronic properties by GGA-PBE       

The electronic structure of the monoclinic θ-Al2O3 and hexagonal γ-Al2O3 crystal 

structure are calculated within the GGA-PBE approximation. The following 

Figurer 6.9 shows the total density of states (TDOS) and partial density of states 

(PDOS) for both θ- and γ-Al2O3. 

Figure 6.9: The total and partial density of states of (a) monoclinic θ-Al2O3 and 

(b) hexagonal γ-Al2O3 crystal structure from GGA-PBE calculations. 

For both θ- and γ-Al2O3 the conduction bands are mainly composed from Al 3s 

and 3p states [Figure 6.9 (a) and (b)]. There are also small contribution are 

observed from O 2s and 2p states to conduction band for both alumina phases 

[Figure 6.9 (a) and (b)]. This indicates some covalent nature in the oxides. The 
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calculated lower-valence-band (LVB) are mainly from O 2s states, and the width 

is 2.60 and 4.17 eV for θ-Al2O3 and γ-Al2O3 respectively from the present GGA-

PBE calculation [Figure 6.9 (a) and (b)]. The upper valence band (UVB) are from 

O 2p states, and the width is 6.7 and 8.5 eV for θ-Al2O3 and γ-Al2O3 respectively 

[Figure 6.9 (a) and (b)].  

Table 6.5: The comparison of band widths and band gaps (eV) from GGA-PBE 

calculated results of monoclinic θ-Al2O3 and hexagonal γ-Al2O3 with the previous 

theoretical and experimental data. 

 

 

Upper VB (O 2p) 

width (eV) 

Lower VB (O 2s) 

width (eV) 

Differences  

(O 2s-O 2p) 

(eV) 

Band gap 

(eV) 

monoclinic θ-Al2O3     

This work, GGA-PBE 6.7 2.7 9.7 4.5 

X-ray photoelectron 

spectroscopy [225] 

   5.16 

DFT-LDA (OLCAO) 

[105]  

7.41 3.14 8.86 4.64 

spinel hexagonal γ-Al2O3     

This work, GGA-PBE 8.5 4.17 8.1 4.2 

X-ray photoelectron 

spectroscopy [125] 

9.5    -   - 8.7 

DFT-GGA [140] 8.2 3.5 8.4 3.8 

DFT-LDA+FPLMTO 

[107] 

8.5 3.9 8.0 3.9 

From Table 6.5 and Figure 6.9, the calculated band gap for the θ-Al2O3 is 4.5 eV 

whereas the experimental measured gap is 5.16 eV [226], which is reasonable for 

DFT calculation. For γ-Al2O3, the calculated bandgap between UVB and 

conduction band is 4.2 eV in the present work. This value is close to other DFT-

LDA results, i.e., 3.9 eV by R Ahuja et al [107] and 3.8 eV by Menéndez-Proupin 

et al [140]. However, XPS (X-ray photoelectron spectroscopy) measurements by 

B Ealet et al produced band gap of 8.7 eV for γ-Al2O3 [125].  

6.3.3 Accurate calculation of band gap by GW0 correction  

To improve the electronic structure for both θ- and γ-Al2O3, state-of-art GW0 

approach have been applied and discussed in this section.  
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Figure 6.10: Schematic picture of the total density of states (DOS) of (a) θ-Al2O3 

and (b) γ-Al2O3 structure using both GGA(PBE) and GW0 functionals.  

The spectrum of lower valence band (LVB) and the conduction band are 

improved for both alumina phases. From Figure 6.10, all states in the conduction 

band are shifted toward high energy, which causes increasing in the band gap. 

The calculated band gap from GW0 correction for our monoclinic θ-Al2O3 crystal 

structure is 5.7 eV which overestimated (within 10%) to the experimental 

measured band gap 5.16 eV [226]. The calculated band gap from GW0 correction 

for our hexagonal γ-Al2O3 crystal structure is 8.3 eV which is close (within 4%) 

to the experimental XPS (X-ray photoelectron spectroscopy) measured band gap 

8.7 eV [125]. 

6.3.4 Optical properties  

The optical properties such as real 𝜀1(𝜔) and imaginary 𝜀2(𝜔) part of dielectric 

constants, refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), 

absorption coefficient α(ω), energy loss functions L(ω) and Conductivity σ(ω) 

are calculated for the photon energies of θ- and γ-Al2O3 by using equation (4.39)-

(4.44) [from methodology i.e., Chapter Four] and are shown in Figure 6.11. For 

the α phase there are experimental results for several optical quantities [see 

Chapter Five], while such are absent for θ- and γ-Al2O3. Therefore, comparison 

between theoretical and experimental results for α-Al2O3 serves to give an 

indication of the accuracy of the present theoretical predictions for the θ- and γ-

Al2O3. From previous chapter (i.e., Chapter Five) the analyzed GW0 correction 
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over DFT(GGA-PBE) enhanced the optical properties for α-Al2O3. So, for θ- and 

γ- alumina phases the optical properties are calculated by GW0 approach and 

compared with α-Al2O3 [Figure 6.11]. 

 

Figure 6.11: The optical functions: Dielectric constants of (a) real part 𝜀1(𝜔), (b) 

imaginary part 𝜀2(𝜔), (c) refractive index n(ω), (d) extinction coefficient k(ω), 

(e) reflectivity R(ω), (f) absorption coefficient α(ω), (g) conductivity σ(ω) and 

(h) energy loss spectra L(ω) of α-, θ- and γ-Al2O3. 
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The comparison of the static dielectric constant 𝜀1(0) and 𝜀1(5) under GW0 

correction over DFT for α-, θ- and γ-Al2O3 phases are given in Table 6.6. In 

Figure 6.11 (b), the optical absorption edge from 𝜀2(𝜔) curve is found at 9.8 eV, 

5.8 eV and 8.3 eV for α-, θ- and γ-Al2O3, respectively. The shift in the calculated 

spectra of absorption edge is in a good agreement with those from band 

corresponding DOS of all three alumina phases. The various peaks of this curve 

are also signified to different interband transitions between the conduction and 

valence band states. From imaginary spectra, the peak positions of the distinct 

features and plasmonic resonance for hcp α-Al2O3 the sharp peak observed from 

imaginary spectra at 12.5 eV from GW0 calculation coincide with W. Tews et al 

experimental work [218] (also in Chapter Five, Figure 5.5). For the monoclinic 

θ- and hexagonal γ-Al2O3, the sharp peak of the peak positions of the distinct 

features and plasmonic resonance observed from imaginary spectra at 8.8 and 

10.4 eV respectively from GW0 calculation. 

Table 6.6: The significant optical parameters for α-, θ- and γ-Al2O3 compared 

with the previous theoretical and experimental results. 

Parameter                  α-Al2O3                   θ-Al2O3                   γ-Al2O3 

GW0 Reference GW0 Reference GW0 Reference 

ε1(0) 2.96 3.00 (Exp) [218] 

3.20 (DFT) [107] 

2.80 2.95 (DFT) [227] 2.90 3.00 (DFT) [107] 

3.74 (DFT) [227] 

ε1(5) 3.30 3.30 (Exp) [218] 3.40 3.69 (DFT) [227] 3.35 3.25 (DFT) [227] 

R(0) 0.07 0.07 (Exp) [219] 0.06 0.07 (DFT) [227] 0.07 0.10 (DFT) [227] 

R(5) 0.10 0.09 (Exp) [218] 0.12 0.09 (DFT) [227] 0.13 0.08 (DFT) [227] 

n(0) 1.70 1.75 (Exp) [218] 

1.79 (DFT) [107] 

1.75 1.72 (DFT) [227] 1.70 1.73 (DFT) [107] 

1.70 (Exp) [206] 

n(5) 1.86 1.86 (Exp) [218] 1.94 1.92 (DFT) [227] 1.90 1.80 (DFT) [227] 

The static refractive indices of α-, θ- and γ-Al2O3 are 1.70, 1.65 and 1.70, 

respectively [Figure 6.6 (c)]. From Figure 6.11 (c), it is noticed that the refractive 

index η(0) of θ-Al2O3 is less than α-Al2O3 where γ-Al2O3 is coincide with α-Al2O3 

in the low energy region but then gradually decreased in the high energy region 

or ultraviolet region.   
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The extinction coefficient k(ω) shows higher energy peak around 9.0-23.0 eV, 

6.0-15.0 eV, and 8.0-23.0 eV energy region for α-, θ- and γ-Al2O3 [Figure 6.11] 

respectively from GW0 correction. This is evidence that the overall behaviour of 

𝑘(𝜔) is close to that of the imaginary part of the dielectric functions ε2(ω) [Figure 

6.11 (d)], which affirms the established theory.  

From Figure 6.11 (e), the reflectivity (%) of α- and γ-Al2O3 phases having nearly 

similar characteristics starts with a value of 6.8%, and then rise to reach maximum 

value of 32.0% for α- and 32.7% for γ-Al2O3 phases respectively between 8.0-

22.0 eV energy range. The reflectivity (%) spectra of α-Al2O3 from present GW0 

calculation show good agreements with those from M. L. Bortz et al [219] 

spectrophotometer experimental work. But for θ-Al2O3,  the sharpest reflectivity 

(%) spectra is in between 6.0-16.0 eV energy ranges, which shows lower value 

compared to α- and γ-Al2O3 phases. Thus, both the α- and γ-Al2O3 phases possess 

roughly similar reflectivity spectra showing promise as good coating materials 

than θ-Al2O3. 

The absorption spectra of α-, θ- and γ-Al2O3 as shown in Figure 6.11 (f). From 

Figure 6.11 (f), α-Al2O3 has largest peaks at 10.0-23.3 eV region besides having 

shoulder at lower energy. The γ-Al2O3 has largest peaks at 8.4-22.0 eV region 

besides having shoulder at lower energy which shows closer value to α-Al2O3. 

But for θ-Al2O3 [Figure 6.11 (f)], largest peaks at 8.0-15.5 eV region besides 

having few shoulders at lower energy. Therefore, α- and γ-Al2O3 phases possess 

higher absorption in UV (ultra-violet) energy region compared to θ-Al2O3. 

In case of conductivity spectrum from Figure 6.11 (g), the observed optical 

photoconductivity spectra have several maxima and minima from GW0 

calculation within for α-Al2O3 within the range of 10.0-17.5 eV, whereas the θ- 

and γ-Al2O3 are electrically conductive when the incident radiation has energy 

within the range of 6.0-13.5 eV and 8.0-16.3 eV respectively. 
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Figure 6.11 (h) presents the energy loss function as a function of photon energy. 

The prominent peaks started for α-Al2O3 phase after 20.0 eV and for γ-Al2O3 

phase after 17.0 eV and 21.3 eV respectively, while the θ-Al2O3 has the sharpest 

peak at 16.7 eV, which indicates rapid reduction in the reflectance for θ-Al2O3 

compared to α- and γ-Al2O3 phases. 

From the above analysis of the optical properties of α-, θ- and γ-Al2O3, it is noted 

that the proposed hexagonal γ-Al2O3 spinel structure shows close results in 

dielectric properties to hcp α-Al2O3 rather than monoclinic θ-Al2O3. The present 

study would be helpful to provide relevant fundamental science to improve the 

design and application of different alumina phases i.e., θ- and γ-Al2O3 in the field 

of optoelectronics and photovoltaics. 

6.4 Conclusion 

The structural and electronic properties of θ- and γ-Al2O3 were analysed in this 

chapter using the first-principles DFT calculations within GGA-PBE 

approximation. The resulting equilibrium properties by GGA-PBE approach of 

θ- and γ-Al2O3 obtained are consistent with the experimental observations in the 

literature.  

For γ-Al2O3, the physical properties related to total energy with detail local 

chemical structure (including cation, anion, and vacancy distribution) 

calculations were performed for different (spinel and non-spinel) structural 

models containing smaller (40 atoms unit cell) and larger supercell (160 atoms). 

Several important features were revealed in the present study relating to the cation 

(Al), anion (O) and vacancy site distribution in the spinel γ-Al2O3 bulk structure. 

