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Abstract—Data augmentation (DA) has the potential to ad-
dress the issue of imbalanced and insufficient datasets (I&ID)
in pipeline fault diagnosis. However, the majority of existing
DA methods for time series are inspired by computer vision
techniques, ignoring the temporal dynamic properties and fine-
grained fault features, which leads to limited performance of
the augmentation. To tackle this problem, we introduce a novel
DA approach called the subdomain-alignment adversarial self-
attention network (SA-ASN), which takes into account both
temporal association and semantic correlation. Our approach
features a novel temporal association learning (TAL) mechanism,
which transfers temporal information from the discriminator
to the generator via a customized knowledge-sharing structure,
improving the reliability of synthetic long-range associations.
Additionally, we introduce a prototype-assisted subdomain align-
ment (PASA) strategy that forms a hierarchical structure in the
synthetic dataset by incorporating local semantic correlation into
the model training. With the support of TAL and PASA, our SA-
ASN algorithm enhances the authenticity of temporal structure
at the instance level and improves the discriminability of fault
features at the category level. Our experimental results show that
the SA-ASN algorithm provides a more diverse and accurate
augmentation of pipeline data. The effectiveness of our SA-ASN
algorithm encourages the use of data-driven diagnostic models
in complex real-world oilfield pipeline networks.

Index Terms—Adversarial learning, data augmentation, multi-
head self-attention mechanism, pipeline fault diagnosis, subdo-
main alignment.
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I. I NTRODUCTION

Fault diagnosis plays a crucial role in reducing mainte-
nance costs and enhancing the reliability of oil and gas
transportation systems. In recent years, data-driven intelligent
approaches have made significant advancements in industrial
fault diagnosis [6], [14], [24]. However, the success of these
approaches is heavily dependent on balanced data categories
and a sufficient amount of labeled data. This is not always
the case in pipeline fault diagnosis, as some fault categories
are rarely available due to normal operation and obtaining
labeled data is expensive, time-consuming, and challenging.
As a result, the performance of existing data-driven approaches
decreases when applied to pipeline fault diagnosis. As illus-
trated in Fig. 1, a diagnostic model trained on imbalanced
and insufficient datasets (I&IDs) fails to capture discriminative
features, resulting in a high rate of false alarms and missed
alarms. Hence, there is an urgent need to address the issue of
I&ID to ensure the efficacy of the diagnostic model.

Fig. 1: Intelligent data-driven diagnostic models trained on balanced dataset,
invalid dataset, and augmented dataset, respectively.

To address the challenging I&ID issue, much research effort
has been made to increase the size of the original dataset by
generating synthetic data, also known as data augmentation
(DA) [4]. Currently, this line of research can be broadly cat-
egorized into three categories: random transformation, pattern
mixing, and generative models [7]. Random transformation-
based DA methods primarily focus on adding random noise,
flipping or cropping, time-domain warping, and frequency-
domain warping. For instance, a deep learning approach for
rotating machinery fault diagnosis has been proposed in [13],
where DA techniques were used to generate additional valid
samples for model training. In [8], a dynamic time-warping
method has been developed to augment run-to-fail data to
predict the remaining useful life of machinery. However, these
random transformation methods have limited effectiveness

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by 
sending a request to pubs-permissions@ieee.org. For more information, see https://www.ieee.org/publications/rights/rights-policies.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TII.2023.3275701, IEEE Transactions on Industrial Informatics



FINAL VERSION 2

in improving diagnostic performance, as they only alter the
shape of original samples rather than generating new ones. To
overcome this limitation, pattern mixing-based DA methods
have been developed that combine two or more patterns
to generate a new one. In this regard, one widely used
augmentation method is the synthetic minority oversampling
technique (SMOTE) [2], which generates a new sample by
interpolating between an existing sample and its K-nearest
neighbors. Nevertheless, data interpolation is susceptible to
hard negative samples, which often leads to ambiguous sample
features and reduces classification performance.

Generative models, on the other hand, explore untapped
real-world distributions to produce new samples. This method
not only increases the diversity of features but also ensures that
the samples are valid. The most well-known generative model
is the generative adversarial network (GAN) [5], which has
become a popular research topic in DA due to its powerful
feature extraction and representation capabilities [18], [26],
[29]. For instance, an approach combining the GAN algorithm
and Gaussian mixture model has been proposed in [18] to
solve the I&ID problem. Furthermore, a multi-scale progres-
sive GAN algorithm has been put forward in [29] to synthesize
the surface defect images. Moreover, a multi-granularity GAN
algorithm has been developed in [26] to improve the quantity
and quality of wafer maps for accurate defect identification.

