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Abstract 

β-coronaviruses alone have been responsible for three major global outbreaks in the 21st 

century. The current crisis has led to an urgent requirement to develop therapeutics. Even 

though a number of vaccines are available, alternative strategies targeting essential viral 

components are required as a back-up against the emergence of lethal viral variants. One such 

target is the main protease (Mpro) that plays an indispensible role in viral replication. The 

availability of over 270 Mpro X-ray structures in complex with inhibitors provides unique 

insights into ligand-protein interactions. Herein, we provide a comprehensive comparison of 

all non-redundant ligand-binding sites available for SARS-CoV2, SARS-CoV and MERS-

CoV Mpro. Extensive adaptive sampling has been used to investigate structural conservation 

of the ligand binding sites using Markov state models and compare conformational dynamics 

employing convolutional variational auto encoder-based deep learning. Our results indicate 

that not all ligand-binding sites are dynamically conserved despite high sequence and 

structural conservation across β-coronavirus homologs. This highlights the complexity in 

targeting all three Mpro enzymes with a single pan inhibitor.  
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Introduction 
Coronaviruses (CoVs) belong to a family of positive-sense, single stranded RNA viruses with 

spherical envelope and a crown-like appearance due to their distinctive spike projections.1,2 

While α or β-coronaviruses infect mammals, γ and δ-coronavirus can infect birds or 

mammals (Figure 1A).3 Currently, seven CoVs have been identified that infect humans, 

namely human coronavirus 229E (HCoV-229E), OC43 (HCoV-OC43), NL63 (HCoV-

NL63), Hong Kong University-1 (HCoV-HKU1), severe acute respiratory syndrome 

coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and 

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2).1,2,4–9 The first four are 

responsible for 5-30% of the common cold,10 while the latter three cause acute lung injury, 

acute respiratory distress syndrome, septic shock, and multi-organ failure with a high case 

fatality ratio.2,11 β-coronaviruses alone have been responsible for three major global outbreaks 

in the 21st century:  SARS in 2002, MERS in 2013 and COVID-19 in 2019, with a fatality 

rate of 10%, 34% and 3-5% respectively.12  

Coronavirus have the largest genome amongst any RNA viruses, with a size ranging between 

26-32 kb.13,14 The replication cycle of CoVs is initiated by the spike protein attaching to the

host receptor, inducing fusion events that allow viral entry into the host cell.15 Once released

inside, the viral genome is expressed into a series of proteins using multiple open reading

frames (ORFs). In the SARS-CoV2 genome, 23 unannotated viral ORFs have been identified

and include upstream ORFs that are likely to have a regulatory role; several in-frame internal

ORFs within existing ORFs, resulting in N-terminally truncated products, as well as internal

out-of-frame ORFs, which generate novel polypeptides.16 Of these, two overlapping ORFs

(ORF1a and ORF1b), which makes up of 2/3rd of its genome, are translated into two large

polyproteins (pp1a and pp1ab). The remaining genome is transcribed into conserved

structural (spike, envelope, membrane and nucleocapsid) and accessory proteins that are not

essential for virus replication but have a role in pathogenesis.17

The pp1a and pp1ab are processed by two conserved viral proteases, 3-chymotrypsin-like 

cysteine protease (3CLpro or Mpro) and papain-like protease (PLpro), into 16 non-structural 

proteins (Nsp1-16), which are essential for viral replication and transcription.18 Mpro is 

encoded by Nsp5 and auto-cleaved from polyproteins to produce a mature enzyme. The Mpro 

enzyme then cleaves 11 downstream non-structural proteins important for viral replication, 
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thereby making Mpro an essential protein for the viral life cycle.19 The substrate recognition 

sequence of Mpro at most sites is x-(L/F/V)Q↓(G/A/S)-x (x = any amino acid; ↓ cleavage 

site), where the glutamine prior to cleavage site is essential.20 No human protease with similar 

cleavage specificity is known. Thus compounds that target this cleavage site on Mpro will 

have little or no impact on human cellular proteases.21 This makes Mpro an attractive drug 

target. 

 

The SARS-CoV2 Mpro structure is a homodimer, with each protomer (residues 1-306) 

composed of three domains (Figure 1B). Domain I (residues 8-101) consists of 6 β-strands (β 

1-6) and one α-helix (α-helix A), while domain II (residues 102-184) consists of 6 β-strands 

(β 7-12). The β-strands form an antiparallel β-barrel structure in each domain and uses a long 

linker loop (residues 185-200) to connect to domain III (residues 201-303), which has five α-

helices (α-helix B-F) arranged in a compact antiparallel globular cluster.22 The substrate-

binding site is present in a cleft between domains I and II and buries the C145-H41 catalytic 

dyad. During the hydrolysis reaction, C145 acts as a nucleophile, while H41 acts as a base 

catalyst. An oxyanion hole formed by the backbone amido groups of G143 and C145 

stabilizes the partial negative charge developed at the substrate cleavage bond.23,24 The 

substrate-binding site consists of five subsites (S1’, S1, S2, S3, S4). Of these, subsite S1 

defines enzyme specificity for glutamine in the substrate.22 S3 subsite is largely solvent 

exposed. It lacks a typical pocket shape, however it can be a key site where hydrophilic side 

chains can interact with the solvent.25 Moreover, in the homodimer structure of the Mpro 

enzyme, the N-finger (residues 1-7) of one protomer is squeezed between domain I and II to 

shape the substrate-specificity pocket. This shows the importance of dimerization and N-

finger orientation for substrate specificity and catalysis.26 Further structural analysis of the 

SARS-CoV2 Mpro identified that domain I and II are connected via seven residues (D92-P99) 

that contribute to the substrate-binding site.21,22 Domain III contributes to the proteolytic 

activity via dimerization of the Mpro enzyme.22 Dimerization is important because monomeric 

Mpro does not exhibit any catalytic activity.27 Since Mpro is a symmetric homodimer, two 

copies of the ligand binding sites are present, one on each protomer.  
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Figure 1: Overview of β-coronavirus 3CL Mpro. (A) A phylogenetic tree of the α (blue), β (yellow), 
γ (green) and δ (pink) coronavirus family; (B) Structure of the dimeric SARS-CoV2 Mpro enzyme 
(PDB 6LU7). The two protomers are represented in two different colors; the structural domains in 
protomer II are illustrated as cartoons; (C) Comparison of SARS-CoV2 (PDB 6LU7, cyan), SARS-
CoV (PDB 2C3S, red) and MERS-CoV (PDB 4YLU, green) crystal structures; (D) Sequence 
alignment between SARS-CoV2 and SARS-CoV highlighting the position of 12 dissimilar residues in 
yellow. The structural elements have been annotated on the sequence and (E) Spatial position of the 
dissimilar residues (yellow, SARS-CoV2; green, SARS-CoV) highlighted on the Mpro structure. 
 

