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Potential benefits of limiting global warming for the mitigation
of temperature extremes in China
Junhong Guo1, Xi Liang2✉, Xiuquan Wang3✉, Yurui Fan4 and Lvliu Liu5

In this study, we attempt to quantify the potential impacts of two global warming levels (i.e., 1.5 °C and 2.0 °C) on extreme
temperature indices across China. The CMIP6 dataset is first evaluated against the CN05.1 observation for the historical period of
1995–2014. Then, future spatiotemporal patterns of changes in extreme temperature at two global warming levels under two
shared socio-economic pathway scenarios (SSP245 and SSP585) are further analyzed. Overall, China will experience more frequent
and intense high temperature events, such as summer days (SU), tropical nights (TR), warm days (TX90p) and nights (TN90p). On
the other hand, under the SSP585, the number of icing days and frost days is projected to decrease at two global warming levels,
with the maximal days of decrease (exceeding 20 days) seen in the west of China. Our results suggest that limiting global warming
to 1.5 °C rather than 2.0 °C is beneficial to reduce extreme temperature risks. As temperature increases to 1.5 °C and then 2.0 °C
above preindustrial levels, the most extreme temperature indices are expected to increase proportionately more during the final
0.5° than during the first 1.5° across most regions of China. For some warm indices, such as the warmest day (TXx), summer days
(SU), and warm days (TX90p), the largest incremental changes (from 1.5° to 2.0°) tend to be found in the southwest. Under the
SSP585, the incremental changes are similar to the change in the SSP245, but smaller magnitude and spatial extent.
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INTRODUCTION
Approved by the United Nations Framework Convention on
Climate Change (UNFCCC), the Paris Agreement set a challenging
target to keep global warming to no more than 2.0 °C and pursue
efforts to achieve a lower warming of 1.5 °C above preindustrial
levels1. However, the current fossil-fuel-dominated energy struc-
ture and mitigation strategies cannot well support achieving this
global warming target. Although some studies claimed that the
COVID-19 pandemic led to an evident decrease in greenhouse gas
and aerosol emissions2,3, the global cooling response to the
pandemic could be sudden and negligible in a long run, because
even large emission reductions applied for a short duration can
not drastically impact on future climate change4.
Addressing climate change and low-carbon development is a

major challenge worldwide. Every country requires to develop
climate action plans in the form of “nationally determined
contributions” (NDCs), make zero-emission policies to reach a
carbon peak, and reduce the greenhouse gases emission to
achieve carbon neutralization, so as to accomplish the truly
ambitious global warming goals5. As the largest developing
country and currently the largest carbon emitter, China has also
proposed a plan to peak carbon dioxide emissions by 2030 and
achieve carbon neutrality by 2060 (“30•60 Dual-Carbon Target”).
China is also the first developing country to announce the carbon
reduction target, which is a landmark in the fight against climate
change, though it is still facing a series of challenges6.
Previous studies indicate that the mean temperature in China

has risen at a rate of 1.3–1.7 °C (100 yr)−1 since 1900 based on
observations7. It is generally recognized that even a marginal
signal in global mean temperature changes would affect greatly

temperature and precipitation extremes. In recent years, the
frequently occurring extreme events show an increasing tendency
with the faster rate of warming. China is one of the countries,
which are suffering the most severe climatic disaster. According to
the statistics, China is generally subjected to direct economic
losses of more than 34 billion every year owing to the droughts
and from 1984 to 2018 the annual affected crop area was
recorded to be exceeding 200,000 km2.8. Raising temperature
extremes along with heat-related hazards have drawn significant
societal concerns over the past two decades. In the context of
global warming, temperature extremes tend to be more frequent
and intensive, causing a potential hazard of increased heat-related
morbidity and mortality, especially in regions with complex and
fragile climate systems in China9. Hence, in the face of both global
warming and “Dual-Carbon” targets, it is essential to evaluate
extreme temperature changes in China in the context of climate
change.
Global climate models (GCMs) are useful tools for evaluating the