Thus far, most existing GAN-based time-series data aug-
mentation methods have taken inspiration from visual DA
techniques, and these methods may not perform optimally
when applied to pipeline fault diagnosis for the following
reasons. Firstly, these methods are designed to capture pixel-
level features which are not suitable for learning time-series
temporal dynamics.These results in the generator having
difficulty in capturing the variation trend of the time-series,
leading to unreliable long-range associations in the synthetic
series. Additionally, previous methods primarily focus on
aligning the global distribution between the real and synthetic
datasets. As a result, synthetic data from different health
states may be blended and deviate from real data under
the corresponding health state, causing ambiguous decision
boundaries. To address these limitations, the objective of this
paper is to propose an advanced time-series generative model.

The key contributions of this paper are as follows.
1) We propose a new DA approach, referred to as the

subdomain-alignment adversarial self-attention network
(SA-ASN), which explicitly takes into account both
temporal association and semantic correlation.

2) We design a temporal association learning (TAL) mecha-
nism to transfer the temporal dynamic information from
the discriminator to the generator through a customized
knowledge-sharing structure, thereby enhancing the re-
liability of the synthetic time series.

3) We implement a prototype-assisted subdomain align-
ment (PASA) strategy to incorporate semantic correla-
tion into data generation, resulting in maximized intra-
class compactness and inter-class separability.

4) Through qualitative visualization and quantitative eval-
uation, our SA-ASN algorithm is compared to state-
of-the-art DA methods. The results demonstrate the

effectiveness of our approach in addressing the I&ID
issue.

The structure of this paper is as follows: In Section II,
related works including intelligent fault diagnosis and attention
mechanism are discussed. Section III provides a detailed
description of the proposed SA-ASN algorithm. The exper-
imental results and analysis are presented in Section IV.
Finally, in Section V, the conclusions of this paper are drawn.

II. RELATED WORK

A. Intelligent fault diagnosis

With the advancement of deep learning technologies, data-
driven intelligent fault diagnosis has seen remarkable success
in various industrial applications [27]. For instance, [1] intro-
duces a classifier based on Long Short-Term Memory (LSTM)
that learns the temporal association and predicts the health
state of the pipeline. Another example is the ensemble learning
framework in [21], which combines a Sparse Autoencoder
Network and an improved Support Vector Machine to enhance
the accuracy of pipeline fault detection. Despite these success-
es, the majority of these intelligent methods depend heavily on
balanced and sufficient datasets that cover all health states. As
a result, ensuring the quality and quantity of the data is crucial
to improve the accuracy of pipeline fault diagnosis. In recent
years, data augmentation methods are developed to address
data scarcity and imbalance by augmenting imperfect data
with satisfactory quality and desired diversity. For example,
[6] puts forth a Trinetworks-form based GAN algorithm for
pipeline leakage detection in the presence of incomplete sensor
data. Additionally, [28] proposes a mixed-GANs algorithm to
provide additional data for training a high-accuracy model in
terms of pipeline leakage detection.

Notably, the above GAN-based data augmentation methods
borrow ideas directly from computer vision without con-
sidering temporal dynamic properties and fine-grained fault
features, resulting in limited augmentation performance. To
address this problem, some researchers have attempted to
construct a GAN framework by utilizing a network structure
suitable for learning time series. For example, [14] proposes
a hybrid GAN framework based on bidirectional LSTM for
fault diagnosis in machine health monitoring. Moreover, [24]
develops a method combining GAN and LSTM to predict
pipeline leakage. Nevertheless, LSTM-based generators and
discriminators have difficulty in obtaining global optimal
solutions due to the vanishing gradient problem and limit-
ed computational resources. Therefore, this paper proposes
an SA-ASN algorithm that integrates a multi-head attention
mechanism to recover complex temporal structures and learn
fine-grained features.

B. Attention mechanism in fault diagnosis

In recent years, attention mechanism has gained widespread
popularity in the field of time-series data processing for fault
diagnosis due to its ability to model internal dependencies and
global representations effectively [10], [11], [20], [23] and the
references therein. For instance, a fault-attention generative
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probabilistic adversarial autoencoder has been proposed in
[23] for anomaly detection by discovering the low-dimensional
manifold embedded in the high-dimensional space of the
signal, where the fault-attention abnormal state indicator has
been constructed using the distribution probability of low-
dimensional features and reconstruction errors. Furthermore,
an attention recurrent autoencoder has been presented in [10]
for early fault diagnosis and severity detection of rotating
machinery. Moreover, a joint attention feature transfer network
has been developed in [11] to deal with the problem of
data imbalance by transferring generalized representations
obtained from other classes to the class with scarce samples,
where the attention module has been used to maintain the
discriminability between the features of different classes.

