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Summary

In spatio-temporal epidemiological analysis, it is of critical importance to identify the
significant covariates and estimate the associated time-varying effects on the health
outcome. Due to the heterogeneity of spatio-temporal data, the subsets of important
covariates may vary across space and the temporal trends of covariate effects could
be locally different. However, many spatial models neglected the potential local vari-
ation patterns, leading to inappropriate inference. Thus, this paper proposes a flexible
Bayesian hierarchical model to simultaneously identify spatial clusters of regression
coefficients with common temporal trends, select significant covariates for each spa-
tial group by introducing binary entry parameters and estimate spatio-temporally
varying disease risks. A multi-stage strategy is employed to reduce the confound-
ing bias caused by spatially structured random components. A simulation study
demonstrates the outperformance of the proposed method, compared with several
alternatives based on different assessment criteria. The methodology is motivated by
two important case studies. The first concerns the low birth weight incidence data
in 159 counties of Georgia, USA, for the years 2007-2018 and investigates the time-
varying effects of potential contributing covariates in different cluster regions. The
second concerns the circulatory disease risks across 323 local authorities in England
over 10 years and explores the underlying spatial clusters and associated important
risk factors.
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1 INTRODUCTION

Over the last decades, there has been an increasing interest in spatio-temporal data, with the consequent development of numer-
ous statistical methodologies for modeling public health outcomes across space and time. Especially, the association between
covariates and health outcomes is getting much more attention.1,2,3 Many existing spatial methods are based on global mod-
eling, with restrictive assumptions of constant covariate effects across the entire domain of interest.4 However, the impacts of
risk factors on the disease are likely to be spatio-temporally varying. Therefore, discovering the spatio-temporal patterns of the
covariate effects is essential and helpful to understand disease aetiology and further monitor healthcare access.Pr
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2 MA ET AL.

Our work is motivated by two important public health case studies. The first is the county-level infant low birth weight (LBW)
data in Georgia between 2007-2018 and the second is the circulatory disease data in local authorities of England over a 10-
year period, both of which have been previously studied by some researchers.5,6,7 It is reported that both diseases have obvious
adverse impacts on the development of public health. Therefore, it is of great importance to analyze the possible risk factors
and identify significant variables for the region of interest. However, the effects of a covariate can differ in different regions
due to varying geographical characteristics, concentration levels of the risk factors and so on. For example, as stated by Pearl
et al,8 the unemployment rate plays a role only in the areas with relatively high joblessness for the LBW data analysis. To our
knowledge, most approaches assume that the covariate effects on health outcomes vary with small areas, that is, different small
areas have different regression coefficients. This assumption apparently ignores the spatial correlation among the adjacent areas.
It is noted that the temporal patterns of covariate effects may be locally similar and there are spatial clusters in each of which
covariate effects have homogeneous temporal trends.9 What’s more, some covariates in the clusters may have little effects on
the outcomes, that is, the subset of significant covariates could vary with spatial clusters. Thus, in both data cases, the aim is
to cluster small areas together that share common significant covariates and estimate the spatio-temporally varying covariate
effects on the health outcomes. The results have important potential implications for a reduction in disease risks through targeted
public health interventions.

Some researchers have studied Bayesian models with varying coefficients, such as Cai et al,10 Gelfand and Vounatsou,11

Luis12 and so on. Recently, Lee et al13 proposed detecting clusters of units based on hypotheses testing. But they assumed
independent observations, which are not necessarily applicable to spatial data. As an extension, Lee et al14 proposed a mixed-
effects model for spatial cluster detection of regression coefficients. However, the method mainly focused on spatial data, and
did not take the temporal trends of covariate effects into consideration. Thus, it is necessary to develop a statistical method to
identify spatial groups of areas exhibiting homogeneous temporal profiles of covariate effects by borrowing information across
space and time.

In epidemiologic analysis, it is of great importance to select covariates that are closely related to the health outcomes. Many
variable selection approaches have been developed to choose significant covariates for the whole domain of interest, with fixed
subset of risk factors across space. However, utilizing categorical parameters to identify spatial groups, Choi et al9 found that
covariate effects are significantly different depending on areas. Thus, in this article, we introduce binary entry parameters first
proposed by Kuo and Mallick15 to allow for variable selection for each spatial cluster. A flexible Bayesian hierarchical model
is proposed with spatio-temporally varying coefficients, which simultaneously identifies spatial clusters with distinct temporal
patterns of covariate effects, as well as selects group-specific important covariates for the health outcomes.

In spatio-temporal health studies, both risk factors and random effects are important for estimating the health outcomes.
However, many studies16 only took spatial and temporal random components into account while some others9,12 only considered
covariate effects, where extra source of information in the random components may be omitted. In this paper, both space-time
varying covariates and random effects are incorporated into the model. According to the previous studies, spatial confounding
problems may arise due to the possible correlation between risk factors and random effects, making it difficult to obtain accurate
estimates.17 Lawson et al18 proposed a multi-stage spatial mixture model for PM2.5 concentration data, which was proved by
Baer and Lawson19 to be rather effective for reducing the estimation bias. Since this problem has not been fully discussed for
spatio-temporal data, it is meaningful to take it into consideration in this paper to provide better estimates for the parameters of
interest.

In this article, a Bayesian spatio-temporally dependent model is proposed to simultaneously identify spatial clusters in each
of which covariates have homogeneous temporal effects, select significant covariates for each spatial group by introducing entry
parameters, as well as better estimate locally varying covariate effects and spatio-temporally varying disease risks. To reduce
confounding bias, the multi-stage estimation strategy is employed. In the first stage, we only incorporate covariate information
into the hierarchical model. An obvious difference from previous studies is that inspired by Choi et al9 and Boulieri et al,16

the areas in the same cluster are not restricted to being spatially adjacent, since the temporal behaviors of coefficients in non-
neighboring areas may also be the same. Thus, a set of spatially structured weights is employed to capture the grouping patterns.
To achieve locally varying variable selection, the coefficient in each group is hierarchically modeled as the product of a binary
entry parameter and a group-specific temporal process. The resulting residuals may contain much variability and are modeled
in the second stage with extra space-time random components for overdispersion. In the third stage, both the covariates and the
random component estimates are incorporated as inputs into the model, and the spatio-temporally dependent covariate effects
on the health outcome are finally estimated using the same model structure as the first stage.Pr
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The novelty of this article lies in identifying spatial clusters with distinct temporal profiles of covariate effects and selecting
significant covariates varying with different groups simultaneously within a statistical model. While many studies investigate
spatial grouping defined in terms of the response,2 the proposed method focuses on the locally varying covariate effects. To
our knowledge, it is the first attempt to consider variable selection within the framework of spatially dependent clustering for
space-time health data. Besides, the proposed model has good adaptability to employ various spatial dependence structures.
Also, by introducing a multi-stage strategy, it can reduce the confounding bias neglected by many previous studies and thus,
better estimate the spatio-temporally varying coefficients and disease relative risks.

The remainder of the article is organized as follows. Section 2 describes the Bayesian multi-stage hierarchical latent model
for space-time data. Section 3 explores a variety of model assessment criteria. A simulation study is conducted in Section 4 to
compare the proposed method with several alternatives. Section 5 analyzes the real data of low birth weight incidence in Georgia
and circulatory disease data in England. Section 6 presents the discussion.

2 BAYESIAN MULTI-STAGE SPATIO-TEMPORAL MODELING

2.1 Proposed model
In this section, we propose a Bayesian multi-stage hierarchical model with spatio-temporally varying coefficients. A latent
Poisson regression model is employed for health count data in small areas where relative risk is assumed to be a function
of possible risk factors and space-time random components. However, spatial confounding problems may arise when spatio-
temporally varying risk factors and space-time random components are both included in the model.17,18 For example, median
household income in the LBW data may be correlated with the space-time random components so it can be difficult to exactly
estimate both the effects of median household income and the underlying random components. Therefore, following Lawson
et al,18,19 a multi-stage process is utilized to reduce the confounding bias. The proposed method could simultaneously achieve
spatial clustering in the coefficients as well as variable selection for each spatial group.