historical climate and anticipating future climate change.
Although numerous studies have been conducted in the climate
extremes using GCMs from different previous phases of Coupled
Model Intercomparison Project (CMIP), the reliability of future
climate projections is debatable because of these models’ coarse
resolution and associated uncertainties10. The latest CMIP6 offers
multi-model climate projections based on more realistic future
scenarios (SSP-RCP), which are a direct reflection of the social
concerns related to the mitigation, adaption or impact of climate
change11. A range of studies has accessed the changes in extreme
temperature around the world using the outputs of CMIP69,12–17.
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Although both national climate scenarios and international
climate assessments depend heavily on the outcome of multiple
climate model simulations, the reliability of these models has an
important impact on science and ultimately policy-targeted
science communication18. Compared with CMIP5, CMIP6 models
can better represent physical processes at smaller scales19, and it is
proved that they have globally improved their historical repre-
sentations of climate extremes indices compared to the previous
models20,21. However, due to some essential uncertainties, such as
the resolution, physical process and forcing conditions in models,
some studies also show that there is relatively unsatisfactory or no
clear superiority of CMIP6 based on their performance in
representing the characteristics of climate indices during the
historical period22,23. In addition, not all models are equally
plausible, since some models have larger biases than others. In
other words, the uncertainties may be too large when unrealistic
models are included, while the range of models may be too narrow
when we underestimate uncertainties from processes that are not
or are poorly represented18. Therefore, bias-corrected projections
are necessary for the raw spread of model ensemble at regional
and local scales. It is also significant to provide bias-corrected
information on future changes in extreme temperature for
governments in making adaptation and mitigation policies.
However, to the best of our knowledge, barely any study has
focused on the bias-corrected projections in temperature extremes
across China under the CMIP6 scenarios and global warming levels.
In this study, we use the Equidistant Cumulative Distribution

Functions (EDCDF) method to correct the outputs from 12 CMIP6
GCMs in historical and different SSP-RCP scenarios over the whole
China region. Our main goals are as follows: 1) to compare the
performance between original and bias-corrected CMIP6 models;
2) to project the changes in extreme temperature under different
global warming scenarios; 3) to assess the benefit for China if
global warming is arrested at 1.5 °C rather than 2.0 °C.

RESULTS
Model evaluation
Temporal evolution. Supplementary Figure 1 exhibits the com-
parisons in the temporal evolution of extreme temperature indices
between the bias-corrected CMIP6 multi-model ensemble and
CN05 observation in the baseline period. The results show that the
general trend of the temporal variation is well simulated by bias-
corrected models for most extreme temperature indices over
China. Overall, the spread (gray region) of the ensemble models
can cover the temporal evolution of CN05. Moreover, the
simulated indices from the multi-model ensemble mean compare
well with the CN05. However, there are a few exceptions. For
instance, the number of cold nights (TN10p) and frost days (FD)
simulated from ensemble models is overvalued against the CN05,
which exceeds the lower boundary (5% percentile) of CMIP6
models in some years. In addition, owing to canceling out most of
the internal variability among ensemble models, the variation
curve in GCMs ensemble mean shows smoother than the CN05
observation with a larger inter-annual variation.
Figure 1 plots the results from IVS scores, which are used to

evaluate the match of the interannual variability between the CMIP6
models (before and after bias correction) and observation in China.
Except for the no bias-corrected TR index and CNRM-ESM2–1 model,
the IVS scores in most extreme temperature indices are below 1.0,
indicating that the CMIP6 models show a reasonable ability to
reproduce the observed interannual variability in temperature
extremes in China. In addition, the results also show that the bias-
corrected models have smaller IVS scores than the original ones
obviously. For example, for the bias-corrected ensemble mean, the
IVS scores of most extreme temperature indices are below 0.4,
especially for the TNx and FD. The percentile extreme indices are
relatively well simulated for both raw and improved GCMs, but with
less pronounced results in correction ones. The improved perfor-
mance in some models is apparent in simulating the inter-annual
variation. For example, the IVS values from the raw CNRM-ESM2-1,

Fig. 1 The skill of no bias-corrected and bias-corrected CMIP6 models in simulating the interannual variability of extreme temperature
indices during 1995-2014. a is the IVS of the ensemble mean for different extreme temperature indices; b shows the IVS of extreme
temperature indices mean for different GCM.
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HadGEM3-GC31-LL and MIROC6 are larger than other GCMs and
their IVS scores are reduced after bias correction, suggesting that the
corrected simulations evidently outperform the original simulations
in capturing the interannual variability in China.