III. A N OVEL SA-ASN ALGORITHM

In this section, we will provide a comprehensive overview
of our proposed SA-ASN algorithm. Subsequently, the core
components of the SA-ASN algorithm, such as the TAL
mechanism and the PASA strategy, will be described in detail.
Finally, we will present a summary of the training process
for the SA-ASN algorithm in the form of a pseudo-code
algorithm.

A. Overview of SA-ASN algorithm

A new SA-ASN algorithm, as shown in Fig. 2, is proposed
to improve the diagnosis accuracy of pipeline faults by ad-
dressing the I&ID problem. The algorithm starts by utilizing
the TAL mechanism to learn long-range temporal association-
s from the discriminator through a customized knowledge-
sharing structure. The PASA strategy is then introduced to
draw together synthetic and real data from the same underlying
category, while separating data from different categories, as
demonstrated in Fig. 3. With the support of the TAL mech-
anism and the PASA strategy, the SA-ASN algorithm is able
to recover the instance-level variation tendencies and construct
the category-level hierarchical structure. Finally, the algorithm
is updated using an alternating iterative technique, following
the training approach proposed in [5].

B. Temporal association learning (TAL) mechanism

In the domain of time series analysis, the complexity of
the features poses a challenge when compared to image data.
Directly applying GAN algorithms from computer vision may
result in invalid synthetic temporal structures. To overcome
this challenge, we propose the TAL mechanism to learn and
recover the complex dynamic properties in real data.

The discriminator in a GAN identifies real and synthetic
data by comparing the most discriminative regions. Based on
this principle, it is meaningful to recover these distinguishable
features contained in the temporal structure to ensure the re-
liability of the synthetic series. The self-attention mechanism,
as proposed in [20], is an effective tool for modeling global
dependencies of series. Its multi-head version, which connects
feature information from different subspaces, is even more
effective in highlighting discriminative features. Accordingly,

in the TAL mechanism, we first introduce multi-head self-
attention blocks into the discriminator to capture long-range
associations and highlight discriminative features from real
data. Next, we employ a well-designed knowledge-sharing
structure to transfer this information from the discriminator to
the generator, leading to the production of effective synthetic
temporal structures.

Here, we provide a detailed description of the TAL mech-
anism as follows, where the definitions of relevant functions
(e.g. LayerNorm(·), LeakyRelu(·), Softmax(·), Concat(·)) can
be found in [20].

The discriminator and the generator in the SA-ASN algo-
rithm are constructed by stacking one-dimensional convolu-
tion blocks and multi-head self-attention blocks alternately.
Formally, the overall equations of the discriminator at thel-th
layer are described as follows:

F l
D = LayerNorm

(

MA
(

X l−1
)

+ X l−1
)

, (1)

X l = LeakyRelu
(

CB
(

F l
D

))

, (2)

whereX l−1 ∈ R
N×1×J , l ∈ {1, 2, . . . , L} is the input of the

l-th layer with lengthJ , N denotes input volume,F l
D is the

hidden representation,CB(·) denotes the convolution block,
andMA(·) represents the multi-head self-attention block. Note
that the transferable knowledge obtained byMA(·) in the
discriminator is shown as follows:

Sl
D,i = Softmax

Ql
D,iK

l
D,i

T

√

dli

)

, (3)

Hl
D,i = Sl

D,iV
l
D,i, (4)

where Ql
D,i = X l−1

i W l
Q,D,i, Kl

D,i = X l−1
i W l

K,D,i, and

V l
D,i = X l−1

i W l
V,D,i ∈ R

N×1×
dl
i
h represent the query, key,

value ofi-th head ofMA, respectively;h denotes the number

of head; W l
Q,D,i, W l

K,D,i, and W l
V,D,i ∈ R

J×
dl
i
h are the

trainable parameter matrices;dl is the dimension of parameter
matrices;Sl

D,i denotes the self-attention map (i.e., the series-
associations); andHl

D,i represents the hidden representation
after the self-attention in thel-th layer. Therefore, the output
of MA

(

X l−1
)

can be presented as follows:

