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Abstract—Data augmentation (DA) has the potential to ad- I. INTRODUCTION

dress the issue of imbalanced and insufficient datasets (I&ID) Fault diagnosis plays a crucial role in reducing mainte-
in pipeline fault diagnosis. However, the majority of existing . s .
DA methods for time series are inspired by computer vision Nance costs and enhancing the reliability of oil and gas
techniques, ignoring the temporal dynamic properties and fine- transportation systems. In recent years, data-driven intelligent
grained fault features, which leads to limited performance of approaches have made significant advancements in industrial

the augmentation. To tackle this problem, we introduce a novel fg]t diagnosis [6], [14], [24]. However, the success of these

DA approach called the subdomain-alignment adversarial self- . . .
attention network (SA-ASN), which takes into account both approaches is heavily dependent on balanced data categories

temporal association and semantic correlation. Our approach @nd @ sufficient amount of labeled data. This is not always
features a novel temporal association learning (TAL) mechanism, the case in pipeline fault diagnosis, as some fault categories
which transfers temporal information from the discriminator  are rarely available due to normal operation and obtaining
to the generator via a customized knowledge-sharing structure, |gpheled data is expensive, time-consuming, and challenging.

improving the reliability of synthetic long-range associations. ‘i A
Additionally, we introduce a prototype-assisted subdomain align- As aresult, the performance of existing data-driven approaches

ment (PASA) strategy that forms a hierarchical structure in the decreases when applied to pipeline fault diagnosis. As illus-
synthetic dataset by incorporating local semantic correlation into trated in Fig. 1, a diagnostic model trained on imbalanced
the model training. With the support of TAL and PASA, our SA-  and insufficient datasets (1&IDs) fails to capture discriminative

ASN algorithm enhances the authenticity of temporal structure  features, resulting in a high rate of false alarms and missed

?t the instance level and improves the.dlscrlmlnablllty of fault alarms. Hence, there is an urgent need to address the issue of
eatures at the category level. Our experimental results show that . . .

the SA-ASN algorithm provides a more diverse and accurate '&ID to ensure the efficacy of the diagnostic model.
augmentation of pipeline data. The effectiveness of our SA-ASN
algorithm encourages the use of data-driven diagnostic models
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Fig. 1: Intelligent data-driven diagnostic models trainedbalanced dataset,
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in improving diagnostic performance, as they only alter the  effectiveness of our approach in addressing the 1&ID
shape of original samples rather than generating new ones. To issue.
overcome this limitation, pattern mixing-based DA methods The structure of this paper is as follows: In Section II,

have been developed that combine two or more pattefgsated works including intelligent fault diagnosis and attention
to generate a new one. In this regard, one widely usggbchanism are discussed. Section Il provides a detailed
augmentation method is the synthetic minority oversampliRg@scription of the proposed SA-ASN algorithm. The exper-
technique (SMOTE) [2], which generates a new sample Ryental results and analysis are presented in Section IV.

interpolating between an existing sample and its K-neargshally, in Section V, the conclusions of this paper are drawn.
neighbors. Nevertheless, data interpolation is susceptible to

hard negative samples, which often leads to ambiguous sample
features and reduces classification performance. . _ .
Generative models, on the other hand, explore untappid Intelligent fault diagnosis