Spatial distribution. We estimated the multi-model ensemble
mean bias of 12 extreme temperature indices against the
observation CN05 in spatial distribution from the 12 CMIP6 GCMs
(Fig. 2). For the 4 extremal indices, the raw CMIP6 models show a
warmer bias in simulating the warmest day (TXx) and night (TNx),
whereas an obvious cold bias is found for the coldest day (TXn)
and night (TNn) in the majority of China, especially for the west
(exceeding -5 °C). However, these biases are greatly reduced after
the bias correction in all four indices during the historical period,
with a bias range from -1 ~ 1 °C.

Similar to the extremal indices, the biases of four absolute
indices, such as SU, ID, TR and FD, are estimated in the outputs
from the original and corrected CMIP6 GCMs in the baseline
period. Compared with the CN05, no bias-corrected models
exhibit substantial positive biases in simulating the icing days (ID),
tropical nights (TR) and frost days (FD) while the number of
summer days (SU) is underestimated thoroughly over most
regions of China except for the Qinghai-Tibet Plateau. Again, the
above considerable biases are successfully removed through the
EDCDF bias correction. Though some spatially sporadic bias spots
are still found in the northwest, the biases are limited to ~2 days in
the majority of China. However, the frost days seem to be still
overvalued in the west.
The improvement of bias-corrected GCMs for four percentile

extreme indices is not as apparent relative to the results before

Fig. 2 Multimodel ensemble mean bias in 12 ETCCDI temperature indices for the historical period (1995–2014). “BEF” represents the bias
before correction, and “AFT” is the bias after correction.
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correction. Both raw and revised multi-model ensemble mean
compare well against the observation CN05. The biases of warm
and cold days (TX90p and TX10p) are smaller than the other two
indices. The warm nights (TN90p) are underestimated across the
west but overestimated slightly in the southeast of China. For the
cold nights (TN10p), obvious positive biases are found before and
after bias correction.
Supplementary Figure S2 presents the performance (RMSE’ and

RMSEstd) of the individual bias-corrected CMIP6 model in
simulating the 12 extreme temperature indices in the baseline
period over China. For RMSE’, the blue-shaded columns with
negative value signifies better simulation skill. The right grey-
shaded columns show the indices averaged standardized median
of RMSE for each CMIP6 model. We regard the better performance
of model as smaller RMSE’ and RMSEstd. In total, most bias-
corrected models show relatively small biases in terms of the
RMSEstd value, with about 0.5, while CanESM5, INM-CM4-8 and
MIROC6 show larger errors among these models from the overall
performance in simulating the temperature extremes. Never-
theless, there are still differences in simulating indices for the
individual model. For example, though the overall performance of
CanESM2-1 is the worst among the 12 models, this model has the
best skill in simulating the TN10p. The results also exhibit that
the ensemble mean is clearly better than any individual model on
the whole, which suggested that the uncertainties from internal
variability and systematic errors in an individual model can cancel
each other out in the statistical mean13.
A comprehensive assessment of models (including IVS and

RMSE) is undertaken in this study (Fig. 3). Models located in the
left-bottom quadrant are regarded as having good performance
for both criteria while ones in the right-top quadrant represent
the worst performance. It can be deciphered that the models
before bias correction are scattered in the left-top and right-top
quadrants, especially for HadGEM3-GC31-LL and MIROC6, while
most models after bias correction move into the best quadrant. In
other words, the advance using the bias-corrected method is
more intuitive.

Changes at specified warming levels
Determination of global warming periods. Supplementary Figure
S3 shows the global average surface temperature changes
simulated by 12 CMIP6 models compared to the pre-industrial
period. Under the SSP245 scenario, the global mean temperature

will increase by about 3.0 °C at the end of the twenty-first century.
The increase rate of temperature under SSP585 is more than that
under SSP245, even warming up to 5.1 °C approximately by 2100.
The arrival time of two warming levels in SSP585 occurs earlier
than that in SSP245, especially for the 2.0 °C scenario.
Based on this, we calculate the arrival time of individual GCM for

1.5 °C and 2.0 °C warming levels (Supplementary Table 3). For the
ensemble mean, the arrival year of 1.5 °C projected by the CMIP6
ensemble mean is 2030 (2021 ~ 2040) under SSP245 and the first
year of the arrival of 2.0 °C is 2046 (2037 ~ 2056). Similarly, for the
SSP585 scenario, the 1.5 °C and 2.0 °C reaching years are 2026 and
2039. The arrival year of 1.5 °C in SSP585 is earlier a little bit than
that in SSP245, while 2.0 °C is nearly 7 years earlier than SSP245,
suggesting that the faster warming rate under SSP585 marked, the
earlier the 1.5 °C and 2.0 °C reaching year. It is noteworthy that the
MIROC6 shows the latest reaching time among 12 CMIP6 models,
especially for the 2.0 level under SSP245. On the other hand, the
model of the fastest warming rate is CanESM5, whose arrival year
of 1.5 °C (2.0 °C) is 2013 (2024) and 2012 (2022) under SSP245 and
SSP585, respectively. The global warming target periods of
CanESM5 are much earlier than those projected by MIROC6.