A comparison of the SARS-CoV2, SARS-CoV and MERS-CoV Mpro sequences revealed that 

SARS-CoV2 is 96% similar to SARS-CoV and 51% with MERS-CoV. A structural 

superimposition of the all Mpro enzymes displayed an overall RMSD of 0.85 Å (± 0.16 Å), 

with a very high degree of structural conservation around the catalytic dyad in the substrate-

binding site, suggesting very similar substrate recognition profiles amongst these proteins 

(Figure 1C). The difference between SARS-CoV2 and SARS-CoV Mpro is 12 amino acids in 

each protomer (Figure 1D/E).  
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The past year has seen a dramatic progress in SARS-CoV2 research (covid19primer.com). 

Significant efforts have gone into the design of Mpro inhibitors that target the substrate 

binding pocket.21,22,28–30 This also includes inhibitor design via various in silico methods.31–36 

Recent progress on Mpro inhibitors have been reviewed elsewhere.37–39 Of considerable note 

is the COVID Moonshot project, which generates data via open science discovery of Mpro 

inhibitors by combining crowdsourcing, high-throughput experiments, computational 

simulations and machine learning.40 This alone has generated over 258 structures of fragment 

and lead-like molecules in complex with the Mpro protease (www.covid.postera.ai/covid). 

Other large-scale efforts using crystallographic screening of fragments and drug repurposing 

libraries have identified allosteric drug binding sites.41,42 

 

Over 270 crystal structures of SARS-CoV2 Mpro are present in the protein data bank (PDB), 

including apo and co-complexes with inhibitors (Table S1). Additional similar data is also 

available on SARS-CoV (Table S2) and MERS-CoV (Table S3) Mpro enzymes. However, to 

date, no comprehensive, consolidated, comparison of ligand binding sites and their 

complexes determined using X-ray crystallography has been reported. In this study, we map 

non-redundant ligand binding sites from all crystal structures of SARS-CoV2 Mpro available 

in the PDB. We then carry out 25 µs of adaptive molecular dynamics (MD) simulations on 

the apo Mpro structure of SARS-CoV2, SARS-COV and MERS-CoV and investigate the 

structural conservation of the ligand binding sites using Markov state models (MSM). We 

annotate each binding site with a measure of correlated evolution at the residue level. Further, 

we explore the differences in conformational dynamics of the Mpro enzymes using a deep 

learning approach, namely a variational auto encoder with convolutional filters (CVAE).43 

Our results highlight that even though with a structural overlap of <1 Å, the conformational 

dynamics of SARS-CoV2, MERS-CoV and SARS-CoV are very different. A persistence 

analysis and comparison of the structural conservation of the ligand binding sites in β-

coronavirus homologs highlight the complexity in targeting all three Mpro enzymes with a 

single pan inhibitor.  

 
Results  
 
Mapping the binding sites 
The PDB was searched for β-coronavirus Mpro entries. A total of 271 SARS-CoV2 structures 

were identified. Out of these, there are 38 structures with no ligands and were excluded from 
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any further study. The remaining 233 structures were downloaded for detailed structural 

analysis and are listed in Table S1-S6. The key interacting residues between the inhibitors 

and Mpro were mapped (Figure 2; S1). In total, 22 different binding sites were identified. 

These have been labelled A-V in Figure 2 and listed in Table 1. A detailed structural 

description of the binding site is provided in the supporting information. Site A is the 

substrate-binding or the active site. It is worth emphasizing that not all binding sites (B-V) 

are allosteric in nature. Only some ligands that bound to site Q and N showed allosteric 

inhibition.42 Many of these ligands are small fragments that bound to neither allosteric nor 

active site and even upto 100 µM did not show any antiviral activity.42 

 

Structural dynamics of the β-coronavirus Mpro enzymes 

To further understand the structural dynamics of the β-coronavirus Mpro enzymes, MSM-

based adaptive sampling molecular dynamics (MD) simulations were conducted. These 

simulations have an advantage over classical MD in exploring under sampled states without a 

predetermined bias. The sampling and analysis mainly focused on investigating the 

differences in dynamics of the Mpro enzyme ligand binding sites. SARS-CoV2 and SARS-

CoV are 96% identical, with a difference of only 24 residues out of 612. When structurally 

aligned, the root means squared deviation (RMSD) of the proteins backbone is 0.61 Å. This is 

also similar to when comparing with the MERS-CoV structure, where the sequence similarity 

is ~51% and RMSD of the structural alignment is 0.51 Å.  
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Figure 2: Ligand binding sites on SARS-CoV2. (A) An overview of the ligand binding sites 
identified from X-ray structures. While there are two copies of each binding site (one on each 
protomer), only one copy is illustrated. (A-V) 22 non-redundant ligand binding sites identified from 
various SARS-CoV2 representative structures. Interactions between the SARS-CoV2 (green) and the 
ligand (yellow) in their representative ligand binding sites. Residues within 4.0 Å of the ligand have 
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been highlighted as green sticks. The protomers are coloured in cyan and pink; the PDB entry of the 
representative structure is annotated in the bottom right corner. Binding site on only one protomer is 
illustrated for clarity 
 
 
Table 1. SARS-CoV2 Mpro ligand binding sites.  