The total energy calculations show that the spinel γ-Al2O3 structure for hexagonal 

lattice model [both small (40 atoms) and larger (160 atoms) supercells] with 

octahedral (Oh) vacancy sites having smaller volume is more stable. Any 

configuration involving too many O-Al missing bonds due to vacancies for spinel 
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structure (i.e., having more or even less CN-3 than CN-4) is unfavorable. The 

proportion of CN-4 and CN-3 for O anion/atom in spinel γ-Al2O3 should be 1 to 

get the more stable structure. Considering the vacancies distribution between 

layers, the spinel γ-Al2O3 structure with octahedral (Oh) vacancies from different 

atomic configurations layers [i.e., from mixed Al2(Oh+Tet) layers and pure 

Al1(Oh) layers] is favorable. 

The electronic properties of monoclinic θ- and hexagonal γ-Al2O3 calculated by 

the self-consistent GW0 approach were discussed in this chapter. The improved 

optical properties by GW0 approaches for α-Al2O3 from Chapter Five are 

consistent with the available experimental and theoretical results in literature 

which indicating the accuracy and reliability of the modeling elements used in 

this chapter for monoclinic θ- and hexagonal γ-Al2O3 phases. Overall, the self-

consistent GW0 corrections enhanced the electronic structures for the monoclinic 

θ- and hexagonal γ-Al2O3 phases. 
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Chapter Seven 

Crystal structures and properties of Al2O3 rich 

MgO.nAl2O3 spinels 

7.1 Introduction 

Mg-Al spinels (MgO·nAl2O3) have attracted enormous attentions due to their 

wide applications [156, 157, 162-164]. By varying the n value, the existence of 

intermediate compositional structures for the MgAl2O4 to γ‐Al2O3 solid solution 

has been reported, using the formula Mg(1-x)Al2(1+x/3)O4 [156, 157]. But in that 

formula, the clear description of cation Al3+ and vacancy distributions in 

tetragonal (Tet)/octahedral (Oh) sites are absent [156, 157]. The present work 

proposed a new formula [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4, (here, x=0 to 1) to 

describe the intermediate compositional structures of MgAl2O4 to γ‐Al2O3 solid 

solution. This work first investigated the distribution rules for cation Al3+ and 

vacancies at tetragonal and octahedral sites in MgAl2O4 to γ‐Al2O3 solid solution 

spinel according to their energetics and with in-depth analysis of the local 

structure. Then seven compositions of [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 for x = 0.0, 

0.125, 0.25, 0.5, 0.75, 0.875, 1.0 have been studied by the first-principles DFT 

within the GGA-PBE approach. The related chemical bonding and electronic 

structures were also discussed for all seven compositional structures. An ab initio 

molecular dynamics (MD) simulation technique has also been applied to study 

the occupations of the Mg and Al atoms at the interstitial sites at high temperature 

in this work.  
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7.2 Methods: 

7.2.1 Structural model for Mg5Al18Vac1O32 models: 

The Mg8Al16O32 [Figure 7.1 (a)] unit cell with lattice parameter 8.123 Å were 

used to prepare Mg5Al18Vac1O32 unit cell. Depending on the substation of cation 

Al3+ to Mg2+ and vacancy distribution, there are more than 50 possible 

configurations. Based on the previous analysis (the previous chapter six), around 

20 structural models for Mg5Al18Vac1O32 were tested. The calculations revealed 

that the following 5 structural models have been found to be highly stable, as 

shown in Figure 7.1.  

The atomic layers along the (001) orientation in the Mg8Al16O32 unit cell consists 

of four high-density layers and four low-density layers, which alternate along the 

c direction [figure 7.1 (a)]. The low-density layer contains the tetrahedrally 

coordinated Mg2+ cations, whereas the high-density layer contains the 

octahedrally coordinated Al3+ cations, and the oxygen atoms [Figure 7.1 (a)]. 

   

Figure 7.1: Schematic picture of (a) fcc Mg8Al16O32 unit cell and 5 different 

structural models of Mg5Al18Vac1O32, (b) Model-1, (c) Model-2, (d) Model-3, (e) 

Model-4 and (f) Model-5. Orange, blue and red spheres represent the Mg, Al and 
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O atoms respectively. Blue circles represent the vacancies at different sites in the 

unit cell. 

In figure 7.1, there are 5 different structural models are presented for cations (i.e., 

Mg2+, Al3+) substitution in different interstitial sites and vacancy distributions 

homogeneously [Table 7.1]. Model-1 to Model-4 were prepared followed by this 

composition [Mg5Al3]Tet[Al15Vac1]Oh[O32]. For Model-1, 3Al3+ cations were 

substituted to Mg1, Mg2 and Mg3 tetrahedral interstitial sites and 1 vacancy from 

Wyckoff (16d) position at Al(Oh): (½ ½ ½ ) which is at the center in the bulk unit 

cell. For Model-2, 3Al3+ in same position as Model-1, only changed 1 vacancy 

from Wyckoff (16d) position at Al: (½ 0 0) which is outer layer in the bulk unit 

cell. For Model-3 and -4, the vacancy was kept as same as Model-2, only 3Al3+ 

cations were substituted to Mg3, Mg4, Mg6 and Mg6, Mg7, Mg8 tetrahedral 

interstitial sites, respectively.  

For Model-5, followed by this composition [Mg5Al2Vac1]Tet[Al16]Oh[O32], 3Al3+ 

cations were substituted to Mg1, Mg3 and Mg6 tetrahedral interstitial sites and 

then 1 vacancy in tetrahedral site from Wyckoff (8a) position at (1/8 1/8 -1/8) 

(i.e., substituted Al in Mg1) in the bulk unit cell. 

Table 7.1: Fractional coordinates of the substitute Al3+ in Mg2+ tetrahedral 

interstitial sites and vacancy sites for 5 different Models of 

[Mg5Al3]Tet[Al15Vac1]Oh[O32] unit cell 

Different Models Coordinates of substitute Al3+ cations for 

Mg2+ ions in tetrahedral interstitial sites 

Coordinates of Vacancy sites 

Model-1 (vac-oh)         (0.1250     0.1250     0.1250) 

        (0.6250     0.6250     0.1250) 

        (0.6250     0.1250     0.6250) 

(0.5000     0.5000     0.5000) 

Model-2 (vac-oh)         (0.1250     0.1250     0.1250) 

        (0.6250     0.6250     0.1250) 

        (0.6250     0.1250     0.6250) 

(0.5000     0.0000    -0.0000) 

Model-3 (vac-oh)         (0.6250     0.1250     0.6250) 

        (0.1250     0.6250     0.6250) 

        (0.3750     0.3750     0.8750) 

(0.5000     0.0000    -0.0000) 

Model-4 (vac-oh)         (0.3750     0.3750     0.8750) (0.5000     0.0000    -0.0000) 



94 
 

        (0.3750     0.8750     0.3750) 

        (0.8750     0.3750     0.3750) 

Model-5 (vac-tet)         (0.1250     0.1250    -0.1250) 

        (0.6250     0.1250     0.6250) 

        (0.3750     0.3750     0.8750) 

(0.1250    0.1250    -0.1250) 

 

7.2.2 Prepare different models of [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 spinels 

For the perfect spinel structure (MgAl2O4), there are 56 atoms contained in the 

conventional cell (Mg8Al16O32). From the Mg8Al16O32 conventional cell, amounts 

of 1/3, 2/3, 4/3, 6/3, 7/8 and 8/3 vacancies have to be introduced for the defective 

spinel structure of [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 for x=0.0, 0.125, 0.25, 0.50, 

0.75, 0.875 and 1 to make the charge balance. Therefore, a redefined hexagonal 

cell ((Mg6Al12O24) was constructed to make sure the number of vacancies is an 

integer. The prepared hexagonal unit cell obtained by a transformation of the 

lattice vectors from conventional fcc MgAl2O4 cell with the relations, ah = a0 (-

1/2, 1/2, 0), bh = a0 (0, -1/2, 1/2) and ch = a0 (1, 1, 1) [here a0=8.16 Å is the lattice 

parameter of the conventional (fcc) MgAl2O4 cell]. To avoid possible interaction 

between the cation, anion, and vacancies in smaller cell and to ensure the 

accuracy of the calculation the 2×2×1 hexagonal supercells (168 atoms) were 

used [Figure 7.2].  
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Figure 7.2: 2×2×1 hexagonal supercell models of [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 

for (i) x=0, (ii) x=0.125, (iii) x=0.25, (iv) x=0.50, (v) x=0.75, (vi) x=0.875, (vii) 

x=1, where orange, silver, green and dark blue balls represent Mg, Al, Vacancies 

and O atom/ions, respectively. 

7.2.3 Computational details 

All the calculations were performed by using first-principles DFT within (GGA-

PBE) functionals [192]. Test calculations indicated that the plane wave 

pseudopotential with Encut= 500 eV and Enaug = 750 eV is sufficient for our 

investigated systems. The electronic wave functions were sampled on an 8×8×3 

grid with 114 k-points in the irreducible Brillouin zone (BZ), generated by the 

Monkhorst-Pack algorithm [200]. All calculations are valid for a temperature of 

0 K and a pressure of 0 Pa. The ab initio MD simulation uses the finite-

temperature density functional theory of the one-electron states, the exact energy 

minimization and calculation of the exact Hellmann-Feynman forces after each 

MD step using the preconditioned conjugate techniques, and the Nosé dynamics 

for generating a canonical NVT ensemble [208]. The Gaussian smearing was 

employed with the width of smearing, SIGMA = 0.1 eV [204]. The ab initio 

molecular dynamics simulations were performed for 3000 steps (1.5 fs per step) 

at 2000 K. 
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7.2.4 Formation energy calculation 

To assess the stability of the [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 configurations, the 

formation energy with respect to the elemental solids and O2 molecules, Ef 

(eV/f.u.) was obtained from the calculated total energy via the relation:  

𝐸𝑓 = [𝐸𝑇 ([𝑀𝑔1−𝑥𝐴𝑙𝑥]𝑇𝑒𝑡[𝐴𝑙
(2−

𝑥

3
)
𝑉𝑥

3
]𝑂ℎ[𝑂4]) − (1 − 𝑥)𝐸𝑇(𝑀𝑔) − 𝑥𝐸𝑇(𝐴𝑙) − (2 −

𝑥

3
) 𝐸𝑇(𝐴𝑙) −

4

2
𝐸𝑇(𝑂2)]     

                                                                       ……………………………..    (7.1) 

where 𝐸𝑇(𝑀𝑔), 𝐸𝑇(𝐴𝑙), and 𝐸𝑇(𝑂2) are the total ground state energies of 

elements hcp Mg, fcc Al, and O2 molecule in their stable configurations, 

respectively. 

7.3 Results and discussions 

7.3.1 Distribution of cations in [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 

The energetics of five crystallographic non-equivalent configurations of 

Mg5Al18V1O32 were investigated to determine the distribution preference of the 

vacancy and substitute Al3+ cations in Mg2+ tetrahedral interstitial sites in the 

lattice structures. The results are shown in Figure 7.3.  

                            

Figure 7.3: The Formation energies (eV/f.u.) of the 5 different Models of 

Mg5Al18Vac1O32 unit cell. 
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From Figure 7.3, our calculations showed that Model-3 has the lowest formation 

energy. This result indicates that the vacancy prefers to be near the outer layer of 

the unit cell rather than in centre of the bulk unit cell [Figure 7.3 (b) and (c)]. 

From comparison of Model-3 and Model-5, the vacancy also prefers to be in 

octahedral (Oh) interstitial site. In addition, it was proved that when there is more 

than one vacancy in the supercell, they should be located the most far away from 

each other [Chapter Six]. The substitutions of Al3+ cations in Mg2+ tetrahedral 

interstitial sites also show a correlation on the stability of crystal structure. In the 

most stable structure Model-3, substituted Al3+ cations for Mg2+ ions in 

tetrahedral sites preferred to situate close to outer layer along c-direction of the 

bulk unit cell and near vacancy [Figure 7.3 (d)]. Using the above restriction rules 

of cations and vacancy distribution in spinel structure the number of eligible 

seven configurations of stable structures using formula [Mg(1-x)Alx]Tet[Al(2-

x/3)Vx/3]OhO4 (x = 0.0, 0.125, 0.25, 0.5, 0.75, 0.875, 1.0) were calculated and 

discussed in the next section. 

7.3.2 Formation, stability and chemical bonding in the series of [Mg(1-

x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 spinels  

The calculated lattice parameters, average bond lengths and formation energies 

of optimized [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (x = 0.0, 0.125, 0.25, 0.5, 0.75, 

0.875, 1.0) structures are listed in Table 7.2. 