Changes in the spatial distribution. We depicted extreme
temperature indices changes in spatial distribution (Fig. 4,
supplementary Figures 4 and 5) and calculated the regional mean
results (Table 1) across China at 1.5 °C and 2.0 °C warming levels.
For the extremal indices, such as TXx, TXn, TNx and TNn, a notable
feature is that all indices are expected to increase over China, and
larger changes are found in higher warming level and emission
scenarios. The changes are different in spatial distribution.
Specifically, for TXx, the change is larger in the north than that
in the south of China, particularly at the 2.0 °C warming level
under the SSP585 scenario. The increase in Tibetan Plateau is
evident relative to other regions of China, with above 4 °C,
suggesting the number of warm nights will augment in this area
under climate change. Compared with the baseline period, the
averaged-region TXx is likely to increase larger than the other
three extremal indices and tends to increase by about 1.35 °C and
1.93 °C (1.50 °C and 2.11 °C) for two global warming levels under
SSP245 (SSP585), respectively. On the other hand, the changes for
TXn are relatively smaller with an increase of 0.81 and 1.56 °C (1.10
and 1.52 °C) under SSP245 (SSP585). In addition, extreme night
indices (TNx and TNn) show a large change range and even some

Fig. 3 Scatter diagrams showing model’s performance based on IVS (x axis) and RMSEstd (y axis). a and b are the raw and bias-corrected
b simulations, respectively. Each dot represents a model, identified by its number on the right and the values are the mean of all indices.
Models in the left-bottom quadrant are of good performance for both criteria.
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models (i.e., CNRM2) project these indices to decrease at future
warming levels, especially for the TNn, whose sign of change is
different from most models. That means there are uncertainties in
projecting the changes for cold night indices among CMIP6
ensemble models.
Overall, as warm indices, summer days (SU) and tropical nights

(TR) at 1.5 °C and 2.0 °C warming levels over China will increase
relative to the baseline period of 1995-2014. Except for the west,

these indices will have an obvious increase in most regions of China,
with even exceeding 18 days at the 2.0 °C warming level. The
magnitude of the increase for SU is more extensive than that for TR.
However, for some high-cold regions, i.e., the Tibetan Plateau, the
changes in the SU and TR are smaller owing to their cold climate
characteristics. Although the temperature increase in the context of
global warming, the thresholds corresponding to the SU and TR
indices may still be hard to reach13. On the contrary, the cold indices

Fig. 4 Changes in spatial distribution for four extremal indices compared to the conditions of the period 1995–2014. The columns from
left to right represent the TXx, TXn, TNx and TNn. a–d is at global warming levels of 1.5 °C under SSP245. e–h is at global warming levels of
2.0 °C under SSP245. i–l is at global warming levels of 1.5 °C under SSP585. m–p is at global warming levels of 2.0 °C under SSP585. The light
gray dot area indicates the statistical test with a Student-t statistical significance level of 5%.

Table 1. Changes in extreme temperature indices of averaged region under 1.5 °C and 2.0 °C global warming levels and SSP scenarios.

SSP245 SSP585

1.5 °C 2.0 °C 1.5 °C 2.0 °C

TXx 1.35 (0.32 ~ 2.04) 1.93 (1.18 ~ 2.53) 1.50 (0.22 ~ 2.47) 2.11 (0.96 ~ 3.05)

TXn 0.81 (−0.09 ~ 1.55) 1.56 (0.76 ~ 2.38) 1.10 (0.31 ~ 1.79) 1.52 (0.85 ~ 2.38)

TNx 1.26 (0.25 ~ 2.56) 1.90 (1.00 ~ 3.39) 1.07 (−0.98 ~ 2.43) 1.71 (−0.35 ~ 2.98)

TNn 1.02 (−1.40 ~ 2.02) 1.80 (−0.45 ~ 2.52) 1.27 (−1.63 ~ 2.42) 2.06 (−1.01 ~ 3.61)

