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Abstract. The stock market is a complex network that consists of in-
dividual stocks exhibiting various financial properties and different data
distribution. For stock prediction, it is natural to build separate models
for each stock but also consider the complex hidden correlation among
a set of stocks. We propose a federated multi-task stock predictor with
financial graph Laplacian regularization (FMSP-FGL). Specifically, we
first introduce a federated multi-task framework with graph Laplacian
regularization to fit separate but related stock predictors simultaneously.
Then, we investigate the problem of graph Laplacian learning, which rep-
resents the association of the dynamic stock. We show that the proposed
optimization problem with financial Laplacian constraints captures both
the inter-series correlation between each pair of stocks and the relation-
ship within the same stock cluster, which helps improve the predictive
performance. Empirical results on two popular stock indexes demonstrate
that the proposed method outperforms baseline approaches. To the best
of our knowledge, this is the first work to utilize the advantage of graph
Laplacian in multi-task learning for financial data to predict multiple
stocks in parallel.

Keywords: Federated Learning · Multi-task Learning · Graph Learning
· Stock Prediction.

1 Introduction

Deep learning based stock prediction modeling has been intensively studied in
recent years [17, 27]. From the point of view of market analysis, stocks exhibit
highly different properties [9]. It is natural to build separate models for a group of
stocks and select portfolios based on the prediction [19]. In fact, most researches
build prediction models independently, which ignore the dynamic relationship
among different stocks, instead of learning models simultaneously.

It is well known that the stock market is a complex network [20]. The price
movement of an individual stock is correlated to its historical behavior and also
highly depends on other stocks, namely the inter-series relationship. For exam-
ple, investors often assess the performance of an individual stock by exploring
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the relative impact of each company in its supply-chain network. The financial
market shows a hierarchical structure [18], where stocks in different groups (clus-
ters) respond to the same economic factor in a different manner; on the other
hand, stocks in the same cluster always demonstrate strong similarities when
responding to information, which is referred to as the intra-cluster relationship.

Therefore, the main objective of stock prediction is to build prediction mod-
els for different stocks and utilize both inter-series and intra-cluster relationships
among stocks. The first challenge is building prediction models to extract the
temporal dependencies of time series. To address the challenge, we introduce a
federated multi-task learning method [11, 25] to learn separate models for each
stock simultaneously. Federated multi-task learning is able to handle the diver-
sity of different tasks and build the best model for each task in parallel. On the
other hand, in order to model both inter-series and intra-cluster relationships,
we present a graph Laplacian [22] learning optimization problem with stylized fi-
nancial constraints. Here, we consider an undirected weighted graph to represent
the stocks network, where each stock task is treated as one node, and the edges
represent the dependencies between pairs of stocks. To capture the intra-cluster
relationships, we introduce a k-cluster Laplacian constraint to learn a graph with
exact k connected groups. The learned graph is added to the multi-task learning
framework as a regularization term to control the relationship between tasks.
Then, we learn the graph and stock prediction models in an alternating fashion.

The main contribution of this work can be summarized as follows:

• We propose the federated multi-task learning with estimates from stock mar-
ket data to predict a set of stocks simultaneously.

• We propose the formulation to learn a k−cluster graph with rank constraints
to captures inter-series and intra-cluster dependencies between stocks.

• We propose the first stock prediction framework that utilizes the advantage
of graph Laplacian learning.

To show the effectiveness of our proposed methods, we compare the prediction
results with baseline approaches over two popular stock indexes.

2 Related works

This work is highly related to multi-task learning and graph learning. Multi-
task learning algorithms have been intensively studied and have a wide range
of applications, such as healthcare, wireless networks [5, 8]. In Federated multi-
task learning (FMTL) [25], given datasets that are distributed over multiple
clients, the goal is to learn separate models for each clients. Each model works
best for each client. Stratified Model [26] is introduced in a similar manner
while the objective function is minimized by the alternating direction methods of
multipliers [4]. However, the critical limit of both FMTL and Stratified Model is
that they are unable to solve non-convex objective functions. Recently, a unified
framework for FMTL (FedU) [11] had success in solving multi-task learning
applications in both convex and non-convex objective functions. It should be
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noted that FedU treats Laplacian in the regularization term as prior information;
however, the relationships between tasks are often unknown in the field of the
stock market. Thus, considering the natural diversity of stocks distribution, the
objective of our work is to fit separate tasks for each stock and estimate the
Laplacian simultaneously.