Binding 
site 

Binding site residues Ligand ID PDB 
(representative 
structure) 

Number of 
ligands 

A T25, H41, M49, Q189, H164, A191, C145, 
N142, S144, H163, E166, H172, P168 

N3 6LU7 185 

B I78, G79, H80, S81, K88, K90 K1Y 5RFC 5 
C H80, I59, E55, L58, S81 O0S 5RE6 2 
D V186, R188, T190, A191, Q912 SFY 5RF8 1 
E F103, E178, D176, R105, V104 HV2 5RF5 4 
F R105, Y182, G183, P184, F134, P108, Q107, 

I106 
LWA 5REG 1 

G H172, G138, R4, G2, F3 L282, K137, G170, 
V171 

T5D 5RF0 1 

H P132, T198, Y196, E240, Y239, M235, N238 S7V 5RGS 4 
I P241, M235, l232, N231, N228 K1G 5RGR 1 
J A70, V73, T93, P96, W31, K97 T0S 5RE7 1 
K P96, N95, A94, D34, D33 T6J 5RFD 3 
L P96, T98, P99, K100, D155, K12, K97 S7D 5RF9 3 
M Y118, L141, S123, F8, Q127, D295, A7, D155, 

R298, Q299, M6 
JGY 5RFA 2 

N Q110, F295, V297, T292, P293, I249, P252 6SU 5REF 2 
O N27, G278, R279 JGP 5REA 1 
P L287, A285, M276, G275, N274, L271, Q273, 

Y237, L272 
QCP 7AXO 2 

Q N142, C300, S301, V297, P252, L253, Q256 RMZ 7AMJ 5 
R K100, Y101, K102, C156, D155 UHG 7ARF 6 
S D33, K102, Y101, K100, P99 RVW 7AWR 2 
T V233, Y237, K269, Q273  X4P 7KVL 1 
U Q83, N84, K88 X4V 7KVR 1 
V R4, K5, A7, V125, Y126, Q127 XY4 7LFP 1 
* The number of ligands represents unique chemical entities that bind to the particular ligand binding site. 

Table 2. SARS-CoV Mpro binding sites  

Binding 
site 

Binding site residues Ligand ID PDB Number of 
ligands* 

A T25, L27, H41, V42, T45, A46, M49, F140, L141, 
N142, G143, S144, C145, H163, H164, M165, 
E166, H172, V186, Q189, Q192  

D03 5N19 44 

F H134, P184, G183, Y182, F181, R105 MES 2V6N 1 
* The number of ligands represents unique chemical entities that bind to the particular ligand binding site. 
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Table 3. MERS-CoV Mpro binding sites 

Binding 
site 

Binding site residues Ligand ID PDB  Number of 
ligands* 

A H41, F143, L144, C145, G146, S147, C148, 
H166, Q167, M168, E169, A171, H175, Q192 

QZG 6VGZ 10 

* The number of ligands represents unique chemical entities that bind to the particular ligand binding site. 

 

The conformational drift during the course of the simulations was assessed using Cα root 

mean-squared deviation (RMSD). Conventional RMSD fitting methods fail to separate 

regions of different stability. To resolve such regions, we used a fraction (%) of the Cα atoms 

for the alignment. Beyond this fraction, there is a sharp increase in the RMSD value for the 

remainder of the Cα atoms. At 60%, the core of the Mpro could be superimposed to less than 

1.2 Å, 1 Å and 0.9 Å for SARS-CoV, SARS-CoV2 and MERS-CoV Mpro structures (Figure 

S2A). The Cα atoms above 60% cutoff predominantly belong to the dimerisation domain III, 

the linker loop and the loops in domain I and II. The antiparallel β-barrel structures show the 

least deviation (Figure S2B-D). 

 

CVAE-based Deep learning analysis 
To further resolve the differences in the collective conformational fluctuations between Mpro 

simulations, a CVAE was used (Figure S3). The CVAE is able to completely cluster the three 

different β-coronavirus Mpro types based on the local and global conformational dynamics 

(Figure 3). Here, SARS-CoV2 and SARS-CoV behave similar to each other while MERS-

CoV is very different. It must be noted that clustering using traditional features such as 

RMSF/RMSD or native contacts were unable to distinguish differences in dynamics among 

these three types of closely related β-coronavirus homologs (Figure S4), proving the 

sensitivity of the CVAE implementation. The details of CVAE analysis are described in the 

supplementary section.                                   
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Figure 3: CVAE based Deep Learning Analysis. Low dimensional latent space of CVAE learnt 
features of the high dimensional input in (A) 2D representation and in (B) 3D representation. Original 
high dimensional data is transformed into distance matrix format, which is then fed to the CVAE 
architecture. The CVAE captures the intrinsic features of the high dimensional data that are necessary 
to describe the original system behavior. This captured information is then shown into three-
dimensional format (right) and in two-dimensional format (left) following t-sne treatment. The 
centroids as detected by kmeans algrorithms are illustrated. The results show that MERS-CoV (green) 
dynamics is very different from SARS-CoV (magenta) or SARS-CoV2 (blue).              
 

Markov State Model 
The main focus for building an MSM was to investigate how the various binding sites 

identified from X-ray crystallography (Table 1-3) were linked dynamically in the network of 

metastable states and transition probabilities among them. The choice of this method was 

based on the ability of MSM methods to use large ensembles of short-timescale trajectories 

for sampling events that occur on slow timescales.44,45 The metastable states are an ensemble 

of structural conformations that interconvert quickly within the ensemble and slowly between 

them. These ensembles broadly correspond to the different basins on the free energy 

landscape (FEL). MSMs, provide a powerful method for detecting metastable states, 

calculating kinetics and free energies by integrating any number of simulations into a single 

statistical model.44–49  
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Figure 4: Markov State Network. Macrostate distributions of (A) SARS-CoV2 (B) SARS-CoV and 
(C) MERS-CoV conformations projected onto first two time-lagged independent components (ICs). 
The population of each state (π) is indicated in the figure. The state with the highest population is 
classified as the dominant state. The representative metastable structures are illustrated in Figures S5-
S7. 
 

 

We first used φ and ψ dihedral angles of the 24 residues that are dissimilar between SARS-

CoV2 and SARS-CoV (Figure 1D) as input data. However, this data was not sufficient to 
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build a converged MSM. We then included φ and ψ dihedral angles of all residues and χ1 

angle from the 24 residues that were different as input data to construct MSM. The 

dimensionality of the data was further reduced through time-independent component analysis 

(tICA) and the models built using PyEMMA software, from a set of 500 short 50 ns enhanced 

sampling MD simulations. It was possible to build converged MSM with a lag time of ≥10. 

Shorter lag times provide more structural detail but can underestimate the populations of 

important states, while simulations with longer lag times provide better population estimates 

but obscures intermediate states. The data was clustered into 100 microstates and their 

distribution on the FEL is presented in Figures S5-7. Transition pathways were then 

generated to identify metastable conformations. In total 5 metastable states were identified 

for SARS-CoV2 and 5 for SARS-CoV and 4 for MERS-CoV (Figure 4).  