real-world distributions to produce new samples. This methodjith the advancement of deep learning technologies, data-
not only increases the diversity of features but also ensures thagen intelligent fault diagnosis has seen remarkable success
the samples are valid. The most well-known generative mogglvarious industrial applications [27]. For instance, [1] intro-
is the generative adversarial network (GAN) [5], which hagyces a classifier based on Long Short-Term Memory (LSTM)
become a popular research topic in DA due to its powerfi{at learns the temporal association and predicts the health
feature extraction and representation capabilities [18], [2&fate of the pipeline. Another example is the ensemble learning
[29]. For instance, an approach combining the GAN algorithffamework in [21], which combines a Sparse Autoencoder
and Gaussian mixture model has been proposed in [18] N@twork and an improved Support Vector Machine to enhance
solve the 1&ID problem. Furthermore, a multi-scale progreshe accuracy of pipeline fault detection. Despite these success-
sive GAN algorithm has been put forward in [29] to synthesizgs the majority of these intelligent methods depend heavily on
the surface defect images. Moreover, a multi-granularity GApgjanced and sufficient datasets that cover all health states. As
algorithm has been developed in [26] to improve the quantifyresult, ensuring the quality and quantity of the data is crucial
and quality of wafer maps for accurate defect identificationto improve the accuracy of pipeline fault diagnosis. In recent
Thus far, most existing GAN-based time-series data augsars, data augmentation methods are developed to address
mentation methods have taken inspiration from visual DAgtg scarcity and imbalance by augmenting imperfect data
techniques, and these methods may not perform optimaflitn satisfactory quality and desired diversity. For example,
when applied to pipeline fault diagnosis for the foIIowian puts forth a Trinetworks-form based GAN algorithm for
reasons. Firstly, these methods are designed to capture pix@heline leakage detection in the presence of incomplete sensor
level features which are not suitable for learning time-seriggtg_ Additionally, [28] proposes a mixed-GANs algorithm to
temporal dynamicsTheseresults in the generator havingprovide additional data for training a high-accuracy model in
difficulty in capturing the variation trend of the time-seriesierms of pipeline leakage detection.
leading to unreliable long-range associations in the syntheticNotamy, the above GAN-based data augmentation methods
series. Additionally, previous methods primarily focus oRorrow ideas directly from computer vision without con-
aligning the global distribution b_etween the real_and synthe%ering temporal dynamic properties and fine-grained fault
datasets. As a result, synthetic data from different heaffiaryres, resulting in limited augmentation performance. To
states may be blended and deviate from real data un@@fjress this problem, some researchers have attempted to
the corresponding health state, causing ambiguous decisi@struct a GAN framework by utilizing a network structure
boundaries. To address these limitations, the objective of thigitaple for learning time series. For example, [14] proposes
paper is to propose an advanced time-series generative mogahyprid GAN framework based on bidirectional LSTM for
The key contributions of this paper are as follows. fault diagnosis in machine health monitoring. Moreover, [24]
1) We propose a new DA approach, referred to as thyelops a method combining GAN and LSTM to predict
subdomain-alignment adversarial self-attention netwopipeline leakage. Nevertheless, LSTM-based generators and
(SA-ASN), which explicitly takes into account bothgiscriminators have difficulty in obtaining global optimal
temporal association and semantic correlation. solutions due to the vanishing gradient problem and limit-
2) We design a temporal association learning (TAL) mechag computational resources. Therefore, this paper proposes
nism to transfer the temporal dynamic information fronan SA-ASN algorithm that integrates a multi-head attention

the discriminator to the generator through a customizefechanism to recover complex temporal structures and learn
knowledge-sharing structure, thereby enhancing the fghe-grained features.

liability of the synthetic time series.
3) We implement a prototype-assisted subdomain align- , o , )
ment (PASA) strategy to incorporate semantic correl®: Attention mechanism in fault diagnosis
tion into data generation, resulting in maximized intra- In recent years, attention mechanism has gained widespread
class compactness and inter-class separability. popularity in the field of time-series data processing for fault
4) Through qualitative visualization and quantitative evaliagnosis due to its ability to model internal dependencies and
uation, our SA-ASN algorithm is compared to stateglobal representations effectively [10], [11], [20], [23] and the
of-the-art DA methods. The results demonstrate theferences therein. For instance, a fault-attention generative

II. RELATED WORK
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probabilistic adversarial autoencoder has been proposedirinthe TAL mechanism, we first introduce multi-head self-
[23] for anomaly detection by discovering the low-dimensionalttention blocks into the discriminator to capture long-range
manifold embedded in the high-dimensional space of tlssociations and highlight discriminative features from real
signal, where the fault-attention abnormal state indicator hdata. Next, we employ a well-designed knowledge-sharing
been constructed using the distribution probability of lowstructure to transfer this information from the discriminator to
dimensional features and reconstruction errors. Furthermattee generator, leading to the production of effective synthetic
an attention recurrent autoencoder has been presented in [g@jporal structures.
for early fault diagnosis and severity detection of rotating Here, we provide a detailed description of the TAL mech-
machinery. Moreover, a joint attention feature transfer netwoghism as follows, where the definitions of relevant functions
has been developed in [11] to deal with the problem @é.g. LayerNornt), LeakyRely-), Softmax-), Concat-)) can
data imbalance by transferring generalized representatigasfound in [20].
obtained from other classes to the class with scarce samplesthe discriminator and the generator in the SA-ASN algo-
where the attention module has been used to maintain #tem are constructed by stacking one-dimensional convolu-
discriminability between the features of different classes. tion blocks and multi-head self-attention blocks alternately.
Formally, the overall equations of the discriminator at thk