Table 7.2: Calculated crystallographic parameters and formation energies (Ef) of 

different compositions of MgAl2O4 to γ‐Al2O3 (x = 0.0, 0.125, 0.25, 0.5, 0.75, 

0.875, 1.0), where dT-O and dOh-O denote the average bond lengths (Å) in 

tetrahedral (Mg/Al-O) and octahedral (Al-O) coordination, respectively. 

x a (Å) b (Å) c (Å) α (0) β (0) γ (0) dT-O (Å) 

(average) 

dOh-O (Å) 

(average) 

V 

(Å3/f.u.) 

Ef (eV) 

0.0 11.546 11.546 14.141 90 90 120 1.964 1.937 68.109 -25.923 

0.125 11.524 11.518 14.127 89.883 89.996 120.009 1.942 1.936 67.777 -25.769 
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0.25 11.503 11.510 14.062 89.835 89.920 120.035 1.919 1.935 67.327 -25.655 

0.50 11.513 11.461 13.968 89.830 89.810 120.231 1.874 1.933 66.597 -25.547 

0.75 11.391 11.383 13.869 89.884 90.153 119.966 1.830 1.931 65.283 -25.599 

0.875 11.394 11.367 13.780 89.877 89.955 120.207 1.807 1.930 64.695 -25.685 

1.0 11.312 11.312 13.719 89.794 90.258 120.182 1.785 1.929 63.745 -25.810 

From Table 7.2, the calculated formation energies of all seven structures are 

negative, which indicates that the structures proposed in this work are 

thermodynamically stable with respect to the elemental solids and O2 molecules.  

In view of the variation of formation energies with x, it is noticed that 

MgO·nAl2O3 spinel tends towards decreasing the stability up to x=0.50. But after 

x=0.5, increasing the Al3+ cations and vacancies, the formation energies tend to 

increase for all the models till the compositional structure of [Mg(1-x)Alx]Tet[Al(2-

x/3)Vx/3]OhO4 spinel completely change to γ‐Al2O3 as x=1 [Figure 7.4 (a)].  

                           

      

Figure 7.4: Variation of calculated (a) formation energies, Ef (eV), (b) lattice 

constants and (c) average bond lengths (Å) of the optimized [Mg(1-x)Alx]Tet[Al2-

x/3Vx/3]OhO4 (x = 0.0, 0.125, 0.25, 0.5, 0.75, 0.875, 1.0). 
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According to Sickafus’s investigations on the structure of spinel [228], the lattice 

parameter [in Figure 7.4 (b)] of MgO·nAl2O3 spinel was estimated by following 

formula, 

                                       𝑎 = 2 (
𝑉

𝑍
)

1/3
………………. (6.2) 

Where, V is the volume of supercell after geometry optimization and Z is the 

number of formula unit in these supercells.  

The lattice parameter as a function of composition is plotted in Figure 6.4 (b). 

Our calculated lattice parameter 8.16 Å of spinel MgAl2O4 is larger than 7.78 Å 

and 7.90 Å in the literature using DFT-LDA approaches [229, 230], but closer to 

experimental observed values 8.08 Å and 8.07 Å [231, 232]. With the increase of 

content of cation Al3+ and vacancies, lattice parameter of (MgO·nAl2O3) presents 

a decreasing trend [Figure 7.4 (b)]. Which indicates that all seven solid solutions 

maintain the parent lattice structure and suggests homogeneous mixing. On the 

other hand, when more Mg2+ ions are substituted by Al3+ ions, the lattice is forced 

to contract. As a result, the bond length (Å) in octahedra (Al-O) almost keeps 

unchanged and the bond length (Å) in tetrahedra (Mg/Al-O) decreasing linearly 

with the increase in x, as presented in Figure 7.4 (c), which agrees with 

experimental observed results [233‒235].  

Therefore, the obtained results (energetics, lattice parameters and bond lengths) 

are comparable with experimental results. This indicates the reliability of using 

the formula [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 to describe the intermediate structure 

by varying x from MgAl2O4 to γ‐Al2O3 solid solution. Where, the Al3+ cations 

and vacancy distributions in tetrahedral and octahedral interstitial sites were 

absent in the formula Mg(1-x)Al2(1+x/3)Vx/3O4  (0≤x≤1) used in previous literature 

[156, 157]. 
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7.3.3 Electronic properties of the [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 spinels 

The effect of the composition on the electronic structure of the [Mg(1-x)Alx]Tet[Al(2-

x/3)Vx/3]OhO4 spinels are discussed in this section. Figure 7.5 shows the total 

(TDOS) and partial density of states (PDOS) for the [Mg(1-x)Alx]Tet[Al(2-

x/3)Vx/3]OhO4 spinels.  

 

Figure 7.5: The calculated total density of states (TDOS) and partial density of 

states (PDOS) of the [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 spinels. 

Figure 7.5 shows the general picture of the electronic structure of the compounds. 

They are composed of three parts, the lower valence bands dominantly of O 2s 
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states.  The upper part of the valence bands are dominated by O 2p states with 

some contributions from the Al-3s 3p or Mg-3s 3p states. The conduction bands 

are composed mainly of Al-3s 3p and Mg-3s 3p states. The bonding states in 

MgO·n Al2O3 spinel are formed by the interactions among the hybridization of 

the 2s, 2p orbitals from O anion and the 3s, 3p orbitals from Mg and Al cations.  

                          
Figure 7.6: Variation of calculated energy gap as a function of x in the [Mg(1-

x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 spinels (x = 0 to 1).  

In Figure 7.6, the calculated band gaps of spinels MgAl2O4 to γ-Al2O3 as a 

function of x with different compositions are displayed. The present DFT(GGA-

PBE) calculated band gap is 5.2 eV for MgAl2O4 which is smaller than the band 

gap (7.8 eV) observed from M. L. Bortz et al experimental work [218]. This 

smaller value is reasonable from first principle DFT calculation. From the total 

energy calculations [Figure 7.4 (a)] and band gaps [Figure 7.6] of [Mg(1-

x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 shows that the most stable structure MgAl2O4 (when 

x=0) spinel has the largest band gap and then the spinel γ-Al2O3 (when x=1). The 

rest of intermediate structural models have the smaller band gaps which are 

satisfactory. And therefore, the formula [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 is 

reasonable to describe the intermediate structure by varying x from MgAl2O4 to 

γ‐Al2O3 solid solution. 
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7.3.4 Ab initio MD simulations of [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 compounds  

To understand the temperature effect on the stability of intermediate 

compositional structures of MgAl2O4 and γ-Al2O3 solid solution at elevated 

temperatures the ab initio MD simulation technique was applied. The resultant 

observations of the occupations of cations Mg, Al and vacancies at the interstitial 

sites at elevated temperatures were discussed in this section.  

At first, ab initio MD simulations at temperature 1000 K for normal spinel 

MgAl2O4 (i.e., x=0) were performed. Then, equilibrated further the systems with 

full relaxation of the Mg, Al atoms increasing the temperature at 1500 K and 2000 

K. The average temperature was examined around 1995.3 K for normal spinel 

MgAl2O4 (x = 0.0). The same method was then applied for all other compositions 

of [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (x = 0.125 to 1.0) to reach the average 

temperature. From the simulations, the average temperature ranges from 1991.7-

1995.8 K were achieved for all compositions. 

During the ab initio MD simulations at 2000 K, the total valence electron energies 

of the systems increase sharply at the first 500 steps (i.e., 0.5 ps), and then level 

off slowly with time [Figure 7.7]. Full relaxation of all atoms in the system causes 

some changes in atomic rearrangement as indicated by the energy changes 

[Figure 7.7]. After about 750 steps (i.e., 0.75 ps), the systems reached thermal 

equilibrium.  
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Figure 7.7. The total-valence electrons energies of the [Mg(1-x)Alx]Tet[Al(2-

x/3)Vx/3]OhO4 (x = 0.0, 0.125, 0.25, 0.5, 0.75, 0.875, 1.0) system as a function of 

steps at 2000 K. 

From Figure 7.7, at elevated temperature, all intermediate compositional 

structures [Mg(1-x)Alx]Tet[Al2-x/3Vx/3]OhO4 (x = 0.0, 0.125, 0.25, 0.5, 0.75, 0.875, 

1.0) show average total energy ranges from -1151.3 eV to -1154.3 eV. Which 

means during ab initio MD simulation at elevated temperature, the Al cations and 

vacancies were might try to move around (i.e., even move to neighboring layers), 

but the numbers of Al cation and vacancies distributions at each layer were kept 

statistically constant [Figure 7.8 (b) and (c)].  
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Figure 7.8: Schematic picture of (a) normal spinel MgAl2O4 at 0 K and 0 P. (b) 

MgAl2O4 and (c) γ‐Al2O3 supercells after ab initio MD simulation at 2000 K. The 

orange, silvery and red balls represent Mg, Al and O atoms/ions respectively. The 

black lines represent the axis of the unit cell. 

Clearly, from Figure 7.8 (b) and (c), the Mg, Al and O ions in the atomic structure 

are positioned orderly, close to those in the solid at 0 K and 0 P [Figure 7.8 (a)]. 

But at elevated temperature, the full relaxation of all atoms in the system caused 

some changes in atomic rearrangement i.e., created some broken bonds of cation 

(Mg, Al) to anion (O). A closer examination of MgAl2O4 and γ‐Al2O3 [Figure 7.8 

(b) and (c)] shows that, there are some broken bonds of Mg-O (CN-3) and Al-O 

(CN-3, 4 and 5) at higher temperature. 

            



105 
 

             

             

        
Figure 7.9: The radial distribution function g(r) as a function of atomic distances 

r (Å) of solid [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (x = 0.0 to 1) at 2000 K. 

The g(r) provides information about interatomic distances and the coordination 

environment between the cation-cation, cation-anion and anion-anion in a 

compound structure [236]. Therefore, the radial distribution function (rdf) i.e., 

g(r) has also been calculated for all seven structures [Figure 7.9] to gain some 

more information about cation, anion coordination at higher temperature.  
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In Figure 7.9, the peak positions (different colour spectrum) indicate the distance 

of atomic pairs of Mg-Mg, Mg-Al, Mg-O, Al-Al, Al-O, and O-O. The cutoff 

distance was chosen to 5 Å, the number of histograms bins up to 200 and RDF 

range was 25.0. The width of peaks is related to disorder inside the material which 

can be structural disorder or/and atomic thermal vibration. At intermediate 

compositions, the peaks for M-O (here, M-Mg, Al) split into two components that 

can be assigned to shorter Al-O (1.6-2.2 Å) and longer Mg-O (1.7-2.3 Å) 

distances, indicating that the Al substitution leads to small local variations in the 

Mg coordination environment. During x increases, the peak intensities of Mg-Mg 

pairs generally decrease which is reasonable because of the Al3+ increases. The 

peaks corresponding to the Mg–Mg, Mg-Al and Mg–O pairs in close shell (< 3.2 

Å) barely change after x increasing (i.e., Al3+ increasing), implying that the local 

coordination environment of the transition metal mostly maintains at elevated 

temperature. Upon x=0.75 and x=0.875 all the peaks for Mg-Mg bond distances 

above 3.2 Å essentially disappear. The short Al-O pair distance is between 1.6 Å-

2.2 Å which mostly stays the same for x increasing (i.e., Al3+ increasing) in [Mg(1-

x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 structures during the elevated temperature. The 

coordination number (CN) of Mg-O and Al-O can be calculated from the integral 

of over their first peak respectively from the Figure 7.9 for all compositions. For 

x=0, i.e., spinel MgAl2O4 (when, x=0), the calculated average CN for Mg-O is 

2.5-3 at elevated temperature, which is smaller than the crystalline coordination 

of 4. This indicates that there are some broken bonds of Mg-O are created during 

such higher temperature. Same CN disorder observed for Al-O (i.e., 4.5-5) which 

is smaller than the crystalline coordination 6 indicating broken bonds. These 

presented radial distribution function analysis indicates that Mg, Al cations and 

vacancies were distributed homogeneously in computed intermediate structures 

of MgAl2O4 to γ-Al2O3 lattice framework using the formula [Mg(1-x)Alx]Tet[Al(2-

x/3)Vx/3]OhO4 even at higher temperature.  
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Finally, the mean squared displacement (MSD) of spinel MgAl2O4 and γ-Al2O3 

were also calculated to describe thermal stability.  The Open Visualization Tool 

(OVITO) was used for data visualization and post-processing analysis. and the 

MSD of every atom in the system was calculated from these trajectories. 