SU 11.40 (−1.40 ~ 2.02) 16.95 (11.23 ~ 22.92) 11.95 (5.25 ~ 19.29) 17.97 (11.03 ~ 25.52)

ID -6.19 (−10.57 ~ -3.02) -9.56 (−14.10 ~ -5.06) -6.46 (−10.89 ~ -3.59) -9.85 (−14.71 ~ -6.39)

TR 8.40 (3.39 ~ 13.64) 13.31 (9.05 ~ 20.95) 8.28 (−28.01 ~ 13.43) 13.42 (−25.10 ~ 18.08)

FD -11.98 (−27.12 ~ -4.30) -17.18 (−29.79 ~ -10.76) -12.35 (−30.57 ~ -0.64) -17.70 (−34.59 ~ -6.95)

TX90p 5.13 (1.21 ~ 8.50) 7.92 (4.65 ~ 10.76) 5.38 (1.04 ~ 9.41) 8.19 (4.29 ~ 12.26)

TX10p -2.13 (−3.48 ~ -1.20) -3.29 (−4.76 ~ -2.08) -2.41 (−3.62 ~ -1.55) -3.17 (−4.46 ~ 0.90)

TN90p 5.70 (1.29 ~ 10.93) 8.63 (5.05 ~ 14.64) 5.12 (−2.99 ~ 10.35) 8.07 (−0.59 ~ 12.50)

TN10p -2.51 (−4.50 ~ 2.13) -3.84 (−5.56 ~ -0.22) -2.87 (−4.84 ~ 2.85) -4.00 (−5.61 ~ 1.17)

The values in the brackets represent the range of models.
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(i.e., icing days (ID) and frost days (FD)) will show a decreasing trend
in the future. A large decrease (exceeding 20 days) in ID and FD will
occur over the west of China. Moreover, the decreasing trend is
larger at 2.0 °C than that at 1.5 °C global warming and this trend
appears to be spreading from the west into central and eastern
China. In view of the area mean, it can be seen that a higher
emission scenario and warming level correspond to a larger
magnitude of change for these frequency indices. For example,
relative to the historical period, the regional mean SU over China will
increase by 17.97 days at the 2.0 °C warming level under SSP585,
ranging from 11.03 to 25.52 days. In the same index, the value is
11.40 days at 1.5 °C and SSP245. However, the change of TR under
SSP585 is smaller than the SSP245. This exception is caused by the
fact that one model (IPSL-CM6A-LR) projects a sharp reduction in TR
under SSP585, with -28.01 and -25.1 days compared to the baseline
period for 1.5 and 2.0 °C warming levels, respectively.
As shown in supplementary Figure S5, with global warming, the

warm days (TX90p) and nights (TN90p) will increase over the whole
of China. In spatial distribution, the magnitude of increase in the
west is larger than that in the east of China, particularly at the higher
warming level. On the other hand, two cold indices (i.e., TX10p and
TN10p) will decrease slightly relative to the baseline period. Under
the SSP585 scenario, the magnitude of the decrease is more obvious
than that under the SSP245. This response is especially strong in the
central-western regions of China where there will be fewer cold days
and nights in the context of global warming. Moreover, we also
calculated the regional mean changes of four percentile indices at
different warming levels. Relative to the historical period, area-
averaged TX90p and TN90p are expected to rise by ~5% and ~8% at
1.5 °C and 2.0 °C levels, respectively. The changes in TX10p and
TN10p are opposite to above warm indices, with a decrease
exceeding 2% and 3%, respectively. It is noteworthy that the
decrease in TN10p is most remarkable (~4.0%) in the warming level
of 2.0 °C under the SSP585 scenario.

Impact of additional 0.5 °C. In this section, we depict the
incremental changes over China from 1.5 °C to 2.0 °C warming
level over China. Figure 5 and supplementary Figure 6 show the
impact of additional 0.5 °C for extreme temperature indices in

