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Abstract—Ovarian cancer is a fatal female reproductive cancer
because it has no specific clinical manifestations and effective
screening methods in the early stage. When it is discovered, it
is already an advanced stage with a low cure rate. Therefore,
it is of great significance to improve the diagnostic ability of
early screening for ovarian cancer. In this study, we feature
engineered CA125 by calculating the rate of change of CA125
in addition to selecting a few top-ranked important features
from PLCO ovarian cancer dataset. The dataset was extremely
imbalanced; the imbalance ratio (ratio of negative samples in
the majority class to positive examples in the minority class) was
143.7. Twenty-three types of class-imbalanced learning methods
were used in this study to improve the predictive ability of the
model. We identified the decision tree method with the highest
AUC value among nine classic classifiers (decision tree, AdaBoost,
etc.) to build a model with the class imbalance method, and
showed their comparison. We identified the decision tree using
SVMSMOTE has the most robust predictive ability for ovarian
cancer, with a PPV of 0.9041, AUC of 0.9532, the sensitivity
of 0.7792, and specificity of 0.9982. The high PPV shown by
the model selected in this study indicates that the true positive
samples predicted by the model account for 90.41%. Compared
with other studies, the PPV of this study increased by 81.3%.
This study helps to improve the accuracy of early screening for
ovarian cancer and makes the diagnosis of ovarian cancer more
reliable.

Index Terms—Machine Learning, Feature Engineering, Class
Imbalance, Ovarian Cancer

I. INTRODUCTION

Ovarian cancer is a female reproductive tumour that has

rarely been paid attention to but has a very high fatality rate

[1]. It is high mortality because it has no obvious symptoms in

the early stage. When the patient is found to have cancer, it is

usually a malignant tumour that is difficult to cure. The success

rate of early treatment of ovarian cancer is high, the earlier

the disease is detected, the better the danger can be avoided

[2], [3]. Therefore, it is essential to carry out early ovarian

cancer screening for women and improve the accuracy of the

prediction method, which can save more women’s lives.

Detection of serum CA125 (tumour marker) significantly

elevated is currently one of the main methods of screening

for ovarian cancer. However, the use of this method does not

provide highly accurate screening results. Feature engineering

has been widely used in the medical informatics, and other

domains [4]–[8]. Therefore, this project uses the change rate

of CA125 and combines feature engineering to select some

factors related to the diagnosis of ovarian cancer. Then,

apply them to machine learning to build predictive models

to improve the ability to identify patients with ovarian cancer.

In addition, the majority of negative samples in the majority

of ovarian cancer data sets are far more than the minority

positive samples. When using machine learning to predict it,

the classification will be more skewed towards the majority

class, resulting in inaccurate predictions by the model [9].

Many pieces of research use class-imbalanced learning to solve

such problems [10]–[12]. This study used class imbalance

learning and classifiers to build a machine learning model

to evaluate cases, to improve the predictive ability of early

ovarian cancer patients.

II. LITERATURE REVIEW

A. Research status of using CA125 to predict ovarian cancer

Cancer Antigen 125 (CA125) is an important marker of

ovarian cancer [13]. Many studies use CA125 as a predictor

of ovarian cancer [14]–[18]. The higher the level of CA125,

the greater the risk of ovarian cancer. It is used in many

stages of ovarian cancer, whether it is early diagnosis or later

cancer treatment [19]. Jacobs et al. used age, ultrasound score,

menopausal status, clinical impression score and serum CA125

level as features to distinguish benign and malignant ovarian

tumours in 1990 [20]. The result of their experiment was

81% sensitivity and 75% specificity. In 1995, Skates et al.

conducted a horizontal screening test of longitudinal markers

on menopausal women without ovarian cancer in Stockholm

[21]. They used linear regression to predict ovarian cancer,

using the logarithm of (CA125II+4) as the main predictor.

The intercept and slope of the model are used to distinguish

different groups of people. In Skates’ study, the slope of

CA125 can achieve higher predictive power than using CA125

alone. The result of his experiment was 99.7% specificity and

16% positive predictive value (PPV).
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In 2012, the longitudinal assessment of CA125 speed was

applied to the field of early screening for ovarian cancer by

Xu et al. [22]. They used part of the data in the PLCO

dataset for ovarian cancer screening to training the model.