MHl
D(Q,K,V) = Concat(Hl

D,1,H
l
D,2, . . . ,H

l
D,h)W

l
O,D,

(5)

whereW l
O,D ∈ R

dl
×dl

is the parameter matrix. To model the
temporal association in the sample space, the discriminator is
first optimized to distinguish between the real and synthetic
series, which can be formulated as follows:

max
θD

LD =EX∼PS(X ) [logD (X )]

+ EZ∼PL(Z) [log (1−D (G (Z)))] ,
(6)

whereX denotes the real series obtained from sample space
PS(X ), Z represents the latent variable sampled from latent
spacePL(Z), G (Z) is the data generated by the generator,
θD is the network parameter of the discriminator, andD(·) is
the probability that the discriminator outputs. Then, we freeze
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Fig. 2: Architecture of the proposed SA-ASN algorithm.

the discriminator and transfer its self-attention maps into the
generator, which can be formalized as follows:

Hl
G,i = SL−l+1

D,i V l
G,i, (7)

MHl
G(Q,K,V) = Concat(Hl

G,1,H
l
G,2, . . . ,H

l
G,h)W

l
O,G,

(8)

whereSL−l+1
D,i denotes the self-attention map of the(L− l+

1)-th layer in the sample space;V l
G,i = Z l−1

i W l
V,G,i is the

value matrix. Finally, we train the generator to deceive the
discriminator by mapping the latent variables into the synthetic
data that is similar to the real data, which can be represented
as follows:

min
θG

LG = EZ∼PL(Z) [log (1−D (G (Z)))] , (9)

whereθG is the network parameter of the generator.

C. Prototype-assisted subdomain alignment (PASA) strategy

Conventional GAN algorithms only strengthen the global
similarity between the real and synthetic distributions via the
adversarial mechanism without considering the semantic cor-
relations between the class-conditional distributions. However,
discriminative features of the same category are not always
identical. In this case, even if the temporal structure of the
synthetic data is close to that of the real data, its features
representing the health state may not necessarily align with
those of the real data. In other words, the synthetic data
of different categories may be mixed up with each other
and deviate from the real data of corresponding category. To
overcome this weakness, we propose a PASA strategy to align
the local distributions between the real and synthetic datasets.

As shown in Fig. 3, we exploit the prototype that charac-
terizes the representative embedding of a set of semantically
similar instances in the feature space to adjust the subdomain
distributions of the synthetic data. More specifically, the PASA
strategy first maximizes the correlation between real proto-
type and synthetic data in the same category. Concurrently,
the PASA strategy keeps features away from the decision
boundaries by minimizing the correlation between real pro-
totypes and different categories of synthetic data. With the

intra

inter

Fig. 3: Prototype-assisted subdomain alignment via bidirectional self-
supervised loss.

PASA strategy, the SA-ASN algorithm explicitly incorporates
semantic information regarding the health states into the
generation process, and thus improves the distinguishability
of the synthetic data. In this study, the inter-class and intra-
class correlations are jointly optimized by a bidirectional self-
supervised loss, which can be formulated as follows:

LBS =
1

M

M
∑
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∥

∥

∥

∥

∥

∥

ϕ (Pr
c )−

1
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ϕ
(
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)

∥

∥

∥

∥

∥

∥

H

− γ
1

M (M − 1)

M
∑
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M
∑

ĉ=1

ĉ 6=c

∥

∥

∥

∥

∥

ϕ (Pr
c )

−
1

nĉ,g

nĉ,g
∑

j=1

ϕ
(

G (Z)j

)

∥

∥

∥

∥

∥

H

, (10)

where γ > 0 is a balancing parameter,H denotes the
reproducing kernel Hilbert space (RKHS) andϕ(·) is the
nonlinear mapping from the feature space to the RKHS.M
represents the number of sample categories.G (Z)j denotes
the j-th synthetic data generated by the SA-ASN algorithm.
nĉ,g is the number of samples in̂c category.Pr

c denotes the
prototype of thec-th category in the sample space, which can
be calculated as follows:

Pr
c =

1

nc,r

nc,r
∑

k=1

Fθ (Xk) , (11)
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wherePr
c denotes the mean vector of embedded support data

belonging to thec-th class.Fθ (·) is an embedding function
via deep neural networks.nc,r denotes the number of the real
data in thec-th class.Xk is thek-th real data.

D. Overall objective function of the SA-ASN algorithm

In this paper, we jointly optimize the adversarial loss and
the bidirectional self-supervised loss to produce high-fidelity
and diversified synthetic data. By incorporating (6), (9), and
(10), the overall objective function of the SA-ASN algorithm
is summarized as follows:

L = min
θG

max
θD

Ladv + αmin
θG

LBS, (12)

whereα is a balancing parameter;θG andθD are the param-
eters of generator and discriminator, respectively. Moreover,
Algorithm 1 displays the training procedure of our SA-ASN
algorithm.

