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Stabilization and Optimal Control for Discrete-time
Markov Jump Linear System with Multiplicative
Noises and Input Delays: A Complete Solution
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Abstract—This paper investigates the stabilization and optimal Smith predictor. In [1], a reduction technique was developed
control problems for Markov jump linear system (MJLS) with  to convert the stabilization problem (subject to input delays)
multiplicative noises and input delays. By overcoming the sub- to an equivalent delay-free one. In [31], the optimal control

stantive difficulty resulting from the invalidity of the separation . . . . )
principle, we provide a complete solution to the addressed and its application were investigated for the linear systems

problems by means of: 1) necessary and sufficient solvability, With multiple input/state time-lags, while the controller was
and the analytical formula on optimal finite horizon control — attained by solving one type of partial differential/difference
in line with a generalized coupled difference Riccati equation; Riccati equations. In [44], the linear quadratic regulation for

and 2) necessary and sufficient stabilizability, and the explicit e myitiple input-delayed system was investigated by using
expression of the optimal controller on infinite horizon according the duality method as the key technique

to a delayed generalized coupled algebraic Riccati equation (D- ’ . .
GCARE). It is shown that the MJILS with multiplicative noises Apart from the time delays, stochastic noises serve as
and input delays is mean square stabilizable if and only if the another source for complicating the system analysis, and time-
D-GCARE has a specific solution. Our main results are attained de|ay systems with mu|tip|icati\/e noises have recenﬂy been a

through the creation of a novel delayed stochastic Markov tegaaych focus attracting much attention from the control com-
maximum principle as well as the construction of a novel class

of delayed Markov Lyapunov function. munity [2]-[5], [23_]' [24], [34]3 [36], [47], [48]_' In [22], [45]'.
[46], a novel maximum principle was established for solving
the optimal finite horizon control for the systems possessing
multiplicative noise and input delays simultaneously, where
the existence condition and explicit solution for the optimal
controller were supplied on the basis of a delayed difference
|. INTRODUCTION Riccati equation. The stabilizability was investigated for the

In many practical applications, time delays are an essentfafinite horizon case. In fact, the results developed in [22],
feature that cannot be neglected. For example, due primaffip]: [46] can be regarded as an extension of the deterministic
to data collisions, network congestion and transmission errof§layed systems. It is important to realize that the optimal
the information transmitted through communication networié@ntroller for systems with additive/multiplicative noises is
of limited bandwidth may suffer time delays which, if notVith @ unified form which can be expressed as a multiplication
appropriately tackled, will deteriorate the control performand @ deterministic gain and a state predictor. o
of the closed-loop systems [13], [14], [17], [18], [20], [25], Markov jump linear systems (MJLSs? with multlpl|_cat|ve
[26], [28], [42]. So far, plenty of research effort has beeR0ises are usually termed as stochastic MJLSs which have
dedicated to the stabilization and optimal control for determifRund wide applications in practice such as nuclear fission,
istic delayed systems [1], [31], [39]. For example, in [39], th8&ater transfer, population dynamics and immunology, etc.
control problem was studied for a single deterministic input-h€ stabilization and optimal control problems for MJLS have
delayed system and an optimal controller was developed by figseived persistent research attention ever since the 1960s [6]-

[10], [19], [21], [30], [37], [40]. In general, there are two
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the optimality issue of the designed controller has not be&nrizon control, and verifies the infinite-horizon stabilization
considered in [27], [29], [33], [35], [41], [43], [50] and, ascondition. Section V draws some concluding conclusions.
far as we know, no corresponding results have been found\otations: Denote byR"™ the n-dimensional Euclidean
on the input-delayed stochastic MJLS. As such, distinct froapace, R™*" the set of allm x n matrices. For a matrix
the existed stabilization works for state delayed MJLS, the € R"*", let L’ be the transpose df, L > 0 (L > 0) be
optimal control problems will be investigated for stochastiits positive definite (positive semi-definite) matrix. Usé )P
MJLSs with input delay and the stabilizability will also beand E-) to denote the occurrence probability and expectation

revealed within the optimal control framework. operator, respectively.
To date, the stabilization and optimal control problems for
stochastic MJLSs wittinput delays are still open despite the Il. FINITE-HORIZON OPTIMAL CONTROL

numerous results on delayed MJLSs. The main reason for suchproplem Statement

a_lac_k of fundam_ental progress towards the_ stoch_astic MILSSrhe stochastic MILS with-step input delay is considered,
with input delays is twofold. First, by comparison with the prewhich runs up to a final timeV:

venient results for delayed systems with additive/multiplicative z(t+ 1) =(Ag, + wiAg, )z (t)

noises and for delay-free MJLSB,e separa_uon principlés no + (Bo, + weBo, Jult —7), )
longer applicable for stochastic MJLS withput delays, that

is, the optimal controller for input-delayed stochastic MJLS&here z(t) € R" represents the current state an(t) <
canno longerbe expressed as the Smith predictor form owing™* represents the input with delay > 0. ¢, means a
to the dependence property of ]ump|ng parameters betwé‘@{nogeneous discrete-time Markov chain with finite-state
the adjacent time points, this is the basic obstacle facedSBace® = {1,2,---,L} and transition probability matrix
this study. We also note that, when the state is unknown, tHe = (Xij)rxr. Let mp = [Wél), aE ,W(()L)] be the initial
separation principle does not hold in the case of systems watistribution of ¢;, so thatm;,0 < ¢t < N can be obtained.
multiplicative noises, as pointed out in [47], [48]. In this casdjere,w; stands for the zero-mean multiplicative noise with
the estimation error is dependent on the control input. Onpvariancey?. If 6, = i € {1,---, L}, we setd;, B;, A;, B;

a suboptimal controller can be obtained there by applyirigr the coefficient matrices of system (1). The initial values
“enforced separation principle”, and the conditional meary andu(—j),1 < j < r are known.

estimate is required for implementing the controller. Second,As for the sequence; }:>o and{w; }+>o, we make several
although the state augmentation approach can be employedssumptions below.

handle the input-delays, the introduction of the extended stateAssumption 1:For eacht > 0, the o—algebra F; is

would result in an immense burden in computation [38], ariddependent of the—algebrag,;, where 7, = ofw, - - -, wi]
the second challenge would then be to reduce the computa@hdl G: = o[fo, - - - , 04].

complexity while preserving the convenience of the controller Assumption 2:{0; };>o and{w; };>o are independent of the
design. initial valuesxy andu(i) (i = —r,--- ,—1).

The aim of this study is to supply a complete solutiop N conjunction with thes—algebras.7; and G;, we put
S : . rward an algebra as follows:
to the stabilization and optimal control of stochastic MJL P 0<1<t0<s<t1
possessing input delays. The primary innovations of this study { o{0,ws, 051 <t,05s <t — 1},

are indicated as below. 1) A novel class of delayed stochastic o160}, Irf ttilo'_

Markov maximum principle (D-SMMP) with regard to optimal

control is established and its analytic solution is deduce@bviously, we have Ewi|H:} = 0, E{wiws|H:i} = 11205

which offers the theoretical basis for solving the optimal For system (1), the state(z) and jumping parametefl,
control of stochastic MJLS subject to input delay. 2) Necessa#je acquired to the current time. In this situation, the optimal
and sufficient condition, which is given in an explicit formcontrolu(t) is #;-measurable.

is established for the existence of the optimal finite—horizo(pe-]!-ihe quadratic cost function with relation to system (1) is

control. The optimal controller, which is in the feedback form ned as N N

of current state and history inputs, is designed by means of a Jn :E[Z z(t) Qo x(t) + Zu(t —7) Ro,u(t —r)
delayed generalized coupled difference Riccati equation (D- t=0 t=r

GCDRE). 3) A novel type of delayed Lyapunov function, + (N +1) Py x(N + 1)), )

expressed as the optimal cost function, is put forward for thehare v ~ 1 is the terminal time P, Qp., and Ry, are
N+1) t) t

stabilization problem, and then the necessary and SuﬁiCi(ii‘fU'sitive semi-definite matrices of compatible dimensions.
stabilization conditions along with the infinite-horizon optimal The admissible control set is defined as follows:

controller are derived on the basis of a new D-GCARE. Una 2 {u(=7), - ,u(=1),u(0), - ,u(N — r)|u(t) € R™,
The structure of this paper is listed as below. In Section N—r