Let {𝑌𝑖𝑡} denote the observed count of disease in the 𝑖th spatial unit(𝑖 = 1,… , 𝑁) and the 𝑡th time point(𝑡 = 1,… , 𝑇 ) and
𝐸𝑖𝑡 be the expected count, which is usually obtained by applying a standard table of sex-specific and age group-specific rates to
the population count in area 𝑖 at time 𝑡.20 𝑌𝑖𝑡 is assumed to follow a Poisson distribution as

𝑌𝑖𝑡 ∣ 𝜃𝑖𝑡 ∼ Poisson
(
𝐸𝑖𝑡𝜃𝑖𝑡

)
, 𝑖 = 1,⋯ , 𝑁, 𝑡 = 1,⋯ , 𝑇 ,

where 𝜃𝑖𝑡 is the relative risk.
In the first stage, the logarithm of relative risk is modeled only by the covariate information with spatio-temporally varying

coefficients as follows:
log(𝜃𝑖𝑡) = 𝛽0 + 𝐗′

𝑖𝑡𝛃𝑖𝑡, (1)
where 𝛽0 is the intercept parameter to capture the overall relative risk effect across space and time, 𝐗𝑖𝑡 =

(
𝑋𝑖𝑡1,… , 𝑋𝑖𝑡𝑃

)′
denotes a 𝑃 × 1 vector of covariates in area 𝑖 at time 𝑡 and 𝛃𝑖𝑡 =

(
𝛽𝑖𝑡1,… , 𝛽𝑖𝑡𝑃

)′ denotes the corresponding 𝑃 × 1 coefficients
vector depending on space and time. Equation (1) is called as the covariates-only model. In small area health studies, many
approaches assume that the covariate effects are area-specific, that is, different small areas have different regression coefficients,
sometimes leading to neglect of the similarity between spatial units. According to Lee et al,13 the changing patterns of covariate
effects may be locally homogeneous owing to spatial correlation. Thus, it is important to consider the identification of spatial
clusters in the regression coefficients.

In this paper, following Chol et al,9 it is assumed that there are spatial clusters in each of which covariate effects have
homogeneous temporal patterns. Thus, varying with spatial groups, not small areas, the covariate effect 𝛃𝑖𝑡 is modeled as

𝛃𝑖𝑡 = 𝛃𝐶(𝑖),𝑡,

where 𝐶(𝑖)(= 1,… , 𝑆) is the spatial cluster indicator and 𝑆 is the number of clusters.
To identify spatial clusters, 𝐶(𝑖) is assumed to follow a categorical distribution as

𝐶(𝑖) ∼ Cat(𝑤𝑖1,… , 𝑤𝑖𝑆),
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4 MA ET AL.

where 𝑤𝑖𝑠, 𝑠 = 1,… , 𝑆 is the probability of area 𝑖 belonging to cluster 𝑠, thus
∑𝑆
𝑠=1𝑤𝑖𝑠 = 1 and 𝑤𝑖𝑠 ≥ 0. The probability 𝑤𝑖𝑠

is expressed using unstandardized weight 𝑤∗
𝑖𝑠 ≥ 0:

𝑤𝑖𝑠 =
𝑤∗
𝑖𝑠∑𝑆

𝑠=1𝑤
∗
𝑖𝑠

.

Considering the spatial correlation in the small areas, the weight parameter 𝑤∗
𝑖𝑠 is modeled as the following spatial dependence

structure

log
(
𝑤∗
𝑖𝑠

)
∼ 𝑁

(
𝜂𝑖𝑠, 𝜎

2
𝑠

)
,

where 𝜂𝑖𝑠 is the spatially dependent mean and 𝜎2𝑠 is the variance parameter. To account for spatial correlation in the mean, the
parameter 𝜂𝑖𝑠 is assumed to follow an intrinsic conditional autoregressive (ICAR) distribution proposed by Besag et al,21 which
is widely used in space-time studies, such as Boulieri et al.16 Its full conditional distribution is specified as

𝜂𝑖𝑠 ∣ 𝜂𝑖′𝑠, 𝑖′ ≠ 𝑖 ∼ 𝑁

(
1
𝑛𝑖

∑
𝑖′∼𝑖

𝜂𝑖′𝑠,
𝜎2𝜂𝑠
𝑛𝑖

)
independently for each 𝑠, where 𝑖′ ∼ 𝑖 denotes that area 𝑖′ is a neighbor of area 𝑖, 𝑛𝑖 is the number of neighbors of area 𝑖, and
𝜎2𝜂𝑠 controls the magnitude of spatial variation. This specification is denoted as 𝜂𝑖𝑠 ∼ ICAR(𝜎2𝜂𝑠). The constraint

∑𝑁
𝑖=1 𝜂𝑖𝑠 = 0 is

needed to ensure the identifiability of ICAR prior.
Further, considering that some covariates in the spatial groups may have little effects on the outcomes, we propose the devel-

opment of spatial variable selection approach to allow the subset of significant covariates to vary across spatial groups. To be
exact, denoting the coefficient vector within the spatial group 𝐶(𝑖) = 𝑠 by 𝛃𝑠𝑡 =

(
𝛽𝑠𝑡1,… , 𝛽𝑠𝑡𝑃

)′, the 𝑝th coefficient parameter
𝛽𝑠𝑡𝑝 is hierarchically modeled as

𝛽𝑠𝑡𝑝 = 𝛿𝑠𝑝 × 𝜆𝑠𝑡𝑝, 𝑠 = 1,… , 𝑆, 𝑝 = 1,⋯ , 𝑃 ,

where 𝛿𝑠𝑝 is a binary selection parameter with a value of 0 or 1, and 𝜆𝑠𝑡𝑝 denotes the 𝑝th covariate effect with temporal dependence
when the 𝑝th covariate is selected in cluster 𝑠. If the selection indicator 𝛿𝑠𝑝 = 0, then the 𝑝th covariate is not correlated with the
outcome in the areas of cluster 𝑠. Otherwise, the indicator 𝛿𝑠𝑝 = 1 means that the 𝑝th covariate is significant and has a certain
temporal dependence in cluster 𝑠, with the corresponding coefficient 𝛽𝑠𝑡𝑝 = 𝜆𝑠𝑡𝑝.

The subset of covariates with significant effects on the outcomes varies with different spatial clusters depending on the value
of 𝛿𝑠𝑝. And in each cluster 𝑠, a significant covariate effect has a specific temporal pattern 𝜆𝑠𝑡𝑝 which is distinguishing from
the patterns of the covariate effects in other clusters. There are many alternative temporal structures for the parameter 𝜆𝑠𝑡𝑝 to
consider, such as autoregressive models or random walk models. In this paper, an AR(1) process is considered for the temporal
pattern of 𝜆𝑠𝑡𝑝 as

𝜆𝑠𝑡𝑝|𝜆𝑠,𝑡−1,𝑝 ∼ 𝑁(𝜌𝜆𝑠𝑝𝜆𝑠,𝑡−1,𝑝, 𝜎
2
𝜆𝑠𝑝
), 𝑠 = 1,… , 𝑆, 𝑝 = 1,⋯ , 𝑃 ,

where 𝜌𝜆𝑠𝑝 is the autoregression coefficient and 𝜎2𝜆𝑠𝑝 is the corresponding variance. It is worth noting that generalizations of the
AR model for multiple lags are available, yet less parsimonious.

The binary selection parameter 𝛿𝑠𝑝 is assumed to follow a Bernoulli distribution as

𝛿𝑠𝑝|𝜙𝑠𝑝 ∼ Ber(𝜙𝑠𝑝),

where the probability 𝜙𝑠𝑝 explains the behaviour of the 𝑝th covariate in cluster 𝑠. According to Adin et al,22 in general, there
is little evidence to show spatial dependence between different clusters. Thus, an unstructured prior distribution can be used to
model the selection probability 𝜙𝑠𝑝 as

logit(𝜙𝑠𝑝) = 𝜇𝑝 + 𝜉𝑠𝑝, (2)
where 𝜇𝑝 is the intercept parameter and 𝜉𝑠𝑝 ∼ 𝑁(0, 𝜎2𝜉𝑠𝑝) is the spatially uncorrelated parameter.

From the hierarchical models in the first stage, we can obtain the posterior distribution of the relative risk, 𝜃𝑖𝑡, and compute
the posterior mean as its estimate by Bayesian approaches. The residuals can be calculated as

�̂�𝑖𝑡 = log(𝑌𝑖𝑡∕𝐸𝑖𝑡) − log(�̂�𝑖𝑡).
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MA ET AL. 5

Then we come to the second stage. Since the covariates-only model (1) does not include random effects, and there may be
extra source of space-time structure in the random components, it is essential to further model this residual as

�̂�𝑖𝑡|𝜓𝑖𝑡 ∼ 𝑁(𝜓𝑖𝑡, 𝜎2𝑟 ),
𝜓𝑖𝑡 = 𝑢𝑖 + 𝑣𝑖 + 𝛾𝑡 + 𝜁𝑡, (3)

where 𝜓𝑖𝑡 explains the spatio-temporal random effects and 𝜎2𝑟 is the variance. It is assumed that the spatially uncorrelated com-
ponent 𝑢𝑖 follows a normal distribution as 𝑢𝑖 ∼ 𝑁(0, 𝜎2𝑢 ) and the spatially correlated component 𝑣𝑖 follows an ICAR distribution
as 𝑣𝑖 ∼ ICAR(𝜎2𝑣). A normal distribution is also considered for the temporally uncorrelated component 𝛾𝑡 as 𝛾𝑡 ∼ 𝑁(0, 𝜎2𝛾 ) and
an AR(1) distribution is given to the temporally correlated component 𝜁𝑡 as 𝜁𝑡 ∼ 𝑁(𝜌𝜁𝜁𝑡−1, 𝜎2𝜁 ) with 0 < 𝜌𝜁 < 1. Note that there
are many alternative dependence structures for 𝜓𝑖𝑡 to consider. By fitting the residual model in Equation (3), the estimation of
𝜓𝑖𝑡 can be obtained using its posterior mean and then is used as input in the following stage.