spatial distribution under SSP245 and SSP585 scenarios. It is noted
that we merely draw the regions with a change magnitude of more
than 25%, and highlight the incremental impact of temperature
extremes in spatial is higher than the global mean temperature.
Under the additional 0.5 °C global warming, that is, as the global
mean temperature increases to 1.5 °C and then 2.0 °C above pre-
industrial levels, most extreme indices are expected to increase
proportionately more (exceeding 25%) during the final 0.5° than
during the first 1.5° across most regions of China. However, the
incremental changes in spatial distribution are different among
indices. For some warm indices, such as TXx, SU and TX90p, the
largest incremental changes (from 1.5° to 2.0°) tend to occur in the
southwest. It means when the increment of global mean
temperature is confined to 1.5 °C, the changes in these indices
would be reduced by ~60% or more over the southwest. Likewise,
for TXn and TNx, the northwest of China also has the largest
incremental changes, indicating that when global mean surface
temperature is arrested at 1.5 °C rather than 2.0 °C, the TXx and TNx
would decrease by far more than 25%. In contrast, the values of
TXx, SU and TX90p in the northeast, and the TNn, TR and TN10p
over the high-cold Tibetan Plateau are smaller from 0.5 °C less
warming under the SSP245, suggesting future 0.5 °C additional
warming would have little impact on these extreme temperature
indices and regions. Under the SSP585, the incremental changes
are similar to the change in the SSP245, but smaller in magnitude
and spatial extent. In general, the potential risk of temperature
extremes over China may be lower if the global mean temperature
is controlled to 1.5 °C rather than 2.0 °C under both SSP245 and
SSP585 scenarios.
The region-averaged incremental changes of 12 extreme

temperature indices for the CMIP6 ensemble in China are further
evaluated in Fig. 6. It can be seen that, despite uncertainties among
models, the incremental changes of multi-model means for all
indices are exceeding 25%. In other words, China will benefit from
avoiding a consistently incremental impact due to the limitation of
global warming to 1.5 °C rather than 2.0 °C. Meanwhile, similar to the
above conclusion in spatial, the incremental changes under the
SSP245 seem to be larger than the SSP585. For example, the
incremental changes of multi-model means under SSP245 and

Fig. 5 The spatial distribution of incremental changes for 12 extreme temperature indices in terms of global warming levels of 2.0 °C-
1.5 °C under SSP245 scenario. a–d The extremal indices: TXx, TXn, TNx and TNn. e–h The absolute indices: SU, ID, TR and FD. i–l The relative
indices: TX90p, TX10p, TN90p and TN10p.
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SSP585 are approximately 49.46% and 30.11% for the TXn. For most
indices, over half of the models show that incremental changes are
exceeding 25%, indicating that the sign of the changes is significant.
Besides, it should be noted that under SSP585 the spread among
models is larger and even some indices (i.e., TXx, TNx, TR and TX90p)
have some outliers in the bottom plot, implying that there are still
uncertainties in projecting the changes of extreme temperature
under future high emission scenario.

DISCUSSION
In this study, the bias-corrected outputs of 12 GCMs from CMIP6
through an EDCDF method is used to assess the skill of simulating
12 extreme temperature indices across China. Overall, after bias
correction, the improvements of CMIP6 models in simulating the
extreme temperature indices over China are really evident, in
terms of both the temporal evolution and spatial distribution. The
bias-corrected models have smaller IVS scores than raw ones
obviously, indicating that they have a reasonable skill in
reproducing the observed interannual variability in temperature
extremes in China. In spatial, the positive biases in the TXx, TNx, ID,
TR and FD and negative biases in the TXn, TNn and SU from the
original models are substantially reduced after the bias correction
for most regions of China. However, these revised models still
show more or fewer biases in simulating the FD and TN10p for the
west of China, especially for the Tibet Plateau. It is difficult to
simulate the climatology in the high-cold region of China. These
biases may stem from the coarse resolution of the original GCM,
because it is hard to appropriately simulate the atmospheric
processes in a highly spatially heterogeneous and complex
terrain24,25, despite bias correction.
Based on projections from the 12 bias-corrected CMIP6 GCMs,

the extreme temperature will show an increasing trend over most
regions of China under 1.5 °C and 2.0 °C warming scenarios
compared with the historical period. For TXx, TXn, TNx and TNn, a
notable feature is that all indices are expected to increase over
China. It means the extremal temperatures, including the
maximum and minimum temperature, will increase in the context
of climate change. Accordingly, the summer days (SU), tropical
nights (TR), warm days (TX90p), and nights (TN90p) will increase,
whereas four cold indices, such as ID, FD, TX10p, and TN10p, are
anticipated to decrease at future two warming levels. Moreover,
the higher emission scenario and warming level are likely to
correspond to a larger magnitude of change for these frequency
indices. These conclusions are also in line with other studies8,26,27.

