
An Approach and Toolset to Semi-Automatically Recover

and Visualise Micro-Service Architecture

Nour Ali1, Nuha Alshuqayran 2, Rana Fakeeh 3, Thoybur Rohman1 and Carlos Solis4

1 Brunel University London, UK nour.ali@brunel.ac.uk,

2026156@brunel.ac.uk
2 Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

 nshaqayran@imamu.edu.sa
3 AIDA Geschäftsführungs-Organisations-Systeme GmbH Hauptstr. 11, 75391, Germany

rfakeeh@aidaorga.de
4 ION Group, UK carlos.solis@iongroup.com

Abstract. This paper presents the MicroService Architecture Recovery (MiSAR)

toolset for software engineers (software architects and developers) that need to

semi-automatically obtain as-implemented architectural models of existing mi-

croservice-based systems. The MiSAR approach has been designed following

Model Driven Architecture, and a set of components have been developed to sup-

port the semi-automatic support of MiSAR. The toolset first parses microservice-

based systems and generates a Platform-Specific Model, which is an abstract rep-

resentation of the system using the technology. Then, a model transformation

engine automatically generates a Platform Independent Model which represents

the as-implemented microservice architectural mode of a system. To support the

visualization of as-implemented architectural models, the Graphical Model Gen-

erator component of the toolset can be used. The Graphical Model Generator al-

lows the software engineer to obtain quantitative metrics of the microservice ar-

chitectural model and UML diagrams representing different views of the archi-

tecture.

Keywords: Microservice, architecture reconstruction, architecture recovery, ar-

chitectural views, architecture visualization, model driven engineering, model

driven architecture.

1 Introduction

Microservice architecture has become a popular architectural style [1]. Microservices

are developed quickly and provide more agility to the system [2], which results in con-

tinuous architectural changes [3]. Therefore, it can be stated that not every system is

built using a well-documented architecture, and often the documentation of the archi-

tecture is not kept up to date [4]. Keeping control of the overall architecture during

development can be very difficult, especially when microservice-based systems are de-

signed, developed and deployed by different stakeholders and teams. Moreover, these

architectures follow evolutionary design, which is very hard to manage, and

mailto:nour.ali@brunel.ac.uk
mailto:rana.fakeeh@hotmail.com

2

architectural constraints are difficult to track. Software engineers often have little

knowledge of the as-implemented architecture of their systems, and often face the chal-

lenge of not knowing in detail the underlying structures of the software system archi-

tecture.

The above concerns can be solved by using software architecture recovery (recon-

struction or reverse architecting) [5, 6] which is a technique that reverse engineers sys-

tems to obtain the actual (as-implemented) architectural structure and description from

system artefacts such as source code.

This paper presents the MicroService Architecture Recovery (MiSAR) toolset,

which aims to support the architecture recovery of microservice systems by allowing

software engineers to obtain semi-automatically an up-to-date architecture of imple-

mented microservice systems. This can be challenging to obtain manually as micro-

services are not first-class citizens in the software, microservice systems use different

programming frameworks and technologies, and microservices are highly inter-de-

pendent, making analysis and architecture abstraction and comprehension difficult. The

MiSAR toolset, manuals, artefacts and its application to case studies can be found at

[7]. The MiSAR toolset video demonstration is available at [8].

The paper is structured as follows: Section 2 gives an overview of the MiSAR ap-

proach. Section 3 presents the components of the MiSAR toolset. Section 4 describes

how MiSAR toolset has been implemented. Section 5 presents a walkthrough of the

toolset recovering the architecture of an open-source system. Section 6 evaluates the

performance of the toolset. Section 7 presents related work to MiSAR and finally Sec-

tion 8 concludes and discusses further work.

2 MiSAR Approach

MiSAR follows Model Driven Architecture (MDA) [9], to recover architectural models

of existing microservice systems. The initial version of the MiSAR approach has been

defined empirically in [10]. To define the MDA artefacts of MiSAR (metamodels and

mapping rules), we selected microservice-based open-source systems and recovered

their architectures manually. This allowed us to learn by example the architectural el-

ements that need to be included in the metamodels and mapping rules.