I, the optimal control over a finite-horizon is studied. A new u(t) is Hy — measurable, and Z E[u(t)'u(t)] < +oo},

maximum principle is introduced first. By applying the new t=—r

technique, the finite-horizon controller is designed and the ex- ®)

istence condition is established. In Section Ill, the stabilizatiand anyu(t) € U, is called an admissible control. Therefore,
and optimal controller on infinite horizon are supplied. Sectiahe finite-horizon optimal control for stochastic MJLS with
IV numerically illustrates the solvability condition of finite-input delay can be described as:
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Problem 1: Find an admissible controller(t) € U,q such whereXy, . .4, .(—1 < s < r) is the transition probability
that (2) is minimized according to system (1). of 6;_,, which is defined in Subsection A.It needs to be stated
Note that, in case of no jumping parameters, system (1) woultht X, (—1 < s < r) defined above can be chosen as the
reduce to the stochastic system [46] identity matrix or some multiplication of jumping parameter

o(t +1) = (A+w A)z(t) + (B +w Bu(t 1), matrices concerning with,_.
wherew; is a scalar random white noise, and thente, ;- For simplicity, we still used;_;(—1 < < r) to denote the
measurable controller can be described as possible realization of the Markov chain in this section, where
u(t —7r) 2 E{f(we, )2 (t)| Frer—1} 0;—; € {1,2,---,L}. S0,0;_; is used as the summation index
= E{f(wt, )| Fe—r—1 }E{z(t)|Ft—r-1}, in the definition of (8). In the system (1) and performance

index (2),6, represents the variable of Markov chain.
Furthermore, for anyH,-measurable functiom,, (¢), we

have

B. Establishment of D-SMMP E{®o, (t)x(t)|Hir}=Lo,, (Do, (t)Fo,_, 0, )T (t—T)

To begin with, we develop a new type of stochastic maxi- = ~
. ’ . _ +Y Lo, (Do, (1) F, v
mum principle for Problem 1 to deal with the correlation of ; e (B0 (D Fo1 0011

0, between adjacent times and the presence of input delay. B Bo. Nult —i— 9
Lemma 1:(Maximum Principle) Assume that Problem 1 X(Bowy FwoeBo_Jult —i=r), ()
is solvable. Then, the optimal controllelt — r) is H,_.- where the m'.;lme@r e = (Ag,, twisAg, ) - (Ag +

where E f(wy,t)|Fi—-—1} denotes the controller gain [46].

measurable and :satisfies wi—iAe,,), Fo, . 1 9,., = I for sii=0,1,--- r It would
0= E[lo, (1) ne + Ro,u(t —r)[He—r];t=7--- . N. (4 pe found that formula (9) plays a key role in the derivation of
wheren, represents the costate and satisfies the subsequent main results. _ _
-p N1 5 Now, we define a novel backward difference equation as
N ON 41 ( + )7 ( ) below
= ! = ... —
e = E@o (0 + QoM. £ =00 N ) vy, (1 r)=Lo,  (Bp, P (4 1) ot 1 B, oy (t+1)
with -« Lt
Do, (t) = Ap, + WtAGw x Bet +Ro,) Z‘Cepr esjs ot (t—s)), (10)
Ie, (t) = Bo, + wiBo,. / 0 5/
() CrE Ty, (t—r)=Lo,, (B, Po,p, (t+1)Ag, + 11° By,
Proof: See Appendix A. X Poyy (t+1) A0, ) Fo, 0,

It is obvious that (1), (4), (5), and (6) make up a delayed

r—1
IzoBr\gz'\aArg Eb)a:ckward stochastic Markov difference equation (D- SN Loy (T30t 5)Fo, ., 00), (11)

w(t + 1) =@, (t)a(t) + Lo, (t)u(t — ), . = -
) ’ T, t—r)=L By, P, t+1)A B,
0 =E[To, (t)'m: + Ro,u(t — 7)[Hs—r] orrlt =0 (BocPous (b4 ) Adac 447 B

for t=r,---,N, X P0t+1 (t+1)A0t)Fetfla0tfr+lBetfr)

’ (7) r—1
ni—1 =E[Qo, (t) e + Qo,(t)[Hi] > Lo, (T3H0(t—8)Fo, 1 0,41 Bo,,), (12)
for t=0,---,N, s=0
N :P9N+1:C(N +1). T(gt,r (t_r):£9t4((B(;pP9t+1 (t+1)Aq, + ,“QB(/%
Next, we seek for the unique solution to D-FBMDE (7). To x P% (t+1) A0 ) Fo, 1000 Bovrisn)
this end, some new notations need to be defined. For any jump- i 10
ing parameter matriceX, , Xy, ., -+, X, (-1<s <r), > Loy Ty (=) For 10,043 Bory; 1)
denoteXy, . o, . = [[;—. Xo, ., and define a new set of linear s=0
evoIuuon_operator/;fght1 (), Lo, () -+, Loy, () as Z Loy (TS50 (1)),
Eet—s—l (Xet—saeJHr) = E[Xet—sa9t4|Ht*$1] s=r—j+1
Z \ X j:1,2,"',7’, (13)
= Ot 51,0530 5,01 4> i,j i — j
g, e e T30 (t=5)=(T;,_, (t=5)) Wo,, (t—5) "' T}, (t—s),
‘Cet—yz (Xet—saeJHr) £ E[th s 9t4|Ht*$2] 65 =0,1,---,m, (14)
= E[E[Xp, ., 0, |[Hi-sa1][Hiso] fort = NNN—1,---,r, and Tg (N=-s5) =0,j =
L ~ 0,1,---,r,s = 0,1,--- ;r—1, and the matangt 0, =
= Z A0y 0,00 o1 Loy oy (Xop,0,,) Aetfs .'.Aetﬂ;’Fetﬁ—qut =1 fOf i =0,1,---,r. Moreover,
Ops1=1 Py, (t) satisfies a backward difference equation as below
P9t (t) :A,Qt ‘C9t (P9r+1 (t+1))A9t+ /1/2*’4,945 ‘C9t (P9r+1 (t+1))
' _ xAg,4Qo,~Ty" (1), (15)
‘C9r4 (Xet 9@:) = E[X9t—sv9t4r|rHt4f'] ' ' i
_ E[E[Xet i 0t4|’Ht~r+1]|’Ht%i] for t = N, N—l, cee ,0, aﬂdf:)‘glN+1 (N+1) = P9N+1'

L In the sequel, the collection of (10)-(15) will be termed as
Z X0y 001 Loprir (Ko, 0,,), (8) the D-GCDRE,.Wher_e the couplings caused.by quping pa-
Oy rp1=1 rameters and history inputs have been taken into simultaneous
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consideration. The D-GCDRE is with the same dimension & Solution to Problem 1

that of the original system state, which shows that the new de-, |ine with Theorem 1, we are in a position to propose an
veloped maximum principle method reduces the computatioraq‘{awticm solution to Problem 1.

complexity of the state augmentation. In (14), it is assumedTheorem 2:Problem 1 admits a unique optimal control if
that the inversdVy, _(t—s)~! exists. If this is not the case,and only if

the recursion stops and the solution to the D-GCDRE (10)-(15) Wy, ,(t—7)>0, t=N,N—-1,--- . (25)

does not exist.

In addition, the following notations are introduced In this situation, the explicit expression of the optimal con-

troller is supplied by

b0, (6, 1) = (05, (1)) 16
(Oéii,it( 1)) ( éit( ) (16) u(t—r):—Wgtfr(t—T)il[Tgtfr(t—T)x(t—T)
(aet,et,j (t,t—3)) v
v j + T (t—r)ult —2r+5—1)],
=57 (1) = (oot (it — s+ 1)) =1
s=1 t:T,T—Fl,"',N, (26)
_ —lpr—j+sy
X Wo, (8= 8)" T, 7"t = 9), (7 and the optimal cost satisfies
j:1,2,"',7’—1, r—1
with Ji =E{D_ 2(t)'Qo,x(t) + z(r) o, (r)a(r)
(86, (£))" =Ab, Lo, (Pay ., (t + 1)) Bo, + 1u* A, R
X Lo, (Po,,,(t+1)Bg, — T (1), (18) —a(r) Y (agp (= s+ 1) Wo,_ (r—s)""
(89, (1) =45, Lo, (5, (t+ 1)) = T (1), T
S e | ) <ElQG 1 (= D)) @)
Proof: See Appendix D. |

fort = N,N—1,---,0 andégNﬂ(NJrl) =0,7=1,2,---,N.
Then, the relationship betweerj j (t,t—j) andT} _(t—j)

is revealed as follows. D. The Case of No Jumping Parameters

Lemma 2:Considera§;gh_ (t,t — j) and Tg,,,- (t—j) as In the case that there are no jumping parameters, i.e.,
in (11)-(13), (16), and (17), then the following relations aréi = A, B; = B, A; = A, B; = Bfori = 1,2,---,L,
achieved the notations defined in (10)-(19) are simplified 5;_,,

E{®p, (1) (0 0, (1, E4+1) [He}=(T5, (1)), (20) Ti, (i = 0,1,---,r), Py 6 (5 = 1,---,7), oy 7,

. - H A A

E{®y, (t)/(ag;f,et,jﬂ(tﬂvt D) (4 ;_1(), 1,-- T 1), resf)lectwely.. SetP! & B, P/ £
(" i 1)), =19 1 21 —(Ozi_’tﬂdrj,_l) WtfrJrija'Z:thHfl,] =2,---.,r —l—_l, then
=@, p,_u, (Gt =J+ 1), G=12 =1, @D the expression for the optimal costate (23) turns into

E{To, (1) (a7, (b1t —j+ 1)) [Hej r+1l

o105y ) IHes} Mer = Pla(t) + Y Pl — v +i—2)

:(T(gt,j(t_j))v j:0717"' 77‘_1- (22) j=2
Proof: See Appendix B. B with &(t[t —r +i—2) = E{z(t)|H¢ 42}, and the optimal

We now deduce the solution to D-FBSMDE (7). controller (26) turns into

Theorem 1:Assume that the solution to the D-GCDRE ut —r) = =Y "Mz (t|t —r) (28)
(10)-(15) exists. Then, the unique solution to D-FBSMDE (7) ! ’
is as below . with Z(¢t|t — r) = E{«(t)|H.~,}, and