Algorithm 1 The SA-ASN Algorithm

Input: Real data{Xk}
nc,r

k=1; Latent variable{Zj}
nĉ,g

j=1 ;
Output: Synthetic dataG(Z);

1: for number of training epochdo
2: for number of discriminator iterationsdo
3: Sample mini-batch ofm real data from distribution

X ∼ PS(X );
4: Sample mini-batch ofm latent variables from

distributionZ ∼ PL(Z);
5: Compute discriminator lossLD via (6);
6: Update discriminator viaLD;
7: end for
8: for number of generator iterationsdo
9: Sample mini-batch ofm latent variables from

distributionZ ∼ PL(Z);
10: Compute generator lossLG via (9);
11: Compute bidirectional self-supervised lossLBS via

(10);
12: Update generator byLG andLBS;
13: end for
14: end for

IV. EXPERIMENTS ANDANALYSIS

A. Setups

1) Dataset description:The SA-ASN algorithm is evaluat-
ed on the pipeline dataset obtained from the simulation plat-
form. Specifically, the pipeline length is 180m, the operating
pressure is 0.5MPa, and the flow rate is 10m3/h. The voltage
signals are collected at a sampling frequency of 1024Hz under
four different health states, i.e., large leak (LL), medium leak
(ML), small leak (SL), and normal condition (NC). Details of
the pipeline data for each health state are shown in Fig. 4.

2) Baselines:To assess the proposed SA-ASN algorithm
comprehensively, the synthetic data of SA-ASN are compared
with those of seven other state-of-the-art baselines:

• Generative adversarial nets [5]:It proposes two objective
functions for updating the generator, namely saturating
and non-saturating objective functions.

100 200 300 400 500 600 700 800 900 1000

-2

0

2

V
o
lt
ag
e/
V

100 200 300 400 500 600 700 800 900 1000

-

0

100 200 300 400 500 600 700 800 900 1000

-1

0

1

10-3

100 200 300 400 500 600 700 800 900 1000

-20

-10

0

10
-4

Time/s

Fig. 4: Details of the pipeline data for each health state (from top to bottom
in this figure, the health states are, in order, large leak, medium leak, small
leak, and normal condition).

• Least squares GAN (LSGAN) [15]:It leverages least
square loss to reduce the discrepancy between the syn-
thetic and real dataset.

• Conditional GAN (CGAN) [16]:It employs additional
information such as category vectors as constraints to
guide data generation.

• InfoGAN [3]: It puts forward a generative model that
could control synthetic data patterns by incorporating
latent representations into the generator.

• Auxiliary classifier GAN (ACGAN) [17]:It develops
a semi-supervised generative model to simultaneously
generate synthetic data for multiple categories.

• Synthetic minority over-sampling technique (SMOTE)
[2]: It creates synthetic data by randomly interpolating
between minority class and its K-nearest neighbors.

• Variational AutoEncoder (VAE) [9]:It aims to construct
a potential probability distribution for each sample by
pushing the encoder input closer to the decoder output.

3) Model configuration:We employ the 1-D convolution
architecture and the 1-D transposed convolution architecture
to construct the discriminator and the generator, respectively.
The configurations of the SA-ASN algorithm are presented in
Table I. Particularly, all deep neural network-based algorithms
share the same network parameters. The hyperparameters are
fine-tuned and selected by cross-validation. During training,
we utilize the Adam optimizer with a learning rate of 1e-4 to
update the weights and biases of the SA-ASN algorithm. All
the experiments are conducted with PyTorch using NVIDIA
GEFORCE RTX 3090 GPU, Intel(R) Core(TM) i9-10900k,
3.70-GHz CPU.

B. Qualitative visualization

First, the synthetic data generated by the proposed SA-ASN
algorithm is presented along with the real data, as shown in
Fig. 5, in which the real data is shown in blue dotted line
and the synthetic data is shown in orange solid line. Each
column represents one health state. It can be observed that the
pipeline data generated by the SA-ASN algorithm is extremely
consistent with the characteristics of the real data.
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(d) InfoGAN

(e) ACGAN
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(g) VAE
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(h) SA-ASN
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Fig. 6: Real data and synthetic data. (a) GAN. (b) LSGAN. (c) CGAN. (d) InfoGAN. (e) ACGAN. (f) SMOTE. (g) VAE. (h) SA-ASN (ours).