The MiSAR approach analyses the microservice software artefacts and produces

models at two abstraction levels (see Fig. 1). First, MiSAR analyses the source code of

a microservice project represented in text files. Second, it automatically creates a Plat-

form-Specific Model of the project. Third, MiSAR automatically creates a Platform

Independent Model which represents the architectural model of the system. To support

this, the MiSAR approach includes the following MDA artefacts found at [7]:

3

Fig. 1. MiSAR Model Driven Architecture abstraction levels

2.1 The Platform-Specific Metamodel

The Platform-Specific Metamodel defines the constructs which abstract microservice-

based systems using the platforms and technologies (see Fig. 2). For each microservice-

based system that needs to be recovered, a Platform-Specific Model (PSM) is generated

conforming to the Platform-Specific Metamodel. The current platforms and technolo-

gies which are supported are the Java Language, Docker, and Spring boot framework

and technologies which include Consul, Eureka, MongoDB, MySQL, Neo4j Graph da-

tabase, OAuth2, and RabbitMQ.

Fig. 2 shows the main elements of the Platform-Specific Metamodel and the

PSM.ecore file can be found at [7]. As it can be seen, every PSM of a microservice

application has a DistributedApplicationProject instance, with an application name

and its root repository URI (ProjectPackageURL). The DistributedApplicationPro-

ject is composed of the architecture’s development artefacts which include a multi-

module project (ApplicationProject) and Docker containers represented by the Dock-

erContainerDefinition. The DockerContainerDefinition elements involved in the ar-

chitecture are extracted from the Docker Compose and Dockerfile files. The Dock-

erContainerDefinition captures DockerContainerPort and DockerContainerLink in-

stances. An ApplicationProject represents one or many MicroserviceProject ele-

ments. A MicroserviceProject generalises a wide range of project artefacts imple-

mented in any framework or language, including Java Spring Boot/Cloud. The Ja-

vaSpringWebApplicationProject element is a subtype of the MicroserviceProject

element which reflects the specific characteristics of applications built with the Spring

Boot/Cloud framework. Another characteristic of JavaSpringWebApplicationPro-

ject is that it aggregates multiple Java classes and/or Java interfaces with a means of

annotation into JavaSpringWebApplicationLayers.

4

Fig. 2. MiSAR’s Platform-Specific Metamodel in Ecore for the Java Language, Docker, and

Spring boot

2.2 The Platform-Independent Metamodel

The Platform Independent Metamodel defines the microservice architectural elements

that describe a microservice architecture in a technology independent way. The meta-

model (see Fig. 3) includes 17 architectural element types. These include Microservices

that can be classified into Functional Microservices, which realize the system’s busi-

ness capabilities, and Infrastructure Microservices, which realize infrastructural capa-

bilities. Infrastructure Pattern Components which support the functionality of patterns.

MessageDestination type which is an abstract element to represent communication and

currently has two subtypes: Endpoints which are service URIs for synchronous remote

calls and QueueListeners which are a kind of asynchronous communication. Service

Dependencies which describe the communication between a consumer microservice

and a provider microservice. Each architectural model recovered conforms to the Plat-

form Independent Metamodel and is called a Platform Independent Model (PIM).

5

Fig. 3. MiSAR’s Platform Independent Metamodel

2.3 Mapping Rules

Mapping Rules map elements of PSMs into PIMs. Each mapping rule is represented

with a Left-Hand Side (L-H-S) and a Right-Hand Side (R-H-S). The L-H-S includes

PSM elements structured in a tree and the R-H-S indicates targeted PIM elements. The

L-H-S PSM elements are checked and if they exist in a PSM instance, then the R-H-S

PSM elements are transformed into a group of target PIM elements. An example of a

mapping rule is the one which identifies that a java method uses asynchronous commu-

nication:

[L-H-S] A Java Method with Element Identifier value: “convertAndSend” whose parent is a Java
User Defined Type with Element Identifier value: “RabbitTemplate” or “AmqpTemplate”,
which has one Java Method Parameter with Parameter Order value: “2” and Field Value value:
“[routing-key]” whose type is a Java Class Type with Element Identifier value: “String” such
that there is a Queue Listener with Queue Name value that contains: “[routing-key]” and be-
longs to a Microservice with Microservice Name value: “[provider-name]” indicates [R-H-S] a
Service Dependency with Provider Destination value: “QueueListener[QueueName:[queue-
name]]”.

6

In the above mapping rule a Service Dependency PIM element is created which has a

QueueListener as a provider MessageDestination. MiSAR currently supports 275 map-

ping rules.