  

Figure 7.10: Snapshots of (a) MgAl2O4 and (b) γ-Al2O3 during MD simulations. 

Green, silver, and red spheres are Mg, Al, and O atoms respectively. Mean 

squared displacements of Mg, Al, and O atoms in (c) MgAl2O4 and (d) γ-Al2O3 

spinels. 

The structures were reached at the end of the thermal equilibration (i.e. after 250 

ps) was compared. As shown in figure 7.10 (c) for T = 2000 K, the MSD increases 

with time, indicating that the atoms are migrating through the simulation cell. For 

MgAl2O4, for all atoms, the MSD increase slowly with time until 150 ps. After 

that time all atoms are found to be stable situations. But for γ-Al2O3, the MSD 
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increases linearly for all atoms with time. This increasing is happening because 

inside γ-Al2O3 structures there are some vacancies which causes the migration of 

Al(Tet), Al(Oh) and O atoms at higher temperature. Therefore, from the MSD 

analysis there is some diffusion was also happening.  

7.4 Conclusions 

In this work, the Al2O3 rich spinels in the MgAl2O4 to γ‐Al2O3 solid solution was 

described with molecular formula [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (here, x=0 to 

1). The first- principles DFT calculations verified that Mg and substitute Al atoms 

occupy the tetrahedral sites while the cation vacancies tend to reside on 

octahedral sites in the intermediate compositional structural models of MgAl2O4 

to γ‐Al2O3 solid solution spinel. Moreover, the vacancies prefer to situate around 

outer layer rather than the centre of the bulk unit cell and position of substituted 

Al3+ ions for Mg2+ ions in tetrahedral sites prefer to situate near the vacancies. 

Restricted by these rules of cations Mg2+, Al3+ and vacancies in tetrahedral and 

octahedral sites, with reasonable formula [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 

(x = 0.0, 0.125, 0.25, 0.5, 0.75, 0.875, 1.0) seven redefined supercells were built 

efficiently. A series of first principle DFT calculations have been performed to 

investigate the composition dependence of structure and properties in 

intermediate compositions of MgAl2O4 to γ‐Al2O3 solid solution. The calculated 

results demonstrated that the lattice parameter decreased with the increase of x in 

the composition of MgAl2O4 to γ‐Al2O3 solid solution spinel. From the electronic 

structure calculations, the bonding states in alumina-rich spinel were formed by 

the interaction among the hybridization of 2s, 2p orbitals from O anion and 3s, 

3p states of both Mg and Al cations. The conduction bands (CB), which mainly 

originated from 3s, 3p states of both Mg and Al atoms, showed a similar profile 

in TDOS of these models, while the valence bands (VB) presented a downward 

shift to low energy with the increasing of x.  
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Ab initio MD simulation also applied to see the temperature effect on the Mg, Al 

cation and vacancy distribution in the [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 solid 

solution spinels (x =0 to 1) at high temperature. After full relaxations at elevated 

temperature the radial distribution function g(r) analysis shows that Mg, Al 

cations and vacancies distributed homogeneously in present computed seven 

redefined supercell models. The cation (i.e., Mg and Al atoms) and anion (i.e., O 

atoms) migration in spinel MgAl2O4 and γ‐Al2O3 were also discussed by the mean 

squared displacement (MSD) analysis. The outcome of MD simulation indicates 

regular, periodic solid solution homogeneously even at higher temperature.  

The overall theoretical research presented in this work offers a deep insight into 

the relationship among composition, structure and electronic properties of the 

MgAl2O4 to γ‐Al2O3 solid solution spinels using the formula [Mg(1-x)Alx]Tet[Al(2-

x/3)Vx/3]OhO4. This present understanding offer guidance for the rational 

compositional design of not only for MgAl2O4 to γ‐Al2O3 composition, but also 

other dependent spinel-type disordered solid solution structures with desirable 

properties. 
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Chapter Eight 

Structural chemistry and electronic properties of 

MgO and γ-Al2O3 surfaces 

8.1 Introduction 

The metastable phase γ-Al2O3 have been intensively studied in recent years and 

is regarded as one of most prominent materials in various industrial applications 

[10-13, 120, 121]. Most of these applications depend on the nature of specific γ-

Al2O3 surfaces and their properties. Therefore, knowledge about the surface 

structure is crucial for many related applications. 

Revisiting the existing structural models of γ-Al2O3 in the literature [28, 105, 107, 

114, 119-147] the present study (Chapter Six) proposed that spinel γ-Al2O3 in the 

hexagonal lattice with Al vacancies at the octahedral sites is a preferred model. 

Figure 8.1 (a) shows the hexagonal γ-Al2O3 lattice structure along its (0001) 

orientation. The oxygen sublattices has the (ABCABC….) stacking series [Figure 

8.1 (b)]. The Al ions occupy the interstitial sites of the neighbouring O layers in 

two different ways and thus, there are two types of Al layers [Figure 8.1 (a)]. At 

the Al1 layer, which is below the O1 layer, the Al ions occupy two thirds of the 

octahedral sites. The Al2 layer below the O2 layer [Figure 8.1 (a)] is composed 

of three sublayers: a sublayer of octahedrally coordinated Al being sandwiched 

by two tetragonally coordinated Al sublayers [Figure 8.1 (a)]. Such rich Al/O 

arrangements in the γ-Al2O3 phase shall have impacts on the catalyst and catalytic 

support activities in experiments as well as surface related applications. 
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Figure 8.1: Schematic structure of (a) hexagonal γ-Al2O3 along its (0001) 

orientation and (b) the ABCABC stacking series. Al[Tet] and Al[Oh] bonded 

with four and six O anions, respectively. The green, silver and dark blue spheres 

represent the Al(Tet), Al(Oh) and O atom/ion respectively. The orange lines 

represent the axis of the unit cell. The labels Al1(Oh), Al2, O1 and O2 represent 

the Al sublayers and O layers in the structure, respectively. 

In this chapter the first-principles DFT method was applied within GGA-PBE 

approximation [192] to investigate the stability of hexagonal γ-Al2O3 along 

(0001) polar and defective non-polar surfaces with possible Al/O terminations.  

First, the MgO (001) surfaces of different thickness with their stability were 

investigated as tests. The first-principles DFT calculations were performed with 

relaxation of atomic coordinates with the settings based on the convergence test 

of the corresponding surface unit cell. The MgO (111) surface contains either Mg 

or O atoms in each atomic layer at the surface known as polar surface. Such polar 

surfaces are not stable for large crystal sizes [240]. Then, MgO (111) polar and 

defective-polar surfaces were discussed with Mg/O termination to validate the 

method. The reason of using MgO surfaces in the present work was that MgO has 

the simple rocksalt-type structure and has been used as a model system in the 

study of surfaces for several decades [169, 237-239].  
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The theoretical simulations based on first-principles DFT in the present work will 

provide a potential possibility to give a new aspect to surface structures of γ-

Al2O3. The stability and electronic structures of MgO and γ-Al2O3 surfaces were 

analysed in detail in this chapter. 

8.2 Methods 

8.2.1 Preparing MgO (001) and (111) Surfaces: 

To calculate the energies of the MgO surfaces using quantum mechanics-based 

methods, appropriate supercells need to be constructed which are always 

stoichiometric and periodic in three dimensions. These cells include two surfaces, 

separated by a slab of vacuum which is thick enough to render the interaction 

between the surfaces negligible. 

For the MgO (001) surfaces 1×1 fcc (conventional) bulk unit cell was used based 

on its bulk structure with a lattice parameter, a=4.22 Å from the first-principles 

DFT(GGA-PBE) calculation as shown in chapter five [Figure 8.2 (a)]. A MgO 

(001) surface model-1 [Figure 8.2 (b)] was built which has a length of c-axis over 

19.23 Å (3 atomic layers slab and 15 Å vacuum), each layer has 2 Mg atoms and 

2 O atoms. For model-2, -3 and -4 [Figure 8.2 (c), (d) and (e)], the 3 atomic layers 

supercell slab were kept but increased the vacuum thickness in c-direction to 18, 

20 and 22 Å respectively to test the influence of vacuum thickness on the 

calculations. For model -5, -6 and -7, then 6, 8 and 10 atomic layers slab were 

used respectively with 22 Å vacuum thickness [Figure 8.2 (f), (g) and (h)]. These 

different surface models will help to get insight into convergence of the MgO 

slab. 
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Figure 8.2: Configuration of (001) MgO surfaces. Subfigure (a) 1×1 fcc 

(conventional) bulk unit cell. MgO (001) surfaces of 3 atomic layers slab where 

(b) model-1: 15 Å vacuum, (c) model-2: 18 Å vacuum, (d) model-3: 20 Å vacuum 

and (e) model-4: 22 Å vacuum, thickness respectively. For (f) model-5: 6 atomic 

layers slab, (g) model-6: 8 atomic layers slab and (h) model-7: 10 atomic layers 

slab, respectively with 22 Å vacuum thickness. Orange and red balls represent 

Mg and O atoms, respectively.  

The polar MgO (111) surface is shown in Figure 8.3 (a). The stacking order along 

the <111> axis is ...AcBaCb..., whereby A, B, C represent Mg atoms and a, b, c 

represent O atoms. Therefore, the MgO (111) atomic layers consist entirely of 

either Mg or O atoms and are alternating as ...MgOMgOMgO... [Figure 8.3 (a) 
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and (b)]. To investigate feasible (111) defective surfaces, first 2×2×4 supercell 

[Figure 8.3 (b)] was built which has length of c-axis over 29.362 Å based on 

1×1×1 hexagonal unit cell [Figure 8.3 (a)]. Then from 2×2×4 supercell, removed 

¾ of atoms from bulk structure and created a polar (111) surface slab contains 6 

atomic layers and 22.022 Å vacuum (i.e., 3/4 of the length of the c-axis) [Figure 

8.3 (c)]. Here the polar (111) surface slab has two fully occupied surfaces, one 

surface contains only 4-Mg atoms and the other only 4-O atoms. Half the Mg 

atoms from the Mg top layer are moved to the other side of the slab and added in 

the empty Mg layer on top of the O surface layer, as shown in Figure 8.3 (d). This 

MgO (111) surface was referred as to MgO (111)-Mg terminated defective 

surface. Both surfaces in the calculation cell are now equivalent and partially Mg-

terminated. For MgO (111)-O terminated defective surface can be constructed 

analogously. Half the O atoms from the O top layer are moved to the other side 

of the slab and added in the empty O layer on top of the Mg surface layer, as 

shown in Figure 8.3 (e). The defective (111) surfaces were created by followed 

from C. Fang et al work [240]. 

                

Figure 8.3: Configuration of (111) MgO surfaces. Subfigure (a) 1×1×1 hexagonal 

unit cell, (b) 2×2×4 supercell, (c) polar (111) surface slab contains atoms 1/4 of 
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the slab and a vacuum ¾ of slab along c-direction. The subfigures (d) MgO (111)-

Mg and (e) MgO (111)-O terminated defective surfaces. 

8.2.2 Preparing hexagonal γ-Al2O3 (0001) Surfaces: 

Based on the hexagonal γ-Al2O3 cell with homogeneously distributed Al(Oh) 

vacancies from Chapter Six, first a 2×2×3 bulk supercell [Figure 8.4 (a)] was built 

which has length of c-axis being 40.818 Å. Then from 2×2×3 bulk supercell 2/3 

of atoms were removed and created a polar (001) surface contains 12 atomic 

layers slab (160 atoms) and a vacuum of 2/3 (27.212 Å) of the length of the c-

axis [Figure 8.4 (b)]. In Figure 8.4 (b), the polar hexagonal γ-Al2O3 (0001) surface 

slab has 4 different fully occupied surfaces, (i) one surface contains only 12 Al 

atoms in pure octahedral sites named Al1(Oh) terminated surface, (ii) one 

contains 8 Al atoms in tetrahedral sites and 4 Al atoms in octahedral sites named 

Al2(Oh_Tet) terminated surface, (iii) one contains 16 O atoms on top of Al1(Oh) 

layer [i.e., on bottom of Al2(Oh_Tet) layer] named O1 terminated surface and 

(iv) the other contains 16 O atoms on top of Al2(Oh_tet) layer [i.e., on bottom of 

Al1(Oh) layer] named O2 terminated surface. Therefore, several defective 

surfaces are possible with different surface termination layers. 