They used the rate of change of CA125 (where the difference

between the last two CA125 measurements is the numerator

and the corresponding difference between the two detection

times is the denominator) as the core feature to predict ovarian

cancer positive. Their model predicts a sensitivity of 62.5%, a

specificity of 98.4%, and a PPV of 9.1%. Sasamoto et al. also

used five data sets related to ovarian cancer (PLCO, NEC,

NHS, NHSII, EPIC) to predict cancer in 2019 [23]. They

used a binary classification model to study all PLCO ovarian

cancer data. Then a third of the PLCO data set was used

to combine with other data sets to construct a linear CA125

model (this was used to show the variability of CA125). They

also tried to screen some characteristics, such as women’s

ethnicity, smoking status, etc. In their experiment, the model

AUC using the entire PLCO ovarian cancer data set was 0.64.

The actual value of CA125 was linearly correlated with the

predicted value of the model but not the same. Therefore, it

is essential to explore the predictive characteristics of ovarian

cancer. The above about using CA125 levels and calculating

related values as features to predict ovarian cancer provides

strong theoretical support for this study.

B. Class-imbalanced Learning

Data imbalance refers to the relative disparity in the number

of different categories of data in the data set. The majority

category accounts for a larger number, and the minority

category accounts for a smaller percentage [24]. In the ovarian

cancer data set, it is also an unbalanced data set, where most of

the classes are negative samples, and the minority are positive

samples. In the field of data mining, the classifier is prone to

skew the classification to the majority class when predicting

such a data set. In order to solve the problem of classification

deviation, class imbalance learning is proposed to be applied to

machine learning to improve the prediction ability of the clas-

sification model. Class imbalance learning can be divided into

three categories: data-level methods, algorithm-level methods,

and hybrid methods [25].

Data-level methods are relatively widespread among imbal-

anced learning methods, and they often occur in the data pre-

processing. The data-level method is to resample the majority

or minority classes in the data set to adjust the proportion

of various samples in the data set. In order to reduce skew

in the data set as much as possible, it processes the data

from different classes. Data-level methods can be mainly

divided into three methods: undersampling, oversampling, and

hybrid sampling [26]. The algorithm-level method solves the

class imbalance problem by assigning different weights to the

minority class, and the majority class increases the preference

for the minority class samples and reduces the attention to the

majority class samples to improve the classification accuracy

[27]. The hybrid methods combine data-level methods with

the algorithm-level methods to form some ensemble methods

to improve the predictive ability of the model [28].

III. METHOD

This research mainly has the following stages: data prepro-

cessing (data extraction, calculation of CA125 rate of change,

data cleaning), feature engineering, data scaling and split data

set, selection of baseline classifiers, combine the baseline

classifier with class imbalance learning to find a predictive

model with a strong ability to identify patients. The following

will elaborate on the work content.

A. Data Preprocessing

The data used in this study is the data in The Prostate,

Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.

PLCO is the National Cancer Institute (NCI) in the United

States that conducts an annual screening test for women older

than 55 years old (n=39103) [29]. The women participating in

the test were divided into two groups: the intervention group

and the routine care group. Women in the intervention group

received an annual CA125 review for six years, while the

routine group did not undergo CA125 testing. NCI also asked

these women about their backgrounds, such as age and family

genetic history. This data set belongs to the imbalanced data

set, in which the confirmed samples of ovarian cancer are far

fewer than the normal samples.

In studies on the prediction of ovarian cancer, the medica-

tion history, family medical history, and surgical history of the

samples were also related to the diagnosis of ovarian cancer,

so they were included in this study for subsequent feature

screening [22], [23]. However, there are many samples in this

data set that are not valuable for research or have missing

values, so the data will be initially extracted to make the

samples in the data set meaningful.

We also calculated the rate of change of CA125 level

by taking the difference between the last two measurements

of CA125 divided by the corresponding measurement time

difference. The final calculated rate of change in the CA125

level of the sample represents the change in their daily CA125

level.

B. Feature Engineering

The feature engineering of this study is mainly based on

finding important features using F test in the analysis of

variance to perform univariate screening of 27 features (only

the relationship between a single variable and the label is

studied). We ranked the F scores of 27 features and features

with F score larger than 2 are selected as the predictive features

in training the model. This study uses the 10-Fold cross-

validation. Too few positive samples per fold may cause the

model’s PPV value to fluctuate wildly. Therefore, in order to

ensure the rigour of the research, this research ignores the

feature of ’whether the hysterectomy’ contains a large number

of null values to ensure that the positive samples in the data

set are not extremely scarce.
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Finally, two numerical features used in this study are the

latest value of CA125 level and the rate of change of CA125.