One of the benefits of MiSAR in following the MDA approach is the separation of

concerns. Models can be reusable and independent of their graphical notation. As it can

be noticed in the following sections, a recovered architectural model (PIM instance)

can be obtained without a graphical notation. Consequently, an architectural model can

be manipulated in other contexts and transformed into other forms.

 Another advantage of MDA is obtaining and using models at different abstraction

levels. The PSM is an abstraction that allowed MiSAR to have a structured reverse

engineering process and therefore has enabled simple mapping rules (transformations)

to generate an architectural model. The PSM allowed the reverse engineering process

to first collect and extract which elements from the system and its technologies are

needed to construct an architectural model and cluster them. The PSM instance can also

be useful for users as it can allow them to trace back and identify which platform and

technology elements participated in constructing a recovered architectural model.

3 Components of MiSAR Toolset

The MiSAR toolset is composed of four components which support a user to obtain an

architectural model from a microservice system in a semi-automatic way. Each of the

components, has as input and/or produces the MDA artefacts explained in Section 2.

The components in the toolset are the following:

• AIO: The All In One (AIO) user interface appears when you launch MiSAR. If it is

the first launch, it provides guidelines on how to install the toolset components and

provides guidelines on using them.

• Parser: MiSAR includes a parser which statically analyses the source files of micro-

service-based software. The parser analyses these files, collects information from

different artefacts, and clusters them into concepts of the PSM. The parser produces

a Platform-Specific Model (PSM) of the system by instantiating the Platform-Spe-

cific Metamodel. For example, the parser to create a JavaSpringWebApplica-

tionProject (explained in section 2.1) object, it analyses different POM files of a

system which contain a list of dependency libraries. The parser deserializes each

POM file from XML format into a Python dictionary, extracting only the 'parent' and

'dependencies' elements. Each child element within the 'dependencies' element is

then converted into a 'DependencyLibrary' PSM object. The information from the

source element is collected and organized in attributes within this object. Finally, all

the 'DependencyLibrary' objects are clustered inside one parent 'JavaSpring-

MVCApplicationProject' object. Currently, the parser analyses the following files:
─ Docker Compose Files (.yml|.yaml): These files define services, networks, and

volumes for Docker containers.

─ POM Files (.xml): Maven POM (Project Object Model) files, specify project in-

formation, dependencies, and build configurations.

7

─ Configuration Files (.yml|.yaml|.properties): Configuration files in YAML or

properties format can be parsed. These files often contain settings, properties, or

environment-specific configurations.

─ Java Source Files: For Java source files to be parsed, the project needs to have

specific libraries in the POM/build.gradle file. Specifically, include either one of

the following libraries: 1) org.springframework.boot: which indicates a Java

Spring Boot project. 2) org.springframework.cloud: which indicates a Spring

Cloud project.

• Model Transformation Engine: MiSAR implements bottom-up model-driven trans-

formations to obtain architectural models. PSMs generated by the parser are fed into

model transformations that automatically transform them into PlMs. The model

transformations implement the mapping rules and automatically generate the as-im-

plemented architecture model of a system.

• Graphical Model Generator: To improve the understandability of the PIMs, we have

developed a Graphical Generator to enable users to visualize the PIM models of the

recovered systems. For each PIM, the generator creates: 1) metrics of the PIMs (ar-

chitectural models) in excel sheets, e.g., a table with the number of architectural el-

ements in an architectural model such as the number of microservices, pattern com-

ponents and service dependencies, 2) images with graphical UML diagrams of the

models and 3) PlantUML [13] files of the models. We currently use the UML Com-

ponent diagram to represent the microservice architecture. The architecture can also

have different views at architecture level and microservice level.

4 Implementation of MiSAR

The Platform Independent and Platform-Specific Metamodels have been implemented

as Ecore models using the Eclipse Modeling Framework (EMF) [11] (see Fig. 2 & Fig.

3) The MiSARParser is a python application that incorporates PyEcore, JavaLang,

Yaml, XMLtoDict and other python libraries to parse YAML, XML and JAVA arte-

facts of a microservice-based application such as docker-compose.yml and pom.xml

into a MiSAR PSM. The generated PSM is in Ecore (or XMI).