TABLE II: Quantitative evaluation of the proposed SA-ASN and all baselines by ED, CD, MMD, KL, EMD, Cosine, and
PCC. (Best results are shown inbold.)

Model Health state ED ↓ CD ↓ MMD ↓ KL ↓ EMD ↓ Cosine↑ PCC↑

GAN

Large leak 5.8259 1.0000 2.45-03 0.1908 0.1148 0.9123 0.3792
Medium leak 5.2397 0.7275 2.02E-03 0.0955 0.1962 0.9543 0.3453
Small leak 3.3422 0.4950 2.59E-03 0.0315 8.06E-05 0.9781 0.6551

Normal condition 7.4409 0.7314 2.49E-03 0.1419 1.90E-04 0.9044 0.0974

LSGAN

Large leak 5.9141 0.8307 2.74E-03 0.1541 0.0905 0.9218 0.4090
Medium leak 3.8426 0.4368 2.11E-03 0.0249 0.2052 0.9858 0.6515
Small leak 5.7607 0.7475 1.59E-03 0.0888 6.79E-05 0.9365 0.3013

Normal condition 7.3484 0.7614 2.80E-03 0.1510 1.82E-04 0.9109 0.0500

CGAN

Large leak 5.6606 1.0000 2.21E-03 0.1781 0.0892 0.9190 0.3535
Medium leak 2.7552 0.3782 1.59E-03 0.0147 0.1638 0.9905 0.7748
Small leak 5.5668 0.7160 1.84E-03 0.0898 9.21E-05 0.9366 0.1346

Normal condition 7.1029 0.7613 2.67E-03 0.1502 1.35E-04 0.9132 0.0672

InfoGAN

Large leak 2.3412 0.3690 2.22E-03 0.0180 0.1133 0.9872 0.1041
Medium leak 5.5612 0.8718 2.18E-03 0.0945 0.1761 0.9485 0.6977
Small leak 3.3184 0.5624 1.77E-03 0.0435 3.75E-05 0.9778 0.6502

Normal condition 7.4060 0.7917 2.66E-03 0.1450 2.20E-04 0.9105 0.0409

ACGAN

Large leak 2.2632 0.4087 1.15E-03 0.0170 0.1078 0.9892 0.8464
Medium leak 5.6679 0.8106 1.69E-03 0.0917 0.0855 0.9555 0.2266
Small leak 7.2984 0.6938 4.88E-05 0.1125 1.17E-04 0.9384 0.1401

Normal condition 7.3893 0.7551 6.03E-04 0.1517 4.50E-05 0.9090 0.0038

SMOTE

Large leak 2.4679 0.4376 1.13E-03 0.0384 0.0135 0.9819 0.7749
Medium leak 3.0388 0.4999 5.76E-05 0.0252 0.0228 0.9870 0.5999
Small leak 4.0798 0.5776 3.05E-04 0.0875 3.20E-05 0.9599 0.4534

Normal condition 8.6473 0.7983 2.39E-03 0.1978 1.38E-03 0.8780 0.2027

VAE

Large leak 2.1520 0.3654 8.45E-04 0.0377 0.1015 0.9863 0.8160
Medium leak 5.2304 0.7243 3.44E-04 0.0904 0.0936 0.9633 0.2419
Small leak 4.2955 0.8951 5.61E-04 0.1136 2.94E-05 0.9537 0.3310

Normal condition 8.1732 0.7548 4.17E-04 0.1872 1.48E-04 0.8873 0.0389

SA-ASN

Large leak 0.5844 0.0865 1.43E-04 0.0022 0.0629 0.9992 0.9887
Medium leak 1.3848 0.2091 1.25E-04 0.0039 0.0532 0.9983 0.9478
Small leak 1.2103 0.2425 1.54E-05 0.0060 7.31E-06 0.9976 0.9577

Normal condition 7.0452 0.6675 2.61E-05 0.1460 3.14E-05 0.9105 0.2846
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TABLE III: Performance evaluation of pipeline fault diagnosis via FAR and MAR. (Accuracy %)

Models
FAR MAR

LL ML SL NC Average LL ML SL NC Average

GAN 0.00 1.83 31.42 4.31 9.39 68.97 11.09 0.00 31.98 29.01
LSGAN 11.95 9.20 0.00 0.83 5.49 17.41 0.00 47.77 0.00 16.29
CGAN 0.00 17.51 0.61 0.00 4.53 14.45 0.00 39.17 0.34 13.49