_ _ r—s+1 _ / T+l . _ _
e = (t)m(t) sz:;(aet’et*‘**l (t7t s+ 1)) M, =B’ ZPtJ«HA + N2B/Pt1+1A7
X Wo,_.(t—s)"" -
x E{ag, ot (0 — s+ 1)z(t)[He-s}- (23) Y.=B'> P, B+ ’B'P\,B+R.
Furthermore, (23) can be reformulated as =t
e , It can be seen that the optimal costate and the optimal
ne-1 =P, ()2 (t) — Z(O‘et,emﬂ (t,t—s+1)) controller coincide with the results developed for the stochastic
s=1 . .. . . . .
7 systems with multiplicative noises and input delay simultane-
x MT/‘)H(t: $) " T, (t = s)alt =) ously [46].
=200 > (agal L t—it D)
s=1 i=r—st1 E. The Case of No Time Delays
X W, _,(t — z’)*lT;iY*”(t —1)} When there is no time delay in the control, the D-GCDRE

t

Ku(t—2r+s—1),t=r,r+1,--- N. (24) (10)-(15) is specizfllized in the following form
W9t (t) :B9t£9t (P9t+1 (t + 1))B9t

Proof: See Appendix C. ] 2 5/ A
Remark 1:Note that the solution to D-FBSMDE (7) is . +,“ BouLo (Poyy (t+1))Bo, + Roy,
more complicated than that proposed in [46] and lays the To, (t) :B9t£29i(P9t+1(t+1))A9t i
foundation for the later deduction of the optimal controller + 1B, Lo, (Po, ., (t + 1)) A, ,

and the associated existence condition. Py, (t) =Ap, Lo, (Pa,, (t + 1)) As,
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+ p* Ap, Lo, (Po, ., (t + 1)) Ag, Assumption 3:R >0 and@ > 0.
+ Qo, — TY, (t) W, (£) VT3, (1). Assumption 4:(A, A,C) is exactly observable.
Now, the stabilization and optimal control on infinite hori-
For this situation, the optimal costate (23) is simplified agy, is formulated as below:
-1 = Py, (H)2(t), arlldothe optimal controller (26) reduces poplem 2: Seek for a#,-measurable controllen(t) =
to u(t) = —Wp, ()~ Ty (t)=(t). Furthermore, the optimal _ K9 a(t) =1, Kj u(t+i—r—1) € Uso, which minimizes

performance index becomeTs*,V E{z(Ps, (0)zo}. It can be a cost (29) and stabilizes system (1).
seen that the optimal costate and the optimal controller for

the delay-free stochastic MJLS are both linear combinations

of the state, which are consistent with the results proposBd Solution to Problem 2

in [15]. The optimal costate and optimal controller for the Lemma 3:Under Assumption 3, we obtain fay > r that
stochastic MJLS with input delay are more complicated, which

are related to not only the current state, but also the reeent Po,(t,N) > =N, 10, (32)
step history inputs. — 6+1
. . . Py, (t,N) t,t— 1, N
Remark 2:In order to specifically reflect the terminal time on E:: V0,0, st )
N, we reyvr|ttenW9t7T(t —r), Tét”(rt__j r) (i =0, 1’, . -’,7’), x Wo, . (t—s,N)~ 1a§t ;;}1 (tt—s+1,N)
Py, (1), 6'9t(t) G = 17."' .7, O‘et,ét,j(tat - J)‘ G = >0,t=N, -, (33)
0,1,---,r — 1), respectively, adVy, (t —r, N), Ty (t — _

N)Y (G =011, Pp(t.N), 8 (t.N) (j = 1.+ .7), Proof: See Appendix E. L
T’T,j) (i =0, ; ’T_) 0.t N), 8, (&, N) (j ) Lemma 4:Under Assumptions 3 and 4, there exists a
ag, g, (Lt =G, N) (j=0,1,---,r—1). positive integerN, > r, such that

[1l. THE INFINITE-HORIZON OPTIMAL CONTROL AND Po, (t,No) = > (g o, (= 541, No))’

STABILIZATION s=1 . -
A. Problem Statement X Wou o (t =5, No) g, g, (1 = s+ 1, No)

In this section, we focus on the infinite-horizon stabilization >0, t=No,--- .
control of stochastic MJLS with multi-step input delay. For the . :
sake of argument, sé?,_ , = 0 and define the performance Proof. See _App_endlx F. _m
index as For anyt > 0, in this part, we employ/,, 1,1, -- ,lo, [} tO

(00, 0, 1) describe the realization Aff; ., 0t —y1,- - , 0+, 0¢41}, with
070 leylo_1, -+ ,lo,] € ©. Consider some jumping parameter ma-

PO R Y B trlcengﬂ,X@ .+, Xo,, and letXo,, o, = [1'= , Xo, .,
_E{Zx(t) Qz(t) + ;“(t ) Ru(t r)} (29) and theﬁ the Feallzatloh of these rﬁatr]ces cazn be dénoted as

. = X, X1, X1, X1,, X, = X;[[\—o X1, In accordance
with @ > 0, R > 0. with (8), we deflne a set of algebralc evolution operators
The admissible control set for the infinite horizon case B, (), L1, (), El () a
given as: !
Uso 2 {u(—7), -+ ,u(—1),u(0),u(l),---|u(t) € R™, L1, (X Z,\l X l€o
u(t) is H; — measurable, and Z E[u(t) u(t)] < +oo}. i
t=—r (30) ‘Cll loz:l Y lo‘Clo )7l1 €0,
Furthermore, some definitions and standard assumptions are
made in order to analyze the system stabilization.
Definition 1: The stochastic MJLS (1) is said to be stabiliz-
able in the mean square sense if there existg-#neasurable Z Nty L1,y (X7, ), 1 € O, (34)
controller lp_1=1
u(t) = —Kg,x( Z Kpou(t+i—r—1) Also, Xy, (—1 < s <) can be chosen as the identity matrix
i=1 or the product of some matrix multiplication. Now, we define
with constant gain matricesk for 4, = 1 (1 = 2&"neW D'GCARI,E as ooy -
1,2, ,L,i = 0,1,---,7) satisfying lim,_,oc E(u(t)u(t)) Wi, :ﬁlT(BloP‘Blo + By PiBi, + R)
” . , i N
= 0 such thaflim;_, E(z(¢)'z(t)) = 0 for any initial values B Zﬁ T e o, (35)
o, u(=r), -+ ,u(0).

Def|n|t|on 2 T e following stochastic MJLS

20+ 1) = (g, +eida)e@ut) = Coa) @) T (Bl B iR )

r—1

is called exactly observable if, for any > 0, =Y L (T F 0, 1 €6, (36)
y(t) =0,a.5,V0 <t < N = x9 = 0. s=0
T) =L, (B}, P;A *B| P:A,)Fi, ... B, _.
For ease of descrlptlon we write (31) é.st A,C), where b =L (Bio iAo + 17 Bio Brio) Pt By 54)
r—j

A = (Al,Ag,-' ).A = (Al,AQ, AL) andC = _ I Ts+1,OF B
(Ch, Coyeee ,C) With G = Q5 (i = 1,-++ , L). E::O e
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Z Lo (TPH=0=D) 1 e C. The Case of No Time Delay or Multiplicative Noises
s=r—j+1 For the case without input delay, the D-GCARE (35)-(39)
G=1,2,- 7 (37) reduces to
i,j i /7 771 ; 7 .. L _
17 =)W, T, 855 =01, 1, (38) =l ( ZAZ P Aty + 17 ALy (O N iPr) Al + Q
lo =Q + Aly L1 (P) Ay + 1* Al L1y (Pr) Ary = T, i=1 =1
lo S 0. (39) - TIOWl01n07 lO = 17 27 o 7L7 (47)
L L
Furthermore, define the algebra|c operat0£$ = Wi, =Bj, (Z Ay iPr)Buo + 1 By, (Z)\ P B, + R,
1,2,---, ),allj( =0,1,---,r—1)a =1 =1
(61,) =Aiy Lio (Py)Big + 11° Al L1 (P, >Bzo ~ TPl € O, lo = b L, ) (48)
‘ ‘ | (40) Tiy =Biy (> NoiP) Ao + 1° Biy (Y NP Aug,
(5{0)/ :Aio‘clo((&?il)/) - jjl(())uvj = 27 37 Y lO S 97 (41) =1 =1
r / 10:1727"'71/7 (49)
(ady,1e) =(81,)", lo €O, (42)
J and the stabilization condition becomes
(agy 1) =837 =Y (a0 (W) T 77, P, >0,lo=1,2,--,L. (50)
s=1
j=1,2,--,r—1, lo,l; € O. (43) Meanwhile, the optimal controller satisfies
. . t) = —W, T, z(t),t >0 51
Then, the main results of this part can be stated as below. u(®) o Toz(t)t 2 ®1)
Theorem 3:Under Assumptions 3 and 4, letting system (13nd the optimal cost is given by
be mean square stabilizable, we have the following properties. J* = E{zoPa0yTo}- (52)
1) WhenN — oo, P, (t,N),W,, (t —r,N), T (t — r,N) _ _ ,
(s=0,1,---,7) converge, respectively, t5,,, W, T’ (s = Compared with Theorem 4, it can be found that the stabi-