To automate the mapping rules, we have developed the model transformation engine

using the Eclipse Model-to-Model Transformation (M2M) project. The 275 mapping

rules of MiSAR are written using the operational QVT transformation language

(QVTo) [12]. QVTo follows the structure of our mapping rules. The implementation of

mapping rules into QVTo, implements the model transformation engine. The model

transformation engine receives as input a PSM instance, executes the rules and then

produces PIMs in Ecore (or XMI).

Finally, the graphical generator is a java application which navigates through PIMs

and automatically translates them into UML graphical notations. The application uses

the java Ecore implementations of MiSAR’s Platform Independent Metamodel and

translates each element into PlantUML textual language [13] to create the images with

the diagrams. The java application also creates excel sheets with metrics of the models.

We could have implemented a graphical editor by using frameworks such as Graphical

8

Modeling Projects [14] or EcoreViz [15] which can be integrated into Eclipse. How-

ever, we made the decision to be Eclipse independent as Eclipse is heavyweight and

can change its versions making our approach obsolete in the future. Since, currently,

MiSAR does not require the manipulation of diagrams generated (no human interac-

tion), then this is sufficient. This could change in the future, if MiSAR is to be extended

for further software engineering activities such as manipulating models to keep them

consistent with the microservice implementation.

5 A Walkthrough of MiSAR

We will demonstrate the steps and artefacts produced using the MiSAR toolset to semi-

automatically generate the as-implemented architectural model of a microservice-based

system. To demonstrate MiSAR, we have selected a microservice project, which is an

open-source project called the MicroCompany application [16]. MicroCompany is im-

plemented using Java Spring Boot/Spring Cloud microservice-based application that

consists of 11 microservices of which 4 are business-oriented. It utilises both synchro-

nous and asynchronous inter-service communication.

Fig. 4. User interface of MiSAR AIO

Consider that the software team, after having developed the MicroCompany appli-

cation, would need to get an up-to-date architecture of their application. The software

team has to follow the installation instructions and manuals found on [17]. A user can

use the AIO for installation guidelines as well. Fig. 4 shows the AIO when the user has

already installed the parser and it is ready to be launched. To obtain the up-to-date

architecture, the user follows the following steps:

Step 1- Parsing the Microservice System to Create a PSM instance: The files

from the MicroCompany GitHub are first downloaded locally. Then, the required arte-

facts are collected and uploaded to the existing MiSAR parser, as illustrated in Fig. 5.

The parser receives as input: the Project name, Build directory of the system (multi-

module) project, Path of every Docker Compose file (yml), Build directory of every

microservice (single-module) project, Path of build file (POM) of the system

9

(multimodule) project and the Path of the build file (POM) for every microservice (sin-

gle-module) project. Configuration and Java Source artefacts are collected automati-

cally by the parser with the help of the build directory of every microservice project.

When the user inputs the Build Directory, the parser asks the user if they would like to

import all the files automatically or whether they would like to upload them manually.

The user has the option to delete or add uploaded files. This is to allow the user to

control the parts of the system which they would like to recover. Users may want to

recover the architecture of the entire microservice system, whereas other users may

want to only recover specific parts of the system, e.g., specific microservices.

Fig. 5. User interface of Parser used to create PSM of MicroCompany

The parser produces a PSM instance for the MicroCompany application. The PSM

instance can be found at [18]. Even though the PSM is not the as-implemented archi-

tecture model, it is useful, as it provides backtracking support and allows the user to

understand the elements that generated the PIM, by checking the specific lines in the

artefact that generated those particular PSM elements.

Step 2- Executing Model Transformations to Create the PIM instance: The PIM

architectural model is obtained by running the Eclipse QVTo project. The PIM recov-

ered is in XMI format and can be opened as a tree view with Sample Reflective Ecore

Model editor provided by the Eclipse Modeling Framework (EMF). Fig. 6 shows the

generated architecture of MicroCompany using EMF. It consists of 11 microservices:

6 Infrastructure microservices and 5 Functional microservices. The user can have a

more detailed view of the microservices if they click on them. In Fig. 6, the user has

clicked on the Infrastructure Microservice called circuit-breaker and can view its asso-

ciated architectural elements: Container, Infrastructure Server Components, Infrastruc-

ture Client Components, Service Interface, Endpoint, and Service Dependencies.