From the perspective of financial engineering, graph learning [20] is an in-
creasingly important problem that carries out graph signal processing and ma-
chine learning tasks. Given the observations of each node, the goal of graph
learning is to learn the optimal matrix, which represents the relationship between
each pair of nodes. The graph structure is usually embedded by a Laplacian ma-
trix [22]. Among all methods, learning graphs under smoothness assumption [16]
has gained popularity. [16] assumes that observations change smoothly between
connected nodes and shows that the optimal Laplacian matrix can be found
by minimizing the Dirichlet energy. Motivated by that, [12] adds a variable to
approximate the observations, which allows some noise in the observations. Al-
though the above methods have achieved promising results on graph learning
tasks, they are not designed to learn graphs with clustering sub-class; therefore,
they can not be directly used for financial tasks. Recently, [21] proposes a graph-
based clustering method to perform clustering on nodes by adding a constrained
Laplacian rank to the objective function. However, the above method works in a
two-stages process. Specifically, an initial estimate of graph is needed in the first
stage, then it projects the initial estimate onto a rank-constrained Laplacian. A
disadvantage of the two-stage process is that the final Laplacian estimate is not
directly learned from the data. Furthermore, the results depend on the initial
graph’s estimate. Recent work [6] investigate the graph Laplacian as a candidate
to capture the relationship of stocks from a probabilistic perspective. However,
these methods have not been studied for stock prediction, and the advantages
of graph learning in financial markets remain open for further research.

3 Methods

3.1 Problem Formulation

Suppose there are N stocks, each of them consists of m+1 time series. We specify
one time series as the target series, while the other series are used as exogenous
series. We use Y = {Y 1, Y 2, . . . , Y N} ∈ RN×T to denote the observations of
all target series, where T is the length of window size. For example, given a
dataset with N stocks, we use the closing price of each stock as the target
series. Then, for each stock, we use X = (x1, x2, . . . , xT ) ∈ Rm×T to denote the
observations of its exogenous series, such as hand-crafted technical indicators.
Given the previous values of the target series, i.e., Y i = (yi1, y

i
2, . . . , , y

i
T ), and

the historical observations of the exogenous series, i.e., Xi = (xi
1, x

i
2, . . . , x

i
T ),

the problem is to build a stock predictor, Fi(wi), which can predict the price
movement yi,binary

T+p of each stock in the next p time step:

ŷi,binary
T+p = Fi(wi|Xi, Y i),
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4 J. He et al.

where yi,binary
T+p = sign(yiT+p − yiT ).

Also, we consider a undirected weighted graph G = {N , E ,A}, where V =
{1, 2, . . . , N} is the node set representing stocks, E ⊆ {u, v ∈ V} is the edge set
representing all possible connections between pairs of nodes. A ∈ RN×N

+ is a
symmetric weighted adjacency matrix that satisfies Aii = 0, Aij > 0 if {i, j} ∈ E
and Aij = 0, otherwise. The graph Laplacian matrix is defined as L ≜ D −A.
D ≜ diag(A1) is the degree matrix, 1 ∈ RN is the all-ones vector.

3.2 Federated Multi-task Stocks Predictor

From the point of view of market analysis, a market predictor is used to predict a
market movement by extracting the dynamic historical temporal information and
utilizing the related economic or public events. However, different stocks are not
necessarily influenced by the same events or information. Different assets exhibit
various properties and data distribution [9]. Thus, it is natural to fit personalized
models to each stock. On the other hand, the price movement of an individual
stock is usually related to other stocks besides its own information [15]. In this
work, to fit separated models for each stock and consider the connection between
stocks, we introduce the Federated Multi-task Learning with Financial Graph
Laplacian Regularization entitled “Federated Multi-task Stocks Predictor with
Financial Graph learning (FMSP-FGL)”.

The introduced FMSP-FGL follows the module of FMTL [11, 25]. In this
work, we fit separate models to each stock (node) to capture the temporal dy-
namics for prediction and use the Laplacian matrix as a regularization term to
consider the inter-series structure by using the following formulation:

min
W ,L

N∑
i=1

Fi(wi) + αTr(W TLW ) + β||L||2F

s.t. L1 = 0, Lij = Lji ≤ 0,∀i ̸= j,

diag(L) = 1,

rank(L) = N − k.