To create the defective surfaces, from the Al1(Oh) top layer surface of polar 

surface slab in Figure 8.4 (b), half of the Al1(Oh) atoms are moved to the other 

side of the slab i.e., added in the empty Al1(Oh) layer on top of the O2 surface 

layer in two different ways, as shown in Figure 8.4 (c) and (d). These surfaces 

were referred as 1Al1(Oh)_surface [Figure 8.4 (c)] and 2Al1(Oh)_surface [Figure 

8.4 (d)]. Both surfaces in the calculation cell are now equivalent and partially 

Al1(Oh)-terminated.  
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Figure 8.4: Side view of hexagonal γ-Al2O3 along (0001) surfaces. Subfigures: 

(a) 2×2×3 hexagonal bulk supercell, (b) polar surface slab contains 1/3 length of 

c-axis filled with the atoms and 2/3 of vacuum, (c) 1Al1(Oh) defective surface, 

(d) 2Al1(Oh) defective surface, (e) and (f) Three-dimensional schematic showing 
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the nanopatterning based on the domain model 1Al1(Oh) and 2Al1(Oh) defective 

surfaces respectively. 

To create the Al2(Oh_Tet) defective surfaces, the surface slab named 

Al2(Oh_Tet) polar surface slab [Figure 8.5 (a)] was used. 4 Al(Tet1) atoms from 

the top layer of Al2(Oh_tet) polar surface slab are moved to the other side on top 

of O1 layer of the slab and named Al2(Tet1) defective surface [Figure 8.5 (b)]. 

For the next defective surface, 4 Al(Tet2) atoms from the top layer of Al2(Oh_tet)  

polar surface slab are moved to the other side on top of O1 layer of the slab and 

named Al2(Tet2) defective surface [Figure 8.5 (c)]. To create Al2(Oh) defective 

surface, 4 Al(Oh) atoms from the top layer of Al2(Oh_tet) polar surface slab are 

moved to the other side on top of O1 layer of the slab [Figure 8.5 (d)]. The 

Al2(Oh_Tet) defective surface was created by moving half of Al(Oh) and Al(Tet) 

atoms from the top layer of Al2(Oh_tet) polar surface the other side on top of O1 

layer of the slab [Figure 8.5 (e)] 
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Figure 8.5: Configuration of side view of (a) polar surface slab used to prepare 

Al2(Oh_Tet) defective surfaces, (b) Al2(Tet1) defective surface, (c) Al2(Tet2) 

defective surface, (d) Al2(Oh) defective surface and (e) Al2(Oh_Tet) defective 

surface.  

The surface slabs named O1 and O2 polar surface slab [Figure 8.6 (a) and (d)] 

were used to create the O1 and O2 defective surfaces respectively. Half of the O 

1 and O2 atoms (i.e., 8 atoms) moved to the other side of the top layers in two 

different ways for each surface [Figure 8.6 (a)-(f)]. These defective surfaces are 

named as 1O1 defective surface [Figure 8.6 (b)], 2O1 defective surface [Figure 

8.6 (c)], 1O2 defective surface [Figure 8.6 (e)]and 2O2 defective surface [Figure 

8.6 (f)]. 
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Figure 8.6: Configuration of side view of (a) polar surface slab used to prepare 

O1 defective surfaces, (b) 1O1 defective surface, (c) 2O1 defective surface, (d) 

polar surface slab used to prepare O2 defective surfaces (e) 1O2 defective surface 

and (f) 2O2 defective surface. 

 



120 
 

8.2.3 Computational details: 

All calculations have been performed using the first-principles DFT within the 

GGA-PBE approximations [192]. The cut-off energies of the wave functions and 

the augmentation functions were set to be Encut = 400.00 eV and Enaug = 650.00 

eV, respectively. The electronic wave functions were sampled on 20×20×1, 

16×16×1, and 8×8×1 k-meshes in the irreducible Brillouin zone (BZ) for MgO 

(001) and (111) surfaces and hexagonal γ-Al2O3 along (0001) surfaces 

respectively using the Monkhorst and Pack method [200] in correspondence with 

that of the bulk. Different k-meshes for supercell slab, as well as cut-off energies 

and augmentation waves were tested. The tests of k-mesh and cut-off energies 

showed good convergences (within 1meV/atom). The atomic coordinates of the 

surface models have been fully relaxed in the DFT total energy calculations. 

8.2.4 Calculate surface energies and surface relaxation energies: 

The surface energies for MgO (001) and (111) were calculated for the relaxed 

surface structures. Using the standard method [241], the surface energy 𝛾𝑠𝑢𝑟𝑓 was 

calculated from the following formula, 

                    𝛾𝑠𝑢𝑟𝑓 =
1

𝐴
lim

𝑁→∞

1

2
(𝐸𝑠𝑙𝑎𝑏

𝑁 − 𝑁𝐸𝑏𝑢𝑙𝑘)         …………………..       (8.1) 

Where, A is the slab area, 𝐸𝑠𝑙𝑎𝑏
𝑁  is the total energy of the 𝑁-atom relaxed slab and 

𝐸𝑏𝑢𝑙𝑘 is the bulk total energy. Here the limit is approximated with the Nth term. 

The surface energy is normally used to predict the stability of the surface. The 

larger the value is, the less stable is the surface. 

The surface relaxation energy 𝐸𝑟𝑒𝑙𝑎𝑥 per unit volume was also calculated for the 

surfaces in this work is defined according to D.-N. Zhang et al [243] by following 

relationship: 
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                  𝐸𝑟𝑒𝑙𝑎𝑥 =
1

2𝐴
(𝐸𝑢𝑛𝑟𝑒𝑙𝑎𝑥𝑒𝑑 − 𝐸𝑠𝑙𝑎𝑏)       ………………..       (8.2) 

Where 𝐸𝑢𝑛𝑟𝑒𝑙𝑎𝑥𝑒𝑑  is the energy of the unrelaxed surface without relaxation which 

is half of the related cleavage energy of the crystal. 

8.3 Results and discussions: 

8.3.1 MgO (001) and (111) surfaces: 

8.3.1.1 Energetics and local Structure: 

To determine thickness effect for simulating MgO (001) surface slab, on the 

surface energies (equation 8.1) 7 different structures of MgO (001) surfaces were 

calculated. And the thickness of a slab can be expressed in terms of a number of 

atomic layers. The effects of these variables on the surface energy were presented 

to determine the model structure. Calculations have been performed for a variety 

of different vacuum widths (15-22 Å) and slab thicknesses of 3, 6, 8 and 10 layers 

[Figure 8.7 (a) and (b)].   

        

Figure 8.7: The variation of surface energy, 𝛾𝑠𝑢𝑟𝑓 of MgO (001) surfaces as a 

function of (a) vacuum thickness and (b) slab thickness. 

From Figure 8.7 (a) and (b), the surface energy for different MgO (001) slabs 

converged rapidly to a certain value with increasing the vacuum and slab 

thickness. From Table 8.1, the surface energy of MgO (001) surface with 22 Å 

vacuum and 6 layers atomic thickness is 1.449 Jm-2 which 4% larger than D.-N. 
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Zhang et al DFT work (1.38 Jm-2) [243] where they used 15 Å vacuum and 13 

atomic layers of thickness. From Figure 8.7 and following Table 8.1, the surface 

energies for vacuum thickness of 22 Å with 6, 8 and 10 atomic layers of slabs are 

identical. Therefore, for MgO (111) surfaces slabs 6 atomic layers and 22.02 Å 

vacuum thickness were used for DFT calculation.  

Table 8.1: Convergence of the surface relaxation energy for MgO (001) slabs 

with respect to the vacuum and slab thickness. 

MgO (001) 

surfaces 

Vacuum thickness 

(Å) 

Slab (N, number 

of atomic layers) 

Surface energy 

(Jm-2) 

Surface relaxation 

energy (Jm-2) 

Model-1 15 3 1.529 0.051 

Model-2 18 3 1.478 0.048 

Model-3 20 3 1.478 0.048 

Model-4 22 3 1.478 0.048 

Model-5 22 6 1.449 0.045 

Model-6 22 8 1.449 0.045 

Model-7 22 10 1.449 0.045 

Experiment [242]   1.12  

Other 

DFT(FPLAPW1) 

-GGA [243] 

15 13 1.38 0.046 

1full potential linearized augmented plane wave (FPLAPW) method 

 

The first-principles DFT(GGA-PBE) calculated results of MgO (001) and (111) 

surface models are summarized in Table 8.2. 

Table 8.2: Calculated results of MgO (001), polar (111), defective (111)-Mg and 

defective (111)-O terminated surfaces. 

MgO surfaces Mg-O atomic distances (Å) in top 

surface and subsurface layer 

Surface energy 

(Jm-2) 

Surface relaxation 

energy (Jm-2) 

Present work 

(001)                                - 1.449 0.045 

Polar (111) unstable unstable     - 

defective (111)-Mg 

Figure 7.3 (d) 

Mg-O:1.896 Å, 1.858 Å 2.364 0.038 

defective (111)-O 

Figure 7.3 (d) 

O-Mg: 1.895 Å, 1.878 Å 2.360 0.036 

Other 

DFT(FPLAPW1) 

-GGA [243] 

   

(001)                            - 1.38 0.046 

(111)-Mg                            - 2.04 0.033 

(111)-O                            - 3.39 0.040 
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From Table 8.2, the MgO (001) is the most stable one with the lowest surface 

energy of 1.449 Jm-2. The surface energy of the MgO (001) is close to D.-N. 

Zhang et al DFT work [243]. The MgO (111) polar surface found to be very 

unstable. But for MgO (111) surfaces, (111)-O terminated defective surface have 

slightly less energies compare to (111)-Mg terminated defective surface [Table 

8.2]. Therefore MgO (111)-O defective surface shows more stable than MgO 

(111)-Mg defective surface. For MgO (111)-surfaces, these results are quite 

different from the early theoretical results (from DFT) by D.-N. Zhang et al [243]. 

They found that the MgO (111)-Mg surface is the most stable with a surface 

energy as low as 2.04 Jm-2. Therefore, the defective (111)-Mg and MgO (111)-O 

surfaces with half occupied Mg or O surface layer [Figure 8.3 (d) and (e)] were 

used in the present work affects the surface stability. However, for the surface 

relaxation energy, MgO (001) has the larger energy than surfaces. This is largely 

since MgO (001) has the highest number of adjacent atoms in its topmost layer 

[Figure 8.2 (b-h)], where the MgO (111)-Mg and (111)-O both defective surfaces 

have the least adjacent atoms in the outmost layer [Figure 8.3 (d) and (e)]. 

The structural optimizations for MgO (111)-Mg and MgO (111)-O surfaces 

showed strong relaxation, occurring mainly along the direction perpendicular to 

the surface [Figure 8.8]. After fully relaxations of the optimized structure, from 

MgO (111)-Mg surface, the top Mg atom moves inward from the vacuum about 

0.24 Å from the top layer and toward (i.e., upward) the vacuum 0.275 Å from the 

bottom layer [Figure 8.8 (a)]. These different types of moving distances of Mg 

atoms cause more interactions between the cation and anion, therefore might 

cause larger surface energy and make the MgO (111)-Mg terminated defective 

surface less stable. 
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Figure 8.8: The side view of the MgO (a) (111)-Mg and (b) (111)-O defective 

surfaces respectively before and after relaxations. Color legends: orange for Mg 

and red for O, black line for unit cell. 

On the other hand, after relaxations, the top O atoms from MgO (111)-O surface 

moves upward 0.23 Å from surface layer and toward (i.e., upward) the vacuum 

0.10 Å from the bottom layer [Figure 8.8 (b)]. The lower values of atomic 

movements distances cause less interactions between atoms which makes the 

MgO (111)-O terminated defective surface more stable. The obtained calculation 

results in this section show reasonable and good indication of the method to build 

the defective surfaces. For MgO (111) surfaces only 6 atomic layers were used 

which is smaller thickness, but the obtained information might be useful to 

understand the formation and stability of nanocrystalline facets. 

8.3.1.2 Electronic structure of MgO (111) surfaces 

The electronic structure within the GGA-PBE approximation was calculated for 

both MgO (111)-Mg and (111)-O defective surfaces.  The calculated total density 

of states (TDOS) and partial density of states (PDOS) for both surfaces are shown 

in Figure 8.9. 
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Figure 8.9: The total (TDOS) and partial (PDOS) density of states for MgO (a) 

(111)-Mg defective and (b) (111)-O defective surfaces.  