10

Fig. 6. Recovered PIM model for MicroCompany

In addition, the microservice view has the attributes for the microservices. Fig. 7

shows attributes for the recovered microservice called query-side-blog. For instance,

(a) the “query-side-blog” microservice exposes an endpoint with request URI “GET

/blogposts/search/findByDraftTrue” which is handled by (b) the service operation

“findByDraftTrue()” and (c) returns a response service message of model “Page(Blog-

Post)”. As it can be noticed, one of the attributes is “Generating PSM” which indicates

the element from the PSM that was used to generate the attribute. This feature provides

traceability and backtracking support for the recovery.

Fig. 7. Example of the recovered “query-side-blog” microservice attributes

11

Step 3- Transforming the PIM XMI into Graphical Architectural Diagrams: Once

you have a PIM instance, you can explore it in XMI or by using EMF as explained in

Step 2. However, if users are not experts in Ecore or they prefer to have an improved

visualization experience, e.g., sharing diagrams with their teams, they can use the

Graphical Model Generator. The user selects the PIM instance and indicates the loca-

tion where the different images and excel sheets will be located once produced (see Fig.

8). Then, automatically a drop-down menu with all the microservices of the architec-

tural model of the PIM instance will be visible under Microservice Level. The user can

produce images with UML architecture diagrams and metrics at the architecture level

or at a microservice level as follows:

Fig. 8. Using the Graphical Model Generator for MicroCompany

At Architecture Level: If the user clicks on the Architecture Metrics Excel

Datasheet, an excel sheet is produced that contains the number of architectural elements

for every single architectural element type. Fig. 9 shows the excel sheet produced for

MicroCompany. For example, there are 5 Functional Microservices and 6 Infrastructure

Microservices in MicroCompany. In addition, the user can click under Dependency

View and create an image (Download PNG and Download SVG buttons) or get the

PlantUML file for the graphical UML diagram. Fig. 10 shows the dependency diagram

for the architecture of MicroCompany. The diagram shows the microservices of the

architecture and their dependencies. Blue components are Functional microservices and

purple components are Infrastructure microservices.

12

Fig. 9. Architecture Level Metrics of recovered MicroCompany

Fig. 10. Architecture Level Dependency View for recovered MicroCompany

At Microservice Level: As it can be noticed from Fig. 10, it is very hard to read the

architectural diagram of a medium to large architectural model such as MicroCompany.

Therefore, the tool allows the user to select from the top-down menu a specific micro-

service. Once a microservice is selected, they can create an excel with metrics for that

microservice, a microservice view which shows the pattern components, endpoints and

service interfaces and a microservice dependency view diagram which shows the mi-

croservice chosen and the service dependencies it has with others. Fig. 11 shows the

excel sheet generated summarizing the metrics of Circuit-Breaker microservice: it has

4 Pattern Components, 1 Infrastructure Service Component, 2 Infrastructure Client

components, 1 Service Interface, 1 endpoint and 7 Service Dependencies. Fig. 12 shows

the microservice view for Circuit-Breaker showing that it has 4 InfrastructurePattern-

Components (2 of type InfrastructureClientComponents and 1 InfrastructureServer-

Component) and an endpoint. Fig. 13 shows the microservice dependency view dia-

gram for Circuit-Breaker. Circuit-Breaker has 7 dependencies with other microservices.

Fig. 11. Circuit-Breaker microservice metrics

13

Fig. 12. Circuit-Breaker microservice Dependency View

Fig. 13. Circuit-Breaker microservice Dependency View

6 Evaluation

In this section, we evaluate the performance of the tool's components to demonstrate

the time it takes for MiSAR to generate the as-implemented architecture (the PIM in-

stance) for three open-source projects. It is important to emphasize that the authors of

the papers have not been involved in the development of these open-source projects.

Table 1 shows the time it takes, for each toolset component, on an Intel Processor Core

(TM) i5-7200U CPU @ 2.50GHz, 2701 Mhz, 2 Core(s), 4 Logical Processor(s). The

time for the Graphical Generator Component is not shown as this is instantaneous. It

can be noticed that for a large project, such as TrainTicket, the parser takes most of the

time of the recovery process. However, several days could have been taken if software

engineers would want to recover the architecture manually. Manual architecture recov-

ery typically requires the involvement of multiple stakeholders to gather knowledge

about the system and its interpretation. It relies on the experience of these stakeholders

and involves manual analysis of the system's source code [21]. Manual recovery could

also produce an inaccurate architecture due to human errors or an architecture with not

enough details.