(1)

where W = [w1, . . . ,wN ]T ∈ RN×d is a collective matrix whose i-th column is
the weight vector for the i-th stock predictor (task), α and β are two positive
regularization parameters, and k represents number of stocks clusters (groups).
In addition, Tr(·) and || · ||F denote the trace and Frobenius norm of a matrix,
respectively; diag(·) and rank(·) denote the diagonal vector and rank of a matrix,
respectively. Here, Fi(wi) = E[l(wi|Xi, Y i)] represents the expected negative
log-likelihood loss corresponding to i-th task’s sample and weights. Specifically,
we fit separated models for different stocks because different stocks have non-
i.i.d. distribution, which means that Fi(wi) and Fj(wj) should be personalized
when i ̸= j.

It should be noted that we use the Laplacian to measure the hidden structure
of the given weights matrix W , and minimize the Dirichlet energy [16] to find
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the optimal Laplacian as follow,

Tr(W TLW ) =
1

2

∑
i,j

Aij ||wi −wj ||2,

where ||wi −wj ||2 is the squared Euclidean distances between two stock predic-
tors. The learned Laplacian matrix contains the correlated structures among all
stock tasks, i.e., −Lij = Aij ≥ 0 measures the conditional dependency between
two tasks, and Lij = Aij = 0 iif wi and wj are independent. The Frobenius norm
is added as a penalty term in the objective function to control the edge weights
of the Laplacian matrix. Moreover, we enforce a k-cluster graph Laplacian to
capture the intra-cluster relationship between stocks in the same group. The
above constraints of the Laplacian matrix are designed considering the stylized
facts of financial tasks, as discussed in Section 3.3.

The proposed optimization problem (1) is not jointly convex in L and W .
Therefore, we adopt an alternating optimization method [25, 28], in which L or
W is optimized alternatively with the other variable fixed until it converges. The
whole scheme of the algorithm is shown in Algorithm 1. The algorithm consists of
the model weights updating part (lines 2−12) and the graph Laplacian updating
part (lines 13-14). First, we fix L and solve the following optimization problem
with respect to W :

min
W

N∑
i=1

Fi(wi) + αTr(W TLW ). (2)

At the second part, we solve the graph learning optimization problem with re-
spect to L given W as:

min
L

αTr(W TLW ) + β||L||2F

s.t. L1 = 0, Lij = Lji ≤ 0,∀i ̸= j,

diag(L) = 1,

rank(L) = N − k.

(3)

Specifically, when L is fixed, in each global iteration (line 1), each task per-
forms R local updates first. The updated models are sent to their related task to
perform the Laplacian regularization, which determines the correlated structure.
For each local stock predictor, Fi(wi), the goal is to learn the temporal dynam-
ics of time series and predict future values of each stock. To achieve this goal,
we adopt N modules of DARNN [24]. We choose DARNN due to its capability
of selecting the most relevant exogenous input features and exploit the tempo-
ral dependencies in predicting target series. We follow the network structure of
DARNN with some modifications for stock time series prediction as discussed
in section 4.1. It should be noted that the proposed problem (1) reduces to a
decentralized version of FedU [11] when L is fixed. However, FedU does not
consider the variation of the correlated structure among different tasks.
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6 J. He et al.

Algorithm 1 FMSP-FGL: Federated Multi-task Stocks Predictor with Finan-
cial Graph learning

Input: Data {Xi, Y i}, initial w(0)
i , for i = 1, . . . , N tasks, initial matrix L, learning

rate µ, regularization parameter α, and number of local and global iteration R and
Tmax.
1: for t = 1, 2, . . . , Tmax do
2: Step to update W :
3: for task i ∈ {1, . . . , N} in parallel do
4: initialize local model w(t)

i,0 := w
(t)
i

5: for r = 0, . . . , R− 1 do
6: compute mini-batch gradient ∇Fi(w

(t)
i,r)

7: update local task weights w
(t)
i,r+1 := w

(t)
i,r − µ∇Fi(w

(t)
i,r)

8: end for
9: end for

10: for task i ∈ {1, . . . , N} in parallel do
11: w

(t+1)
i := w

(t)
i,R + αµR

∑
j ̸=i

Lij(w
(t)
i,R −w

(t)
j,R)

12: end for
13: Step to update Graph Laplacian L:
14: Solve the problem (3) to update L

15: end for

When W is fixed, the problem (3) is non-convex and non-differentiable due to
the constraint rank(L) = N − k, which enforce a k-cluster graph Laplacian. We
solve the problem by using optimization relaxation and alternating optimization
methods as presented in section 3.3.