In addition, five categorical features are used including i) age

at Menopause ii) the number of ovaries removed iii) whether

they have had benign ovarian tumours, iv) ever take female

hormones and v) ever take birth control pills. The factor

’whether ovarian cancer is confirmed’ is used as the predictive

label of this study. There are 26449 normal samples and 184

confirmed samples in the data set used in subsequent studies.

This data set is hugely class imbalanced, and its imbalance

ratio is 143.7.

C. Data Scaling and Model Verification Method

Scaling the data to the same range helps reduce the model’s

preference for individual features. We used MinMaxScaler

to scale numerical features and OridinalEncoder to convert

categorical features. This study uses 10-Fold cross-validation

to train the model. We averaged the verification results of 10

training sessions to obtain a model evaluation result of 10-

Fold cross-validation. Then we repeated the above process five

times and averaged result of 5 times 10-Fold cross-validation,

making the result more robust. It is worth to note that our

samples in the test dataset were real data samples without ap-

plying any class imbalance processing. Such treatment makes

the research more reliable.

D. Baseline Classifier Selection and Imbalance Learning

This study uses nine classical classifiers in machine learn-

ing: Logistic Regression, K-Nearest Neighbor (KNN) Classi-

fier, Decision Tree, Random Forest, Gradient Boosting Deci-

sion Tree (GBDT), Adaptive Boosting (AdaBoost), eXtreme

Gradient Boosting (XGBoost), Multilayer Perceptron (MLP),

Bagging (SVC). These nine classifiers, without the partici-

pation of any imbalance learning method, use the inherent

classifier to classify and predict the data set. The different

results obtained from the nine classifier training models are

used for comparison. The model with the best final effect will

be used as the baseline model. It will be combined with the

imbalance learning method to improve the predictive ability

of the model.

This research mainly discusses imbalance learning in

data level method and hybrid methods. In the data level,

the under-sampling methods used in this study are Ran-

dom Under-Sampling (RUS), ALL-KNN, Cluster Centroids,

EditedNN, RepeatENN, Instance Hardness Threshold (IHT),

NearMiss, Neighbourhood Cleaning Rule (NCR), One-Sided

Selection (OSS), Tomek Link (TL). Oversampling meth-

ods: random oversampling (ROS), adaptive synthetic sam-

pling (ADASYN), SMOTE, SVMSMOTE, SMOTENC, Bor-

derlineSMOTE, KmeansSMOTE. Hybrid sampling methods:

SMOTEENN, SMOTETomek. The hybrid-level methods used

in this study are BalancedBagging, RUSBoost, Easyensemble,

BalancedRandomForest. Besides, because the hybrid methods

already have classifiers involved, it is not combined with the

baseline classifier selected in this study, but directly with other

model comparisons.

E. Evaluation Method

1) Evaluate the Classification Model: In machine learning,

the classification ability of a model is often measured by a

confusion matrix [30].

TABLE I
CONFUSION MATRIX

Predicted
Data Class Negative Positive

Actual Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

It compares the predicted value obtained after each training

model with the true value in training set to determine how

many samples are correctly classified and which are incor-

rectly judged. The specific evaluation form is shown table I.

2) Imbalance Ratio: This study uses the imbalance ratio

to measure the proportion of the majority samples and the

minority samples in the training set [31].

IR =
SamplesMajority

SamplesMinority
(1)

The data-level method in imbalance learning will adjust the

distribution of each class samples in the data set. We can

understand the impact of imbalance learning on the predictive

ability of the model by observing the changes in the number

and distribution of samples in the training set. The calculation

method of the imbalance ratio is shown in the Eq 1.

IV. RESULTS

A. Baseline Classifier

In this study, nine different classic classifiers were selected,

and 10-FOLD cross-validation was performed five times to

calculate the average AUC of the model. When evaluating

the classifier, the higher the AUC, the stronger the model’s

ability to predict ovarian cancer. The higher the value of PPV,

the stronger the model’s ability to diagnose positive cases. In

Fig.1, the AUC and PPV values of the nine classifiers are

shown.

Fig. 1. Baseline Classifier

From the comparison results of nine classifiers, the decision

tree obtained the highest AUC value of 0.9485, and it also

obtained the highest PPV value of 0.9000. LinearSVC using
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bagging performed the worst, with an AUC value of only

0.5028. Based on the above situation, this study chooses a

decision tree as the final baseline classifier.

B. Classifier Combine with Imbalance Learning
In this study, the AUC values of the model obtained by

applying the class imbalance method to the decision tree and

the combined imbalance model are shown in Fig. 2. In the

figure, green represents the ensemble methods, blue represents

the hybrid sampling method, yellow represents the under-

sampling methods, and purple represents the over-samplings.