From the Figure 8.9, the energy gap between UVB and conduction band is within 

0.8-1.1 eV by DFT-GGA(PBE) when the fermi energy (EF) is set to be 0 for both 

MgO (111) defective surfaces. This lower bandgap is mainly due to the states at 

the top of the valence band and conduction band [Figure 8.9 (a) and (b)]. The 

calculated energy gap of MgO (111)-O defective surface is 1.1 eV which is 

slightly larger than the MgO (111)-Mg defective surface (0.8 eV). In MgO (111)-

Mg defective surface [Figure 8.9 (a)], the upper valence band region is mainly 

from O 2p states and there is also some contribution from Mg 2s and Mg 2p states. 

But in lower valence band which are mostly causes from the O 2s states, the 

contribution from Mg 2s and Mg 2p states are absent. The main reasons of having 

smaller energy gap in the surface structure is increasing the conduction band 

produced from Mg 2s and Mg 2p states towards fermi region which are larger 

amount in MgO (111)-Mg defective surface. The inward and upward movement 

of Mg atoms upon relaxation, to decrease the surface charge, appears to be linked 

to this phenomenon. 
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8.3.2 Hexagonal γ-Al2O3 (0001) surfaces: 

8.3.2.1 Energetics and local structure: 

The first-principles’ structural optimizations were performed for 10 different 

hexagonal γ-Al2O3 (0001) surfaces. Based on calculations, the related surface 

energies were obtained by following equation 8.1. 

The calculated surface energies, as well as details about chemical bonding were 

summarized in Table 8.3. 

Table 8.3: Calculated surface energies of one polar smooth and 10 different 

hexagonal γ-Al2O3 along (0001) defective surfaces with 160 atoms slab size. 

Hexagonal γ-Al2O3 along  

(0001) Surfaces 

Al-O atomic distances (Å) in top surface and 

subsurface layer 

Surface energies 

(Jm-2) 

Polar  Al(Tet)-O: 1.74-1.85 

Al(Oh)-O: 1.79-2.07 

Unstable 

1Al1(Oh) defective surface Al(Tet)-O: 1.65-1.77 

Al(Oh)-O: 1.66-1.78 
1.77 

2Al1(Oh) defective surface Al(Tet)-O: 1.69-1.83 

Al(Oh)-O: 1.69-1.84 
1.52 

Al2(Tet1) defective surface Al(Tet)-O: 1.69-1.75 

Al(Oh)-O: 1.78-1.86 
1.98 

Al2(Tet2) defective surface Al(Tet)-O: 1.69-1.77 

Al(Oh)-O: 1.85-2.10 
1.31 

Al2(Oh) defective surface Al(Tet)-O: 1.71-1.75 

Al(Oh)-O: 1.78-1.95 
2.28 

Al2(Oh_Tet) defective surface Al(Tet)-O: 1.65-1.74 

Al(Oh)-O: 1.71-2.03 
1.71 

1O1 defective surface Al(Tet)-O: 1.64-1.89 

Al(Oh)-O: 1.74-1.90 
1.93 

2O1 defective surface Al(Tet)-O: 1.66-1.78 

Al(Oh)-O: 1.76-2.08 
1.69 

1O2 defective surface Al(Tet)-O: 1.66-1.83 

Al(Oh)-O: 1.73-1.99 
1.27 

2O2 defective surface Al(Tet)-O: 1.67-1.80 

Al(Oh)-O: 1.69-1.89 
1.51 

From Table 8.3, the surface energy of polar γ-Al2O3 (0001) surface is very large, 

which means the polar smooth surface is less stable. The defected surfaces with 

half-occupied Al(Oh), or Al(Oh_Tet) or O terminated surface layers were found 

to be structurally stable. These defected surfaces can be considered non-polar 

because the net dipole moment at the surface is small due to the defective surfacial 

atomic layers. The structural optimizations showed strong relaxation, occurring 
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mainly along the direction perpendicular to the surface. The calculations show 

that the hexagonal γ-Al2O3 (0001)-1O2 defective surface having lowest surface 

energy 1.27 Jm-2 is significantly more stable compared to other defective surfaces 

[Table 8.3]. The hexagonal γ-Al2O3 (0001)-Al2(Tet2) defective surface, where 

4Al2(Tet) atoms on the top of surface layer from Al2(Oh_Tet) defected 

termination layer, having 1.31 Jm-2 surface energy. This result is about 2.7% 

higher than that of the most stable hexagonal γ-Al2O3 (0001)-1O2 defective 

surface, and slightly lower than that of the other possible defected surfaces. 

Therefore, the calculations predict stability of these charged surfacial domains. 

The most stable hexagonal γ-Al2O3 (0001)-1O2 defective surface is composed of 

8 oxygen (O2) atoms on top of the Al2(Oh_Tet) layer where each oxygen atom 

coordinated with 2 Al atoms [Figure 8.10 (a)]. After relaxations, each O atom 

from the top layer moves 0.044 Å upward from surface layer. And each O atom 

from bottom layer moves toward the vacuum 0.028 Å. Al(Tet) from the top 

subsurface layer moves to about 0.20 Å upward. From the subsurface layer each 

Al(Tet) and Al(Oh) atom loses some bonds with O atoms and is coordinated by 

3 and 5 O atoms respectively.      
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Figure 8.10: The side view of hexagonal γ-Al2O3 (0001) (a) 1O2 and (b) 

Al2(Tet2) defective surfaces respectively. Atoms underneath the surfaces have 

been yellow colored for clarity. Color legends: red for O and light blue for Al. 

The hexagonal γ-Al2O3 (0001)-Al2(Tet2) surface is composed of 4 Al(Tet) atoms 

on top of the O1 layer where each Al(Tet) atom coordinated with 3 O atoms 

[Figure 8.10 (b)]. After full relaxations, in γ-Al2O3 (0001)-Al2(Tet2) surface 

structure, each Al(Tet) moves to 0.15 Å upwards from surface and O1 from the 

top subsurface layer moves toward the vacuum 0.13 Å [Figure 8.10 (b)]. From 

the subsurface O1 layer 4 O atoms are coordinated by 2 Al atoms and 8 O atoms 

are coordinated by 3 Al atoms after full relaxations. In this surface, there are more 

losing bonds observed between Al and O atoms. These different types of moving 

distances, directions and coordination number of Al and O atoms cause more 

interactions between the cation and anion which increases the surface energy and 

make the γ-Al2O3 (0001)-Al2(Tet2) defective surface less stable compared to γ-

Al2O3 (0001)-1O2 defective surface. 

There is not enough available experimental work have been done for γ-Al2O3 

surfaces, therefore the stable hexagonal γ-Al2O3 (0001)-1O2 defective surface in 

the present work was compared with well characterized α-Al2O3 (0001) [139] and 

MgAl2O4 (111) [171] surfaces from literature [Table 8.4]. 
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Table 8.4: Calculate surface energy and slab size of the hexagonal γ-Al2O3 

(0001)-1O2 defective surface and available theoretical results of α-Al2O3 (0001) 

[139] and MgAl2O4 (111)-O [171]. 

Surface structure Slab size (no. of atoms) Vacuum thickness 

(Å) 

Surface energy (Jm-2)  

hexagonal γ-Al2O3 (0001)-

1O2 defective surface 

160 27.2 1.27 

α-Al2O3 (0001) [139] 60 13.1 1.54 

γ-Al2O3 (111)a *[139] 40    - 0.95 

γ-Al2O3 (111)b *[139] 40    - 1.85 

MgAl2O4 (111)-O [171]   -    - 3.06 

*cleaving through the V1Oh-Al(3)Td plane yields (111)a and while the V2Oh-Al(4)Oh plane is denoted 

(111)b. 

From Table 8.4, the surface energy of the hexagonal γ-Al2O3 (0001)-1O2 

defective structure from the present work is smaller than MgAl2O4 (111)-O 

surface from C. Fang et al work [171]. But this difference is reasonable because 

of two different spinels (i.e., γ-Al2O3 and MgAl2O4) surfaces are compared. In 

their calculation they found that stable MgAl2O4 (111)-O surface is composed of 

seven oxygen atoms on top of a Mg layer and surface reconstruction occurred 

[171]. The cation Al(Oh) vacancies and surfacial O atoms in the structure of the 

hexagonal γ-Al2O3 (0001)-1O2 defective surface from this work could occur this 

surface energy differences compared to MgAl2O4 (111)-O surface from C. Fang 

et al work [171]. The surface energy of the hexagonal γ-Al2O3 (0001)-1O2 

defective structure from this work is also smaller compared to the Al-terminated 

α-Al2O3 (0001) surface from H. P. Pinto et al work [139]. H. P. Pinto et al [139] 

also calculated two types of γ-Al2O3 (111) surfaces, where they found their γ-

Al2O3 (111) with cleaving through the V1Oh-Al(3)Td [i.e., one octahedral vacancy 

and 3Al(Tet)] plane yields the lowest surface energy 0.95 Jm-2 [139]. But in their 

calculations, they used very small supercell slab (40 atoms). But in the present 

work, larger and defective supercell slab of γ-Al2O3 (160 atoms slab) were used. 
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8.3.2.2 Electronic structure for surfacial atoms/ions: 

The total and partial density of states (DOS) for the most stable hexagonal γ-

Al2O3 (0001)-1O2 defective surface has been calculated within GGA-PBE 

approximation [Figure 8.11]. The calculated bandgap between top of the valence 

band and the bottom of the conduction band is 1.8 eV by DFT-GGA(PBE). This 

value is notably smaller than that of bulk γ-Al2O3 4.2 eV using the same method 

[Figure 8.11 (a) and (b)]. This lower bandgap is mainly due to surficial states 

from conduction bands being present at gap of the surface structure as shown in 

Figures 8.11 (b).  

 

Figure 8.11: The total (TDOS) and partial (PDOS) density of states for hexagonal 

(a) bulk γ-Al2O3 and (b) the most stable hexagonal γ-Al2O3 (0001)-1O2 defective 

surface. The Fermi level is set at 0 eV. 

From the PDOS of hexagonal γ-Al2O3 (0001)-1O2 defective surface [Figure 8.11 

(b)], the conduction band is produced mainly from contribution of Al 3s and 3p 

states. The PDOS for the O can be clearly divided into two segments, the upper 

valence band contributed mostly by 2p states (0 to −8.7 eV) and the lower valence 
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band contributed mostly by 2s states (−14.5 to −21.0 eV). The O 2p and O 2s 

states are 8.7 eV and 6.5 eV wide respectively [Figure 8.11 (b)]. The valence 

bands (LVB and UVB) from O 2s and 2p states shows normal as bulk structure.  

8.4 Conclusion: 

First-principles density-functional theory has been applied to the quantitative 

elucidation of structure and energetics of MgO (111) and hexagonal γ-Al2O3 

along (0001) defective surfaces.  

First test calculations were performed to investigate the stability of MgO (001) 

surfaces according to energetics with different vacuum and slab thicknesses. 

From the test calculations, the 6 atomic layers slab with 22.0 Å vacuum thickness 

is enough to study MgO surfaces. Therefore, the MgO (111) polar and defective 

surfaces were created with 22.02 Å vacuum and 6 atomic layers thickness and 

then tested. The MgO (111)-Mg and (111)-O terminated defective surfaces were 

calculated to exhibit surface energy values of 2.364 Jm-2 and 2.360 Jm-2, 

respectively. Fully polar surface was found to be unstable. Electronic structure 

was also calculated for both MgO (111)-Mg and MgO (111)-O terminated 

defective surfaces. The electronic band gap of MgO (111)-O defective surface 

(1.1 eV) is slightly larger than MgO (111)-Mg defective surface (i.e., 0.8 eV). 

The calculated band gaps of both surfaces are smaller compared to the bulk 

structure value which is reasonable. The detailed analysis here as served as good 

indication of the accuracy and reliability of the method for developing non-polar 

defective surfaces for ionic oxides. 