InfoGAN 0.11 0.06 6.74 0.00 1.73 12.44 5.30 0.32 2.92 5.24
ACGAN 2.08 12.31 2.07 1.06 4.38 27.72 3.18 0.00 20.36 12.82
SMOTE 0.00 5.65 42.62 15.18 15.86 92.14 93.13 0.17 3.61 47.26

VAE 2.45 4.15 30.61 2.82 10.00 88.32 19.96 0.00 10.79 29.76

SA-ASN 0.00 0.00 0.04 0.00 0.02 0.02 0.03 0.00 0.06 0.03

TABLE IV: Performance evaluation of pipeline fault diagnosis via FDR and ACC. (Accuracy %)

Models
FDR ACC

LL ML SL NC Average LL ML SL NC Average

GAN 31.03 88.91 100.00 68.02 71.99 82.50 95.88 76.50 88.88 85.94
LSGAN 82.59 100.00 52.23 100.00 83.71 86.67 93.08 87.96 99.38 91.77
CGAN 85.55 100.00 60.83 99.66 86.51 96.33 86.83 89.67 99.99 93.19

InfoGAN 87.56 94.70 99.68 97.08 94.76 96.92 98.67 94.92 99.25 97.44
ACGAN 72.27 96.81 100.00 79.63 87.18 91.25 89.95 98.41 94.04 93.41
SMOTE 7.85 6.86 99.82 96.38 52.73 76.04 72.58 67.45 87.75 75.96

VAE 11.67 80.03 100.00 89.21 70.23 75.79 91.91 77.08 95.20 84.99

SA-ASN 97.83 96.93 99.83 93.82 97.10 99.50 99.20 97.12 98.33 98.91

TABLE I: Configurations of the SA-ASN algorithm.

Network parameters Values

Number of convolution blocks 3
Number of transposed convolution blocks 3

Number of convolution kernels 3
Number of transposed convolution kernels 3

Balancing parameter 0.01
Size of convolution kernels 1× 2

Size of transposed convolution kernels 1× 2

Stride 2
Length of real time series 1024

Training epochs 2000
Number of heads in the PASA 8

Hyperparameterα 0.01
Hyperparameterγ 1
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Fig. 5: Real data and synthetic data generated by the SA-ASN algorithm. (a)
Pipeline signal changes under LL. (b) Pipeline signal changes under ML. (c)
Pipeline signal changes under SL. (d) Pipeline signal changes under NC.

We are now in a position to comprehensively evaluate
the effectiveness of our SA-ASN algorithm by comparing
its performance with that of some state-of-the-art baselines.
As shown in Fig. 6(a)-(e), the temporal properties associated
with the health states in the synthetic data are significantly
degraded by the off-the-shelf GAN framework. Subsequently,
it can be seen that the synthetic data from the SMOTE and
VAE cannot recover the subtle amplitude variations, which
inevitably makes the follow-up fault diagnosis task more
challenging. Differently, our SA-ASN algorithm well learns
the temporal association and semantic representation from the
sample space, which enables the synthetic data more natural
and smooth in the whole structure. We believe that the above
satisfactory visual results mainly benefit from the cooperation
between the TAL mechanism and the PASA strategy. In par-
ticular, the former helps the generator to learn global context
information from the real data, while the latter contributes to
aligning discriminative features between the real and synthetic
distributions.

C. Quantitative evaluation

We further assess our SA-ASN algorithm by seven quan-
titative metrics including Euclidean distance (ED), Cheby-
shev distance (CD), maximum mean discrepancy (MMD),
Kullback-Leibler divergence (KL), Earth-Mover distance
(EMD), cosine similarity (Cosine), and Pearson correlation
coefficient (PCC). Note that the first five metrics measure
the difference between the real and generated distributions,
and thus their values should be small (denoted by↓). On
the contrary, Cosine and PCC should have large values, as

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TII.2023.3275701, IEEE Transactions on Industrial Informatics



FINAL VERSION 8

they reveal the correlation between the given data (denot-
ed by ↑). Table II reports the statistical results under the
four health states. It is obvious that our SA-ASN algorithm
achieves superior performance surpassing or comparable to
other baselines. For example, in the LL scenario, our algorithm
outperforms the second-best algorithm in all metrics with
significant superiority. These results suggest that our SA-ASN
algorithm is more effective in generating time series due to the
consideration of temporal association and semantic correlation.