This evaluation has several limitations. Firstly, it has only been conducted on three

open-source systems, albeit including a large-scale one such as TrainTicket. Future

evaluations could expand to encompass larger and industrial systems. Additionally, the

evaluation did not consider the user experience of using the toolset.

14

Table 1. Time of MiSAR toolset to obtain as-implemented architecture models.

 LOC Parser to

generate

PSM (sec)

Model Engine to

Transform PSM to

PIM (sec)

Total No. of Recov-

ered elements in PIM

MicroCompany

[16]

127.1K 9 3.89 490 including 11 mi-

croservices

TrainTicket [19] 507.2K 446 63.15 1341 including 69 mi-

croservices

MusicStore [20] 116.6K 1 1.07 107 including 9 micro-

services

7 Related Work

One of the few existing works related to ours is MicroART [22]. MicroART also uses

model-driven engineering but does not follow MDA, e.g., it does not define a Platform-

Specific Metamodel. In MiSAR, the architectural model is recovered automatically

from the PSM, i.e., there is no human input, whereas in MicroART, a software architect

needs to identify service discovery services. MiSAR produces architectural models that

are richer than MicroART as MicroART only has 8 architectural concepts whereas

MiSAR has 17. Therefore, the expressiveness of the MiSAR Platform Independent

Metamodel has elements such as Infrastructure Pattern Components and Asynchronous

communication which MicroART does not support.

MicroLyze [23] is another work which proposes an architecture recovery approach

for microservices. MicroLyze, unlike MiSAR, does not adopt a model-driven approach.

Instead, it utilises a distributed tracing component that dynamically monitors simulated

user requests. In addition, the work of Wang et al. [24], present an automated recovery

process using system source code to build a dependency graph. Like MiSAR, their ap-

proach is based on source code analysis. However, their approach does not employ

model-driven architecture and does not recover many elements such as patterns.

Another approach that recovers microservice architecture is Kieker [25]. Kieker is a

monitoring framework which uses dynamic analysis to discover the architecture of a

system. The main elements it extracts (or recovers) are containers and methods. It does

not explicitly provide a microservice as an architecture concept and infrastructure pat-

tern components. Since Kieker uses dynamic analysis, the software engineer needs to

add jar files next to docker files, execute the microservice systems and manipulate the

docker files. In comparison to MiSAR which only statically analyses systems, the re-

covery of the architecture does not require manipulating any parts of the source code

artefacts and does not require the microservice system to be executing. However, with

dynamic analysis, the recovered architecture obtains dynamic information such as times

of methods which are not recovered by MiSAR.

15

8 Conclusion

In this paper, we have introduced the MiSAR toolset that semi-automatically generates

as-implemented architectural models from existing microservice systems implemented

in diverse technologies. We have demonstrated how the MiSAR toolset components

can be used to recover architectural models in Ecore (XMI) and if required they can be

introduced to be visualized in UML Component diagrams in different views. We have

also presented the evaluation of the time it takes for MiSAR to recover the architectures

of 3 microservice projects.

Our further work includes improving the usability aspects of the toolset and the ef-

ficiency of the parser. As explained in the paper, currently MiSAR only supports Java

Spring Boot Applications and/or Docker. We are currently working on a project to ex-

tend MiSAR to support the recovery of microservice-based systems partly (or fully)

developed in Python. To do so, we need to extend the parser, the Platform-Specific

Metamodel and the mapping rules. We will continue working on extending MiSAR to

support its analysis of additional languages and technologies.

Furthermore, one existing limitation of our visually generated diagrams is their reli-

ance on PlantUML, which generates static images. This restricts user manipulation of

the graphical architecture models, and the layout of the diagrams cannot be controlled.

To address this limitation, we plan on creating a diagramming tool. Additionally, we

intend to evaluate our approach with practitioners and in industrial settings, rather than

solely relying on open-source projects.

References

1. Newman, S., Building Microservices: Designing Fine-Grained Systems. O’Reilly Media,

Inc, 2015.

2. Hasselbring, W., and Steinacker, G., Microservice architectures for scalability, agility and

reliability in e-commerce, IEEE International Conference on Software Architecture Work-

shops (ICSAW), 2017, pp. 243–246.

3. Simioni, A. and Vardanega, t., In pursuit of architectural agility: experimenting with micro-

services, In 2018 IEEE International Conference on Services Computing (SCC), 2018, pp.