Based on analysis about MgO (111) surfaces, possible hexagonal γ-Al2O3 along 

(0001) defective surfaces were created. The surfaces with half-occupied Al (Tet), 

Al(Oh) or O surface layers were found to be structurally stable. These defective 

surfaces can be considered non-polar because the net dipole moment at the 

surface is small. The first-principles DFT structural optimizations were 



132 
 

performed, and total energy calculations have been done for these surface 

systems. The calculations revealed that the γ-Al2O3 (0001)-1O2 defective and γ-

Al2O3 (0001)-Al2(Tet2) terminated defective surfaces have high stability with 

surface energy of 1.27 Jm-2 and 1.31 Jm-2, respectively. The structural 

optimizations showed strong relaxation, occurring mainly along the direction 

perpendicular to the surface. The electronic structure of most stable hexagonal γ-

Al2O3 (0001)-O2 defective surface was also described in this chapter. The surface 

states lower the value of band gap compared to bulk structure which is reasonable 

for the surface structure.  

The present work expected to provide useful information to reach a better 

understanding about the γ-Al2O3 surface structure and encourage new theoretical 

and experimental work for nanocrystalline facets. 
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Chapter Nine 

Crystal chemistry and physical properties of Y2O3 

9.1 Introduction: 

Yttrium oxide (Y2O3) or yttria has attracted attention in the scientific community 

due to its rich variety of properties and potential applications [42-47]. To have 

better applications, the knowledge of crystal structural and physical properties of 

this oxide is prerequisite. Many experimental techniques [244-246] include X-ray 

photoelectron spectroscopy, spectroscopic ellipsometry, reflection high-energy 

electron diffraction (RHEED) and X-ray diffractometer, micro-Raman 

spectrometer, and theoretical approaches include DFT within LDA, GGA and 

HSE06 approximations [247-250] have been applied to study this compound with 

emphasis on the cubic phase of Y2O3. In this work, first-principles DFT 

calculations within GGA-PBE approximation have been applied to study the 

crystal structural properties of Y2O3 phases. The stability of six different possible 

structural models of Y2O3 (i.e., cubic, monoclinic, hexagonal, and fcc) will be 

discussed in this chapter. The crystal structural properties i.e., lattice parameter, 

volume, bulk modulus etc. along with their energetics and local bonding and 

electronic properties will be describe in detail. 

9.2 Methods: 

9.2.1 Structural models of Y2O3: 

The cubic C-Y2O3 unit cell prepared followed from F. Hanic et al work [176]. 

The structure belongs to the body centred cubic (BCC) and space group Ia3. The 

unit cell contains 80 atoms [Figure 9.1(a)] with two nonequivalent yttrium cation 

sites, Y1 and Y2, occupying the 8b (1/4 1/4 1/4) and 24d (0.28261 0.0000 0.2500) 

crystallographic positions, respectively, and one type of O atom at the 48e 
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(0.09834  0.35913  0.12985) site. Y1 (Y2) is surrounded by six oxygen atoms in 

the form of a perfect (distorted) octahedron (Y1O6 and Y2O6 polyhedral units), 

and the O atom is surrounded by four Y atoms in the form of a distorted 

tetrahedron, respectively. 

The structure of the monoclinic M-Y2O3 phase was reported by I. Halevy et al 

[177]. The structure has the space group C2/m. The unit cell contains 30 atoms, 

with all the ions located at 4i (x, y, z) Wyckoff positions [Figure 9.1(b)]. Our 

calculated coordinates for Y are: (0.0323  -0.0000  0.8136), (0.6352 0.0000  

0.4883), (0.6911  0.0000  0.1371) and for O are: (0.5294  0.0000 0.6573), (0.6276  

0.5000  0.2818), (0.6745   0.5000   0.9695), (0.7067   0.5000  0.6229), (0.0000  

0.5000  -0.0000). CM: please use the same digital, typically three to four after 

point. 

A hexagonal H-Y2O3 phase was reported by K. Kuribayashi et al [178]. The space 

group of this structure is P3m1. The prepared H-Y2O3 primitive cell contains 5 

atoms [Figure 9.1(c)], and the coordinates are for Y are: (2/3 1/3 0.7503), (1/3 2/3 

0.2497) and for O are: (2/3 2/3 0.3534), (1/3  2/3  0.6466), (0.0000  0.0000  

0.0000). 

Another F-Er2S3-type monoclinic Y2O3 phase was based on the structure of Er2S3 

[251]. The space group of this structure is P21/m. The unit cell contains 20 atoms 

[Figure 9.1(d)], with four types of Y atoms, four in six coordination (0.06134 1/4 

0.1714), two in seven coordination (0.8197, 1/4, 0.4871) and two in eight 

coordination (0.4517, 1/4, 0.3162) by O atoms. 

The α-Al2O3-type hexagonal Y2O3 structure is based on the hexagonal α-Al2O3 

structural model from chapter five. The structure belongs to the space group R3c. 

The hexagonal cell contains 30 atoms [Figure 9.1(e)] with six layers of close 

packed O atoms filled by Y atoms at the octahedral interstitial sites. The Y layer 

consists of 2 sublayers, the Y1 and the Y2, the Y cations and the O anions are 



135 
 

located at the 12c (0.0000  0.0000  0.3591) and 18e (0.2924  0.0000  1/4) Wyckoff 

positions, respectively. 

The fcc-Y2O3 structure is based on the recent experiments by S. H. Wang [180]. 

It contains 10 atoms [Figure 9.1(f)]. The space group of this structure is Pn3m 

where the atomic coordinates are: Y (3/4  3/4  3/4) and O (1/2  1/2  0.000). In fcc-

Y2O3 unit cell, each Y atom coordinated by 6 O atoms and each O atoms 

coordinated by four Y atoms.  

               

Figure 9.1: Schematic structure of the Y2O3 phases. Subfigure (a) cubic (80 

atoms-Y32O48), (b) monoclinic (30 atoms-Y12O18), (c) hexagonal (5 atoms-Y2O3), 

(d) F-Er2S3-type monoclinic (20 atoms-Y8O12), (e) α-Al2O3-type hexagonal (30 

atoms-Y12O18) and (f) fcc (10 atoms-Y4O6) Y2O3 unit cell. The green sphere 

represents Y atom and red sphere represents O atom. 
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9.2.2 Computational details: 

All the calculations were performed using first-principles DFT within the GGA-

PBE functional [192]. The test calculations indicated that the plane wave 

pseudopotential with Encut= 450 eV and Enaug = 600 eV is sufficient to obtain 

convergence in both the total energy differences and the geometries for our 

investigated systems. The electronic wave functions were sampled on 8×8×8 k-

points for C-Y2O3, 4×20×4 k-points for M-Y2O3, 4×20×8 k-points for F-Er2S3-

type-Y2O3, 16×16×10 k-points for H-Y2O3, 16×16×7 k-points for α-Al2O3-type 

Y2O3 and 10×10×10 k-points for fcc-Y2O3 respectively in the irreducible 

Brillouin zone (BZ), generated by the Monkhorst-Pack algorithm [200]. 

9.3 Results and Discussions: 

9.3.1 Energetics and chemical bonding of the Y2O3 phases: 

The obtained results include optimized lattice parameters, volumes, and total 

valence electrons energies for the structural models of Y2O3 (cubic, monoclinic, 

hexagonal, and fcc) which are summarised in Table 9.1. 

Table 9.1: Calculated bulk properties of the Y2O3 phases 

Y2O3 structural 

models 

Space group Lattice Parameters 

(Å) 

Lattice Angles Volume 

(Å3/f.u.) 

Energy 

(eV/f.u.) 

Cubic  Ia3 (nr206) a=10.653 α=β=γ=90.000 75.566 -45.768 

Monoclinic  C2/m (nr12) a=14.057, 

b=3.501, 

c=8.653 

α=γ=90.000 

β=106.410 

69.798 -45.527 

Hexagonal  P3m1 (nr164) a=b=3.671,  

c=5.886 

α=β=90.000 

γ=120.000 

68.680 -45.413 

aF-Er2S3-type 

monoclinic,   

P21/m (nr11) a=9.154, b=3.403, 

 c=9.315 

α=γ=90.000 

β=106.490 

69.560 -45.317 

α-Al2O3-type 

Hexagonal  

R3c (nr161) a=b=5.692,  

c=14.893 

α=β=90.000 

γ=120.000 

69.645 -44.783 

fcc Pn3m (nr224) a=b=c=5.341 α=β=γ=90.000 76.185 -43.367 

aF-type erbium sesquisulfide [251] 
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The relations between the total energies and their volumes of the six Y2O3 phases 

are plotted in figure 9.2.  

              

Figure 9.2: Calculated total energies as a function of their volumes for the Y2O3 

Phases. 

From Table 9.1 and Figure 9.2, the H-Y2O3 phases has the smallest volume, 

where the cubic i.e., C-Y2O3 having a larger volume but lowest energy which 

means it being the most stable one. Also, the F-Y2O3 having the largest volume 

and the highest energy, indicating its meta-stability at ambient conditions. The 

calculations reproduced the experimental observations that the cubic C-Y2O3 

phase is the ground state phase. Our calculated lattice parameter of the cubic C-

Y2O3 is 10.653 Å which is close to the experimental work (i.e., 10.603 Å) 

obtained from X-ray analysis by F. Hanic et al [176]. 

The coordination number (CN) and interatomic distances between Y cations and 

O anions in all six phases of Y2O3 have also been analyzed and shown 

schematically in Figure 9.3. 
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Figure 9.3: Schematical coordination of Y by O and the related Y-O bond lengths 

(a) C-Y2O3, (b) M-Y2O3, (c) H-Y2O3, (d) F-Er2S3-type monoclinic-Y2O3, (e) α-

Al2O3-type hexagonal-Y2O3 and (f) fcc-Y2O3. The green and red spheres 

represent Y and O atom respectively. 

As shown in Figure 9.3, in the C-Y2O3 structure Y cation bonded with 6 O anions 

i.e., the coordination number (CN) of Y is 6. In the M-Y2O3 there are two different 
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CN of Y i.e., 6 and 7. The H-Y2O3 structure has CN = 7 for Y. In the F-Er2S3-

type monoclinic Y2O3 three different CNs of Y have been observed i.e., CN = 6, 

7 and 8, respectively. The α-Al2O3-type hexagonal Y2O3 and fcc Y2O3 has CN = 

6 for Y. The interatomic distances between the Y-O bonding have been 

summarized in Table 9.2. 

Table 9.2: Comparison of the interatomic distances in Y2O3 structures. 

Different phases of Y2O3 CN of Y with O Bonding distances between Y-O (Å) 

cubic  6 Y1-O: 2.294 (×6) 

Y2-O: 2.345 (×2), 2.257 (×2), 2.277 (×2) 

monoclinic  6 and 7 Y1-O: 2.201, 2.208 (×2), 2.249, 2.476 (×2) 

Y2-O: 2.237 (×2), 2.266, 2.427, 2.489 (×2),  

           2.575 

Y3-O: 2.246, 2.258 (×2), 2.301, 2.415 (×2) 

hexagonal 7 2.205(×3), 2.336, 2.579(×3) 
aF-Er2S3-type monoclinic,  6, 7 and 8 Y1-O: 2.341(×2), 2.350, 2.475, 2.549(×2),    

           2.616(×2) 

Y2-O: 2.220(×2), 2.234, 2.355, 2.375,  

           2.547(×2) 

Y3-O: 2.201, 2.249(×2), 2.326, 2.358(×2) 

α-Al2O3-type hexagonal  6 2.197(×3), 2.326(×3) 

fcc 6 2.312(×6) 

From Table 9.2, rich variety of chemical bonding have been observed between 

all six different structures of Y2O3. The cubic, α-Al2O3-type hexagonal and fcc 

structures of Y2O3 only have 6 CN of Y with O. The C-Y2O3 structure also has 

the CN 6 of Y with O but there are largest distance has been observed between 

Y-O bonding which might cause less interactions between cation to anion, and 

makes the structure more stable. The calculated bulk modulus by first principle 

DFT(GGA-PBE) for stable C-Y2O3 structural model is 154.7 GPa using birch 

Murnaghan equation of states (EOS) [Appendix: Figure A.9.1], which is close to 

the experimental value 149.5±1.0 GPa [252].  

9.3.2 Electronic Properties of cubic Y2O3 

The electronic properties of C-Y2O3 were calculated within GGA-PBE 

approximation. The density of states are shown in Figure 9.4. 
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Figure 9.4: Total (black line) and partial (colored lines) density of states of the 

ground state C-Y2O3 phase. 

From the partial density of states (pDOS) of Y and O for the C-Y2O3 phase 

[Figure 9.4] show that  the upper valence band (-3.2 to 0.0) are dominated by O 

2p state and the lower valence band (−14.2 to −16.2 eV) by O 2s states. The O 2p 

and O 2s states dominated bands have widths of  3.2 and 2.0 eV, respectively.  