In the third stage, the covariate information along with the estimated space-time component �̂�𝑖𝑡 from the residual model (3)
is incorporated into the following restricted model

log(𝜃𝑖𝑡) = 𝛽0 + 𝐗′
𝑖𝑡𝛃𝑖𝑡 + �̂�𝑖𝑡 + 𝜀𝑖𝑡, (4)

where the coefficient parameter 𝛃𝑖𝑡 = 𝛃𝐶(𝑖),𝑡 has the same hierarchical structure as that of the covariates-only model in the first
stage. The random component 𝜀𝑖𝑡 ∼ 𝑁(0, 𝜎2𝜀 ) is the uncorrelated space-time interaction term, representing the structure not
captured by the estimated space-time component, �̂�𝑖𝑡. We mainly focus on the estimation of 𝛽0,𝛃𝑖𝑡, 𝐶(𝑖), 𝛿𝑠𝑝, and 𝜆𝑠𝑡𝑝, which can
be obtained from this final model in the third stage. As illustrated by Lawson et al,18 the multi-stage method could yield lower
error in the estimation of regression parameters than single-stage model, which is also shown in our simulation study.

2.2 Bayesian inference
For the covariates-only model (Eq. 1) in the first stage and the restricted model (Eq. 4) in the third stage, the prior distributions
of the intercept parameters 𝛽0 and 𝜇𝑝 (Eq. 2) are given by 𝛽0 ∼ 𝑁(0, 𝜎20) and 𝜇𝑝 ∼ 𝑁(0, 𝜎2𝜇𝑝) respectively. Following Gelman23

who evaluated the choice of prior distributions for variance parameters, we specify the standard deviation parameters in the
model to follow a uniform distribution as 𝜎𝑠, 𝜎𝜂𝑠 , 𝜎𝜆𝑠𝑝 , 𝜎𝜉𝑠𝑝 ∼ Uniform(0, 𝑐), where 𝑐 is a constant. The parameter 𝜌𝜆𝑠𝑝 in the
temporal structure of 𝜆𝑠𝑡𝑝 is considered to be 𝜌𝜆𝑠𝑝 ∼ Uniform(0, 1). For both models, the likelihood functions of the observed
counts 𝐘 = {𝑌𝑖𝑡, 𝑖 = 1,… , 𝑁, 𝑡 = 1,… , 𝑇 } are expressed respectively as

𝑝(𝐘|Θ1) =
𝑁∏
𝑖=1

𝑇∏
𝑡=1

Poisson(𝑌𝑖𝑡|𝐸𝑖𝑡,𝐗𝑖𝑡, 𝛽0,𝛃𝐶(𝑖),𝑡),

𝑝(𝐘|Θ3) =
𝑁∏
𝑖=1

𝑇∏
𝑡=1

Poisson(𝑌𝑖𝑡|𝐸𝑖𝑡,𝐗𝑖𝑡, 𝛽0,𝛃𝐶(𝑖),𝑡, �̂�𝑖𝑡),

where Θ1 and Θ3 are respectively the sets of parameters included in the covariates-only model in the first stage and the restricted
model in the third stage. Then the posterior inference for the parametersΘ1 andΘ3 are seperately obtained based on the likelihood
function and the prior distribution by

𝑝(Θ𝑖|𝐘) ∝ 𝑝(𝐘|Θ𝑖) × 𝑓 (Θ𝑖), 𝑖 = 1, 3,

where 𝑓 (Θ𝑖), 𝑖 = 1, 3 are the joint prior distributions of the parameters Θ𝑖, 𝑖 = 1, 3.
In the residual model (Eq. 3) of the second stage, the standard deviation parameters {𝜎𝑟, 𝜎𝑢, 𝜎𝑣, 𝜎𝛾 , 𝜎𝜁} are considered to

follow uniform distributions. The parameter 𝜌𝜁 in the temporal structure of 𝜁𝑡 is specified as 𝜌𝜁 ∼ Uniform(0, 1). The likelihood
function is expressed as

𝑝(�̂�𝑖𝑡|Θ2) =
𝑁∏
𝑖=1

𝑇∏
𝑡=1

Normal(�̂�𝑖𝑡|𝜎2𝑟 , 𝑢𝑖, 𝑣𝑖, 𝛾𝑡, 𝜁𝑡),
where Θ2 = {𝜎𝑟, 𝜎𝑢, 𝜎𝑣, 𝜎𝛾 , 𝜎𝜁 , 𝜌𝜁} includes all the parameters in the residual model. Similarly, the posterior distribution of Θ2
is obtained based on the likelihood and the prior distribution as

𝑝(Θ2|�̂�𝑖𝑡) ∝ 𝑝(�̂�𝑖𝑡|Θ2) × 𝑓 (Θ2),

where 𝑓 (Θ2) is the joint prior distribution of the parameter Θ2.Pr
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6 MA ET AL.

Bayesian inference for the parameters Θ𝑖, 𝑖 = 1, 2, 3 is separately conducted in the three stages, using MCMC algorithms via
statistical software WinBUGS and R package Nimble. As stated before, our primary interest is spatial clustering patterns and
covariate effects, involving the estimation of parameters 𝛽0,𝛃𝑖𝑡, 𝐶(𝑖), 𝛿𝑠𝑝, and 𝜆𝑠𝑡𝑝, which are finally drawn from the third stage.
In the simulation and real data analysis, the convergence of MCMC sampling is checked by trace plots, autocorrelation funtions
and Geweke convergence diagnostics. In addition, a sensitivity analysis for the priors is done in Section 4.3 to examine how
sensitive the posterior distributions are to the choice of priors.

Considering that the spatial cluster indicator 𝐶(𝑖) is a nominal value, we use its posterior mode for estimation. To determine
the subset of significant covariates in each cluster, the estimate of marginal posterior selection probability, 𝑃 (𝛿𝑠𝑝 = 1|𝐘), is
employed. If the estimate is greater than or equal to a cutoff value, then the corresponding covariate is selected into the model
for cluster 𝑠. Otherwise, 𝛿𝑠𝑝 = 0 and the corresponding 𝑝th covariate is not selected in cluster 𝑠. In this article, different cutoff
values are considered to conduct sensitivity analysis in the simulation study of Section 4. Other parameters in the model are
estimated by the posterior means.

3 MODEL ASSESSMENT CRITERIA

For model comparison, a variety of assessment criteria are considered in this section. To evaluate the performance of the models
in recovering spatial clusters, we develop several measures depending on the estimated cluster indicators. The binary entry
parameter 𝛿𝑠𝑝 is used to examine the accuracy of variable selection and coefficient estimation. Also, several kinds of goodness-
of-fit measures are presented based on the posterior distributions. The proposed criteria are used in the simulation study and
real data analysis.

3.1 Cluster detection accuracy
Let 𝐶𝑇

𝑖 denote the true spatial cluster indicator for area 𝑖 and �̂�𝑖𝑘 denote the estimated indicator for area 𝑖 in the 𝑘th simulation,
where 𝑘 = 1,… , 𝐾 . The accuracy rate of cluster identification for area 𝑖 is computed over simulations as

𝐴𝑇𝑖 =
1
𝐾

𝐾∑
𝑘=1

𝐼(�̂�𝑖𝑘 = 𝐶𝑇
𝑖 ),

where 𝐼(⋅) is an indicator function. The measure 𝐴𝑇𝑖 evaluates the capability of spatial cluster recovery for area 𝑖. In order to
obtain an overall assessment of the cluster detection accuracy rate, the average value over areas is defined as: 𝑇 = 1

𝑁

∑𝑁
𝑖=1 𝐴𝑇𝑖,

which can be viewed as a representative measure for cluster identification.
To further investigate the performance in each cluster, the detection accuracy rate is developed for each spatial group as

follows:

𝐺𝑇𝑠 =
1
𝑁𝑠

∑
{𝑖∶𝐶𝑇𝑖 =𝑠}

𝐴𝑇𝑖,

where 𝑁𝑠 denotes the number of areas in cluster 𝑠, 𝑠 = 1,… , 𝑆. Thus, 𝐺𝑇𝑠 measures the rate of correctly classified areas in
cluster 𝑠. Both 𝑇 and 𝐺𝑇𝑠 are used in the simulation study to compare the clustering performance of different models.