0,1,---,r) for anyt > 0 andlo,l, € ©. In addition, P, lization condition as well as the optimal controller for the
V{/z s (5=0,1,--- ) obey th,ercoupled algebraic'Rig,catidelayed stochastic MJLS (1) is more complicated because of
eql]:';ltigns (35)_’(3’9)_ ’ the existence of input delay. If there are no input delay and

2) The following inequality is satisfied multiplicative noises simultaneously, i.g.,= 0, the obtained
r result (50)-(52) is coincided with Proposition 2 in [7].
Py =Y (af YW a2 > 0,00, L1 €6, (44)
s=1

Proof: See Appendix G. D. Application to the NCSs with Packet Losses and Input

Theorem 4:Under Assumptions 3 and 4, system (1) i®elay
stabilizable in the mean-square sense if and only if there exist<onsider the following NCSs with packet losses and input

a unique solution to (35)-(39) such that delay
P, — Z(alro W a7 > 0,00, 1 €O, 2t +1) = Aoz (t) + e Bo,u(t =), (53)
s=1 where{~,}:>0 is modeled as an i.i.d Bernoulli process.= 1
On this condition, the analytical solution to the optimaflenotes that the data packet has been successfully delivered
controller can be obtained by to the plant, andy, = 0 signifies the dropout. Prol, =
r 0) = p,Prob(y; = 1) =1 — p, wherep € (0, 1) is the packet
ult —r) = _lel[TﬂTm(t —r)+ ZTLJ;“(t —2r 445 —1)], dropout rate. In fact, system (53) can be viewed as a simplified

version of system (1). In this case, the D-GCARE (35)-(39)
(45) specialized in the following form

—p)Bi, By, + pBiy PiBi, + R)

j=1

which stabilizes (1) and minimizes the performance (29).er =(1- )Ll (@
Furthermore, the minimum value of (29) is with the form

. , - ZL; YW T, L € o, (54)
J* :E{Z 2(t)' Qx(t) + (r) Po,x(r) —x(r)' >
s=1 Tl(: :( - )El (BloP~AloFll,lr)
x (aé, oWl E(ag ot a(r)[He—s)}. (46) 5
- Zﬁz T W T Ry ,)s b €O, (55)
Proof: See Appendix H. |

Remark 3:So far, we have addressed the stabilization and 7] =(1 - ) La, ((BlopAlth B
optimal control problems for one type of MJLS with multi-
plicative noises and input delay. It has been shown that the Zgl YW T R B )
stochastic MJLS with input delay is mean square stable under
the optimal controller if and only if a certain D-GCARE has a
particular positive definite solution. The novelty with respect Z L1, ((
to the methodology lies mainly in the introduction of a D- smrI

FBSMDE as well as the definition of a new type of Lyapunov br € @,’ J=12m R (56)
function. Py =Q + A, L1y (P Aiy — (Tyy) Wy Ty, 1o € O, (57)

r7j+1)

s+1 W Ts (r— j))
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where the notation&fo_’li (j=0,1,---,7r—1) and 4] (j = T =[ 26296 0.9424 |, T = 7.3898, Ty = 8.1447,
2, ,7) are kept the same as in (42), (43), and (41), while 77 —4.6907, T3 = 7.1068, ST = [ 4.4359 3.3759 |,
o, becomes i N S3=[ 27946 0.7970 |, S}, = [ 3.7527 0.3324 ],

(00)” =(1 =) A1y Lo (F) B = (Tig) Wiy Tig lo €0 38) 1 _ [ 31983 —0.1429 ], S% = [ 40432 2.0710 ],
Then, the stabilization condition can be obtained directly from g1 _ [ 3.6497 1.9588 ].

Theorem 4:
o 1 r—s It can be shown that the stabilization conditions
P, — Z(alo,lill )lWlslalo,lill > 0,lo, -+ ,lr € 0. )
s=1

r—s+1\7 —1 _r—s+1
It can be seen that the stabilization condition based on (54)-Plo B Z(almlsfl) Wi agg i > 0oyl Iz € {1,2}.

(57) and (42)-(43) is closely related with the packet dropout s=1 (59)
ratep and the input delay. As is well known that the problem

of maximum packet loss probability has been well studied fare all satisfied. Ifo(t) = 1, the optimal infinite horizon
the case of NCSs without delay [51]. When the packet losgontroller satisfies

input delay, and jumping parameter exist simultaneously, it is ~ (t) = = Wi [TV (t) + Tiu(t — 2) + Tu(t — 1)]

difficult to seek for the maximum value of the allowable packet =—[ 04412 0.1743 | x(t) — 0.7237u(t — 2)

loss rate, which is worthy of in-depth study in the future. —0.4594u(t — 1). (60)

If 6(t) = 2, the optimal infinite horizon controller obeys
o _ u(t) = — Wy T9x(t) + Ty u(t — 2) + Tou(t — 1)]
A. The Finite-Horizon Case =—[ 02221 0.0796 | z(t) — 0.6878u(t — 2)

To illustrate the theoretical result for the finite-horizon case, — 0.6002u(t — 1) (61)
a second-order dynamic system is introduced. The system ‘ ‘

matrices in (1) and the weighting matrices in (2) are giveR yiew of (46), we can obtain the optimal performance

IV. NUMERICAL EXAMPLES

below 19 1 08 0 Jo = 11.1071. The simulation results are supplied in Figs. 1-2.
Ai=1| _59 _p8 ] ;Ao = { 0 06 } ) The closed-loop state trajectories subject to one sample path
- of 0(t) € {1,2} are plotted in Fig. 2 and the corresponding
< 0.2 0.1 - 0.08 0.06 . g :
A= _515 —0.05 } A2 = { 0 0.06 ] . controller is drawn in Fig. 2. It can be found that the optimal

controlled system is stable since the condition is satisfied.

5~ [ 02 0 1o 25 : ; . ‘
By = 0.1]"’21:{ 1]7‘92:{0 1}’ b
- 2L @ 2
Ri=1,Ry =2,Pyj1 = 10 , :
0 1 15¢ Q M (t) 5 t t i
W PR |
0(t) € {1, 2} represents a two-state Markov chain, which i j% e 2 |
i it ili 09 01 initi i i (2 i . 1O 10 20 30_ 40 50
with transition probablllty{ 03 0.7 and initial distribu- g sl t 0 .
tion (0.5, 0.5). The input delay- = 2 andp = 0.7. The initial & :
valuesu(—1) = 0,u(—2) = 0,z(0) = [1 1]’ BT
Set the time horizorV = 9. By applying Theorem 2, the
calculation result forV;(t), T?(t), Ti(t), T2(t) (i = 1,2)
are listed in Table I. It is checked th&t;(¢t) > 0 for i = s i o P i o
1,2,t=1,---,7. Therefore, there exists a unique solution t i
the finite-horizon LQR problem based on Theorem 2 and the
optimal value of (2) is/y, = 11.1025. Fig. 1. The optimal state trajectories

B. The Infinite-Horizon Case
In this part, we show the validity of the stabilization resultC. Comparison with the Delay-Free Case

The specifications of system (1), the input delayand the | this subsection, the differences of the infinite horizon
initial values of zo,u(—1),u(—2) remain unchanged. Thegiapjjization control between the delay-free case and the input
stochastic property af(¢) and the value of: keep the same as ye|ay case are shown. For this purpose, we still consider the
in the previous subsection. However, the weighting matricg§merical example as in Subsection B, but 0. Based on

become ag) = diag{1, 1}, R = 1. We run50 Monte Carlo he GCARE (47)-(49) and the corresponding results (50)-(52),
simulations, and select the first trajectory to illustrate thge can obtain the simulation results as follows:

Featlits are Shown a8 belont 0 oorem & the compute p=| 2 e | m= | L, ],
6.0049 3.2575 2.8640 0.4092} ' ‘ ‘ ‘

Po=1 39575 41545 } » P = [ 04092 1.8574 TP =[ 34837 0.3217 |, T = [ 2.7984 1.4800 ],
Wi =10.2104, Wa = 11.8411, T} = [ 4.5047 1.7793 ], W1 =8.6976, W = 10.4456.
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TABLE |
CALCULATION RESULTS

t | Wat) | Wa(t) 7 (t) T () T | T,(0) | TE®) [ T3(®)
T | 10.1887| 11.8120 | [4.4942,1.7749]| [2.6229,0.9399] 7.3731 | 8.1237 | 4.6787 | 7.0868
2 | 10.1612 | 11.7779| [4.4815,1.7698]| [2.6153,0.9371]| 7.3523 | 8.1001 | 4.6653 | 7.0658
3 | 10.0653 | 11.6505 | [4.4335,1.7492]| [2.5845,0.9257]| 7.2767 | 8.0042 | 4.6098 | 6.9741
4| 9.9226 | 11.4614 | [4.3766,1.7282]| [2.5490,0.9114]| 7.1806 | 7.8915 | 4.5522 | 6.8725
5

6

7

| 9.2490 | 10.5252| [4.0547,1.5929]| [2.3345,0.8247]| 6.6680 | 7.2106 | 4.1794 | 6.2058
| 8.4824 | 9.6430 | [3.7135,1.4680]| [2.1532,0.7648]| 6.0906 | 6.6577 | 3.8605 | 5.7781
| 3.6522 | 5.0974 | [1.2999,0.5697]| [0.9334,0.2790]| 2.0293 | 2.7986 | 1.5094 | 2.7294