The lower part of the conduction band is dominated by Y 4d states, whereas Y 5s 

and Y 5p states are all over the valence band. There is small contribution from O 

2p states have been observed in the lower part of the conduction band. The 

calculated band gap is 4.2 eV as shown in Table 9.3 and Figure 9.4.  

Table 9.3: Calculated electronic energy gap (Eg) in eV of C-Y2O3. 

Method Energy gap (Eg) in eV 

DFT(GGA-PBE) [Our work] 4.2 

Exp: Spectrophotometry [245] 5.91-6.15 

Exp: Photoelectron spectroscopy [252] 6.0 

DFT-HSE06 [249] 6.0 

DFT(GGA-PBE) [250]  4.8 

The calculated electronic energy gap (4.2 eV) from the first-principles 

DFT(GGA-PBE) calculations [is notably smaller than the experimental value 

from the photoelectron spectroscopy (6.0 eV) [252]. This discrepancy arises, 

because of the inability of DFT to describe excited states [193, 204].  
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9.4 Conclusions 

In conclusion, six different structures of Y2O3 have been studied by the first-

principles DFT calculations within the GGA-PBE approximation. The 

calculations show that C-Y2O3 is the ground state phase. The calculated chemical 

bonding of cation Y and anion O in all six phases were discussed. The electronic 

properties of C-Y2O3 have also been calculated. The calculated electronic energy 

gap is 4.2 eV which is smaller than experimental value 6.0 eV [252] but 

reasonable for the first-principles DFT calculations. 
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Chapter Ten  

Final Remarks  

10.1 Conclusions 

A systematic theoretical study about the crystal structural properties of MgO, 

Al2O3 (α-, θ-, and γ-phases) and Y2O3 phases is presented in this thesis by mean 

of the first-principles density functional theory. For the bulk properties (i.e., 

lattice parameters, volumes, chemical bonding nature, bulk modulus, etc), the 

calculated results from the GGA-PBE were reasonable with available 

experimental and theoretical results in the literature. Meanwhile, there are some 

differences between the experimental obtained results for the electronic 

properties, especially the band gaps. The experimental measurements were 

related to excitonic states, which could not be described accurately by means of 

the standard DFT functionals, e.g. the GGA approximations. Therefore, the state-

of-art GW0 corrections have been applied to predict the electronic and optical 

properties for the oxides in this thesis. 

In chapter five, the crystal structural properties include local chemical bonding, 

bulk modulus, and electronic properties of fcc MgO and hcp α-Al2O3 have been 

calculated by the first-principles DFT within both LDA and GGA-PBE 

approximations. The resulting equilibrium structural properties obtained from 

GGA-PBE are in good agreement with the experimental and theoretical results in 

the literatures. But the electronic properties in particular the band gaps calculated 

by the GGA-PBE approximation are notably smaller than the corresponding 

experimental values [82, 125]. The self-consistent GW0 corrections over DFT 

produced electronic band gaps that are in excellent agreement with the 

experimental observations [82, 125]. The optical properties include dielectric 

constants i.e., real part 𝜀1(𝜔), imaginary part 𝜀2(𝜔), refractive index n(ω), 
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extinction coefficient k(ω), absorption coefficient α(ω), conductivity σ(ω), 

reflectivity R(ω), and energy loss spectra L(ω) of the oxides were calculated by 

means of both GGA-PBA and GW0methods. The calculated optical properties of 

the oxides by GW0 correction show good agreement with the experimental 

observations in the literature as well. 

Chapter six presented the first-principles results for the monoclinic θ-Al2O3 and 

γ-Al2O3 in a hexagonal lattice. For γ-Al2O3, the several existing models were 

revisited. We explored the distribution and interactions between cation vacancies 

with possible vacancy configurations. The present study revealed that the spinel-

type γ-Al2O3 in the hexagonal lattice have Al vacancies distributing at the 

octahedral sites. There are variation of coordination numbers (CN) of O by Al, 

i.e., CN-3 and CN-4. The CN variation also effects the stability. From the self-

consistent GW0 calculations, the band gaps of θ-Al2O3 and the γ-Al2O3 are 5.7 

eV and 8.3 eV, respectively, which are close to experimental observations (5.16 

eV and 8.7 eV) [225, 125]. For α- Al2O3 there have been available experimental 

results in the literature, while such are absent for θ- and γ-Al2O3. So, for the θ- 

and γ- alumina phases the calculated optical properties were compared with α-

Al2O3. 

By investigating the optical properties of MgO, Al2O3 (α-, θ-, and γ-Al2O3) oxide 

materials by means of the GW0 calculations, the present study provides a roadway 

to extend the applications of these materials into the UV regions in many 

optoelectronic devices.  

In chapter seven the detailed analysis of composition-dependent structure and 

properties of Al2O3 rich MgAl2O4-n.Al2O3 spinels are presented. A structural 

formula, Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (x= 0 to 1) was developed with 

distribution rules of cations, vacancies and anions in this work. Restricted by 

distribution rules along with the number of substituted Al3+ ions for Mg2+ ions in 
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tetrahedral sites, seven [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 (x = 0.0, 0.125, 0.25, 0.5, 

0.75, 0.875, 1.0) supercells were built. The calculations produced a dependence 

of formation energy on chemical composition for the solid solution. The 

influences of temperature effect on the stability of [Mg(1-x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 

(x= 0 to 1) at higher temperature also observed by the ab initio molecular 

dynamics (AIMD) simulations. The resultant compositional structure of [Mg(1-

x)Alx]Tet[Al(2-x/3)Vx/3]OhO4 shows Mg, Al cations and vacancies distributed 

homogeneously at high temperatures.  

The detail analysis of structural chemistry and electronic properties of MgO and 

γ-Al2O3 surfaces are presented in chapter eight. The stability and atomic structure 

of the MgO (001), polar MgO (111) and defected MgO (111) surfaces have been 

studied. By means of the first-principles calculations, the non-polar MgO (111)-

O terminated defective surface was found to be as stable (2.360 Jm-2) 

energetically as the MgO (111)-Mg terminated defective surface (i.e., 2.364 Jm-

2). Fully polar surface was found both structurally and energetically unstable. 

Electronic structure was also calculated for both MgO (111)-Mg and MgO (111)-

O terminated defective surfaces. The results thus may serve as good indication of 

the accuracy and reliability of the method and settings for investigation of the 

surfaces of the complex oxides. The methods then were applied to study surfaces 

of hexagonal γ-Al2O3 cleaved perpendicular to its (0001) axis. We built 10 

different (non-polar) defective surfaces with Al(Tet), Al(Oh), Al(Oh_Tet), O 

termination of hexagonal γ-Al2O3 perpendicular to  its (0001) . From the local 

bonding, energetics, and electronic properties analysis of the 10 defective 

surfaces we concluded that hexagonal γ-Al2O3 {0001}-O non-polar surface has a 

high stability than those with Al terminations. The present study provides some 

insight into the γ-Al2O3 surface structures and may help new applications for this 

important oxide. 



145 
 

Chapter nine focused on the crystal chemistry and properties of Y2O3. Six 

different phases i.e., cubic C-Y2O3, monoclinic M-Y2O3, Hexagonal H-Y2O3, F-

Er2S3-type monoclinic Y2O3, α-Al2O3-type hexagonal Y2O3, and fcc-Y2O3 have 

been investigated. The calculated results concluded that the cubic C-Y2O3 

structural phase is the most stable. The electronic structure of stable cubic Y2O3 

phase has also been studied.  

10.2 Future Work 

Interfaces between liquid Mg/Al and oxides’ substrates, including MgO, 

MgAl2O4, Al2O3 (α-, and γ-Al2O3) have shown growing importance as potential 

nucleation sites during solidification of the light metals and alloys [7, 20-22]. 

Therefore, more efforts on the atomic ordering at the interfaces need to be made 

for the developments of new alloys of fine uniform microstructures and desirable 

mechanical and chemical properties. 

From the literature, an improvement in tensile properties and hardness of Mg 

metals with the addition of Y2O3 was reported [253, 254]. Another experimental 

observation revealed that the added yttrium has influences on both the 

microstructures and properties of the surfaces of α-Al2O3 particles, which is 

called yttrium effect [173]. Thus, the information about Y2O3 surfaces might be 

important to understand the yttrium effect. The influence of temperature effect on 

the stability of cubic Y2O3 phase and surfaces will also be observed in future work 

by the first-principles molecular dynamics simulations.  
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Appendix 

Table A.5.1: Calculated physical properties of hcp Mg and fcc Al crystals at 

temperature of 0 K and a pressure of 0 Pa. 

hcp Mg:                                                           Lattice constant                  Energy  (𝐸)        Bulk modulus(𝐵0) 

Space group (d_h) P63/mmc[194]                 𝑎0 (Å)        𝑐/𝑎0                    (eV/f.u.)                  (GPa) 

 

Method:  

This work, LDA                                              3.13          1.633                     -1.804                     41.3                        

LDA [i]                                                            3.16          1.610                       —                         35.0   

LDA [ii]                                                           3.16          1.590                       —                         39.0 

This work, GGA(PBE)                                    3.18          1.615                     -1.501                    35.84   

Other GGA [ii]                                                3.20          1.660                       —                         30.0 

Experiment [iii]                                               3.21          1.624                       —                         35.4  

fcc Al:                                                        Lattice constant                  Energy (𝐸)              Bulk modulus(𝐵0) 

Space group (o_h) fm3m[225]                       𝑎0(Å)                                (eV/f.u.)                       (GPa) 

 

Method 

This work, LDA                                              3.97                                   -4.018                         85.85           

LDA [iv]                                                          3.98                                     —                             84.00 

This work, GGA(PBE)                                    4.04                                   -3.756                        76.06 

GGA [v]                                                           4.05                                     —                            76.70 

Experimenta                                                     4.03 [vi]                               —                            76.20 [vii] 
aexperimental values were obtained for temperature interval 273-298 K. 
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Figure A.5.1: Calculated total energy as a function of volume for FCC MgO. 

Performing Birch-Murnaghan EOS (equation of state) fitting we estimate the bulk 

modulus for MgO is 166.294 GPa.  
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Figure A.5.2: Calculated total energy as a function of volume for conventional 

hcp α-Al2O3 unit cell. Performing Birch-Murnaghan EOS (equation of state) 

fitting we estimate the bulk modulus is 250.5 GPa.  

 

 

Figure A.5.3: Convergence of the partially self-consistence GW0 calculations for 

(a) fcc MgO and (b) hcp α-Al2O3.  

        

Figure A.6.1: The convergence of total energy with respect to the K-POINTS 

sampling for (a) θ-Al2O3 and (b) spinel hexagonal γ-Al2O3. From the Figure, 

-230

-225

-220

-215

-210

200 250 300 350

E
n
er

g
y
 (

eV
)

Volume, Å3



168 
 

12×12×8 grid with 350 k-points for θ-Al2O3 and 8×8×6 grid with 114 k-points 

for spinel hexagonal γ-Al2O3 is sufficient to obtain convergence in both the total 

energy differences and the geometries for our investigated systems. 

                        
Figure A.6.2: Calculated total energy as a function of volume for conventional 

monoclinic θ-Al2O3 unit cell. Performing Birch-Murnaghan EOS (equation of 

state) fitting we estimate the bulk modulus is 185.5 GPa.  

                
Figure A.6.3: Schematic structure of Model 1, Primitive (rhombohedral) γ-Al2O3 

unit cell constructed from fcc spinel MgAl2O4. 

                              
Figure A.6.4: Schematic structure of Model 2, conventional fcc γ-Al2O3 supercell 

constructed from fcc spinel MgAl2O4. 
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Figure A.6.5: Schematic structure of (a) Model 3, hexagonal γ-Al2O3 unit cell and 

(b) Model-4, hexagonal γ-Al2O3 supercell constructed from fcc spinel MgAl2O4. 

                            
Figure A.6.6: Calculated total energy as a function of volume for conventional 

monoclinic γ-Al2O3 unit cell. Performing Birch-Murnaghan EOS (equation of 

state) fitting we estimate the bulk modulus is 209.73 GPa. 

                               
Figure A.9.1: Calculated total energy as a function of volume for conventional 

cubic Y2O3 unit cell. Performing Birch-Murnaghan EOS (equation of state) fitting 

we estimate the bulk modulus is 154.7 GPa.  
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