113–120.

4. Cerny, M., and Donahoo, T., and Trnka, M., Contextual understanding of microservice ar-

chitecture, 2018, p. 29–45.

5. S. Ducasse and D. Pollet, “Software architecture reconstruction: A process-oriented taxon-

omy,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 573–591, 2009.

6. Ali, N., Rosik, J., Buckley, J., Characterizing real-time reflexion based architecture recov-

ery: an in-vivo multicase study, 8th international ACM SIGSOFT conference on Quality of

software architectures. ACM, Jan. 2012, pp. 23–32.

7. MiSAR, available at https://github.com/MicroServiceArchitectureRecovery/misar

8. MiSAR Toolset video demo: https://youtu.be/sdRDkLesyS0

9. Brambilla, M., Cabot, J. and Wimmer, M, Model-Driven Software Engineering in Practice,

1st ed. Morgan & Claypool, 2012

https://github.com/MicroServiceArchitectureRecovery/misar
https://youtu.be/sdRDkLesyS0

16

10. Alshuqayran, N., Ali, N., Evans, R., Towards Micro Service Architecture Recovery: An

Empirical Study, IEEE International Conference on Software Architecture (ICSA), 2018,

pp. 47–4709.

11. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Frame-

work, 2nd edn. Addison-Wesley 2008.

12. Barendrecht, P. J., Modeling transformations using QVT Operational Mappings, Research

project report. Eindhoven: Eindhoven University of Technology Department of Mechanical

Engineering Systems Engineering Group, 2010.

13. PlantUML Homepage, https://plantuml.com/, last accessed 2023/05/05.

14. Graphical Modeling Project, https://eclipse.dev/modeling/gmp/

15. Ecore visualization using KIELER, https://github.com/kieler/ecoreviz

16. Dugalic, I., “MicroCompany,” Available: https://github.com/idugalic/micro-company,

2022, last accessed 26/04/2023.

17. MiSAR parser and Model Transformation Engine, available at https://github.com/MicroSer-

viceArchitectureRecovery/MiSAR-Parser-and-Model-Transformation

18. MiSAR PSM and PIM instances of MicroComany: https://github.com/MicroServiceArchi-

tectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR/micro-

company-PIM%26PIM

19. X. Zhou, X. Peng, T. Xie, C. J. C. Sun, J.and Xu, and W. Zhao, “Benchmarking microservice

systems for software engineering research,” in Proceedings of the 40th International Con-

ference on Software Engineering Companion Proceeedings - ICSE, 2018, p. 323–324.

20. S. OSS, “MusicStore,” Available at: https://github.com/SteeltoeOSS/Sam-

ples/tree/main/MusicStore, last accessed: 2023/07/06

21. A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen and C. Riva, "Symphony: view-

driven software architecture reconstruction," Proceedings. Fourth Working IEEE/IFIP Con-

ference on Software Architecture (WICSA 2004), Oslo, Norway, 2004, pp. 122-132, doi:

10.1109/WICSA.2004.1310696.

22. G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di Salle, Mi-

croart: A software architecture recovery tool for maintaining microservice-based systems,

IEEE International Conference on Software Architecture Workshops (ICSAW), 2017, pp.

298–302.

23. Kleehaus, M., Uludag, O., Sch¨afer, P., Matthes, F., MICROLYZE: A framework for recov-

ering the software architecture in microservice based environments, International Confer-

ence on Advanced Information Systems Engineering. Springer, Cham., 2018, pp. 148–162.

24. Wang, L., Hu, P., Kong, X., Ouyang, W., Li, B., Xu, H. and Shao, T., Microservice archi-

tecture recovery based on intra-service and inter-service features, 2023, Journal of Systems

and Software, p.111754

25. W. Hasselbring and A. van Hoorn, Kieker: A monitoring framework for software engineer-

ing research, Software Impacts 5(2020), 100019.

https://plantuml.com/
https://eclipse.dev/modeling/gmp/
file:///C:/Users/anexp/Downloads/Ecore%20visualization%20using%20KIELER,%20https:/github.com/kieler/ecoreviz
https://github.com/MicroServiceArchitectureRecovery/MiSAR-Parser-and-Model-Transformation
https://github.com/MicroServiceArchitectureRecovery/MiSAR-Parser-and-Model-Transformation