0.1 ; ; ; : APPENDIX
T, A. Proof of Lemma 1
of 1 1 Proof: For arbitrary u(t), Au(t) € U,q ande € R,
= u( we haveu; = u(t) + cAu(t) € Uyq. Setaf, J5 to be the
o1l # | corresponding state and cost function with and x(¢) and
S / b Jn mean the corresponding state and cost function with).
E * In view of the system (1), it holds
5 02r 7 -k Az(t+1) = (As, + wi Ao, )Az(t) + (Ba, + wiBa, )eAu(t—7),
Az(0) =0, (64)
-0.3 Pk 1 1 5
* 0 10 20 30 40 50 whereA_a:(t+1) =T — z(t+1). ) )
¥ t Applying the recursive expressiofz(t+1) can be rewrit-
0.4 : : : ‘ ten as
0 10 20 30 40 50 ¢
t Az(t+1) = Z F@t$@i+1 (Bo, + wiBgi)eAu(i -r), (65)
=0

Fig. 2. The optimal control 5 B B
Whel'_ngthl = (Aet +"‘itA9t)(A9t71 +Wt—1A9t71 ) T (AG@H +
= I, andAz(0) = 0 has been

. e - wi"‘lAe'%H)’i:O’”' 1 F, 00
Obviously, the stabilization condition used.
PL>0,P,>0 (62) Since Au(i — 1) € Upa,i = 0,1,--- ¢, it follows from

(3) that>"!_, E[Au(i — r)/ Au(i — )] < +oc. Furthermore,

are satisfied. The infinite horizon optimal controller recall thatd,, Ay.--+ Ay, Ay, Ay, -~ . Ay By, Ba,--- . By,

—[0.4005 0.0370]z(t), if 0; = 1; dB:. Bo.--- . B i 2\ i fini
u(t) = X 63) andBy, B, , B, are constant matrices andd) is finite
) { —[0-2679 0.1417z(2), if 6 =2, ) fori=0,1,---,t. So, there existy satisfying

and the optimal performance indek = 5.2507. Compared E{Az(t+1) Az (t+1)}<ve® < +oo. (66)

(62), (63) with (59), (60), and (61), respectively, it can bg, what follows, we will deduce the variation ofy owing
found that the stabilization condition for the delay-free case ts the perturbation of controller(t). In accordance with (2),
much simpler, and the infinite-horizon optimal controller is d5 can be expressed as

linear combination of the current state, which does not involve E N - . N ., .
the delayed input terms. T = E[Y (#)'Qaxf + D (uir) Ro,ui,
t=0 t=r
+ (1’§V+1)/P9N+1557V+1]- (67)

V. CONCLUSION

izaton prablems for stoohast ML with mul-step input RECAING Ay = #(t4+1) 4 Aa((-+1) andui = () +

P : . - ) b np ¢Au(t), and based on the total derivative &f; at the point
delay. An analytical solution to the finite-horizon case haﬁt u), we have
been given, and a necessary and sufficient condition for the N N

solvability has been proposed for the first time. Later, we havey =Jy + 2E[Z 2(t)' Qo, Az (t) + Zu(t—r)'RgtsAu(t—r)

proposed a necessary and sufficient condition for the stabiliz- t=0 t=r

ability of the stochastic delayed MJLS. To show the existence ~ + (N +1)'Poy ., Az(N + 1)] + o(7), (68)
of such a solution, one just needs to test the satisfactiongfiere

a set of algebraic inequalities, which are easily verifiable. To N

N
our knowledge, no similar conditions have been developed for =E{sart{y _[wf —z(t)]'[xf —2(t)] + D _[ui — u(t—7))’
the mean square stabilizability subject to delayed stochastic | . o
MJLS. It should be noted that our derivations have been mainly [wtr —u(t=r)] + o —e(N+ D] e —2(N+1]}},
based on the subtle usage of the link between the syst@th sqrt{-} being the square root andr) representing the
state/inputs and certain auxiliary variable, thereby avoiding thiinitesimal of higher order when — 0.
unnecessarily complicated augmented argument. Moreover,r2 satisfies that
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- - 24, P 1)B
72 < S EA(t) Ax(t)] + €2 > ElAu(t—r) Au(t—r)] 1Ay, Pory iy (1 +1) Do, )
r—1
=0 t=r 0,7—s 0
+E[Az(N + 1) Az(N + 1). (69) =Y Lo (Foyy 0, T5 0 (E+5+1) = (T5,(1),
s=0

In view of (66) andy_,", E[Au(t—r)'Au(t—r)] < +0o,we and (20) is shown.
obtain thatr is the same order infinitesimal ef Based on  Next, we will show that (22) is true foj = 0. Based on

this and (65),AJy can be expressed as (16), (18), and (19), and recalling the definition® (¢), we
AJy = JIn—JnN obtain
B A ) | E{T0, (1) (00,0 (41, £41)) [He}
- 2E{x(N+1) PQNH ; FeN,efH (Bei +WiBei)€AU(Z_T) :‘C‘@t (B(;r Fét+r—1,0t+1 (5ét+r (t + 7,))/)
N Ll — - 0,s+1
—|—Z z(t)'Qe, Z Fo, 1.0, (B, +[A)iBQi)€AU(7:—7’) - Z Lo, (Bg, F9t+r—s—1a9t+1T@t’+T7‘g (t+r—s))
t=0 =0 s=1
N , =Lo, (Bét Fén+7~71,9t+1 (A/9H~T P9t+r+1 (t+r+ 1)B9t+T
+ Z u(t—r) Ro,eAu(t—7)}+o(e). (70) + ,U'ZA{%+T P@t+r+1 (t+r+ 1)B6t+r))
t=r
. . - . = / ! 0,s+1 1 /
Note thatu(—i),i = 1,---,r are fixed, we obtain — Y Lo.(BoFo,, . 0. To " (t+7—9) = (T5,(t)"
Au(—i) = 0,i = 1,---,r. Then, (70) can be rewritten as 5=0
~ So, (22) is deduced for the case jof= 0.
AJn =2E{[x(N+1)" Py, (Boy +wnBoy)+u(N—r)"Rgy] In the sequel, we will show that equation (21) and (22) are
Nl true forj = 1,2,--- r — 1. The induction method will be
X eAWN—=V+S J2(N+1V Py Eyo o employed in this derivation. For this purpose, take any
( ) Z.;[ ( Vo Fon 00 s < j — 1, and presume that (21) and (22) are satisfied for
N all 1 < s <j—1. Now, we are in the position to show that

B 10, B ‘ B (21) and (22) are true fos = j. From (17) and the above
x (B, —|—sz01)+;+1 x(t) Qo,Fo, 1,0: (By, +wiBo,) equations, it follows that

+u(i—r) Re,JeAu(i—1)}+o(e). (71) E{®, (t),(o‘g;jl,et,jﬂ (10— + 1)) Hed
=Ap, Lo, (57 (t+ 1)) = (To, (1) We, (8) ' T5,777(2)

Define i1 ,
N 5 - Z(Oﬁg;giﬂ (t,t—s+1))Wo,  (t—s5) T 7" (t—s)
i = E{ Z Fétfhe-%g Qetx(t)-‘rFeN,Q#l P9N+1:C(N+1)|HH1}7 s=1
t=it1 72) :(O‘g;éiljﬂ (t,t—j+1)) (73)
and we have and ;
ni—1 =E{Qo, 2(1)+ (Ag, +wi s, ) i H:}. Bl (0 (@, oy (EF 1.’t AR
J
(5) and (6) are shown. =E{Tq, (1) (85, 2, (t+ 1)) = > _(Ts,,,_(t+1—5))
Substituting (72) into (71) yields s=1
N _ X W,y (t+1—8)"T, 77 (t+ 1 — 8)][He—j}
AJn =2E{Y [ni(Bo, +wiBs,)+u(i—71) Re,]eAu(i—71)}+o(¢) v ~ e
Z:I =Ty, (t =) (74)

N
_ / 5 . / . From (73) and (74), we know that (21) and (22) are true for
=2E E[n; (Bo, i Bo, — 1) Ro, | Hir]eAu(i— . . .
{; i (Bo, +ewiBo,) Fuli =) Ro,| JeBu(i=r)} s = j. By the induction method, we obtain that (21) and (22)
+o(e). are satisfied for alj = 1,2,--- ,r — 1. The proof of Lemma

. . " 2 is completed. [ |
It is obvious that the necessary condition for the extreme P

value of performance index is thatJy > 0. Since Au(t)
is arbitrary for1 < ¢ < N, the necessary condition becomesC. Proof of Theorem 1

E[n;(Beo, +wiBy,) + u(i — ) Re,|Hi—r] = 0. Proof: The inductive approach will be used for solving

. . . the D-FBMDE. First of all, consider the caseiof N. Given
The result (4) is evident and the proof is completed. = (1), (4) and (5), we have

0 =E[[ey (N)'nn + Royu(N —7)|[Hn—r]

B. Proof of Lemma 2 =E[Lo (N) Poy,, Poy (N)z(N)|HN -]
Proof: Firstly, we prove that equation (20) holds. In view + Woy_ (N —r)u(N — 7). (75)
of (16), (18), and (19), we have _
E{®0, (t)' (Chyyy 00 (t+1, 1)) [He} Based on the condition thaty, (N —r), Ty (N —r)