I11. ANOVEL SA-ASN ALGORITHM layer are described as follows:

In this section, we will provide a comprehensive overview FL = LayerNorm (MA (Xl—l) i X"l) 1)
of our proposed SA-ASN algorithm. Subsequently, the core ! ‘ . ’
components of the SA-ASN algorithm, such as the TAL X' = LeakyRelu (CB (Fp)) , )

mechanism and the PASA strategy, will be described in deta\‘/UhereXl—l € RNX1xJ | ¢ {1.2,... L} is the input of the

Finally, we will present a summary of the training process , . ha
. . -th layer with length.J, N denotes input volumeFy, is the
for the SA-ASN algorithm in the form of a ps‘QUdO'COd‘Tﬁidden representatior;B(-) denotes the convolution block,

algorithm. andMA (-) represents the multi-head self-attention block. Note
that the transferable knowledge obtained JBA(-) in the
A. Overview of SA-ASN algorithm discriminator is shown as follows:
A new SA-ASN algorithm, as shown in Fig. 2, is proposed I o1 T
to improve the diagnosis accuracy of pipeline faults by ad- SlDi — Softmax M) ’ (3)
dressing the 1&ID problem. The algorithm starts by utilizing 7 d;
the TAL mechanism to learn long-range temporal association- 7.[IDJ_ — SlD,iVbia (4)

s from the discriminator through a customized knowledge-

zharing strhucture. hTh_e PAdSA Ttgate%y is t:en introdudcetlj Where O}, , = XTTWE b ICLlDZ = X/7'Wi ,,, and
raw together synthetic and real data from the same under a

9 f Y . . eryps XYW, € RNXIXS represent the query, key,

category, while separating data from different categories, \z/;la i;e of'-ih head 61fMA respectively? denotes the number

demonstrated in Fig. 3. With the support of the TAL mech- ! » esp y dl

anism and the PASA strategy, the SA-ASN algorithm is ab®f head; W5 ,, ;. Wi ., and W), ,; € R/*% are the

to recover the instance-level variation tendencies and constriiainable parameter matrices; is the dimension of parameter

the category-level hierarchical structure. Finally, the algorithmatrices;S, ; denotes the self-attention map (i.e., the series-

is updated using an alternating iterative technique, followiragsociations); ané{’, , represents the hidden representation

the training approach proposed in [5]. after the self-attention in theth layer. Therefore, the output
of MA (X'~!) can be presented as follows:
B. Temporal as-somat_lon Iearrung (TAL)-mechanlsm | MHL (0,1, V) = Concat(HlD_rl,Hﬂ:,yQ, o 77'[lD,h)W(l’),Dv
In the domain of time series analysis, the complexity of (5)

the features poses a challenge when compared to image data.

Directly applying GAN algorithms from computer vision maywhere W}, |, € R4 *d" is the parameter matrix. To model the

result in invalid synthetic temporal structures. To overconmtemporal association in the sample space, the discriminator is

this challenge, we propose the TAL mechanism to learn afitbt optimized to distinguish between the real and synthetic

recover the complex dynamic properties in real data. series, which can be formulated as follows:
The discriminator in a GAN identifies real and synthetic

data by comparing the most discriminative regions. Based on H(}%XKD =Ex~ps(x) [logD (&)]

]tch|s principle, |t_ is m_eanlngful to recover these distinguishable +Ezop, (2 log(1— D (G (2)))],

eatures contained in the temporal structure to ensure the re-

liability of the synthetic series. The self-attention mechanismhere X' denotes the real series obtained from sample space

as proposed in [20], is an effective tool for modeling globaPs(X), Z represents the latent variable sampled from latent

dependencies of series. Its multi-head version, which connespaceP;,(Z), G (£) is the data generated by the generator,

feature information from different subspaces, is even moflg is the network parameter of the discriminator, ang) is

effective in highlighting discriminative features. Accordinglythe probability that the discriminator outputs. Then, we freeze

(6)
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Fig. 2: Architecture of the proposed SA-ASN algorithm.