3.3 Graph Laplacian Interpretation for Financial Tasks

Learning graphs from data is a fundamental problem to capture the hidden
relationship between different assets [6]. To uncover the conditional dependencies
between stock prediction tasks, we propose the problem (3) with constraints
considering the stylized financial facts.

The first constraint in (3), L1 = 0, Lij = Lji ≤ 0,∀i ̸= j, follows the defi-
nition of a positive semidefinite Laplacian matrix. This constraint implies that
L only represents non-negative relationships, which meets the assumption that
assets are always positively dependent [9]. The second constraint, diag(L) = 1,
controls the degree of the nodes to avoid isolated nodes. This constraint meets
the fact that there is no independent asset in the financial market as all assets are
treated as a complex network [20]. Thus, in our setting, the correlation between
two nodes (tasks) can be measure as −(Lij/

√
LiiLjj) = −Lij ,∀i ̸= j. In prac-

tice, the stock market is a well-defined complex network [18] where hierarchical
structures can be detected, assets in different clusters have different reaction
to market information. More interestingly, the intra-cluster assets demonstrate
much more lead-lag correlations than inter-group components [15]. Thus, we add
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the rank constraint, rank(L) = N − k, to enforce the graph to have k connected
clusters to learn the intra-cluster relationship.

The proposed problem (3) is non-convex due to the rank constraint, rank(L) =
N − k, which is that the sum of the k smallest eigenvalues of L is equal to zero,
i.e.,

∑k
i=1 σi(L) = 0. According to Fan’s theorem [13],

k∑
i=1

σi(L) = min
V ∈RN×k,V T V =I

Tr(V TLV ),

thus we have the problem (3) equivalent to the relaxed version as following,

min
L,V ∈RN×k

αTr(W TLW ) + β||L||2F + λTr(V TLV )

s.t. L1 = 0, Lij = Lji ≤ 0,∀i ̸= j,

diag(L) = 1,V TV = I,

(4)

where λ is a regularization parameter. Note that when λ is large enough, the
optimal solution will enforce the sum of k smallest eigenvalues of L to be zero.
Then we rewrite the problem (4) into two convex sub-problems in an alternating
fashion. When L is fixed, we have the sub-problem for V :

min
F∈RN×k,V TV =I

Tr(V TLV ), (5)

whose solution is given by the k collective eigenvectors of L corresponding to
the k smallest eigenvalues according to Fan’s theorem [13].

For a fixed V , we have the following sup-problem for L:

min
L

αTr(W TLW ) + β||L||2F + λTr(V TLV )

s.t. L1 = 0, Lij = Lji ≤ 0,diag(L) = 1.
(6)

We can rewrite the sub-problem (6) as a quadratic program by using half-vec
operator and duplication matrix [2]. Specifically, given the vectorization of L,
denoted as vec(L) ∈ RN2

, we introduce the half-vec operator vech(·). Then
vech(L) ∈ RN(N+1)/2 denotes the vector obtained from vec(L) by eliminating
all supradiagnoal elements of L. Now, notice that L is symmetric, there exists a
unique constant matrix DN ∈ RN2×N(N+1)/2, called the duplication matrix [2],
that transforms, for symmetric L, vech(L) into vec(L), that is,

Dn vech(L) = vec(L) (L = LT ). (7)

Now, together with the facts that, Tr(W TLW ) = vec(WXT )T vec(L), and
||L||2F = vec(L)T vec(L), we can rewrite the sup-problem (6) as:

min
vech(L)

[
α vec(WW T ) + λ vec(V V T )

]
DN vech(L)

+ β vech(L)TDT
NDN vech(L)

s.t. G vech(L) ≤ h,

A vech(L) = b,

(8)
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Algorithm 2 Graph learning algorithm to solve L in (3)
Input: Model weights W , initial L, α, β, λ.