(j=0,1,---,r), and Py, (N) are the solutions t0 (10)-(15),
we obtain that the inverse &V, (N —r) exists. Therefore,

o (F! TOr=s (4 1 it follows from (75) that
_ ; Gt( Ot4s,0¢ 0t+s+1( + s+ )) U(N _ 7,,) — WBN,T(N _ 7ﬁ)—lE[l—\eN (N)/P9N+1

:Let (Fét+T—1 L0t (Al9t+T Pet+T+1 (t +r+ 1)B9t+7‘ x CI)BN (N)x(N)|HN7T] (76)

=Lo, (Fét+T71 ,0t (5;t+’r (t+ T))/)

r—2
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Furthermore, applying (1), (5), and (76) to (6), one obtainsD. Proof of Theorem 2

_ / Proof: (i) Necessary: Suppose that the solution to Prob-
—1 =E{®g, (N N
-1 =E{ Doy (N) +?9Nm( A} lem 1 is uniquely existed. Using the inductive method, we
—Py (N)a(N) — r—s+1 NN —s+1)Y shall demonstrate thal’y, (¢t — r) in (10) is reversible and
o (N)z(N) ;(O‘GN ON— +1( s+1)) u(t — r) obeys (26) Set

—1
X Woy (N =) E{Z 1)’ Qo, (1) + u(i — )" Ro,u(i — 1))
X E{agy oy oy (N, N — s+ Da(N)|[Hn-s},
_ N +:c(N+ 1) Poy 2(N 4 1)[Her} (80)
where the terminal conditionsy /" (N, N —s+1) = . N, .r. Fort = N, (80) can be written as
0, s = 1,2,--- .7 — 1 have been used. Therefore, (23) is J(N)=E{z(N) Qo 2(N) + u(N — r)'Roy u(N — r)
demonstrated fot = V. B on o
By the inductive method, we select ahywith 1 < k < N, + (N +1) Poyo(N +1)[Hy-r}. (81)
and presume that the costatgs; are given as (23) for all
t > k + 1. In the sequel, we need to show thgt ; satisfies
(23). To achieve this aim, substituting. into (4) and using
the transforms (20)-(22), we obtain

In view of (1), we know that/(V) is with a quadratic form
about the state and input terms. Note that system (1) can start
at any time with arbitrary initial values. Letting(N) = 0 and

0 =E{Ts, (k)'m + Ro, u(k —7)|[Hr—r} substituting (1) into (81), one obtains
:E{[Bék ,Cgk (ngJrl (n =+ 1))14(9,C J(N) :E{U(N - 7ﬁ) (RQN + l_‘9N (N) P0N+1
+ “2Bék Lo, (P0k+1 (n+ 1))A9k X Loy (N)u(N = r)|Hw—r}

=u(N —7)Woy_ (N —7r)u(N —7) > 0. (82)
The uniqueness of the optimal controller indicates th@v)

- (Ts}k(k))'Wek (k)" Ty, (k)]a(k)

- Z Tt (k=) W, _ (k—s)"" must be positive for arbitraryu(N — ) # 0. It can be
concluded from (82) thatVy, (N —r) > 0. Furthermore,
E restl ko D () M M based on the necessary condition that Problem 1 is uniquely
. [a‘)’“ i (Bo = 5+ D) H—s][Hi—r} solvable, we obtain from (76) that
+Wo_ (k= rJulk —r) u(N = 1) = = Woy_ (N =) T8 (N = r)e(N —r)
=Elas, 6, ., (k k=71 + Da(k)|[He]
+ Wo,_, (k—r)u(k —r). @7 + ZTéN Ju(N =2r+j—1)], (83
Since the solution to (10)-(15) existds, (K —7)~! exists. where the foIIowmg expression
Therefore, it follows from (77) that 2(N) =U(N — 1, N — r)z(N — r)
ulk —7r)=—Wq,_ (k—r)"" _
x Elad, on_ oy (ko k =7+ Da(k)[Hir].  (78) + Z YIN-1LN-r+j+1)

x oy TH(N—T—Q—j) u(N —2r + 7).
Substitutingr,, into (6) and using (1), (20)-(22), (78), one has been employed in the derivation of (83).

obtains Now, select anyk with 1 < k < N, and presume that
L —E B+ Do (kY 1 | We,_, (t —r) is reversible and the explicit solution tdt —r)
Tt {ngx(/)+ o (k) e[ M} - is élven as (26) fort > k + 1. In what follows, it remains
=[Qo, + Ab, Loy, (P, (k + 1)) Aoy, + " A, to prove that the existence condition and explicit solution for
x gek (Poyy, (k +1))Ag, — TS (k)]a (k) u(k—r) is also satisfied. Letting(k) = 0, we first derive the
k

quadratic form ofu(k — r) in J(k). In light of (1), (4) and

_ sl MW, ) (6) fort > k + 1, we obtain
Z Qg6 —s+ )) Bk,s( S) E{:z:(t)'mﬂ _ :r(t + 1),77t|7'Lk77“+1}
x E[agk g:l (b — s+ D)a(k)[ My =E{x(t)'Qo,x(t) + u(t — 1) Ro,u(t — 7)[Hr—rs1}-
+ [Ay, Lo, (Po,., (k+ 1)) B, + A Adding up the previous equation from= k + 1tot = N,
) A on » we obtain that
X ‘Cek (P9k+1 (k + 1))B9k - Te,; (k) , ,
E{x(k: +1) ' —x(N+1)'ny|[Hr—ri1}
- Z (@ oy (kb — s+ 1)) ,
Z E{z(t)' Qo,x(t) + u(t — ) Ro,u(t — )| Hy—ri1}, (84)
X Wek k=) T (k= 9)u(k — ) =kt
r ) , which leads to
=Py (k)a(k) = > (apoor' . (kk—s+1)) J(k) =E{u(k — ) Ro, u(k — ) + u(k — r)'Tq, (k)’
s=1 X N |Hi—r}- 85
X Wo (k=)0 It follows f :ik}ltht >
ollows from Theorem a
X Elag ort . (kb — s+ 1)z(k)[Hi—]. (79)

Mk _P9k+1 (k + 1)[@ow (k) (k) + Tory (k)u(k —1)]

Thus, (23) is proved by the inductive method. This accom- _Z r—st1

: (k+1,k+2—3s))
plishes the proof of Theorem 1. n YOr1,Oho—s 5))
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X Woppr  (k+1—5)"" X E(ab, 0, ., (6t =7+ () Her)]}.
x E{ag, b, (k+1Lk+2—5) Take notice that fot < r, x(t) is determined by the initial
X x(k+1)|Hrp1-s}- (86) given valuexg,u_1,---,u_,. Therefore, the optimum value

- : . ) . of Ji depends on the fourth term of the above equation. Since
gtubstltutmg (86) into (85) and employing (20)-(22), we amV%Vet,r(t 1) is positive definite forr < ¢ < N, a unique

optimal controller subject to Problem 1 is existed and satisfies

J(k) =u(k — r)E{R, Ty, (k) P, k+ 1)y, (k
(k) =ulk = rYE o, + Lo, (k) Pop, (k4 1)L, (k) (26), and the optimal index satisfies (27). The sufficiency is

=3 o (k) (g sy (kL k42— 5)) shown. .

X Woyy (k+1—5)7" E. Proof of Lemma 3

x Elag o, (k4 1k+2—5)To (k)| Hit1-s] ~ Proof: Under the circumstance of > 0, following a
[Hp—r yu(k — 1) similar line with the derivation of Lemma 1 and the discussion

of Remark 4 in [46], we can show th&ty, (t—r, N) >0

=ulk =) Wo_ (k= rju(k —7). @7 with N >r, 0 <t < N. Thus,Ws, (t —r N)~! exists.
Recalling that there exists a unique solution to the optimal ASSUme that system (1) start agnd set
controller, we can obtain the positiveness .bfk) directly. s, —ZE{x 1)+ u(t —r) Ru(t — r)}
Therefore, it follows that?y,  (k —r) > 0.
To deduce the optimal controlles(k — ), substituting (86) N — N —r+t, (90)

into (4) and using (20)-(22) yield L o
where the initial value can be chosen arbitrarily. On the ground

—1 1
u(k—r)=— Wek,,‘(k —r) Elag, o, (k k-7 +1) of (27), the optimum value of (90) is with the form
x (k)| Hr—r] S\ =E{x(r) Py, (r, N)z(r)
=—Wo, (k—r)""[Tg,_, (k—r)z(k—r) SN s
. - —a(r) > (eg it (r—s+1,N))
+ TJ u(k —2r + 35 —1)]. s=1 -
Z -l x We, . (r—s,N)"
The necessity is shown. x Elag o Lo (= s+ 1 N)a(r)|He—o]}
(i) Sufficiency: Presume that (25) is true, i.8, (¢t — , _ L e .,
r) > 0 for t > r. We will show that Problem 1 admits a =x(r){Po, (r,N) = > (ag o (r,r—s+1,N))
unique solution. Let ot
Viv(t, 2(t)) x W, (r — 5, N)
) S et ) X agj“ +1( 7 —s5+1,N)}lz(r) > 0. (91)
=E{a(t)' Po, (t)a(t) — x(t) Y (ap, 5", (6t =5 +1)) N L
P ote thatz(r) can be selected as any value, so (91) implies
X Wa,_(t— ) 'Eloj s (bt —s+ D)Mo} 88) T
Po,(r,N) = > (ag ot (r,r—s+1,N))
s=1
Applying (1) and (10)-(17), one gets that X Wo,_(r—s,N) Yy 5™ (rnr—s+1,N)>0. (92
Vn(t,z(t)) — Vn(t+ 1,z(t + 1))
=E{z(t)' Qo,x(t) + u(t — ) Ro,u(t — 1) Since the notations defined in (10)-(19) keep invariant for
—[u(t —7)+Wo, (t—7)"" N owing to the selection of, ., =0, i.e.,