 

Dynamic pocket tracking 
Since many of the ligand binding sites appears together on the Mpro surface, we investigated 

the spatiotemporal evolution of the binding pockets. Protein conformations of the metastable 

states were searched for the presence of the experimentally reported binding sites. The site 

was described as open, if it could hold a minimum of five water molecules, which was a 

coarse equivalent of a small fragment. A comparison of equivalence was then made between 

the sites identified from the simulation data and those from crystallographic experiments. A 

comprehensive list of the binding sites and their persistence across metastable states 

identified from SARS-CoV2, SARS-CoV and MERS-CoV Mpro dynamics is presented in 

Table 4. 
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Table 4: Dynamic tracking of ligand binding sites. The persistence of the ligand binding sites in 
(left) SARS-CoV2, (middle) SARS-CoV and (right) MERS-CoV metastable states after comparison 
with the representative X-ray structures. Residues in SARS-CoV that are different from SARS-CoV2 
are highlighted in parenthesis. Binding sites that are present in both protomers in the metastable state 
and in the representative X-ray structure are indicated by a ‘x’ sign; those that are absent are noted by 
a ‘-’ and those that are present in at least one protomer are denoted by ‘-x’ sign. 

 
 

Sites A-L, P, R, S and V are present in all metastable states in SARS-CoV2. Based on the 

evolutionary conservation scores, most of the pockets (except F, J, K, N, O and U) are more 

conserved than the surface residues, with the strongest evolutionary signal observed for 

pocket B, P, R and T (Figure S8). 

 

Two copies (one in each protomer) of Site M are present in state 5, only one in states 2, 3 and 

none in states 1 and 4. In the crystal structure (PDB 5RFA), the carboxylic acid side chain of 

D295 makes interactions with the hydroxyl group side chain of T111; the side chain of Q299 

makes a hydrogen bond with the backbone carbonyl oxygen atom of R4 in the N-finger; and 

the guanidinium side chain of R298 makes a hydrogen bond with the backbone carbonyl 

oxygen atom of I152. These interactions lock α-helix F in domain III to antiparallel β-barrel 

in domain II. The ligand occupying the large cavity at the interface further helps to stabilise 

the local structural elements around site M. In the absence of the ligand in the binding site 

and due to the dynamic fluctuations, the R298-I152 interaction is lost. The side chain of R298 
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is free to rotate and can adopt a conformation that can occupy the empty binding site (Figure 

5A). Furthermore, the C-terminal tail also occludes one of the binding sites in state 2, and 3.  
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Figure 5: Lost ligand binding sites on (A-F) SARS-CoV2, (G-H) SARS-CoV and (J-O) MERS-
CoV Mpro. (A) Site M; when the interaction between R298-I152 is lost, the R298 side chain becomes 
flexible and obstructs the ligand binding site. (B) Site N; the side chain of F294 exists in two 
conformations. When facing inwards, it occludes the binding site. (C) Site O; is a part of a dynamic 
loop, which is unable to maintain the structure to which the ligand binds. Conformations of the loop 
from all metastable states are illustrated. (D) Site Q; in the absence of the ligand, the C-terminal tail 
collapses in the binding site and blocks it. Conformation of the helices from the representative PDB 
(id 7AMJ, cyan) and that of state 3 (dark blue) have been highlighted.  (E) Site T; the side chains of 
Y237, K269 and Q273 (from all states) in the absence of the fragment can occupy the binding site. (F) 
Site U; the flexible side chains of Q83 and N84 (from all states) can disrupt the conformation on 
which the fragment stacks. (G) Site G; is formed at the interface when the N-finger is tucked below 
the substrate binding site A. Structural changes in loop β9-β10 destabilizes the N-finger, which results 
in its collapse on the ligand binding site. The position of the N-finger in the representative structure 
(PDB 5RF0) is coloured in cyan, the conformation of the state 4 is shaded in red. (H) Site K; the side 
chain of S94 and D33 can form a hydrogen bond, which occludes the space where the ligand binds in 
the representative structure (PDB 5RFD). (I) Site D; the longer side chain of M189 (in place of 
V186SARS-CoV2) obstructs the binding site. (J) Site E; a loss of steric repulsion between prevents this 
site to stay perpetually open; (K) Site G; the N-finger collapses on the ligand binding site as a result of 
the fluctuations in the β9-β10 loop. The position of the N-finger in the representative structure (PDB 
5RF0) is coloured in cyan, the conformations of all metastable states are shaded in green. (L) Site H; 
the longer lysyl side chain of K201 (T198SARS-CoV2) blocks the binding site. (M) Site I; the side chain 
of E244 (P241SARS-CoV2) occludes the binding site; (N) Site J; an insertion of three residues at position 
70 increases the length of the loop between β4-β5. The presence of a larger K70 side chain and the 
conformation of the loop restrict the dimensions of the binding site; (O) Site N; the side chain of E294 
is always in the closed conformation and impedes the binding site. The representative structure is 
represented in cyan and yellow spheres indicate the spatial position of where the ligand binds in the 
corresponding representative structure.  
 

 

Site N is a deep cleft between α-helix D and F and is spatially positioned adjacent to site M. 

The side chain of F294 (α-helix F) is shared between both the sites. The rotation of the 

phenyl side chain controls the opening and closure of site N. When site N is open, the phenyl 

side chain of F294 is positioned on α-helix F. In the closed state, the F294 side chain is 

positioned in the cleft. This conformation is analogous to that observed when a ligand is 

bound to site M. Site N is also conjoined with another larger cavity that runs orthogonal to it. 

When the ligand binds to this pocket (as in PDB 7AGA), the conformation of the side chain 

of F294 is similar to that observed in site M, which occludes site N. We observe all these 

conformations of F294 in our metastable states. The N site is present in both protomers in 

state 1; and in one of the two protomers in state 2, 3, 4 and 5. The orthogonal site is present in 

conjunction with site N in at least one of the protomers (Figure 5B). 
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Site O is a pseudo-ligand binding site on the loop between α-helix E and F. When bound, the 

ligand is completely solvent exposed and interacts with protein structure by making hydrogen 

bonds with the side chains of N277 and R279. These interactions stabilise the flexibility of 

this loop. In the simulated apo structure, when the ligand is absent, this loop is highly mobile 

and the side chains of N277 and R279 display enhanced flexibility (Figure 5C). This results 

in the loss of the conformation of the loop to which the ligand binds. The conformation of the 

loop, similar to that adopted in the representative structure is not observed in any metastable 

state. 