3.2 Variable selection and coefficient estimation accuracy
In this paper, the binary entry parameter 𝛿𝑠𝑝 controls the selection of the 𝑝th covariate in cluster 𝑠. To assess the spatial
performance of variable selection, the local selection accuracy rate for 𝑝th covariate is proposed as

SA𝑝 =
1
𝑆𝐾

∑
𝑠,𝑘
𝐼(𝛿𝑠𝑝𝑘 = 𝛿𝑠𝑝),

where 𝐼(⋅) is an indicator function. 𝛿𝑠𝑝𝑘 is the estimation of the selection parameter 𝛿𝑠𝑝 in the 𝑘th simulation. As discussed
before, if the marginal posterior inclusion probability is greater than the cutoff value, then 𝛿𝑠𝑝𝑘 = 1; otherwise, 𝛿𝑠𝑝𝑘 = 0. This
measure reflects the behavior of spatial variable selection for each covariate over clusters and simulations.Pr
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MA ET AL. 7

For the coefficient estimation performance, we employ the posterior means of the regression parameters and their 95% credible
intervals. Mean absolute error(MAE) and mean squared error(MSE) for each covariate are computed as

MAE𝑝 = 1
𝑆𝑇𝐾

∑
𝑠,𝑡,𝑘 |𝛽𝑠𝑡𝑝𝑘 − 𝛽𝑠𝑡𝑝|,

MSE𝑝 = 1
𝑆𝑇𝐾

∑
𝑠,𝑡,𝑘(𝛽𝑠𝑡𝑝𝑘 − 𝛽𝑠𝑡𝑝)2,

where 𝛽𝑠𝑡𝑝𝑘 is the posterior mean of coefficient 𝛽𝑠𝑡𝑝 in the 𝑘th simulation. The average coverage probability(CP) for 95% intervals
is also utilized for evaluation.

3.3 Goodness-of-fit measures
Based on the posterior distribution of the deviance function, DIC is a widely used criterion measuring the fitness and complexity
of a Bayesian model. Celeux et al24 also suggested the use of DIC3 as an alternative of DIC in mixture models. DIC and DIC3
can be easily computed by MCMC algorithms and provide stable evaluations for mixture models.

In terms of the prediction performance of the models, we examine the marginal predictive likelihood (MPL) defined as

MPL =
𝑁∑
𝑖=1

𝑇∑
𝑡=1

log
(
CPO𝑖𝑡

)
,

where conditional predictive ordinate CPO𝑖𝑡 is the marginal posterior predictive density of 𝑦𝑖𝑡 given the data except 𝑦𝑖𝑡 and can
be easily obtained by one-time estimation run based on the posterior samples.

Another criterion is the mean square prediction error (MSPE) given by

MSPE = 1
𝑁𝑇

𝑁∑
𝑖=1

𝑇∑
𝑡=1

(
𝑌𝑖𝑡 − 𝑌𝑖𝑡

)2
,

where 𝑌𝑖𝑡 and 𝑌𝑖𝑡 are respectively the observed value and predicted value generated from the posterior predictive distribution.
In general, the model with a smaller value of DIC, DIC3, MSPE and a larger value of MPL provides better fitness for the data.

4 SIMULATION STUDY

In this section, we explore the performance of the proposed multi-stage hierarchical model and several alternatives based on a
range of assessment criteria presented in the previous section.

4.1 Data generation
The simulated data are generated under six design schemes with different spatio-temporal domains and correlation patterns.

In Designs 1 and 2, the state of Georgia, USA is used as the spatial domain of interest, which contains 𝑁 = 159 counties and
has been studied in terms of different small area health data.25,26 The motivating low birth weight data in Georgia is considered
in the real data analysis of Section 5. In both designs, the outcomes are generated from the following Possion distribution:

𝑦𝑖𝑡𝑘 ∼ Poisson
(
𝑒𝑖𝑡𝑘𝜃𝑖𝑡𝑘

)
,

log
(
𝜃𝑖𝑡𝑘

)
= 𝛽0 +

∑𝑃
𝑝=1 𝛽𝑖𝑡𝑝𝑥𝑖𝑡𝑝𝑘 + 𝑢𝑖𝑘 + 𝑣𝑖𝑘,

where 𝑦𝑖𝑡𝑘 is the simulated count in area 𝑖 at time 𝑡 in the 𝑘th simulation, 𝑖 = 1,… , 𝑁 , 𝑡 = 1,… , 𝑇 and 𝑘 = 1,… , 𝐾 .
𝐾 is the number of simulations. There are 𝑇 = 8 time points and 𝑃 = 4 covariates. The expected count 𝑒𝑖𝑡𝑘 is generated
independently from a Uniform distribution, Uniform(5,10) and 𝛽0 = 1. There are spatial components 𝑢𝑖𝑘 and 𝑣𝑖𝑘 in the random
effects, which are generated respectively as 𝑢𝑖𝑘 ∼ 𝑁(0, 0.052) and 𝑣𝑖𝑘 ∼ ICAR(0.052). In Disign 1, the covariates 𝑥𝑖𝑡𝑝𝑘 for
𝑝 = 1, 2, 3 are independently generated from the normal distribution 𝑁(0, 0.22), while in Design 2, the covariates are simulated
from multivariate normal distribution 𝑁(0,Σ) with Σ = (𝜎𝑖𝑗)3×3, 𝜎𝑖𝑗 = 0.22[𝐼(𝑖 = 𝑗) + 𝑟|𝑖−𝑗|𝐼(𝑖 ≠ 𝑗)]. The parameter 𝑟 is set
to be 0.5 or 0.8 to explore the influence of moderate or high variable correlation. Following Choi and Lawson,27 the fourth
covariate in both designs is set as 𝑥𝑖𝑡4𝑘 = 𝑣𝑖𝑘 + 𝑧𝑖𝑡𝑘 with 𝑧𝑖𝑡𝑘 ∼ 𝑁(0, 0.22) to consider the spatial confounding problem.

The regression coefficient 𝛽𝑖𝑡𝑝 is group-specific for both designs. If area 𝑖 is assigned into group 𝑠, i.e. 𝐶(𝑖) = 𝑠, then 𝛽𝑖𝑡𝑝 =
𝛽𝑠𝑡𝑝 = 𝛿𝑠𝑝 × 𝜆𝑠𝑡𝑝. Figure 1 displays the spatial design of the cluster indicator 𝐶𝑖 and the significant covariates in each cluster inPr
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8 MA ET AL.

the domain of Georgia. There are 𝑆 = 6 spatial clusters for Designs 1 and 2 in the left panel of Figure 1. The areas in the same
cluster are not always set to be adjacent to explore the cluster detection performance of the proposed model. And it is easy to
find that the subset of significant covariates varies across spatial groups. For example, cluster 1 is at the upper-left corner of the
map with significant covariates 𝑋1 and 𝑋2, that is, 𝛿11 = 𝛿12 = 1 and 𝛿13 = 𝛿14 = 0, while cluster 2 at the upper-right corner
has significant covariates 𝑋1 and 𝑋3.

Each significant covariate effect has a certain temporal pattern in the cluster, with an AR(1) structure 𝜆𝑠𝑡𝑝|𝜆𝑠,𝑡−1,𝑝 ∼
𝑁(𝜌𝜆𝑠𝜆𝑠,𝑡−1,𝑝, 1). The temporal parameters are specified as (𝜌𝜆1 ,… , 𝜌𝜆𝑆 ) = (0.8, 0.7, 0.6, 0.5, 0.4, 0.3) for the covariates to obtain
distinct temporal patterns in the clusters. For example, the first covariate 𝑋1 is designed to have significant effects in cluster
(1,2,4,6), and the solid lines in Figure 3 present the designed variation of 𝜆𝑠𝑡1, 𝑠 = 1, 2, 4, 6, the true temporal profiles of the
first covariate effect in the selected clusters 1,2,4 and 6. The temporal patterns of the other three covariate effects for𝑋2, 𝑋3 and
𝑋4 have similar dynamic structures and are omitted for brevity. Therefore, the regression coefficients have spatio-temporally
dependent structures in the sense that the temporal patterns of covariate effects vary with spatial groups.