Wo, ,(t—r,N)=W,y, , (t—r—s,N—s),

x E(ag, v ,
Ty, (t—rN)=T,  (t—r—sN-—s),

0t g1 (t7t -7+ 1)CC(t)|Ht77)]/
X W, (t—r)ult—71)+ W, ,(t— T)—l

X B0, 0,4 (68— 7+ D) (t) [ Her)]} (89) J=01
Py, (t,N) =P, (t — s,N — s),
where the expressions (20)-(22) have played a significant role

in the deduction of (89). Adding up (89) frotn=rtot = N, i ,
the index (2) is rewritten as Yo, éjlﬁl(t’t_ j+1L,N)
=a, 1} o (t—s,t—s—j+1,N—s),
I E{Z Y Qua() + () Po, (r)e(r) P
r we obtain (33) from (92) directly. Furthermore, (33) implies

L —s+ 1) that

r
(r,r—s+1) Pet(tvN)Zzagtéfl (7t_5+17N))/
r—s+1 ’ s=1

N —1
_ Wi t—s,N
o(r)|He—s] + 3 _[ut — ) + Wo,_, (t—1)"" x ffﬁf s )
P X ag, g, (t—s+1,N)>0. (93)
X E(a, 6, ., (t,t —r+ Dx(t)[He—r)]' Thus, from (93), one getBy, (t, N) > 0. Now, (32) is proven.

X Wo, . (t =) [u(t —7) + Wo,_ (t—7)"" The proof of Lemma 3 is done. ]
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F. Proof of Lemma 4 Aoet 8 8 Boet
Proof: In order to facilitate the description, we denote A, —| 0 0 0 0
Yo,.,00 (7,0, N) 0 = . .. . . ’
Py (r,N) =Y (e ot (r,r—s+1,N)) 0 0 -~ 0 0
s=1 f = [ o 1 o --- 0 }/ 5
X Wer—s (7” -5 N)ilag:;j‘ll”l (7’, r—s+ 17 N) r blocks
. . . g . _ . — e
If Assumption 3 is satisfied, it follows from Lemma 3 that Q =diag{Q,0,--- ,0},
Ys,.0,(r,0,N) > 0 for all N > r. In the sequel, we just need r blocks
to show that there exist®, > r such thatYy, g,(r,0, Ng) > B _diaa( P 5.0
0. Assume this is not valid, and we obtain a non-empty set on =diag{ Py, 0, , 0}
Xn 2{z € R":z#0,2'Yy, 0,(r,0,N)z = 0}. Then, system (1) and index (29) become as
In light of (90) and (91), we can deduce that Z(t + 1) = o, ()2(1) + Tu(t), 97)

'Yy, 0,(r,0,N)x < 2'Yp, 9,(r,0,N + 1)z. Since z is

arbitrary, we obtain thaYp, g,(r,0, N) < Yj, g,(r,0, N 4+ 1). - > -

Then, if 'Yy, g,(r,0,N + 1)z = 0, we can deduce that J= E{Z:i:(t)’Q:z:(t)+u(t)’Ru(t)}. (98)
'Yy, 9,(r,0, N)x = 0, which implies thatXy41 C Xn. =0

Noting that eachXy is non-empty and with finite-dimension, the cost function on finite horizon can be expressed as
we can obtain that

N
1< < dim(Xoy2) < dim(Xo41) < dim(X,) <n. (94) Ty =E{> 2(t) Qz(t) + u(t) Ru(t)
It follows from (94) that there must exist an integéf, =0 , - ~
such that forN > N, dim(Xy) = dim(Xy,) and thus (N + 1) Poy,, (N +1)} (99)
Xy = Xn,. It means that()y., Xy = Xy, # 0. The delay-free maximum principle, that is, the necessary
Therefore, there must exist a nonzero vectoe X, such optimality condition for the optimal control of system (97)
thatz'Yy, g, (r,0, N + 1)x =0 for any N > r. with (99), can be state_d/ ?S
Setz(r) = z in (91), and we obtain 0 =E[l"7: + Ru(t)[H], (100)
* / o - r—s+1 _ / Ne—1 :E[(Pet (t)lﬁt + Qw(t”HtL (101)
55 =) o1y ) = Q{00 = 24 1, ) v =Po a(N +1). (102
X W, (r—s N)" Applying (100)-(102) and following a similar derivation as
K ab =S (rr— s+ 1, N)}a(r) that of Theorem 2, one gets
o T ’ (95) u(t) = = To, (8, N) ™" My, (. N)z (1), (103)
. Ne—1 :Pet (t7 N)E(t)v (104)
It follows from the hypothesig > 0 and@ = C'C > 0 that _ _ _ )
W(t—r)=0,Cz*(t) =0,r <t < N,N >r. whereYy, (¢, N), My, (t, N) and Py, (t, N) obey the following
- . difference Riccati equations
Then, sYster*n(t(le)f))ecome(js4 as R T, (t, N) =" Lo, (Py, ., (t + 1, N))T + R, (105)
T o(t) T weAg) )T (1), _ o _
Cx™(t) = 0Vt>r (0) Ml N)=T ‘ % (Poupy (t 41, N)) B, (106)
o i i Pet(t7N) :A0t£9t(P9t+1 (t+17N))A9t
From th_e observability of (96), we ob_tam thatr) = 0. This + W2 By, Lo (Poy, (t+1,N)) g,
contradicts the fact # 0. So there exists som&, > r such S Mo (b NY T (6. NV-LHo. (2. N 107
that Yy, o, (7,0, No) > 0. This competes the proof of Lemma + Q= Mo, (£, N) Yo, (t, N) " M, (¢, N). (107)
4, m Inaccordance with the formation oft), the partitioned forms
of 7j;—1 and P, (t, N) can be expressed as
G. Proof of Theorem 3 e—1
Proof: At the beginning of the derivation, the convergence =col{i ¥y, 7, i
of the GCDRE (10)-(15) will be shown. Py, (t,N)
Let us start by proving thaty, (¢t —», N) andTy  (t — POOWN) POVWLN) - POV N)
r,N) (s=0,1,---,r) are convergent. Set P(tl’o) N P(t”) N P(t”) N
(1) =col{z(t), u(t — 1), - ,u(t — 1)}, | PN By (N e By, (G N)
r @, (t) 0 0 Ty, (t) : : :
0 0 0 0 PrOw Ny POV N)Y ... PO N
| O 10 5 N) Bt N) 5 (6 )
' : A : From (104), the second componentipf ; satisfies
L o o0 - T o0 Ay =P50 (¢, N)a(t) + P3PV (8 Nu(t — 1)
r As, O 0 B, +o PO, N)u(t — ). (108)
0 0 0 0
AL | O T 0 0 Meanwhile, (100) can be reduced to
S 0= () + Ru(t) [Hi}. (109)
Lo 0 - I 0 Alternatively, it can be obtained from (4) that
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0=E{To,., (t+r)nesr + Ru(t)|He}. (110) know thatTﬂé, Wi, lo =1,2,--- , L are the unique solutions

. ) . to (35)-(39).
Comparing (109) with (110), we obtain The next step is to demonstrate tiat (¢, V) is convergent.

E{7{"|He} =E{To,,, (t + ) nesr|He}, Without loss of generality, assume that the initializations
0 _ u(—i) = 0,i=1,2,---,d, while z( is arbitrary. Adding up
To. (f,’ N)a(t) + (Wa, (&, N) = Rju(®) (89) fromt =0tot = N, one gets
+> T Nut—r+5—1). (111 al

Viv(0,20) = S [V (t,2(t) — Vit + Le(t + 1))]

o~
I
<}

Comparing (108) with (111), one has

-

(1, N) =Lo, (P10 (t +1,N)Ag,.  (112) E{z()'Qa(t) + u(t —r)'Ru(t —r)
t=0
Wa, (t, N) — R =Lo, (P (t + 1, N)), (113) ~u(t — 1)+ We,(t— 7, N)™*

T4, (t, N) =Lo, (Py) ) (t 41, N)), (114) X E(0y,0,_, 4 (1 = 7+ 1, N)z(t) Hep)]’
X W@tir(t -, N)
X [u(t — 1) 4+ We,_ (t—7,N)~"

2 _ 5(1,r)
Tet (t, N) —LQ (P9t+1 (t + 1, N))7 (115) X E(aétvet—r+l (t, t—r+ 17 N)x(t)|7'lt77»)]}. (117)
To. (6. N) =Lo (P@(:? (¢+1,N)) Bs, (116) ¢ follows from (117) that