Prototype-assisted subdomain alignment

G(2); ¢ SameClassTo(P;)

the discriminator and transfer its self-attention maps into the
generator, which can be formalized as follows:

He =SE TV, (7)
MHZG(Q, K,V) = Concat(HlGJ, HZQQ, . 7HlC;7h)W(l91G7

Maximize interclass margins

o(PD) - "i S e(c@)
o0 ’

-

(8) {ﬁi\/ \%G(;* G(2)] € SameClassTo(P) Minimize intraclass discrepancies
4 % i
S & P:

whereS7 ;""" denotes the self-attention map of the —  +
1)-th layer in the sample spac®y,; = Z/~'W), ; is the
value matrix. Finally, we train the generator to deceive the . o o

L. . . . Fig. 3: Prototype-assisted subdomain alignment via bitoeal self-
discriminator by mapping the latent variables into the synthegg%ervised loss.
data that is similar to the real data, which can be represented
as follows:

Ilél(i;n Lo =Ezup, (z) [log(1-D(G(2)))],

1 M

oD - o S e(c@)
49 j=1 M

PASA strategy, the SA-ASN algorithm explicitly incorporates
semantic information regarding the health states into the
generation process, and thus improves the distinguishability
of the synthetic data. In this study, the inter-class and intra-
C. Prototype-assisted subdomain alignment (PASA) strategslass correlations are jointly optimized by a bidirectional self-

Conventional GAN algorithms only strengthen the glob&UPervised loss, which can be formulated as follows:
similarity between the real and synthetic distributions via the

9)

wheref is the network parameter of the generator.

adversarial mechanism without considering the semantic cor- 1 M i, 1 2o

relations between the class-conditional distributions. However, £Bs M Z v (Pe) — N Z . (G (Z)j>
discriminative features of the same category are not always e=e=l “9 =1 H
identical. In this case, even if the temporal structure of the 1 M M

synthetic data is close to that of the real data, its features _WW—U ZZ ¢ (P;)

representing the health state may not necessarily align with e=122t

those of the real data. In other words, the synthetic data 1 Mg

of different categories may be mixed up with each other — ga(G(Z)j) , (10)
and deviate from the real data of corresponding category. To Neg i H

overcome this weakness, we propose a PASA strategy to align
the local distributions between the real and synthetic datas&¥§ere v > 0 is a balancing parametef{ denotes the
reproducing kernel Hilbert space (RKHS) and-) is the
As shown in Fig. 3, we exploit the prototype that charadionlinear mapping from the feature space to the RKHS.
terizes the representative embedding of a set of semantic&fipresents the number of sample categorieéZ); denotes
similar instances in the feature space to adjust the subdom®i@ j-th synthetic data generated by the SA-ASN algorithm.
distributions of the synthetic data. More specifically, the PASAz,¢ iS the number of samples in category.P; denotes the
strategy first maximizes the correlation between real protprototype of thec-th category in the sample space, which can
type and synthetic data in the same category. Concurrenfig, calculated as follows:
the PASA strategy keeps features away from the decision
boundaries by minimizing the correlation between real pro-
totypes and different categories of synthetic data. With the

Ne,r

> Fo (X,

" k=1

1

Ne

Pr=

(11)
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whereP! denotes the mean vector of embedded support data 2 L s B SR
belonging to thec-th class.Fj (-) is an embedding function 0 \/\/\/‘/\ﬂ

via deep neural networks.. , denotes the number of the real 2
data in thec-th class.X), is the k-th real data.

I I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000

D. Overall objective function of the SA-ASN algorithm 2 —‘JW\/WNWNM

100 200 300 400 500 600 700 800 900 1000

Voltage/V

In this paper, we jointly optimize the adversarial loss and
the bidirectional self-supervised loss to produce high-fidelity
and diversified synthetic data. By incorporating (6), (9), and
(10), the overall objective function of the SA-ASN algorithm
is summarized as follows:

I L I I I I I I I 1
100 200 300 400 500 600 700 800 900 1000

L = mi Ladv in Lps,
Igénrrelgx d —i—argén BS (12)

I I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000

wherea is a balancing parametef; andfdp are the param-

eters of generator and discriminator, respectively. Moreovely. 4: Details of the pipeline data for each health statengftop to bottom

Algorithm 1 displays the training procedure of our SA-ASNn this figure, the health states are, in order, large leak, medium leak, small
algorithm. leak, and normal condition).