In Designs 3 and 4, the data are simulated with more complicated correlation structures and cluster patterns based on the
Georgia state map. The counts are obtained from the following model with constant relative risks over simulations:

𝑦𝑖𝑡𝑘 ∼ Poisson
(
𝑒𝑖𝑡𝜃𝑖𝑡

)
,

log
(
𝜃𝑖𝑡
)
= 𝛽0 +

∑𝑃
𝑝=1 𝛽𝑖𝑡𝑝𝑥𝑖𝑡𝑝 + 𝑢𝑖 + 𝑣𝑖 + 𝛾𝑡 + 𝜁𝑡,

where temporally random component 𝛾𝑡 ∼ 𝑁(0, 0.12) and 𝜁𝑡 ∼ 𝑁(0.4𝜁𝑡−1, 0.12). In this case, we set 𝑇 = 12 and 𝑃 = 5
with the first four covariates as well as {𝑒𝑖𝑡, 𝛽0, 𝑢𝑖, 𝑣𝑖} generated from the same scheme as Design 1. Following from Lawson
et al,18 the fifth covariate 𝑋𝑖𝑡5 is generated with spatial or temporal dependence. Specifically, 𝑋𝑖𝑡5 is simulated from an AR(1)
distribution with temporal parameter 0.3 in Design 3, while in Design 4, 𝑋𝑖𝑡5 varies over both space and time, generated from
a normal distribution with mean 0 and covariance Σ𝑋5

= 0.1Σ𝑆 ⊗ Σ𝑇 , where Σ𝑆 and Σ𝑇 are respectively the covariance
matrices of the ICAR distribution with overall variance 0.1 and the AR(1) distribution with temporal parameter 0.7. For both
designs, the spatial clusters and significant covariates are allocated as the right panel of Figure 1 with S=9 groups. The cluster
patterns are rather irregular with many scattered areas. The temporal trends of the covariate effects in the first six clusters
are set to follow the same AR(1) patterns as Design 1. In clusters 7-9, an AR(2) structure is given by 𝜆𝑠𝑡𝑝|𝜆𝑠,𝑡−1,𝑝, 𝜆𝑠,𝑡−2,𝑝 ∼
𝑁(𝜌(1)𝜆𝑠 𝜆𝑠,𝑡−1,𝑝 + 𝜌(2)𝜆𝑠 𝜆𝑠,𝑡−2,𝑝, 1) for 𝑝 = 1,… , 5, 𝑠 = 7, 8, 9. The autoregression coefficient pairs (𝜌(1)𝜆𝑠 , 𝜌

(2)
𝜆𝑠
) for clusters 7-9 are

respectively specified as (0, 0.6), (0.3, 0.5), (−0.2, 0.4).
In Designs 5 and 6, the spatial domain of interest is further enlarged with a much larger sample size to evaluate the scalability

of the proposed method. Specifically, the data are generated for 616 counties in seven US states: Alabama, Florida, Georgia,
Mississippi, North Carolina, South Carolina and Tennessee. The responses are generated from the Poisson distribution similar
to Design 1 with 𝑇 = 12 and 𝑃 = 4, except that the spatial cluster patterns are respectively designed with 𝑆 = 7 for Design 5
and 𝑆 = 10 for Design 6. The spatial allocation and its corresponding significant covariates are displayed in Figure 2. For the
temporal trends of the covariate effects, an AR(1) pattern is specified for Design 5 with autocorrelation parameter (𝜌𝜆1 ,… , 𝜌𝜆𝑆 ) =
(0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2). For Design 6, the coefficient trends in the first seven clusters are the same as above, while in
clusters 8-10, AR(2) structures are respectively given with parameter pairs (𝜌(1)𝜆𝑠 , 𝜌

(2)
𝜆𝑠
) = (−0.2, 0.5), (0.3,−0.4), (0.6, 0.3), 𝑠 =

8, 9, 10.
We generate 𝐾 = 200 data sets and for each simulated data, different competing models are fitted. The determination of the

number of the spatial clusters is an open question in general. Many previous studies are devoted to solving this problem, but
often have computational burdens in the analysis of small areas.28,29 In this paper, we overcome this problem in virtue of various
model assessment criteria, which is convenient and user-friendly.

The models under consideration are as follows:

(1) Model 1: Bayesian multi-stage hierarchical model proposed in this paper.

(2) Model 2: Bayesian full model with spatial clustering and variable selection which does not employ the multi-stage strategy.
(i.e. single-stage model: log(𝜃𝑖𝑡) = 𝛽0 + 𝐗′

𝑖𝑡𝛃𝑖𝑡 + 𝜓𝑖𝑡 + 𝜀𝑖𝑡 and 𝛃𝑖𝑡 = 𝛃𝐶(𝑖),𝑡 as above)

(3) Model 3: Bayesian multi-stage hierarchical model with variable selection,27 in which there is no spatial cluster indicators.
(i.e. in the first stage, log(𝜃𝑖𝑡) = 𝛽0 + 𝐗′

𝑖𝑡𝛃𝑖𝑡, 𝛽𝑖𝑡𝑝 = 𝛿𝑖𝑝 × 𝜆𝑡𝑝, where 𝛿𝑖𝑝 is the binary entry parameter for each small area. )

(4) Model 4: Bayesian multi-stage hierarchical model with spatial cluster indicators, which does not consider variable
selection in the clusters.9 (i.e. in the first stage, log(𝜃𝑖𝑡) = 𝛽0 + 𝐗′

𝑖𝑡𝛃𝑖𝑡, 𝛃𝑖𝑡 = 𝛃𝐶(𝑖),𝑡, 𝛽𝑠𝑡𝑝 ∼ 𝑁(𝜌𝑠𝑝𝛽𝑠,𝑡−1,𝑝, 𝜎2𝑠𝑝))Pr
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MA ET AL. 9

We fit these models using Bayesian inference based on the posterior samples of 40,000 iterations with a single chain via
MCMC. After the burn-in period of 10,000 samples, a thinning rate of 10 is used to avoid high autocorrelation of the samples.
The chains from the trace plots are stationary and well-mixed. Effective sample sizes are also large enough to ensure convergency.
Finally, 3000 iterations are obtained to make parameter estimation. As for the binary entry parameter 𝛿𝑠𝑝 for covariate selection,
we first consider the cutoff value as 0.5 following the previous studies.18,27,30 Sensitivity analysis on the cutoff value will be
given later in this section to verify the reasonability of the choice. The results presented below are averaged over simulations.

4.2 Simulation results
To evaluate the performance in selecting the ture number of spatial clusters by assessment criteria, the paper first uses a range of
alternative cluster numbers to fit the model. Table 1 summarizes the percentage of the cluster numbers selected by DIC3 criterion
for Models 1,2,4 in 100 simulations. Evidently, in all the designs, the true numbers of clusters could be correctly selected in most
cases, indicating the reliability of DIC3 criterion. The results of Model 1 (the proposed model) are consistently good, unaffected
by the complex temporal or spatial patterns in Designs 3-6. The high correlation of the covariates has a mild influence on the
cluster selection, which is still within reason. Thus, the following simulation results are displayed under the right setting of 𝑆
for the considered designs.

Table 2 presents the results of the four models in terms of goodness-of-fit measures, including the average of DIC, DIC3, MPL
and MSPE over the simulations. In Design 1, Model 4 has the smallest DIC, but larger MSPE value and much smaller MPL value.
Only with a slight difference, Model 1 has the second smallest DIC. And along with the DIC3 criterion, both MPL and MSPE
favor Model 1. In Design 2, the model performance decreases to a certain extent with the gradual increase of variable correlation
(𝑟), but the proposed model (Model 1) still behaves well especially at the moderate correlation. In Design 3, Model 1 outcompetes
the alternatives, indicating that the proposed multi-stage hierarchical model fits the data well. In Design 4, the selection results
of the criteria are a little inconsistent, with MPL favoring Model 2 and MSPE favoring Model 4, but the performance of Model
1 is still good, since the difference between the models is rather small. The results are similar in Designs 5 and 6, though the
spatial domain and cluster allocation are much more complicated, showing the good scalability of the proposed method.

Table 3 shows the performance of Models 1, 2 and 4 in terms of the cluster detection accuracy proposed in Section 3.1,
where GT𝑠, 𝑠 = 1,… , 𝑆 measures the rate of correctly classified areas in cluster 𝑠. From Table 3, we can see that the cluster
identification results of Model 2 are the worst among the three models, since it is based on single-stage strategy, not taking the
spatial confounding problem into consideration and may have inevitable estimation bias. The performance of Model 4 is a little
better, but still much inferior to Model 1. The results in Design 2 with 𝑟 = 0.8 show that highly correlated covariates may have a
slightly negative effect on the cluster detection. The distributions of spatial clusters in Design 6 could influence the performance
of the alternative methods, but the proposed model consistently produces stable results. The cluster detection measures prefer
Model 1 in all the designs. For illustration, the map of 𝐴𝑇𝑖 obtained from Model 1 in Design 1 is displayed in Figure 4, which
shows that most counties in Georgia have relatively high cluster detection accuracy rates and the overall identification of spatial
clusters is satisfactory.

Tables 4-10 respectively display the coefficients estimation performance of the considered models in Designs 1-6 based on
MAE, MSE and CP measures. In all the designs, Model 1 overall behaves well with smaller MAE and MSE values than the
competing models. In Design 1, MAE picks Model 4 for the estimation of 𝛽2 and MSE picks Model 3 for 𝛽3, but the slight
differences do not have significant effects. In Design 2, the performance of the proposed method is relatively robust to the
variable correlation, though there is a slight possibility to be affected by highly correlated covariates. It’s worth noting that in
Designs 1-6, the covariate 𝑋4 is set to be highly correlated with the spatial random component, for which Model 2 (the single-
stage model) has poor parameter estimation performance. In Designs 3-4, the spatial and temporal dependence in 𝑋5 also has a
negative impact on the competing models. By contrast, Model 1 obviously improves the estimation accuracy, especially for 𝛽4
and 𝛽5. Thus, the proposed multi-stage method really reduces the confounding bias. In Designs 5-6, where the spatial domain is
much larger (𝑁 = 616), the coefficient estimation results of the method are still comparable to those in Design 1, which shows
the broad applicability of the proposed model. Therefore, Model 1 generally provides outstanding estimation performance in
the considered simulation designs.