1: while not converge do
2: Update V (l+1) by solving the problem (5) fixing L at L(l)

3: Update L(l+1) by solving the problem (8) fixing V at V (l)

4: end while
Output: Graph Laplacian L.

where the constraints in the problem (8) handle the inequality and equality con-
straints in the problem (6). Problem (8) is convex and can be solved efficiently by
convex programming languages [3], e.g. CVXPY [10]. Algorithm 2 summarized
the implementation to solve the problem (3).

4 Experiments

In this section, we first introduce the stock dataset, parameters setting, and per-
formance evaluation metrics. In order to show the effectiveness of the proposed
model, we then compare FMSP-FGL with several cutting-edge approaches. Fi-
nally, we then use a step-by-step justification to demonstrate its capability of
capturing the inter-series association as well as the intra-cluster relationship.

4.1 Experiment Settings

We choose two prominent stock indexes, namely DJIA, and SP500, which contain
30, 500 constituent stocks, respectively. We collect the constituent stocks’ time
series data from Jan-3-2017 to Dec-31-2020 from Yahoo! Finance.3 For SP500, we
collect the data of 55 stocks among 11 GICS [1] sectors. For each sector, stocks
with top 5 market capitalization are selected. The frequency of the data collection
is day-by-day. Each data sample contains 5 features: the opening price, highest
price, lowest price, closing price, and volume (OHLCV). As previous works [14,
17], we select OHLV as well as 8 popular technical indicators4 as the exogenous
series, and use closing price as the target series. We pre-processed the collected
time series data by calculating the relative percentage change of each stocks on
each day with respect to its observations 5 days ago. We aim to predict the next
trading day price direction (up/down) of stocks given the percentage changes of
stocks over 5 consecutive days. In our experiment, the first 90% data are used for
training, and the following 10% are used as the test set. We select four metrics
in evaluation, i.e., Accuracy (Acc), Precision (Pre), Recall and F1 scores.

3 In total, we collect 29 stocks from DJIA, because the stock, DOW, was listed after
2017.

4 Technical indicators: Moving Average Convergence Divergence, Average Directional
Movement Index, Awesome Oscillator, Money Flow Index, Upper Bollinger Bands,
Lower Bollinger Bands, Chaikin Money Flow, On-balance Volume Mean Range.
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There are two important parameters in the proposed algorithm, i.e., the
graph learning regularization parameters {α, β} and the number of clusters k
in (1). In practice, the regularization parameters setting are carried out on dif-
ferent ratio β

α to maximize the prediction performance. We fix α as 1, the ratio
was determined by conducting a grid search to achieves the highest test accuracy.
To determine the number of cluster k of all tasks, we use a pre-defined sector
classification list, Global Industry Classification Standard (GICS) [1], as an ad-
vantage of prior domain knowledge. We denote the number of unique sectors of
a dataset as kmax, then we choose k from the finite set k = {1, 2, ..., kmax}.

FMSP-FGL contains N modules of DARNNs [24], where N is the number
of constituent stocks of each dataset. DARNN is used as our basic predictive
module due to its capability of capturing dynamic temporal dependencies. We
modify the output of DARRN as a single scalar value to perform movement
prediction, with a negative log-likelihood loss function. The dimension of the
hidden state and cell state are fixed as 256. All DARNN have the same window
size T = 5, and prediction step p = 1. We treat the prediction of one stock as
one single task. Each task shares the same hyper-parameters setting. The size
of the minibatch is 128. The number of global iteration is 50, and the number
of local iteration is 2. The learning rate is 0.001. Considering that λ should be
large enough as we discuss in section 3, we start λ with a small value 2, and
double the value if k is larger than the number of zero eigenvalues of L. All
tasks are trained with stochastic gradient descent. All experiments are repeated
five times, and the average performance is reported. A Tesla V100 GPU is used
for training. All experiments are implemented by PyTorch [23] version 1.7.

4.2 Results

To show the effectiveness of our proposed method, we compare our algorithm
with the following baselines methods: Local Model (training one separate model
for each stock), Federated multi-task learning framework (FedU) [11], also, we
compare to FMSP with state-of-the-art graph learning methods, i,e., SigRep [12],
CLR [21]. Considering the fact that FedU requires a prior graph for training, we
use the sector classification list, GICS, as the prior information, where stocks in
the same sector share the same weight connection. We denote Local as single
task learning (STL) and the others as multi-task learning algorithms (MTL).