 

Site Q at the interface between the two protomers is spatially positioned between the distal 

ends of α-helices B, D and F. At the end of α-helix F is a short C-terminal tail (residues 300-

306). In the representative crystal structure (PDB 7AMJ), the tail orients away from the α-

helical dimerization domain III and is sandwiched at the interface between domains II of both 

protomers, away from where the ligand binds. This provides enough space for the ligand to 

position in binding site Q. During the SARS-CoV2 Mpro apo simulations, the C-terminal tail 

displays dynamic flexibility and can adopt multiple conformations. Besides the conformation 

observed in the representative structure, one of the conformations the loop adopts occludes 

binding site Q and would prevent any ligand binding (Figure 5D). This conformation is 

similar to that observed in PDB 6LU7 structure. Site Q is present between one interface in 

states 3, 4; completely occluded in states 1, 2 and is present at both interfaces in state 5. 

 

In the representative structure of site T (PDB 7KVL), the fragment makes hydrogen bonds 

with the hydroxyl group of Y237 (α-helix C) and the side chain of K269 (α-helix E). In the 

apo simulation, when the ligand is absent, the side chain of these residues can occupy the 

space where the fragment binds (Figure 5E). This results in the loss of this site in states 1, 2, 

and 5. However, the site is present in both protomers in state 4 and in only one protomer in 

state 3.   

 

Site U is a solvent exposed pseudo-ligand binding site that is stabilised by the hydrogen bond 

interaction between the side chains of K88 and Q83. A part of this binding site is formed by 

N84, present in the loop between β5-β6 strands. In the absence of the fragment, the residues 

from this site can adopt multiple conformations, which would be unsuitable for stacking of 

any fragment in this site (Figure 5F). The conformation of residues comparable to the 
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representative site is present in both protomers in states 1, 3; and in one protomer in 2, 4 and 

5. 

 

In SARS-CoV, sites equivalent to A-F, H-J, P, R, S and V are present in all metastable states. 

These sites are well-defined pockets and are comparable to the X-ray crystal structures of 

SARS-CoV2 (Table 4).  

 

Site G, which is formed at the interface of the two protomers is lost in all metastable states of 

SARS-CoV. During the dynamics of the apo state, the loop between β8-β9 becomes flexible. 

The mobility of the loop pushes the N-finger, tucked below the substrate binding A site to 

collapse on site G (Figure 5G). In this conformation, no ligand would be able to bind to this 

site. 

 

Binding site K is also lost in all metastable states in SARS-CoV. In this site, the hydroxyl 

group side chain of S94 is present (V94SARS-CoV2). In the absence of the ligand, the side chains 

of D33 and S94 orient towards each other, where they form a hydrogen bond. This stable 

interaction is spatially positioned on the site where the ligand binds (Figure 5H), thus 

completely obstructing the binding site.  

 

Unlike in SARS-CoV2, the equivalent site on SARS-CoV, where the ligand binds in Site M 

is absent in all metastable states. In the representative site, the side chain of R298 forms 

hydrogen bond with the backbone oxygen of I152. During the simulation, this interaction is 

lost and the side chain of R298 in α-helix F becomes flexible and can adopt multiple 

conformations. One such conformation blocks the ligand-binding pocket M. The dynamics 

observed in this pocket are similar to that observed in SARS-CoV2 simulations (Figure 5A). 

 

The dynamic behaviour of residues in sites N, O, T and U are also similar to that observed in 

SARS-CoV2 (Figure 5B/C/E/F). The formation or dissolution of site N depends upon the 

conformation of the phenyl side chain in F294. The site is present when the side chain orients 

away from the binding site and is absent when the side chain is positioned towards the 

binding site. Site N is observed in state 1, 3 and 5, while it is absent in state 2 and 4. Site O is 

a pseudo-binding site present on a highly dynamic loop. In the apo state, the N277-G278-

R279 loop is highly flexible. This permits the side chains to adopt multiple conformations. 

However, none of the conformations are structurally similar to that which binds the ligand in 
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the representative structure. The SARS-CoV structure lacks C-terminal tail (PDB 2C3S), 

hence site Q is always present in the dynamic structures. The presence of site T is depends on 

the conformation of Y237, Q273 and K269 side chains. In the absence of the fragment, the 

side chains are dynamics and can occlude the binding site. Site T is present in one protomer 

in states 1, 3, 4; and is absent in states 2 and 5. The dynamics of residues in site U, where 

R88 replaces K88, are similar to that observed in SARS-CoV2. The side chain conformation 

of residues on which the fragment stacks is observed in states 1, 2, 3, 4; and is absent in state 

5.  

 

From the list of 12 residues that are dissimilar between SARS-CoV2 and SARS-CoV (Figure 

1D) in each protomer, V35 and K88 (backbone) are present in site B. Equivalent residues in 

SARS-CoV are T35 and R88 respectively. These residues have similar sizes and therefore do 

not alter the dimensions of the binding site. However a change from V35SARS-CoV2 to T35SARS-

CoV does alter the surface charge pattern around the binding site. The side chain of K88 SARS-

CoV2 (R88SARS-CoV) contributes towards stabilizing fragment binding in site U, where it makes 

a hydrogen bond with Q83. N180SARS-CoV2 is replaced with a K180SARS-CoV at the entrance of 

binding site E. This alters the surface charge around the entrance of the binding site E 

towards a more positive charge. Both residues, in their respective proteins orient towards the 

solvent and do not interact with any other part of the protein. The backbone atoms of 

A94SARS-CoV2 (S94SARS-CoV) form the boundary of binding site J, while the side chain 

contributes to binding site K. The side chain interaction between S94 with D33 occludes the 

pocket and in turn has an effect on the conformation of the binding site. F134SARS-CoV2 is 

replaced with H134SARS-CoV in site F. A protonated histidine side chain at the ε-nitrogen atom 

can form strong interactions with the ligand in SARS-CoV. V202SARS-CoV2, positioned at the 

start of helix B and is a part of the large channel-like cavity between domain II and III. 

Ligand AT7519 (PDB 7AGA) binds in this cavity. A deep cleft branches off this channel and 

forms site N. A change from V202SARS-CoV2 to L202SARS-CoV slightly reduces the dimensions 

of this channel. The backbone A285SARS-CoV2 and the side chain of L286SARS-CoV2 form the 

boundary of the P site. A change to T285SARS-CoV and I286SARS-CoV does not alter the 

dimensions of the binding site, however these residues have been implicated in being 

involved in cooperative effects and enhancing dimerization in SARS-CoV 50. The hydroxyl 

side chain of S46SARS-CoV2 (A46SARS-CoV) orients near the edge of the substrate binding subsite 

S2. Similarly, residue 65 (N65SARS-CoV2 and S65SARS-CoV) is positioned near a cavity at the 

entrance of the antiparallel β-barrel in domain I, which is a potential binding site. However, 



 20 

we could not find any ligand that interacts with S46 or N65. Residues VSARS-CoV2/LSARS-CoV86 

and SSARS-CoV2/ASARS-CoV267 are located in the core of the enzyme and do not contribute to 

any cavities identified on SARS-CoV2 or SARS-CoV.  