Taking one simulation result in Design 1 for example, Figure 3 presents the true temporal trends of the first covariate effects in
the selected four clusters and the estimated ones with 95% credible intervals from Model 1. Clearly, the true profiles are exactly
contained in the credible intervals of the estimated temporal trends and the interval widths are overall small. Similarly, plots for
the other regression coefficients also indicate that Model 1 fits the true temporal trends of coefficient parameters well.Pr

ep
rin

t n
ot

 p
ee

r r
ev

ie
wed



10 MA ET AL.

Table 11 displays the accuracy rates of spatial variable selection for Models 1-3 in Design 1. The measure SA𝑝, 𝑝 = 1,… , 𝑃 ,
defined in Section 3.2, depends on the choice of the cutoff value. Thus, sensitivity analysis is conducted based on different
cutoff values: (0.5, 0.65, 0.8). The “Average” value in the table is obtained by Average=

∑𝑃
𝑝=1 SA𝑝∕𝑃 . The bigger values of

the measures indicate the better performance of the model for selecting the true covariates. It can be seen that the selection
accuracy rates decrease with the larger cutoff values. All the models have poor performance when the cutoff value is set as 0.8.
This suggests that the value of 0.5 we considered before is a reasonable choice, which is consistent with the previous findings of
Barbieri and Berger.30 With the cutoff value fixed at 0.5, the variable selection results in Designs 2-6 are presented in Table 12.
Overall, the proposed method behaves well, with high adaptability to different design scenarios, including the moderate or high
variable correlation in Design 2, complex spatiao-temporal correlation structure in Designs 3-4 and much larger spatial domain
in Designs 5-6. The accuracy rates of Model 1 are consistently higher than the other two models, reflecting that both the spatial
cluster identification and the multi-stage estimation strategy are necessary for spatio-temporal data modeling.

A common problem with MCMC simulation is computation time. Table 13 displays the run times for the various simulation
settings, which are recorded using a desktop PC with Intel(R) Core (TM) i9 process (3.70 GHz) and 128 GB RAM. It is seen
that the proposed method is quite efficient. The computation time is mainly influenced by the sample size and the number of
time points while the correlation structure of the variables and the number of clusters do not have an obvious effect on it. The
computation efficiency is relatively high and all of the run times are within a reasonable range, indicating the good scalability
of the proposed method.

4.3 Prior sensitivity analysis
A sensitivity study on priors is performed to examine the robustness of the above results. In this section, the focus is on the
priors set for the parameters of most interest. Specifically, the inverse gamma distributions IG(1,1) and IG(1,0.5) are considered
as alternative priors for the variance parameters in Section 2.2, where IG(1,0.5) is more informative than the original prior and
IG(1,1) is more diffuse. The temporal parameters 𝜌𝜆𝑠𝑝 and 𝜌𝜁 are also reconsidered to follow Beta priors Beta(2,2) and Beta(2,4).
In addition, combinations of these alternative priors are specified to explore the comprehensive influence of different priors on
model results.

Compared with the original setting, it is found that the alternative sets of priors produce a bit different posterior estimates for
the parameters of interest. According to the previous studies, a visual inspection of the posterior density plots is a useful tool
for comparation, which reveals that in this case, only slight shifts exist and the results are substantively comparable. Therefore,
the priors do not largely influence the actual conclusions and the method is relatively robust to different prior settings.

5 REAL DATA ANALYSIS

In this section, the proposed method is respectively applied to the motivating public health data: the low birth weight (LBW)
incidence data in Georgia, USA and the circulatory disease data in England. For these real data, we also compare the proposed
model with the other three competing models mentioned in Section 4. The Bayesian posterior samples of 30,000 iterations were
obtained after a burn-in period of 10,000 samples. The convergence of samples is checked through trace plots and Geweke
diagnostic tools. Using a thinning rate of 10 to reduce sample dependence, we finally conducted parameter estimation based on
a total of 3000 samples.

5.1 Low birth weight data
5.1.1 Data description
Low birth weight (infant weight at birth of less than 2500g) is a widely-used measure for population health. We obtained the
LBW incidence data in 159 counties of Georgia for the years 2007-2018. The counts are publicly available from the Georgia
health information system Oasis(http://oasis.state.ga.us/). Figure 5 displays the spatio-temporal distributions of standardized
incidence ratios(SIR), defined as the number of LBW births divided by the number of expected cases calculated by the internal
standardization method.31 From Figure 5, we can see that overall, the incidence ratios in central and southern areas of Georgia
are higher than other areas. And the number of counties with low incidence ratios is increasing over time. There is a significant
reduction for the risk ratios in northern areas across the years. For southeastern areas, the incidence ratios decrease at first butPr
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MA ET AL. 11

then increase, with lower ratios in the years 2013-2015. Thus, the standardized incidence ratios have an obvious spatio-temporal
variation in the domain of Georgia, which motivates us to explore the underlying correlation structures and the contributing risk
factors.

According to the previous studies5,10 and data availability, we considered the county-level population density (defined as
population divided by the total land area in square miles), social development index (SDI), median household income, and
unemployment rate as socioeconomic predictors of low birth weights, which were obtained from the US Census Bureau and
the US Bureau of Labor Statistics. The social development index provides a comprehensive assessment of the neighborhood
environment where women live and work, encompassing household composition, minority status, housing type and transporta-
tion.32 Each county receives a SDI percentile ranking value ranging from 0 to 1, with higher values indicating better social
environments. For other socio-demographic and behavioral risk factors, we adopted the proportion of mothers with less than
12th grade education and the proportion of mothers smoking during pregnancy as the possible related covariates. Preliminary
analysis showed that among the above covariates, median household income, unemployment rate and social development index
are moderately correlated with each other, which could be well handled by the proposed method according to the simulation
results. The considered covariates also have spatio-temporal variations and Figure 6 displays the maps of the predictors for the
year of 2018, showing significant spatial patterns. Thus, it is reasonable to consider the spatio-temporally varying coefficients
of the predictors which can be used for spatial clustering and variable selection.

5.1.2 Analysis results
To determine the best number of spatial clusters, we conducted a series of comparisons with the proposed model based on
different number of clusters. Considering the regional characteristics of Georgia and spatial variation of the covariates, the
number of clusters is set to range from 3 to 12. The most suitable choice is made according to the model assessment criteria.
Figure 7 displays the variation of DIC, DIC3, MPL and MSPE for the proposed model with different number of clusters. Although
the values of DIC and DIC3 are similar, DIC measure picks the model with 6 groups while DIC3 reaches its minimum value
with the number of 5. Among the considered models, MPL prefers the model with 5 or 7 clusters, while MSPE picks 𝑆 = 5
as the optimal. We can see that the maximum number of clusters (12) does not provide the best performance for the model,
and additional exploration shows that much larger number of clusters (>12) will only increase model complexity, but reduce
fitness to the data. So it is necessary to make use of the goodness-of-fit measures to select a balance and here we choose 𝑆 = 5
according to the model criteria above.

Then the proposed model is compared with the other three competing models mentioned in Section 4 with the number of
spatial groups fixed at 5. Table 14 shows the performance of the models in terms of the goodness-of-fit measures for the LBW
incidence data. Model 1 and Model 4 have similar DIC values and both are smaller than the other two models. Model 3 has the
largest DIC and DIC3 values, reflecting that the spatial clustering of covariate effects really exist and ignoring the underlying
spatial structure has great negative impact on data fitting. With the smallest MPL and largest MSPE values, Model 2 behaves
badly due to the possible confounding problems. Overall, DIC3, MPL and MSPE measures prefer Model 1 (the proposed multi-
stage model), showing that both spatial clustering and variable selection are worth considering for the LBW data.

The map of spatial cluster indicators from the best-fit Model 1 is displayed in Figure 8. The first group includes 32 counties,
most of which are located in the Atlanta area. The second group has two separated parts with 33 counties in the northeast and
southwest areas. The third group contains the largest number of counties, most of which are in the southeast corner of Georgia
and a few are in the northernmost areas. The fourth and fifth groups include relatively scattered counties in different regions.
From the map we can see that the proposed model provides a good spatial clustering for the counties and allows for discontinuity
in each cluster at the same time.