The price movement prediction results of FMSP and baseline methods are
summarized in Table 1. The results show that federated multi-task learning al-
gorithms have better performance over all evaluation metrics than single task
algorithm, Local, which confirms the effectiveness of multi-task learning. The rea-
son is that multi-task learning with Laplacian regularization can fit personalized
but related models for each stock. The algorithm, FedU, with graph pre-defined
setting outperforms Local, which confirms that the prior domain knowledge can
be used to increase predictive performance. We conclude that federated learning
algorithms can improve the overall prediction performance.

We observe that the proposed FMSP-FGL has the best performance across
two datasets. The accuracy and precision of FMSP-FGL are constantly higher
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Table 1: Prediction results. All models predict price direction (up/down) on the
next day.

Algorithm DJIA SP500
Acc Pre Recall F1 Acc Pre Recall F1

STL Local 70.61 78.91 71.76 75.16 69.05 69.45 77.96 73.46

MTL

FedU 71.61 72.88 78.64 75.65 70.82 70.78 79.84 75.04
FMSP-SigRep 75.45 74.58 85.50 79.67 72.45 71.73 82.26 76.64
FMSP-CLR 74.76 74.65 83.45 78.80 74.13 73.20 83.49 78.00
FMSP-FGL* 75.84 77.92 79.56 78.73 74.70 74.09 82.94 78.27

than others, which is preferred for stock prediction. It shows evidence that the
proposed graph learning algorithm can help with learning the correlated struc-
ture of different tasks thus improving overall prediction performance. One in-
teresting point to note is that the recall rate of FMSP-FGL is lower than the
other baseline, which can be seen as a trade off between accuracy and recall. In
stock markets, the goal of predictor is to maintain a higher level of precision. To
demonstrate the effectiveness of our graph learning algorithm, we visualize the
learned graph of the percentage change of the closing price with k = 8 (number
of sectors) in Fig. 1. The figure shows the SigRep [12] is unable to learn finan-
cial data, which leads to many possibly fake connections and fails to capture a
meaningful network. The CLR [21] learns a k-cluster graph; however, the graph
contains isolated nodes, namely, DIS, INTC, which contradicts the financial
network theory in the real-world [7]. The proposed algorithm returns a k-cluster
graph meaningful representation with much less fake connections. Precisely, the
graph captures the prior GICS sector classification information (node-colored
edges) as well as the inter-cluster connections (grey-colored edges) learned from
the data without a two-stage process. Together with the prediction results, it
shows the financial graph learning algorithm can help with stocks prediction.
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(c) Algorithm 2 (proposed)

Fig. 1: Graph learning visualization. The graph Laplacian is learned directly from
the percentage change of each stocks in the DJIA dataset.
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We study the sensitivity of FMSP-FGL with respect to the ratio of regular-
ization parameters β

α . We plot the number of edges of the learned graph and
the prediction performance of the proposed algorithm versus different ratios β

α
over the DJIA dataset in Fig. 2. As the ratio increase, we observe that both the
number of edges and the prediction accuracy tends to increase. The intuitions
behind this observation are as follows. When the ratio increases, the Frobenius
norm of the learned Laplacian matrix in( 2) tends to be small. Because we set
the diagonal of Laplacian to be 1 in the constraint, the number of edges tends to
increase with small values to enforce the Frobenius norm to be small. Next, we
see that the proposed algorithm outperforms FedU when the number of edges of
the learned graph exceeds the one of the prior graph provided by GICS. These
results show that FMSP-FGL is able to learn a graph that captures the complex
connection between different stocks, which contains more useful and unobserved
information for prediction compared to the prior graph.
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Fig. 2: (a) Number of edges in the graphs learned by FGL (Algorithm 2), and
(b) prediction performance of FMSP-FGL, for different ratios β

α over the DJIA
dataset

5 Conclusion

In this paper, we first design a multi-task stock predictor to fit separated but re-
lated tasks simultaneously. Then a graph-based clustering optimization problem
with rank constraint and degree control constraint is presented to capture both
the inter-series and intra-cluster relationship between stock tasks. We transform
the proposed non-convex optimization problem into a relaxed convex problem
and solve it alternatively. Empirical results on two stocks dataset show our meth-
ods outperform competing approaches. To our best knowledge, the proposed
technique is the first to apply graph Laplacian learning with meaningful finan-
cial interpretations on multi-task stock prediction.
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