 

In MERS-CoV, sites A-C, F, K-M, P, Q, S and V are present in all metastable states. Site D is 

present in both protomers in state 4 and in one protomer in state 1, 2, 3. Of particular note is 

the substitution of M189MERS-CoV2 (in place of V186SARS-CoV2) in this site. The longer side 

chain of M189 obstructs the ligand binding site in some states (Figure 5I).  

 

Site E is present in both protomers in state 2, 3 and in one protomer in state 1 and 4. In 

SARS-CoV2, the side chains of D176 and E178 form the boundary of this site. In the apo 

state, the charge repulsion between the two negatively charges side chain prevents the closure 

of this site in SARS-CoV2. However, D176SARS-CoV2 is replaced with A179MERS-CoV and 

E178SARS-CoV2 with D181MERS-CoV. In the absence of the ligand, and with no charge repulsion 

between the negatively charged side chains, the side chain of D181 obstructs the binding site 

in some metastable states (Figure 5J).  

 

Site G is present in one protomer in states 1, 2, 3 and is absent in state 4. In SARS-CoV2, the 

N-finger is tucked below site A, which provides enough space at the interface for the ligand 

to bind in site G. In the simulated apo state of MERS-CoV and similar to that observed in 

SARS-CoV2, the N-finger can also collapse and occupy the binding site resulting in its 

closure (Figure 5K).  

 

In Site I, N228SARS-CoV2, L232SARS-CoV2, M235SARS-CoV2 and P241SARS-CoV2 are replaced with 

V231MERS-CoV2, N235MERS-CoV2, L238MERS-CoV2 and E244MERS-CoV2 respectively. The longer 

carboxylic side chain in E244MERS-CoV can adopt a conformation that obstructs the binding site 

(Figure 5L). This is observed in at least one protomer in state 2, 3 and 4; while the binding 

site is clear in state 1.       

  

Site T is present in both protomers in state 2; and in one protomer in states 1, 3, 4. Here, 

Y273MERS-CoV in substituted in place of L275SARS-CoV2. Furthermore, a large indole ring in 

W236MERS-CoV replaces the smaller side chain of V233SARS-CoV2, making the binding site 

shallow than its representative structure. Taken together, the side chains of W236MERS-CoV and 
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Y273MERS-CoV act like a wedge to split and widen α-helices C and E. Therefore, site T is 

persistently more open when compared with the dynamics of SARS-CoV2 or SARS-CoV. 

 

Sites H, J, N, O, R and U are absent in all metastable states in MERS-CoV. In site H, the 

substitution of a shorter hydroxyl group in T198SARS-CoV2 to a longer lysyl side chain in 

K201MERS-CoV completely obstructs the binding site in all metastable states (Figure 5M). In 

MERS-CoV, loop β4-β5 is extended by insertion of three residues between positions 69-70. 

As a result there is a change from A70SARS-CoV2 to a lysine at this position. The longer lysyl 

side chain obstructs site J where the ligand binds (Figure 5N). F294SARS-CoV2 is substituted 

with E294MERS-CoV in site N. Unlike in SARS-CoV2 and SARS-CoV, the side chain of 

E294MERS-CoV point towards the N site cleft, which blocks site N (Figure 5O). Ligands 

interact with site S by forming a disulphide bond with C156SARS-CoV2. However, in MERS-

CoV, the cysteine residue is replaced with V159MERS-CoV, which would prevent any 

disulphide bond formation. In site U, the side chain on which the ligand stacks is absent due 

to the substitution of N84SARS-CoV2 by G87MERS-CoV2. 

 
 
Discussion 
 
Despite tremendous advances in the inhibitor design for SARS-CoV2 Mpro enzymes, our 

understanding of the role of structural dynamics of the experimentally identified ligand 

binding sites remain largely uncharacterized. Most molecular dynamics studies have focused 

only on the substrate binding site of the Mpro enzyme.51–53 Other computational studies have 

looked into identifying novel pockets and investigating allostery.54,55 However, these studies 

are limited in comparing dynamics with the vast crystallographic data available on ortho- and 

allosteric ligand binding sites across β-coronavirus homologs.  

 

In this study, we map all non-redundant ligand-binding sites reported in the PDB for β-

coronavirus Mpro enzyme homologs including SARS-CoV2, SARS-CoV and MERS-CoV. 

We perform 25 µs MSM-based adaptive sampling MD simulations to study the dynamics of 

the binding sites. It is worth noting that we simulated the apo form of the SARS-CoV2, which 

was generated by the removal of the ligand from the substrate-binding site in PDB 6LU7. 

However, this does not have any impact on our analysis as we sample all crystallographic 
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conformations. The analysis emphasizes that even though the β-coronavirus Mpro structures 

are very similar, they display remarkably different structural dynamics (Figure S9). The 

differences in dynamics are subtle and indistinguishable using conventional methods. We 

therefore employed dynamically sensitive CVAE-based machine learning approaches to 

resolve the differences between each system. MSMs were built to identify kinetically relevant 

metastable states, which were then used to study the spatiotemporal evolution of the ligand 

binding sites. The metastable states generated from the simulations were searched for the 

presence of pockets and compared individually with all other experimentally derived crystal 

structures representing non-redundant ligand binding sites.  

 

The Mpro enzymes are homodimers and each binding site is present as two copies, one on 

each protomer except for site V. The dynamical behavior of the binding sites in each 

protomer is stochastic and independent of the other (Figure S10). This is evident from the 

structural dynamics of the binding sites, which in some metastable states appear only in one 

protomer and absent in the other. Our finding is supported by previous work on Mpro enzymes 

where the dynamics of different protomers map on the different regions of conformational 

space.51 We also identify that loops connecting different structural features are the most 

flexible regions of the enzyme and contribute towards the local motions, while movement 

between the two coaxially stacked protomers contribute to the global dynamics. The presence 

or absence of binding sites in each protomer is independent of the influence of the adjacent 

protomer except for the sites at the interface. The ligands that bind at the interface work by 

stabilizing the global motions that contributes towards inhibiting mechanistic function. 