Figure 9 shows the map of the estimated binary entry parameters 𝛿𝑠𝑝, 𝑝 = 1,… , 6, i.e. variable selection results for the LBW
data. It is seen that the effects of most covariates on the outcome are spatially varying with clusters except for median household
income and the proportion of maternal smoking during pregnancy, which are globally significant in the domain of Georgia.
Combining the cluster indicators in Figure 8, it is easy to find that population density is selected in clusters (1,5), where most
large and medium-sized cities are situated. The social development index is chosen to be a significant factor in 3 clusters: (1,4,5),
showing that SDI, the composite measure of neighborhood environments, plays a more important role in developed regions.
Unemployment rate is only related to birthweight in clusters with relatively high concentration (generally, >8% unemployment
rate), which is consistent with the finding of Pearl et al.8 Low level of maternal education is another risk factor for low birthweight
in clusters (3,4) mainly located in rural Georgia. Thus, the subset of significant covariates is spatially varying across clusters
due to different regional conditions, indicating the necessity of variable selection for each cluster.Pr
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The estimated coefficient parameters 𝛽𝑠𝑡𝑝 are displayed in Figure 10. There are six plots, each of which represents the temporal
trends of the corresponding covariate effects in the clusters. The spatial clusters are distinguished by the lines in different colors.
It is obvious that the coefficients of the variables in the selected clusters are significantly larger than those in the unselected
ones, since the coefficient lines corresponding to the unselected clusters are much closer to the horizontal axis in the plots. This
shows that the proposed model can correctly identify the important risk factors for each cluster.

From Figure 10, it is known that higher population density, social development index and median household income are con-
nected with decreased disease relative ratios, while the remaining covariates are positively associated with the LBW ratios in
Georgia. In addition, there are significant temporal patterns for the covariate effects, which vary across clusters and covariates.
In particular, the increasing effects of social development index highlight the importance of community environments in shaping
pregnancy outcomes. The degree to which a community exhibits certain social conditions, including low percentage of vehi-
cle access, crowded households, or limited English proficiency, may differentially influence the living conditions of pregnant
women, such as food security and healthcare utilization, manifesting in higher risks of preterm delivery or low birth weights.33,34

Median household income is a global risk factor for low birth weight with greater influence in rural areas. It is reported that
low-income women are more likely to delay initiation of prenatal care and have inadequate nutritional consumption during preg-
nancy, which often negatively affects the fetal weight gain. The cumulative effects of poverty over time undoubtedly have played
a role in increasing the risk of low birth weight.8,35 High unemployment in some regions indicates the deterioration of social
environments and may further contribute to problems of social organizations, such as community support for health-promoting
behaviors and access to health care or nutritious food. Community joblessness may also serve as the external stressor in the
environment, resulting in high levels of psychological distress especially for pregnant women.35 Mothers with less than a high
school education tend to have a higher incidence of low birth weight in rural Georgia since they are more likely to be young,
exhibit unwholesome individual behaviors, and have less access to prenatal care, which interact with each other and together
affect the gain of adequate weight during pregnancy. Maternal smoking is associated with a reduction in birthweight, and has
maintained a relatively constant relationship to birthweight over the study period. The different magnitudes in the clusters may
be affected by the average frequency of smoking during pregnancy and other related anthropometry characteristics in the spe-
cific areas.36 It has been studied that smoking hampers delivery of nutrients or oxygen to the uteroplacental circulation, which
will slow down the normal fetal growth.35 Therefore, a variety of factors are clearly linked to low birth weight with distinct
covariate effects, which are helpful in identifying high-risk groups and mobilizing resources for intervention.

The maps of the estimated standardized incidence ratios (SIR) for the LBW data based on the proposed model are presented in
Figure 11 for the year of 2008, 2012 and 2016. Clearly, the estimates have captured the main geographical patterns and temporal
behaviors in the domain of Georgia. The incidence ratios in the southern areas are overall higher than those in the north. And
the risks of low birth weight are decreasing across the years, especially in the central and northern counties.

5.2 England circulatory disease data
5.2.1 Data description
This section studies the circulatory disease in England, which is one of the largest causes of death worldwide according to the
World Health Organization (www.who.int/mediacentre/factsheets/fs310/en/). The Health and Social Care Information Centre
records the yearly counts of hospital admissions by local and unitary authorities (LUAs), which are considered as the responses
in the model, i.e. {𝑌𝑖𝑡} for 𝑖 = 1,… , 𝑁(𝑁 = 323) LUAs in England in year 𝑡 = 1,… , 𝑇 (𝑇 = 10). The expected numbers of
patients {𝐸𝑖𝑡} are calculated for each LUA and each year to adjust for the different population sizes and demographic structures.

The standardized incidence ratio SIR𝑖𝑡 = 𝑌𝑖𝑡∕𝐸𝑖𝑡 could serve the exploratory analysis of the disease risk. Figure 12a displays
the averaged standardized incidence ratios of the circulatory disease over all years. In most adjacent areas, the disease risks
are smoothly changing while there are also evident spatial step changes with higher risks, especially around Newcastle city
in the north and Manchester city in the west. This spatial structure motivates us to explore the underlying risk factors and
possible cluster patterns. Following from Rushworth et al,7 the paper focuses on the social determinants of the circulatory
disease, including socio-economic deprivation (poverty), air pollution and urbanization level as covariates of interest. Poverty is
measured by the percentage of working age population who are in receipt of Jobseekers Allowance from the Health and Social
Care Information Centre. The particulate matter PM10 concentrations are collected from the Department for Environment, Food
and Rural Affairs on the LUA scale, while the urbanization level of each LUA is measured by the proportion of super-output
areas within each LUA. Figure 12b-d displays the spatial variations of the covarates which are averaged over years. There arePr
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obvious spatial clustering patterns in the maps, which may contribute to the incidence of circulatory disease. Therefore, spatio-
temporal analysis is needed to capture the differential exposures and health outcomes in different areas so as to assess efforts for
mitigating risks and targeting interventions towards the high-risk areas.

5.2.2 Analysis results
The number of spatial clusters is selected based on the model assessment criteria, with alternative numbers ranging from 4 to
13. Both DIC and DIC3 measures prefer the model with 7 clusters, while MPL picks the one with 6 clusters and MSPE reaches
its relatively low points when 𝑆 = 7 and 8. It is found that if the number of clusters is further increased, the goodness of model
fit will decrease. Thus the best fit number of clusters is chosen to be 𝑆 = 7.

The proposed model is also compared with the forementioned competing models to explore the importance of certain model
components. Only using single-stage modeling process, Model 2 has larger DIC3 and MSPE values. The performance of Model
3 is poor in terms of the measure of DIC, possibly because it does not take into account spatial clustering patterns of the variable
coefficients. Model 4 behaves a little better, but is still inferior to Model 1 based on MPL and MSPE criteria. On the whole,
the spatio-temporal structure and variable selection technique in the proposed model are rather necessary for the analysis of
circulatory disease data.

Based on the proposed method, the estimated spatial clustering pattern is displayed in Figure 13. It suggests the presence of
substantial heterogenity in terms of the covariate effects. In particular, there is evident septation in the central band of northern
England, which is somewhat consistent with the distribution of standardized incidence ratios in Figure 12a. According to the
cluster map, the three largest cities in England are classified into different clusters, that is, London in cluster 6, Birmingham in
cluster 4 and Manchester in cluster 3, thus all of which are associated with different contributing factors for the incidence of
circulatory disease.

The variable selection results and the corresponding coefficient variation patterns of the significant covariates are respectively
shown in Figures 14 and 15. The influence of socio-economic poverty is significant in the majority of England (clusters 1,3,4,5,6),
where more than 13% of the population receives Jobseekers Allowance, showing a high proportion of people living in poverty in
these areas. It is seen from Figure 15 that severer economic deprivation is associated with increased risk of hospital admissions.
Overall poverty rates in the selected clusters have been fairly persistent for years, showing poverty in these regions is deeply
entrenched. The coefficients of poverty have upward temporal trends in most of the clusters, which indicates the gradually
enhanced effects of socio-economic deprivation over years. The increased circulatory disease prevalence in people with higher
poverty is attributable to a constellation of social, behavioral and psychosocial factors that are more widespread in disadvantaged
individuals.37 For example, poor areas generally have fewer food outlets and supermarkets, resulting in limited access to fresh
vegetables and higher cost of healthy food. In addition, lower-income individuals have more stress, including insecurity in
housing, safety and so on, while also have fewer resources to deal with these challenges. The mismatch results in increased
distress and risk behaviours, which may lead to circulatory disease.38 The particulate matter (PM10) mainly affects the eastern
England in clusters (4,6,7) with relatively higher concentrations of air pollution. During the whole study period, the overall
PM10 concentrations show a slight decline and then a significant increase. The middle panel in Figure 15 displays the dynamic
effects of PM10 concentrations, indicating that serious air pollution will increase people’s susceptibility to circulatory disease
in various degrees. There is substantial evidence that the adverse effects of inhaled PM are associated with oxidative stress and
a subsequent systemic inflammatory response, which could accelerate the occurrence of circulatory diseases.39 The severity of
marginal effects of PM10 concentrations can differ due to locale, length of exposure, and weather conditions experienced by
varying populations. The effect of urbanization is globally significant in England with higher level of urbanization substantially
facilitating the disease incidence. It’s seen that the share of urban population is growing rapidly. The pathways through which
urbanization affects health are complex and multifactorial.40 There is a marked increase in consumption of energy-rich foods
and occupational physical activity is less common in urbanized areas.41 Urbanization has led to changes in patterns of human
activity, diet, and social structures, with profound implications for chronic diseases. In general, the effect magnitudes increase
with higher urbanization levels, which may also be influenced by social demographic structures.