The orange dashed line represents the AUC of the baseline

classifier.

Fig. 2. AUC of Imbalance Learning Methods

In the comparative imbalance learning model results, three

undersampling methods (NCR, Repeat ENN, ALL-KNN)

and six oversampling methods (KmeansSMOTE, Borderli-

neSMOTE, SMOTENC, SVMSMOTE, SMOTE, ADASYN)

are higher than the baseline. It shows that the oversampling

method is more suitable to be used to construct the classifi-

cation model of ovarian cancer. On the other hand, we also

calculated the standard deviation (SD) of various methods.

The SD of the hybrid method is 0.1806, the SD of hybrid

sampling methods is 0.0910, the SD of the under-sampling

method is 0.1792, and the SD of the over-sampling method

is 0.0032. The comparison shows that the hybrid method has

the largest fluctuation when predicting ovarian cancer, and the

performance of the oversampling method is relatively stable.

C. Imbalance Ratio in Imbalance Learning
The data-level method in imbalance learning will resample

the samples in the training set. We counted the number of

samples adjusted by each resampling method and calculated

the imbalance rate (IR) in the training set. The results are

shown in table II.

TABLE II
CLASS DISTRIBUTION FOR DATA-LEVEL METHODS

Method IR Negative Positive
Baseline 143.92 23804.00 165.40
ROS 1.00 23804.00 23804.00
ADASYN 1.00 23804.00 23774.60
SMOTE 1.00 23804.00 23804.00
SVMSMOTE 1.81 23804.00 13165.40
SMOTENC 1.0 0 23804.00 23804.00
BSMOTE 1.00 23804.00 23804.00
KMeansSMOTE 1.00 23804.00 23804.00
RUS 1.00 165.40 165.40
ALLKNN 140.78 23285.40 165.40
Cluster Centroids 1.00 165.40 165.40
EditedNN 141.21 23356.80 165.40
RepeatENN 139.95 23147.80 165.40
IHT 126.14 20864.20 165.40
NearMiss 1.00 165.40 165.40
NCR 141.22 23357.40 165.40
OSS 142.23 23525.20 165.40
Tomek Linkes 143.50 23735.00 165.40
SMOTEENN 0.96 21909.08 22936.04
SMOTETomek 1.00 23692.60 23692.60
IR= Imbalance Ratio, ROS = Random Over-Sampling, BSMOTE = Border-
line SMOTE, RUS = Random Under-Sampling, IHT = Instance Hardness
Threshold, NCR = Neighbourhood Cleaning Rule, OSS = One Sided
Selection

In the performance of IR value, the IR of most oversampling

and hybrid methods is around 1. However, only a few under-

sampling methods have IR close to 1, and other under-

sampling IRs are still greater than 100.

D. Further Comparison of Models

When predicting cancer, the PPV value can be regarded

as the probability that the model predicts a positive case of

ovarian cancer. The larger the PPV of the model, the more it

can be used to diagnose whether ovarian cancer is positive.

In order to better diagnose the samples for ovarian cancer,

we compared the PPV values of the models that passed the

baseline and combined their AUC and sensitivity. The results

are shown in table III.

TABLE III
FURTHER COMPARE THE SELECTED MODELS

Model PPV AUC Sensitivity
ADASYN+DT 0.7725 0.9528 0.7898
SMOTE+DT 0.7797 0.9525 0.7898
SVMSMOTE+DT 0.9041 0.9532 0.7792
SMOTENC+DT 0.7548 0.9582 0.8069
BorderlineSMOTE+DT 0.8802 0.9557 0.7845
KmeansSMOTE+DT 0.7849 0.9508 0.7845
ALL-KNN+DT 0.6276 0.9524 0.8287
RepeatENN++DT 0.5109 0.9513 0.8398
NCR+DT 0.7008 0.9502 0.8015
DT= Decision Tree,NCR = Neighbourhood Cleaning Rule
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In the figure, the PPV of SVMSMOTE is 0.9041, which is

much higher than that of other methods. Although its AUC

is not the highest, it ranks second, only 0.005 less than

SMOTENC. Moreover, in ‘sensitivity’, all methods higher

than SVMSMOTE have lower PPV and AUC, far inferior

to SVMSMOTE. This study not only considers AUC when

diagnosing cancer patients, but also considers the contribution

of PPV to positive samples, and then considers sensitivity. In

summary, the cancer prediction model finally selected in this

study is a decision tree using SVMSMOTE.