Algorithm 1 The SA-ASN Algorithm

o Least squares GAN (LSGAN) [15]t leverages least

Input: Real data{X;},~}; Latent variable{Zj};?if; square loss to reduce the discrepancy between the syn-
Output: Synthetic dataG(2); thetic and real dataset.
1: for number of training epocko o Conditional GAN (CGAN) [16]:It employs additional
2: for number of discriminator iterationdo information such as category vectors as constraints to
3 Sample mini-batch ofn real data from distribution guide data generation.
X ~ Pg(X); o INfoGAN [3]: It puts forward a generative model that
4: Sample mini-batch ofm latent variables from could control synthetic data patterns by incorporating
distribution Z ~ Pp,(2); latent representations into the generator.
5: Compute discriminator los§ via (6); o Auxiliary classifier GAN (ACGAN) [17]:It develops
6: Update discriminator via p; a semi-supervised generative model to simultaneously
7 end for generate synthetic data for multiple categories.

8: for number of generator iteratiomo o Synthetic minority over-sampling technique (SMOTE)
9: Sample mini-batch ofm latent variables from [2]: It creates synthetic data by randomly interpolating
distribution Z ~ P, (Z2); between minority class and its K-nearest neighbors.

10: Compute generator los8; via (9); « Variational AutoEncoder (VAE) [9]it aims to construct

11: Compute bidirectional self-supervised lasss via a potential probability distribution for each sample by
(20); pushing the encoder input closer to the decoder output.

12: Update generator b and Lgs; 3) Model configuration:We employ the 1-D convolution

13: end for architecture and the 1-D transposed convolution architecture

14: end for to construct the discriminator and the generator, respectively.

The configurations of the SA-ASN algorithm are presented in
Table 1. Particularly, all deep neural network-based algorithms
IV. EXPERIMENTS ANDANALYSIS share the same network parameters. The hyperparameters are
A. Setups fine-tuned and selected by cross-validation. During training,

1) Dataset descriptionThe SA-ASN algorithm is evaluat- We utilize the Adam optimizer with a learning rate of 1e-4 to
ed on the pipeline dataset obtained from the simulation pl&Pdate the weights and biases of the SA-ASN algorithm. All
form. Spec|f|ca"y’ the p|pe||ne |ength is j_ﬁothe opera“ng the eXperImentS are conducted with PyTOI’Ch USIng NVIDIA
pressure is 0MPa, and the flow rate is 103 /h. The voltage GEFORCE RTX 3090 GPU, Intel(R) Core(TM) i9-10900k,
signals are collected at a sampling frequency of 102dnder 3.70-GHz CPU.
four different health states, i.e., large leak (LL), medium leak
(ML), small leak (SL), and normal condition (NC). Details ofB. Qualitative visualization
the pipeline data for each health state are shown in Fig. 4. First, the synthetic data generated by the proposed SA-ASN

2) Baselines:To assess the proposed SA-ASN algorithralgorithm is presented along with the real data, as shown in
comprehensively, the synthetic data of SA-ASN are compargfd). 5, in which the real data is shown in blue dotted line
with those of seven other state-of-the-art baselines: and the synthetic data is shown in orange solid line. Each

« Generative adversarial nets [5]t proposes two objective column represents one health state. It can be observed that the

functions for updating the generator, namely saturatimgipeline data generated by the SA-ASN algorithm is extremely
and non-saturating objective functions. consistent with the characteristics of the real data.
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Fig. 6: Real data and synthetic data. (a) GAN. (b) LSGAN

TABLE II: Quantitative evaluation of the proposed SA-ASN and all baselines by ED, CD, MMD, KL, EMD, Cosine, and

PCC. (Best results are shown liold.)