Note that, in case system (1) is stabilizable (observ- JN—ZE{fC 'Qu(t }+ZE{ut—T) Ru(t—r)}

able, respectively), then the new extended delay-free sys- t=r
tem (97) is stabilizable (observable, respectively) too. With
the stabilization and observability of system (97), we can =Vn(0,z0) ZE{U (t—r) Ru(t —r)}
obtain that P, (¢, N) given in (107) is convergent, i.e., ) =0
limy oo Py (t, N) = Py,lo = 1,2,---,L, whereP,, > 0 — .
is the unique solution’ to the following coupled algebraic + > E{lu(t =) + Wo,_, (¢t =7, N)
equations t=0
L Lo X E(ag, 0, ., (6t =+ 1, N)a(t) | He—r)]
B, :Alo Z Alo T Alo(z ol DA, +Q x Wy, . (t —7,N)
]\41 }I“ L l:Ll X [u(t —7) 4+ W, _ (t —r, N)~*
Moo Miorlo = L2 X E(ab 0,4, (6t =7+ 1, N)a(t) )]}
Ylo :f,(z )‘lol_ 7[)f+R, lo = 1,2,.-- 7L, :E{JJZ)PQO(O,N)CCO}. (118)
I=1 From the arbitrariness af,, we have
L / . * * . /
MLO :F/(Z lo[ )Alo,lo _ 1 2 L E{JJO_PQO(O, N)SCO} = JN S JN+1 = E{JJ()PQO (07 N + 1)560}7
=1 which means thatP, (0, N) for 6, = Iy € © increases

. - _ according toN. Resemble the deduction of (73)-(77) in [46],
In view _Of the  partitioned form 9{1%% (t, ), We jtis obtained that there exist constantsind ¢ such that
can obtain that the block matriced’ = (t + 1,N),

PVt + LN), - BV + 1,N) involved in J= ZE{x 'Qu(t)} + 3" Efult — 1) Rult — 1)} < 2Acsha.
Py, (t + 1,N) are convergent as well. That is =

My e jt)l(l O)(t +1 N) _ p(l 0) hm N oo F)i(lvl)(t + Recall that0 < E{$6P90(0,N>$0} = JX; <J= 2)\01'61’0,
1) = P(l 1) lim P(l T)(t 1N = L) Z— which means that < P, (0, N) < 2XcI for 6y = I € O.

’ N—roo Iy This shows the boundedness Bf (0, N). Together with the
L2, L P;>0,0=1,2,--- L implies that the diagonal monotonicity of P, (0, N), its convergence is obtained. Note
block matnxP(l D >0,0=1,2,---,L. thatly, l; are the realizations of, andé,_,, respectively. By

In  view of (112)-(116), Tot( N),---, Ty, (t,N), letting N — oo on both sides of (10)-(15), it can be concluded
Wp,(t,N) — R are convergent, i.e., that P, W, and T/ (j = 0,1,--- ,7) obey (35)-(39). This
Jim T} (t,N) =T} ,lo=1,2,--+ ,L,j=0,1,-- ,r, completes the first part of the proof of Theorem 3. _
e The second stage of the deduction is to show the inequality
Jim Wi (8, N) = Wig,lo = 1,2, L, (44). In view of Lemma 4, we know that if system (1) is exact

observable, there exisf$, > r such thaty, ¢, (r,0, No) > 0.
andTl Wi, lo =1,2,-- -, L satisfy the D-GCARE (35)-(39). Recalling thatyy, ¢,(r, 0, No) is monotonically increasing on
Taklng the limit on both 5|des of (113) subject&g we obtain N, one yields

that i - .
L B Py, — (a;j;;r,sﬂ) Wa Qo o1
Wi, —R=Y_x, PV =1
=1 = lim Yo, 6, (r,0,N) > Yg, 0, (7,0, No) > 0.
— 00

SIHCGP(1 Y'>0andR > 0, we obtain that¥;, > 0 for all  Therefore, (44) is true. This accomplishes the deduction of
lp =1, 2 , L. In addition, from the uniqueness &},, we Theorem 3. [ |
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H. Proof of Th 4 N
- Froot ot Theorem , S Efe(t)Qa(t) + ult — r) Ru(t — )]
Proof: (i) Sufficiency: Presume thaPlo,WlT,TlJT(j = t=mtr
0,1,---,r), andaj *!(s = 1,2,---,r) are the solutions > E{r(m+r)'[Pe (r,N)

to (35)-(43) such that B Z (al™ s+1 r—s+1,N))
. r—s+1 1 r—s+1 Or:0r " ’
Py = (o 22w a2 > 0.

s=1 X W9 (r—s,N)"!
. . roetl - > 0.
In the next step, we will demonstrate that system (1) is X0,y (= s+ L N)Je(m + 1)} 2 0 (124)

stabilized by the optimal controller (45). To this end, we defingn the ground of (123), one yields
a new type of Lyapunov function with delayed terms and E{x(err) [Py, (r, N)
jumping parameters "

/ - 1y r—s ’ - O‘T 6+1 =38 + 17 N '
V(t,2(t) =E{(t) Po,x(t) = Y x(t) (e 5. ) Z o0 )
s=1 1
. W —s, N
Wy Bl ey (119) ok Hf N
X Qg o (r,r—s+1,N)]z(m+r)}=0. (125)
e Based on the exact observability of system (1), we know from
Utilizing (1) and (35)-(43), one has Lemma 4 that there must exist an integés such that
V(t,x(t) = V(t+1,2(t+1)) e ,
—E{x(t) Qu(t) + u(t — r) Ru(t — r) Py, (r,No) = > (a5t (r,r —s+1,No))

s=1

Qu(t
1 ’
= [u(t —r)+ Wy, E(as,, 0,1 T Her) Wo, . X Wa,_.(r—s,No)~ 104;7 Ejlsﬂ(rﬂ" —s+1,No) >0
)

- w, ' E . 120 .
X fu (t, Vo, (Oiet’e‘*"Hx(t)mt i (120) and therefore (125) indicates tHah,,,—, oo E[x(m+7) z(m+
=E{2(t) Qu(t) + u(t — ) Ru(t — )} 2 0, (121) ;)] = 0, which shows that (45) stabilizes (1).

; The next step is to demonstrate that the cost function (29)
gﬁéﬁ?g%ﬁ‘gﬂgﬁﬁz tgﬁi\(t}’,iﬁ%)s) fr;rg)ﬁtitlolnglg:emgtdecreasmg is minimized by (45). Noting from the stabilization of system

(1), we have
V(t,x(t)) lim E{z(t) Py, z(t)} = 0. (126)
—E{m( ) Po, (1) , e
Alternatively,
- Z ) (g0 ) Wa,t a5, () 0 <V(t,a(t))
r—s r—s / :E{CC PQ’L [:C agt gjl )/]W9:15
+ Z Qy, 0j15+1 - E(%t‘,e:r,lsﬂ x(t)[Hi—s)] Z '
s N x Elag, 5", ()IHt—s]} < E{z() Po,x(t)}. (127)
xwet s ef;x(t)—E(aet,ej,;x(t)mtfs)]} el
>E{z(t) [Py, — Qg "Wyl ap st t In light of (126) and (127), we haMén; ., V (¢, z(t)) = 0.
2E{=(t) [P ;(%t o) Wor @000, Jo(D)) Adding up (120) fromt =rtot = N and letting N — oo,
>0, (122) ©One gets
= r—1
which shows that/ (¢, z(¢)) has a lower bound. From (121) 7 =E{D_#(t)'Qu(t) + x(r)' Po.x(r)
and (122), we can obtain the convergencd/gf, z(t)). =Y
Next, letm to be any positive integer. Adding up both sides _ 1 or—sl 1 roetl .
of (121) fromt = m+r to t = m+ N and matingn — +oo, ;x(r) (00,6, ) Wo, _ Bl 5,y 2(r) M=)
one gets N
m+N —+ t— —|—W71E ! tHf'r !
lim Z )+ u(t — ) Ru(t — r)] tzz;[U( K oo Bl 2O
t=mtr W, t—r)+ W, E(ap £)[Her)]}.
:n}ijnoo{V(m +r,z(m+r)) W fult =) o B0 0 2O )]}(128)
—V(m+N+1Lz(m+N+1)}=0. (123)

SinceWp, , is positive definite, (128) is minimized if and
Note from (91) that only if
u(t —r)=— W(,:l Tgor Lx(t—r)
Z El(t) )4 u(t —r) Ru(t — r)]
>E '[Py, (r,N) — hoett 1, N :
2Bl ()T, (r, N) ;( ortraa (7 =5+ LN)Y and the relevant opt|maI cost (46) is now attained.
1 r—stl (ii) Necessity: In view of Theorem 3, if system (1) is mean
x Wo, (r—s,N)"ag 51 (rr = s+ 1,N)]z(r)}- square stabilizable, then the condition

—ZWQt TTgt ult —2r+j—1),

T

) ) Py, — r— s+1 /W7 7‘ s+1 >0
By a time shift of length ofn, we have o ;( outesir) Woro @000
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is satisfied. Alternatively, from the derivation process aftgz3] w. Li, Y. Jia, and J. Du, Tobit Kalman filter with time-correlated
(116), we can obtain the uniqueness of the solution to (35)-

(39). This accomplishes the proof of Theorem 4.
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