In addition, our results also show that the changes in spatial
distribution are similar under a specific SSP scenario (i.e., SSP245
or SSP585) for most temperature indices (i.e., Fig. 4, Supplemen-
tary Figures 4 and 5), though there is a small difference in view of
the region-averaged changes. It seems to the pathway to 1.5° or
2.0° warming doesn’t matter very much.
Our results suggest that as the global mean temperature

increases to 1.5 °C and then 2.0 °C above pre-industrial levels, most
extreme indices are expected to increase proportionately more
during the final 0.5° than during the first 1.5° across most regions
of China. In other words, limiting the increasing magnitude of
global mean temperature to 1.5 °C rather than 2 °C relative to the
pre-industrial level is beneficial to reduce extreme temperature
risk for China. For some warm indices, such as TXx, SU and TX90p,
the largest incremental changes (from 1.5° to 2.0°) tend to occur in
the southwest (~60% or more). Under the SSP585, the incremental
changes are similar to the changes in the SSP245, but smaller in
magnitude and spatial extent.
When ensemble analysis on the period with a prescribed

global warming level rather than a fixed time period can
robustly identify the regional patterns of temperature changes,
owing to the removal of some of the uncertainty related to the
global models’ climate sensitivity28. However, the bias-corrected
CMIP6 models still have uncertainties, irrespective of the
simulation in the baseline period or future projection under
two global warming levels, even some models show an opposite
change trend compared with most models, i.e., TR in SSP585.
These uncertainties may result from the forcings, the magnitude
of the internal variability, the climate sensitivity and resolution
of individual models, as well as the definition of warming
timing24. In the historical simulation, a part of the biases might
be also due to the uncertainties of observation, especially in
complex topography with a lack of meteorological stations29.
For the projection in the near future, uncertainties may
principally come from the interior of climate models, while the
uncertainties from climate scenarios (i.e., SSP) mainly affect the
more remote future projection8. In addition, some uncertainties
could inherit from the biases in the baseline period30. Therefore,
despite bias correction, the outputs from the CMIP6 model
should be used with caution. Moreover, it is noted that the
warming scenarios in this study is based on the transient
simulations31,32, i.e., from the outputs of CMIP6 models rather
than a near-equilibrium 1.5 °C or 2.0 °C warmer world, which is
produced by the coupled earth system models (i.e., HAPPI
model intercomparison project). Thus, more models and climate

Fig. 6 The incremental changes in extreme temperature indices from 0.5 °C warming over China under SSP245 and SSP585 scenarios.
Box plots show the inter-model spread and the cross depicts the multi-model mean. The bottom dotted line indicates 25% changes from
2.0 °C to 1.5 °C in global mean temperature. The top figure is the percentage of model number when the incremental changes exceed 25%.
The vertical lines extending beyond the boxes are the minimum and maximum values for each temperature index and the red points
represent the outliers of an ensemble in the box plots.
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scenarios should be considered in temperature extreme projec-
tions to decrease the uncertainties in further study.

METHODS
Definition of extreme temperature indices
In this paper, 12 temperature extreme indices are defined by the
Expert Team on Climate Change Detection and Indices (ETCCDI)33

as shown in supplementary Table 1. These indices illustrate the
extreme events in view of the intensity and frequency, and have
been widely applied in the estimation and projection on the
temperature and precipitation extreme events across different
regions of the world33–36. In this study, we used 12 ETCCDI indices,
including four annual extremal indices: the warmest day (TXx), the
coldest day (TXn), the warmest night (TNx) and the coldest nights
(TNn); four absolute indices: the summer days (SU), the icing days
(ID), the tropical nights (TR) and the frost days (FD); four relative
indices: the warm days (TX90p), the cold days (TX10p), the warm
nights (TN90p) and the cold nights (TN10p). Four annual extremal
indices can indicate the intensity of extreme temperature, and the
absolute and relative indices represent the frequency of extreme
events.