50 900 1000

. (c)ABG (d) InfoGAN. (e) ACGAN. (f) SMOTE. (g) VAE. (h) SA-ASN (ours).
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sampling time/s
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(h) SA-ASN

Model Health state ED | CD | MMD | KL | EMD | Cosinet PCCt
Large leak 5.8259 1.0000 2.45-03 0.1908 0.1148 0.9123 0.3792
GAN Medium leak 5.2397 0.7275 2.02E-03 0.0955 0.1962 0.9543 0.3453
Small leak 3.3422 0.4950 2.59E-03 0.0315 8.06E-05 0.9781 0.6551
Normal condition 7.4409 0.7314 2.49E-03 0.1419 1.90E-04 0.9044 0.0974
Large leak 5.9141 0.8307 2.74E-03 0.1541 0.0905 0.9218 0.4090
LSGAN Medium leak 3.8426 0.4368 2.11E-03 0.0249 0.2052 0.9858 0.6515
Small leak 5.7607 0.7475 1.59E-03 0.0888 6.79E-05 0.9365 0.3013
Normal condition 7.3484 0.7614 2.80E-03 0.1510 1.82E-04 0.9109 0.0500
Large leak 5.6606 1.0000 2.21E-03 0.1781 0.0892 0.9190 0.3535
CGAN Medium leak 2.7552 0.3782 1.59E-03 0.0147 0.1638 0.9905 0.7748
Small leak 5.5668 0.7160 1.84E-03 0.0898 9.21E-05 0.9366 0.1346
Normal condition 7.1029 0.7613 2.67E-03 0.1502 1.35E-04 0.9132 0.0672
Large leak 2.3412 0.3690 2.22E-03 0.0180 0.1133 0.9872 0.1041
INfoGAN Medium leak 5.5612 0.8718 2.18E-03 0.0945 0.1761 0.9485 0.6977
Small leak 3.3184 0.5624 1.77E-03 0.0435 3.75E-05 0.9778 0.6502
Normal condition 7.4060 0.7917 2.66E-03 0.1450 2.20E-04 0.9105 0.0409
Large leak 2.2632 0.4087 1.15E-03 0.0170 0.1078 0.9892 0.8464
ACGAN Medium leak 5.6679 0.8106 1.69E-03 0.0917 0.0855 0.9555 0.2266
Small leak 7.2984 0.6938 4.88E-05 0.1125 1.17E-04 0.9384 0.1401
Normal condition 7.3893 0.7551 6.03E-04 0.1517 4.50E-05 0.9090 0.0038
Large leak 2.4679 0.4376 1.13E-03 0.0384 0.0135 0.9819 0.7749
SMOTE Medium leak 3.0388 0.4999 5.76E-05 0.0252 0.0228 0.9870 0.5999
Small leak 4.0798 0.5776 3.05E-04 0.0875 3.20E-05 0.9599 0.4534
Normal condition 8.6473 0.7983 2.39E-03 0.1978 1.38E-03 0.8780 0.2027
Large leak 2.1520 0.3654 8.45E-04 0.0377 0.1015 0.9863 0.8160
VAE Medium leak 5.2304 0.7243 3.44E-04 0.0904 0.0936 0.9633 0.2419
Small leak 4.2955 0.8951 5.61E-04 0.1136 2.94E-05 0.9537 0.3310
Normal condition 8.1732 0.7548 4.17E-04 0.1872 1.48E-04 0.8873 0.0389
Large leak 0.5844 0.0865 1.43E-04 0.0022 0.0629 0.9992 0.9887
SA-ASN Medium leak 1.3848 0.2091 1.25E-04  0.0039 0.0532 0.9983 0.9478
Small leak 1.2103 0.2425 1.54E-05 0.0060 7.31E-06 0.9976 0.9577
Normal condition 7.0452 0.6675 2.61E-05 0.1460 3.14E-05 0.9105 0.2846
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TABLE IlI: Performance evaluation of pipeline fault diagnosis via FAR and MAR. (Accuracy %)

FAR | MAR
Models
LL ML SL NC Average | LL ML SL NC Average

GAN 0.00 1.83 31.42 4.31 9.39 68.97 11.09 0.00 31.98 29.01
LSGAN 11.95 9.20 0.00 0.83 5.49 17.41 0.00 47.77 0.00 16.29
CGAN 0.00 17.51 0.61 0.00 4.53 14.45 0.00 39.17 0.34 13.49
InNfoGAN 0.11 0.06 6.74 0.00 1.73 12.44 5.30 0.32 2.92 5.24
ACGAN 2.08 12.31 2.07 1.06 4.38 27.72 3.18 0.00 20.36 12.82
SMOTE 0.00 5.65 42.62 15.18 15.86 92.14 93.13 0.17 3.61 47.26