 

To assess the possibility of a broad-spectrum inhibition of Mpro enzymes, we analyzed the 

structural and dynamic conservation of the binding sites across the three β-coronavirus 

homologs. We rationalized that an inhibitor designed to target a conserved binding site would 

have relatable effects across homologs. This would be advantageous for the design of 

therapeutics in dealing with any future viral outbreaks. We analyzed the dynamics of the 

ligand binding sites by comparing the sequence and structural features between relative 

homologs.  

 

SARS-CoV2 and SARS-CoV have 96% similar sequence identity. We identify that of the 12 

residues (out of 306) that are different between SARS-CoV2 and SARS-CoV (Figure 1D) in 
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each protomer, 8 are associated with an experimentally identified ligand-binding site. The 

substitution of some of these residues have an effect on the surface charge pattern (N180SARS-

CoV2/K180SARS-CoV and T35SARS-CoV2/V35SARS-CoV), interactions (F134SARS-CoV2/H134SARS-CoV) 

dimensions (V202SARS-CoV2/L202SARS-CoV), enhancing enzymatic activity via dimerization 

(A285SARS-CoV2/T285SARS-CoV and L286SARS-CoV2/I286SARS-CoV) or completely block the space 

where the ligand binds (A94SARS-CoV2/S94SARS-CoV). One substitution (K88SARS-CoV2/R88SARS-

CoV), has no notable effect on the binding site. 2 residues (S46SARS-CoV2/A46SARS-CoV and 

N65SARS-CoV2/S65SARS-CoV) are a part of potential cavities but no ligand has been identified to 

bind to them yet. The remaining 2 residues (V86SARS-CoV2/L86SARS-CoV and S267SARS-

CoV2/A267SARS-CoV) are located in the core of the enzyme and are not solvent accessible. 

 

We then tracked the dynamic persistence of the ligand binding sites in the MSM-derived 

metastable states in the three homologs and made comparisons with the representative 

binding sites from the crystal structures. All of the identified binding sites are located on the 

surface of the Mpro. Ligand binding sites A-L, P, R, S, V (SARS-CoV2); A-F, H-J, L, P-S, V 

(SARS-CoV); and A-C, F, K-M, P, Q, S and V (MERS-CoV) are present in all metastable 

states. Site O is the only ligand binding site that is absent in all homologs. Site O is a pseudo-

binding site on a solvent exposed loop whose conformation once lost is never observed in the 

dynamics of apo Mpro.  Sites M, N, Q, T, U in SARS-CoV2; N, T, U in SARS-CoV; and D, 

E, G, I, T in MERS-CoV are present in some states and absent in others. Sites G, K, M, O 

(SARS-CoV) and H, J, N, O, R and U (MERS-CoV) are completely absent in their respective 

homologs. It is worth noting that there are multiple binding sites that lie adjacent to one 

another e.g. sites B and C; P and T; R and S. Fragments occupying these sites can be 

chemically linked to enhance effective binding (Figure S11). Furthermore, there are several 

other structural features present around the experimentally identified binding sites, which can 

be exploited to improve the design of inhibitors. For example, empty cavities are present 

adjacent to sites H, K, L, N, Q and S (Figure S12). These cavities can be used as extensions 

of existing binding sites to improve ligand design. Moreover, there are some additional 

pockets that appear in all homologs at the protomer interface in domain I, which could be 

further exploited for ligand design (Figure S13).  

 

Our detailed structural dynamics analysis highlights the importance of the dynamic 

conservation of ligand binding sites across β-coronavirus homologs. Based on these 
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observations we emphasize that ligand design should be preferred on target binding sites that 

are not only structural but also dynamically conserved across all β-coronavirus homologs. 

 
Conclusions 
 
The past 20 years has seen outbreaks caused by three highly pathogenic β-coronavirus 

namely SARS-CoV in 2002, MERS-CoV in 2013 and SARS-CoV2 in 2019.56 The social and 

economic impact of the current pandemic has been exceptional. This crisis has led to an 

urgent requirement to develop therapeutics. Even though a number of vaccines have been 

approved by the Food and Drug Administration, alternative strategies targeting essential viral 

components are required as a back-up against the emergence of lethal viral variants. One such 

target is the main protease that plays an indispensible role in viral replication.18,20 Multi-

nodal, large interdisciplinary consortiums have reported potential drug candidates.40–42 The 

availability of Mpro X-ray structures in complex with inhibitors provides unique insights into 

ligand interactions. This data in conjunction with molecular simulations can aid to further 

improve design of inhibitors including exploring the dynamic conservation of ligand binding 

sites across β-coronavirus homologs that are highly relevant to human disease. Employing 

such a strategy is essential in preparing towards any future viral outbreaks. 

 
Experimental Methods 
 
Ligand binding site identification 
The protein data bank in Europe knowledge base (PDBe-KB) was searched with the key 

word “3C-like proteinase” and selecting “Severe acute respiratory syndrome coronavirus 2 

(2019-nCoV)” as the organism. The PDB codes were noted and the structural coordinates 

downloaded. Thorough analysis was done by superimposition of the structures. A binding site 

was defined where a chemical fragment or a compound interacted with the Mpro protease 

structure derived from crystallographic experiments. The key interacting residues in the 

protein were identified within a 4.0 Å cut-off distance around the ligand. This was repeated 

until all entries were evaluated. From this list, a non-redundant representative structure for 

each binding site was identified. For example in the PDB 6LU7,22 the ligand N3 interacts 

with residues C145, H41, G189, P168, E166, H163 and H164 in the substrate binding site. 

Thus, 6LU7 was selected as the representative structure for all ligands that interacted with 
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these residues and labelled ‘site A’. Figures for representative structure and ligands were 

generated using Protein Imager 57 and OpenEye toolkits 2020.2.2 (www.eyesopen.com). 

 

A similar protocol was applied for SARS-CoV and MERS-CoV Mpro structures and non-

redundant representative structures were identified after superimposition with SARS-CoV2 

structures. PDB identifiers, structural analysis and ligand interaction data are listed in the 

supplementary section. The non-redundant representative ligand binding site data has been 

tabulated in Table 1-3.  