Bias Correction method
Before bias correction, a regridded procedure for the raw CMIP6
models is conducted. First of all, the monthly mean observed
meteorological variables (i.e., daily maximum and minimum
temperature) in the historical period are interpolated at the same
resolution with the CMIP6 model using a bilinear interpolating
technology. Then, the differences between the interpolated
observation and each GCM are calculated. Thirdly, these anomaly
fields are further interpolated to the original resolution and then
add to the observed variables to generate the new output for
each GCM.
The EDCDF method is employed in this study to correct the

biases from raw CMIP6 outputs. This method is based on quantile
mapping technique and has an assumption that the difference
between simulated climate variables and observation in the
reference (historical) period maintains during the correction
(future) period for a given percentile29,37,38. EDCDF is superior to
the general cumulative distribution function (CDF), that is, it can
compare the difference of CDF between simulation and observa-
tion in a given reference period and adjust the CDF of model
rather than merely adjusting the mean and variance of model
output39–41. This approach is defined as follows:

~xf ¼ xf þ F�1
o ðFf ðxf ÞÞ � F�1

s ðFf ðxf ÞÞ (1)

where ~xf is corrected daily minimum and maximum temperature
from CMIP6 in the future period; xf is the projected raw climatic
variables; Ff refers to the cumulative distribution function (CDF) of
the model in future period; F�1

o and F�1
s are the quantile functions

(inverse CDF) for observation and simulation in the reference
period, respectively.

Timing of global warming levels
The 1.5 °C and 2.0 °C warming levels proposed in the 2015 Paris
Agreement are based on the increase in global annual mean
temperature compared to the pre-industrial level (1850 ~ 1900).
To reduce the uncertainties related to the large interannual
variability in defining the warming levels, the time series of global
annual mean temperature is smoothed using the triangular
moving average method with a 20-year window firstly for each
CMIP6 model42. The specific thresholds are determined as the first
year when the increase in global mean temperature reaches 1.5 °C
or 2.0 °C above the pre-industrial equivalent for individual GCM. As
a consequence, a 20-year period extending from 9 years prior and

10 years after the warming target year is as the future projection
period under two warming levels. Likewise, the period
(1995 ~ 2014) with the same time length is as the historical or
baseline period to validate the performance of CMIP6 models. On
this basis, we followed Tang, et al.43. Kim and Bae44 to define the
incremental impact of temperature extremes from 1.5 to 2.0 °C
warming levels.

Model performance metrics
To quantify the agreement between the GCM model simulations
and observation in spatial, the root-mean-square errors (RMSE)
and relative RMSE are computed in the baseline period (1995-
2014), which are defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P ðXm � XoÞ2
n

s

(2)

RMSE0 ¼ RMSE � RMSEm
RMSEm

(3)

where Xm and Xo are simulated and observed values; n is the
number of grids; RMSEm represents the median value of RMSE for
all CMIP6 models and RMSE0 is the relative performance for each
GCM. If the RMSE0 value of one GCM is negative, indicating that
the performance of this model is superior to half of all models, and
vice versa13 However, RMSE0 cannot be good at reflecting the
range of the errors between GCM and observation. Thus, the
standardized RMSE (RMSEstd) is also introduced in this study. It is
calculated by standard deviations of the extreme temperature
indices in observation, as follows:

RMSEstd ¼ RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P ðXo � XoÞ2
q (4)

In addition, we applied an inter-annual variability skill score (IVS)
to evaluate the ability of CMIP6 in simulating the inter-annual
variation45, defined as follows:

IVS ¼ σm

σo
� σo

σm

� �2

(5)

where σm and σo represent the interannual standard deviation of
model simulations and observation respectively. A smaller IVS
value means the inter-annual variation of model is in line with the
observation.
The observed daily gridded dataset CN05.1 (hereinafter referred

to as CN05) at 0.25° for China for the 1961-2014 period is firstly
collected from the China Meteorological Administration. CN05 is
based on meteorological observations from more than 2000 sta-
tions in China46. It has been popularly used in various hydrocli-
matic applications47,48. Here, we employ it to validate the
performance of models before and after bias correction. Then,
we obtained daily maximum and minimum temperatures for
historical, SSP2-RCP4.5 and SSP5-RCP8.5 scenarios (hereinafter
referred to as SSP245 and SSP585) from 12 CMIP6-GCMs
(Supplementary Table 2) from the Earth System Grid Federation
(ESGF) Peer-to-Peer (P2P) distributed data portal (https://esgf-
node.llnl.gov/search/cmip6/). Due to the different spatial resolu-
tions between these models and observation, the original model
applied a bilinear interpolation method to match the
reference data.

DATA AVAILABILITY
Datasets analyzed during the current study are available in the Earth System Grid
Federation (ESGF) Peer-to-Peer (P2P) distributed data archive [https://esgf-
node.llnl.gov/projects/cmip6/].
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