VAE 2.45 4.15 30.61 2.82 10.00 88.32 19.96 0.00 10.79 29.76
SA-ASN 0.00 0.00 0.04 0.00 0.02 0.02 0.03 0.00 0.06 0.03

TABLE IV: Performance evaluation of pipeline fault diagnosia FDR and ACC. (Accuracy %)
FDR | ACC
Models
LL ML SL NC Average | LL ML SL NC Average

GAN 31.03 88.91 100.00 68.02 71.99 82.50 95.88 76.50 88.88 9485.
LSGAN 82.59 100.00 52.23 100.00 83.71 86.67 93.08 87.96 99.38 91.77
CGAN 85.55 100.00 60.83 99.66 86.51 96.33 86.83 89.67 99.99 93.19
InfoGAN 87.56 94.70 99.68 97.08 94.76 96.92 98.67 94.92 99.25 97.44
ACGAN 72.27 96.81 100.00 79.63 87.18 91.25 89.95 98.41 94.04 93.41
SMOTE 7.85 6.86 99.82 96.38 52.73 76.04 72.58 67.45 87.75 75.96

VAE 11.67 80.03 100.00 89.21 70.23 75.79 91.91 77.08 95.20 84.99
SA-ASN 97.83 96.93 99.83 93.82 97.10 99.50 99.20 97.12 98.33 8.919

TABLE I: Configurations of the SA-ASN algorithm.

Network parameters Values
Number of convolution blocks 3
Number of transposed convolution blocks 3
Number of convolution kernels 3
Number of transposed convolution kernels 3
Balancing parameter 0.01
Size of convolution kernels 1x2
Size of transposed convolution kernels 1x2
Stride 2
Length of real time series 1024
Training epochs 2000
Number of heads in the PASA 8
Hyperparametety 0.01
Hyperparametety 1

Fig. 5: Real data and synthetic data generated by the SA-Agdtitim. (a)

We are now in a position to comprehensively evaluate
the effectiveness of our SA-ASN algorithm by comparing
its performance with that of some state-of-the-art baselines.
As shown in Fig. 6(a)-(e), the temporal properties associated
with the health states in the synthetic data are significantly
degraded by the off-the-shelf GAN framework. Subsequently,
it can be seen that the synthetic data from the SMOTE and
VAE cannot recover the subtle amplitude variations, which
inevitably makes the follow-up fault diagnosis task more
challenging. Differently, our SA-ASN algorithm well learns
the temporal association and semantic representation from the
sample space, which enables the synthetic data more natural
and smooth in the whole structure. We believe that the above
satisfactory visual results mainly benefit from the cooperation
between the TAL mechanism and the PASA strategy. In par-
ticular, the former helps the generator to learn global context
information from the real data, while the latter contributes to
aligning discriminative features between the real and synthetic
distributions.

C. Quantitative evaluation

We further assess our SA-ASN algorithm by seven quan-
titative metrics including Euclidean distance (ED), Cheby-
shev distance (CD), maximum mean discrepancy (MMD),
Kullback-Leibler divergence (KL), Earth-Mover distance
(EMD), cosine similarity (Cosine), and Pearson correlation
coefficient (PCC). Note that the first five metrics measure
the difference between the real and generated distributions,

Pipeline signal changes under LL. (b) Pipeline signal changes under ML. ghd thus their values should be small (denotedwlyOn

Pipeline signal changes under SL. (d) Pipeline signal changes under NC

‘the contrary, Cosine and PCC should have large values, as
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they reveal the correlation between the given data (denot-2) Experimental resultsFollowing the above experimental
ed by 1). Table Il reports the statistical results under thsetup, we conduct the fault diagnosis on the pipeline datasets
four health states. It is obvious that our SA-ASN algorithrwith six AM rates, including AM rate=100:1, AM rate=20:1,
achieves superior performance surpassing or comparableAid rate=10:1, AM rate=5:1, AM rate=2:1, and AM rate=1:1.
other baselines. For example, in the LL scenario, our algorithig. 8 shows the effect of different AM rates on the ACC. It
outperforms the second-best algorithm in all metrics witls observed that our SA-ASN algorithm outperforms the other
significant superiority. These results suggest that our SA-ASMselines with increasing AM rate. To be specific, the SA-
algorithm is more effective in generating time series due to tASN algorithm brings an improvement up to 1.47% in ACC
consideration of temporal association and semantic correlatiscompared to the second-best algorithm when AM rate=1:1.
Moreover, the other three metrics in the case of AM rate = 1:1