 

Adaptive Sampling molecular dynamics simulations 

The coordinates of the apo structure of the SARS-CoV2 (PDB 6LU7),22 SARS-CoV (PDB 

2C3S),58 and MERS-CoV (PDB 4YLU)59 protease in their dimeric form were downloaded to 

run molecular dynamics (MD) simulations. Ligands and all crystallisation agents/additives 

were removed from their respective binding sites. The protonation state of all titratable side 

chains were determined using ProteinPrepare functionality as implemented in HTMD 

framework.60,61 The charges were assigned after optimisation of the hydrogen-bonding 

network in the protonated structure.61 The catalytic cysteine residue was set to a reduced 

state. The Amber ff14SB force field was used to describe the protein.62 Each system was 

solvated using TIP3P water in a cubic box, the edge of which was set to at least 10 Å from 

the closest solute atom.63 Counter ions were added to neutralise the system. The simulation 

protocol was identical for each system. The systems were minimized and relaxed under NPT 

conditions for 50 ns at 1 atm. The temperature was increased to 300 K using a time step of 4 

fs, rigid bonds, cut off of 9.0 Å and particle mesh Ewald summations switched on for long-

range electrostatics.64 During the equilibration step, the protein’s backbone were restrained by 

a spring constant set at 1 kcal mol-1 Å-2, while the ions and solvent were free to move. The 

production simulations were run in the NVT ensemble using a Langevin thermostat with a 

damping constant of 0.1 ps and hydrogen mass repartitioning scheme to achieve a time step 

of 4 fs.65 The final production step was run as Adaptive Sampling, without any restraints, as 

multiple iterations of short parallel simulations as implemented in HTMD framework.60 Each 

system was run for 125 epochs (iterations) and each epoch consists of four parallel 

simulations of 50 ns each, equalling 25 µs of simulated time. The short simulations after each 

epoch are postprocessed based on the backbone dihedral angle metric. A rough Markov 
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model is then used to decide from which part of the configuration space to respawn the 

following simulations in the next epoch. Visualization of the simulations was done using the 

pymol-mdanalysis (https://github.com/bieniekmateusz/pymol-mdanalysis)66 and VMD 

package.67  

 

Markov state models 

Markov state models (MSMs) were constructed to provide kinetics and free energy estimates. 

The MSM was built using the PyEMMA v2.5.7 program.68 It was not possible to build an 

MSM using just the features of the 24 dissimilar residues (12 in each protomer) between 

SARS-CoV2 and SARS-CoV. Therefore, all backbone dihedral angles were selected. In 

addition, the first χ angle (χ1) from 24 dissimilar residues were also included in MSM 

building. For MERS-CoV, χ1 angles from residues at equivalent position were also selected. 

Time-lagged independent component analysis (tICA) was used to reduce the dimensionality 

of the data.69,70 It was possible to build models that were Markovian with a lag time of ≥10, 

with the lag time being selected according to the convergence of the implied timescales. The 

dimension reduction was achieved by projecting on the three slowest tICA components. The 

K-means clustering algorithm was used to obtain 100 microstates. The conformational 

clusters were grouped together based on kinetic similarity using the PCCA+ algorithm.71 The 

PCCA+ algorithm uses the eigenvectors of the MSMs to group together clusters, which are 

kinetically close, resulting in a set of macrostates. The final number of metastable 

macrostates was selected based on the implied timescale plot. The MSM were validated using 

Chapman-Kolmogorov test implemented in PyEMMA.68  

 

CVAE-based Deep learning implementation 
 

The Convolutional Variational Autoencoder or CVAE was used for analysis,43 which has 

been optimized for large scale systems on HPC platform.72 The implementation of CVAE has 

been previously shown to provide meaningful insights to diverse systems such as protein 

folding,73 enzyme dynamics,74,75 Coronavirus spike protein 76 and Coronavirus non-structured 

proteins.77 
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A CVAE consists of a variational autoencoder along with multiple convolutional layers. 

Generally, the autoencoder (AE) has an hourglass type of shape where high dimensional data 

goes into as input and the AE captures only the essential information required to represent the 

original input data. This compressed latent representation is then used to reconstruct the data 

back to the original format ensuring no loss of information during the compression phase. 

The variational approach at the latent space is included as an additional optimization 

requirement. The introduction of variational technique forces the compressed key information 

to normally distribute over the latent space. Convolutional layers are used instead of feed 

forward layers because the convolutional layers are more effective at detecting and 

captureing both the local and global patterns in the input data especially where the data has 

multi-layered structures like complex proteins as presented here. The complete CVAE 

structure is shown in Figure S3A with different steps that are performed from raw simulation 

data to resolution of β-coronavirus Mpro solely based on their local and global conformational 

dynamics.  

 

The distance matrix of the 24 x 24 dissimilar Cα atoms was used as input for the CVAE 

architecture. Using the Horovod library, the data parallel model was trained on the Summit 

supercomputer. Each CVAE was trained for a fixed number of epochs based on the 

convergence of loss and variance-bias trade-off. Each training utilized up to 16 Summit nodes 

(96 V100 GPUs), and the effective batch size being the sum of every individual training 

instance. Therefore, the individual batch size was selected to be relatively small to avoid the 

generalization gap for large-batch training. The dataset was divided into training/validation 

(80:20 % of the simulation trajectories) and randomly shuffled. To search for the optimal 

clustering and reconstruction quality of the CVAE, the training procedure was repeated for 

various latent dimension sizes and to identify the best model for the dataset (Figure S3B). 

The loss over the epochs is as expected (i.e., without over fitting or any other unusual 

behavior) and shown in Figure S3C. Finally, the original input data was compared with the 

predicted (i.e., decompressed) data to ensure no loss of information during the compression 

process through the latent space (Figure S3D).           

 

Dynamic pocket tracking 
Pocketron was used to detect small molecule binding sites using default values.78 The 

metastable states were screened for pockets, which were classified as open if they could 
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accommodate at least 5 water molecules (coarse equivalent of a small fragment). Each 

representative binding pocket, identified from the crystal structures, was compared by 

superimposition with the metastable state from each system.  

Analysis of pairwise correlated positions in evolution 

Pairwise evolutionary constraints were estimated from a multiple sequence alignment (MSA). 

The FASTA sequence from the SARS-CoV2 Mpro (PDB 6LU7) was selected as reference and 

the MSA was built using hhsuite3.79 Pairwise correlations were calculated using ccmpred 

package 80 as per the parameters described in Akere et al.74 Raw correlation scores (Ci) were 

then scaled as per Kamisetty et al.81 For all 22 pockets (see Table 1), the scaled pairwise 

correlation matrix was used to estimate the evolutionary conservation score (Ea) of each 

pocket (Eq 1), where N is the number of residues in the pocket. 
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The score estimates the evolutionary constraints on the pocket as an average of the pairwise 

correlation in the pocket. For reference, scores were compared with the median and standard 

deviation of Ci for all surface residue pairs (Figure S10). Surface residues were defined as 

having > 50% relative accessible surface area.82,83 
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