D. Ablation study

To verify the contribution of each component in the SA-
ASN algorithm, we carry out incremental experiments. As
illustrated in Section III, the SA-ASN algorithm consists of
two key components: the TAL mechanism and the PASA
strategy. Therefore, we take the standard GAN as the baseline
and add the TAL and the PASA respectively. Compared
variants are listed as follows: standard GAN, standard GAN
+ TAL, standard GAN + PASA, and SA-ASN.

Fig. 7 shows the results of the distribution visualization via
t-SNE. According to Fig. 7(a) and Fig. 7(b), it can be found
that the TAL mechanism helps to recover the time-structured
features of the real data in the generated data. However, the
standard GAN+TAL has no ability to learn the discriminative
features of each health state, resulting in invalid decision
boundaries. Furthermore, Fig. 7(c) presents the favorable prop-
erties of intra-class compactness and inter-class separability.
Nevertheless, due to the loss of temporal dynamic information,
standard GAN + PASA has the problem of misclassification.
On the contrary, the proposed SA-ASN algorithm obtains the
best instance and distribution characteristics, including high-
quality temporal association and distinct decision boundaries.
In summary, each component is important and indispensable
for achieving the best performance of the proposed SA-ASN
algorithm.

E. Pipeline fault diagnosis

1) Implementation details:In this subsection, the effec-
tiveness of our algorithm is investigated via pipeline fault
diagnosis. Experimental cases with different augmentation
(AM) rates are carried out to evaluate the performance of the
SA-ASN algorithm and all baselines in these cases. The AM
rate is defined as follows.

AM = Nnormal/Nfault, (13)

whereNnormal represents the sample number of normal con-
dition and Nfault denotes the sample number of all fault
conditions. In order to comprehensively analyze the diag-
nostic reliability, four metrics are used in the experiment,
including false-alarm rate (FAR), missing-alarm rate (MAR),
fault-detection rate (FDR), and total accuracy (ACC). More
specifically, the lower the FAR and MAR, the more accurate
the classification results (the opposite is true for FDR and
ACC). Note that theNnormal in this experiment is set to 2000.

2) Experimental results:Following the above experimental
setup, we conduct the fault diagnosis on the pipeline datasets
with six AM rates, including AM rate=100:1, AM rate=20:1,
AM rate=10:1, AM rate=5:1, AM rate=2:1, and AM rate=1:1.
Fig. 8 shows the effect of different AM rates on the ACC. It
is observed that our SA-ASN algorithm outperforms the other
baselines with increasing AM rate. To be specific, the SA-
ASN algorithm brings an improvement up to 1.47% in ACC
compared to the second-best algorithm when AM rate=1:1.
Moreover, the other three metrics in the case of AM rate = 1:1

100:1 20:1 10:1 5:1 2:1 1:1
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Fig. 8: Diagnostic accuracy at different AM rates.

are shown in Tables III-IV. Compared with the baselines, our
SA-ASN algorithm decreases the averaged FAR and averaged
MAR by 1.71% and 5.2%, respectively. Besides, the proposed
SA-ASN algorithm significantly outperforms all baselines in
FDR and ACC with improvements of 2.34% and 1.47% over
the second-best algorithm. All the above results suggest that
the SA-ASN algorithm effectively improves the reliability of
temporal structure and the discriminability of features, thereby
overcoming the I&ID issue.

V. CONCLUSION

In this paper, a novel subdomain-alignment adversarial self-
attention network (SA-ASN) has been proposed to solve the
I&ID problem. Different from the traditional GAN framework,
our SA-ASN algorithm has explicitly considered temporal
association and semantic correlation during data generation.
More specifically, we have put forward a TAL mechanism to
model the complex dynamics of real data in the discriminator
and transfer the attention maps to the generator via a cus-
tomized knowledge-sharing structure. Furthermore, we have
developed a PASA strategy to align the local class-conditional
distributions between the real and synthetic datasets. Ex-
perimental results have demonstrated that the performance
improvement of the data-driven diagnostic model significantly
benefits from the augmented dataset. Therefore, we can con-
clude that the proposed SA-ASN algorithm is able to learn the
underlying distributions of real-world data, while effectively
preserving the temporal features and semantic representations
of the real data in the synthetic data. In the future, we will
focus on corresponding research directions, including but not
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(a) Standard GAN (b) Standard GAN+TAL

(c) Standard GAN+PASA (d) SA-ASN

LL

ML

SL

NC

Fig. 7: Distribution visualization of t-SNE embedding.

limited to designing advanced control strategies [12], [22], [30]
and developing new DA techniques [19], [25].
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