D. Ablation study
100% |-
To verify the contribution of each component in the SA-
ASN algorithm, we carry out incremental experiments. As
illustrated in Section Ill, the SA-ASN algorithm consists of
two key components: the TAL mechanism and the PASA
strategy. Therefore, we take the standard GAN as the baselin £
and add the TAL and the PASA respectively. Compared
variants are listed as follows: standard GAN, standard GAN

80% [~

60% [~

+ TAL, standard GAN + PASA, and SA-ASN. "‘C
Fig. 7 shows the results of the distribution visualization via —o—mf}gmw

t-SNE. According to Fig. 7(a) and Fig. 7(b), it can be found o +€§§§

that the TAL mechanism helps to recover the time-structured —e—sAASN

features of the real data in the generated data. However, th 001 201 TER o o

standard GAN+TAL has no ability to learn the discriminative fusmentton e

features of each health state, resulting in invalid decision Fig. 8: Diagnostic accuracy at different AM rates.

boundaries. Furthermore, Fig. 7(c) presents the favorable prop-

erties of intra-class compactness and inter-class separabibitg shown in Tables IlI-IV. Compared with the baselines, our
Nevertheless, due to the loss of temporal dynamic informatic®A-ASN algorithm decreases the averaged FAR and averaged
standard GAN + PASA has the problem of misclassificatioMAR by 1.71% and 5.2%, respectively. Besides, the proposed
On the contrary, the proposed SA-ASN algorithm obtains tf8A-ASN algorithm significantly outperforms all baselines in
best instance and distribution characteristics, including highbR and ACC with improvements of 2.34% and 1.47% over
quality temporal association and distinct decision boundarig¢ise second-best algorithm. All the above results suggest that
In summary, each component is important and indispensatie SA-ASN algorithm effectively improves the reliability of
for achieving the best performance of the proposed SA-ASdmporal structure and the discriminability of features, thereby
algorithm. overcoming the 1&ID issue.

V. CONCLUSION

In this paper, a novel subdomain-alignment adversarial self-
1) Implementation detailsin this subsection, the effec-attention network (SA-ASN) has been proposed to solve the
tiveness of our algorithm is investigated via pipeline faul&ID problem. Different from the traditional GAN framework,
diagnosis. Experimental cases with different augmentati@d’ SA-ASN algorithm has explicitly considered temporal
(AM) rates are carried out to evaluate the performance of tagsociation and semantic correlation during data generation.
SA-ASN algorithm and all baselines in these cases. The AMore specifically, we have put forward a TAL mechanism to

E. Pipeline fault diagnosis

rate is defined as follows. model the complex dynamics of real data in the discriminator
and transfer the attention maps to the generator via a cus-
AM = Nyuormal/Ntaults (13) tomized knowledge-sharing structure. Furthermore, we have

developed a PASA strategy to align the local class-conditional
where N, orma represents the sample number of normal cowlistributions between the real and synthetic datasets. Ex-
dition and N, denotes the sample number of all faulperimental results have demonstrated that the performance
conditions. In order to comprehensively analyze the diagnprovement of the data-driven diagnostic model significantly
nostic reliability, four metrics are used in the experimenhenefits from the augmented dataset. Therefore, we can con-
including false-alarm rate (FAR), missing-alarm rate (MAR)lude that the proposed SA-ASN algorithm is able to learn the
fault-detection rate (FDR), and total accuracy (ACC). Morenderlying distributions of real-world data, while effectively
specifically, the lower the FAR and MAR, the more accurafgreserving the temporal features and semantic representations
the classification results (the opposite is true for FDR araf the real data in the synthetic data. In the future, we will
ACC). Note that theV,,ma1 in this experiment is set to 2000.focus on corresponding research directions, including but not
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(a) Standard GAN

(c) Standard GAN-+PASA

Fig. 7: Distribution visualization of t-SNE embedding.

limited to designing advanced control strategies [12], [22], [30]
and developing new DA techniques [19], [25]. [

(2]

(31

(4]

(5]

(6]

(7]

(8]

El
[10]

(11]

[12]

(23]

-y ) LL
-
(b) Standard GAN+TAL ML
° SL
NC
(d) SA-ASN
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