E. Compare with Other Related Research

Stakes et al. used Stockholm dataset to predict ovarian

cancer cases [21]. Xu et al. also used the part of PLCO related

to ovarian cancer for research [22]. The researchers compared

the SVMSMOTE decision tree using class imbalance learning

with other studies in Fig.3.

Fig. 3. Compare Our Model with Other Studies

It can be found from the results in the figure that the

results of this study surpass other people’s studies in AUC,

PPV and specificity, and sensitivity is similar to skates. It is

worth noting that the PPV obtained by the model selected in

this study is much higher than that of the other two studies,

indicating that the SVMSMOTE decision tree helps predict

patients with positive ovarian cancer.

V. DISCUSSION

In this study, the decision tree with the highest AUC value

was selected as the baseline model from nine classic classifiers,

because the better the classification ability of the baseline

model, the better the prediction ability of the model that

applies imbalance learning. Besides, the data set used in

the research is extremely imbalanced. This paper explored

the principle of data-level imbalance method to improve the

model’s predictive ability by exploring the sample distribution

generated by the imbalance learning method in the training

set. The study found that the oversampling method achieves

the balance of classes in the data set by increasing the

number of positive samples (minority class) to make it close

to the number of negative samples (majority class). The under-

sampling method reduces the gap between the two categories

as much as possible by discarding some minority samples. The

comprehensive sampling method not only adjusted the nega-

tive samples but also increased the number of positive samples.

After applying class imbalance learning, the oversampling

method shows its high stability and obtains the lowest standard

deviation. Moreover, 6 model methods use over-sampling

methods that have better predictive ability than baseline. On

the contrary, the standard deviation of ensemble methods is the

highest, and no method is better than the baseline classifier.

Moreover, the same re-sampling method, the under-sampling

method is not as stable as the over-sampling method, and the

performance is not as good as the over-sampling method. Only

three methods have AUC higher than the baseline. It shows

that when dealing with extremely imbalance ovarian cancer

data sets, the oversampling method is more worthy of being

applied than other imbalance methods.

Based on the research purpose of this study, ”In order to

more accurately diagnose patients with ovarian cancer”, the

researchers integrated the three parameters of AUC, PPV, and

Sensitivity to screen further the models that exceeded the base-

line. Finally, the SVMSMOTE model was selected. In the case

of ensuring high AUC, this study pays more attention to the

model’s PPV, because the higher the model’s PPV, the more

reliable the model is to diagnose ovarian cancer. Compared

with the study of Xu et al., which uses the PLCO data set,

the AUC of the model combining SVMSMOTE and decision

tree selected in this study increased by 8.1%, PPV increased by

81.3%, specificity increased by 0.1%, and sensitivity increased

by 14.8%. It shows that the model proposed in this study is

meaningful for the diagnosis of ovarian cancer.

VI. CONCLUSION

In order to improve the predictive ability of ovarian cancer-

positive patients, this study shows that the rate of change of

CA125 and 6 other features selected by feature engineering

improves the prediction of ovarian cancer. Since the number of

malignant tumour samples and benign samples in this data set

is very different, therefore class-imbalanced methods needed

to be investigated. We show that class imbalance learning

applied to the best-performing decision tree among the nine

classic classifiers improves the model’s predictive ability for

positive cases.

Experiments show that among all the models that ap-

ply imbalance learning, the decision tree combined with

SVMSMOTE has the best comprehensive performance, and it

shows the highest PPV of 0.9041. Moreover, its AUC (0.9532),

sensitivity (0.7792) and specificity (0.9982) are among the top.

The most important contribution of this research is that the

diagnostic ability of the proposed model for positive cases

has been greatly improved. Compared with other scholars

doing similar research, this research has achieved surpassing

in AUC, PPV, and specificity. Especially the PPV increased by

81.3%. PPV represents the probability that samples diagnosed

as positive by the model have ovarian cancer. The improved

PPV indicates that the model is more reliable in diagnosing

cancer. This discovery has important significance in the early
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screening stage of ovarian cancer, and it improves the accu-

racy of diagnosis. In previous screenings for ovarian cancer,

misdiagnosing women as positive and treating them may be

counterproductive. Among the characteristics selected in this

study, female reproductive surgery is related to the diagnosis

of ovarian cancer, which also shows that misdiagnosis can

cause significant harm to women. This study improves the

model’s ability to predict actual positive patients and enhances

the accuracy of early screening for ovarian cancer, hoping to

save more lives.

In future studies, more forms of CA125 levels could be

considered in addition to finding more features related to

the early prediction of ovarian cancer. Furthermore, new

imbalance learning methods can also be explored to improve

the problem of data skewness caused by class imbalance.
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