From the results above, it is known that the significant covariates are spatially varying across clusters and the covariate effects
are not constant, but temporally varying. The proposed method is successfully applied to the disease data, which allows the
identification of geographical clusters that exhibit similar risk patterns. The analysis results could help public health experts to
recognize the underlying risk factors for different spatial groups and provide detailed insight into the spatial structure, which
enables health resources and public interventions to be targeted appropriately.Pr
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6 DISCUSSION

In this paper, we develop a flexible Bayesian multi-stage hierarchical model with spatio-temporally varying coefficients for the
space-time data. The proposed model simultaneously allows for identification of spatial clusters in each of which covariate
effects have homogeneous temporal patterns as well as selection of significant covariates for each cluster. Different from the
previous spatial clustering studies which primarily focus on the variation of response, the paper is interested in the distinct
covariate effects. A set of spatially structured weights is employed to help determine the spatial grouping patterns, which relax
the restriction that the areas in the same cluster must be adjacent. To achieve locally varying variable selection, a binary entry
parameter is incorporated into the model which can flexibly switch in/out of the corresponding covarite.

Many existing variable selection approaches regard the important covariates as fixed across space. One of the major advantages
of the proposed method is that the subset of significant risk factors is modeled to vary with different spatial clusters. The
temporal trends of the covariate effects in the selected clusters are structured by an autoregression process, which could be easily
replaced by a random walk or other dynamic processes if needed. The spatial dependence structures also have many alternative
distributions to employ, which shows a good adaptability of the proposed model.

In the simulation study, the proposed model is compared with several competing models based on a series of assessment
criteria. It is shown that the multi-stage method is very helpful to reduce the confounding bias and it is necessary to consider
both spatial clustering and variable selection to better estimate the spatio-temporally varying coefficients and relative risks in
the model. In the real data analysis, the best number of clusters needs to be specified in advance according to the goodness-of-
fit measures. Despite its computational convenience, this strategy does not consider the uncertainty of the number of clusters
when conducting statistical inference for the parameters of interest. Thus, future extensions may be to develop a new approach
that enables simultaneous inference for the posterior distributions of the number of clusters and grouping patterns under the
Bayesian framework.

The proposed model is applied to two motivating health data sets, both of which are found to simultaneously exist spatial
dependence and heterogeneity. The clusters estimated from the model indicate that the associations between covariates and
health outcomes are not constant over the whole space domain, but varying with groups. Therefore, in order to control the disease
incidence, the government should play a leadership role in stimulating necessary discussion and action based on local conditions.
For the low birth weight in Georgia, subsidized support is supposed to be provided for low-income expectant mothers to address
their necessary personal needs. In northern areas, improvements of public services are important, including convenient vehicle
access, early prenatal care enrollment and good nutritional status. In southeastern and southwestern areas, supplying more high-
quality job and educational opportunities could make a difference to decrease the incidence of low birth weight. Considering
the universal effects of smoking on birthweight, the state government should promote effective interventions to reduce such
behavioral risks. Many of the established risk factors are amenable to prevention, and of these, many can be recognized before
pregnancy occurs. For the circulatory disease in England, urbanization is an issue that needs special attention. Although urban
settings have long been associated with human development and progress, they can also lead to significant health problems.
Policies to mitigate the adverse health effects of urbanization need to develop structural interventions, such as urban planning
to promote active lifestyles and agricultural projects facilitating healthy dietary changes. In the central and eastern regions,
it is important to improve the socio-economic situation of the low-income groups. Clinicians and policymakers are supposed
to devise targeted measures to achieve equity in healthcare access across the spectrum of income-strata. Essential strategies
include promoting health education, reducing the cost of healthy foods, and other public policy efforts to provide targeted care to
marginalized populations. Considering the burden of air pollution in the south, policies are needed to address the environmental
issues, such as promoting more new energy vehicles and encouraging the use of public transportation. In addition, it is necessary
to remind people to avoid high-intensity exercise in heavily polluted environments, which could be a simple strategy to mitigate
the harmful effects of air pollution.
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TABLE 1 Percentage table of the number of clusters selected by DIC3 criterion over simulations (%). The true numbers of
spatial clusters are respectively 6, 6, 9, 9, 7, 10 in Designs 1-6. The number of simulations is 100.

S

Design Method 3 4 5 6 7 8 9

1 Model 1 0 2 1 94 3 0 0
Model 2 1 3 5 86 4 1 0
Model 4 2 3 4 83 6 2 0

3 4 5 6 7 8 9

2 Model 1 1 1 3 92 2 1 0
𝑟 = 0.5 Model 2 0 3 8 82 5 2 0

Model 4 0 4 6 80 8 1 1

3 4 5 6 7 8 9

2 Model 1 0 1 6 87 4 2 0
𝑟 = 0.8 Model 2 0 2 11 79 7 1 0

Model 4 1 2 6 75 10 4 2

6 7 8 9 10 11 12

3 Model 1 0 2 2 93 3 0 0
Model 2 2 2 4 85 5 2 0
Model 4 2 3 3 86 4 2 0

6 7 8 9 10 11 12

4 Model 1 0 2 3 92 2 1 0
Model 2 1 2 6 83 4 4 0
Model 4 1 4 5 84 3 3 0

4 5 6 7 8 9 10

5 Model 1 0 1 3 94 2 0 0
Model 2 0 1 6 88 4 1 0
Model 4 1 1 5 84 6 2 1

7 8 9 10 11 12 13

6 Model 1 0 1 4 91 3 1 0
Model 2 0 3 5 84 5 2 1
Model 4 1 2 6 85 4 2 0

39. Gong P, Liang S, Carlton EJ, et al. Urbanisation and health in China. Lancet. 2012;379(9818):843-852.

40. Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll
Cardiol. 2019;74(20):2529-2532.

41. Kuddus MA, Tynan E, McBryde E. Urbanization: a problem for the rich and the poor? Public Health Rev. 2020;41:1-4.
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TABLE 2 Comparison of the considered models in terms of the goodness-of-fit measures in the simulation study. DIC and DIC3
refer to the deviance information criterion. MPL refers to the marginal predictive likelihood. MSPE refers to the mean square
prediction error.

Design Method DIC DIC3 MPL MSPE

1 Model 1 4177.5 4018.2 -2138.5 2.41
Model 2 4239.6 4132.7 -2176.3 3.58
Model 3 4306.2 4197.3 -2195.4 3.29
Model 4 4174.6 4086.5 -2188.9 3.72

2 Model 1 4195.1 4042.7 -2156.3 2.74
𝑟 = 0.5 Model 2 4286.5 4175.8 -2199.8 3.92

Model 3 4331.3 4254.9 -2231.6 3.67
Model 4 4297.9 4145.6 -2245.5 4.05

2 Model 1 4483.7 4358.2 -2438.6 3.78
𝑟 = 0.8 Model 2 4574.2 4463.3 -2509.4 4.59

Model 3 4651.8 4576.4 -2516.3 4.62
Model 4 4632.5 4519.6 -2538.9 4.86

3 Model 1 5342.1 5214.7 -2786.1 10.47
Model 2 5457.2 5387.6 -2814.3 12.52
Model 3 5513.6 5429.8 -2833.5 13.66
Model 4 5335.9 5298.4 -2820.4 11.48

4 Model 1 5512.4 5488.2 -2825.7 11.32
Model 2 5616.2 5546.3 -2818.4 12.98
Model 3 5759.1 5523.8 -2856.3 13.72
Model 4 5528.3 5507.6 -2839.1 11.03

5 Model 1 5439.3 5351.2 -2628.5 9.35
Model 2 5517.2 5426.8 -2697.3 10.81
Model 3 5596.8 5481.5 -2755.7 11.59
Model 4 5478.1 5397.4 -2729.6 11.14

6 Model 1 6138.8 6102.4 -3086.9 14.45
Model 2 6246.9 6195.7 -3122.1 16.71
Model 3 6281.5 6203.5 -3110.6 16.53
Model 4 6223.1 6158.3 -3128.4 16.02
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TABLE 3 Comparison of the considered models in terms of the cluster detection accuracy measures in the simulation study.
There are respectively 6, 6, 9, 9, 7, 10 clusters in Designs 1-6

Design Method GT1 GT2 GT3 GT4 GT5 GT6 GT7 GT8 GT9 GT10 𝑇

1 Model 1 0.91 0.93 0.92 0.88 0.90 0.95 – – – – 0.92
Model 2 0.81 0.84 0.86 0.76 0.83 0.90 – – – – 0.82
Model 4 0.83 0.90 0.89 0.79 0.85 0.93 – – – – 0.85

2 Model 1 0.90 0.88 0.89 0.90 0.87 0.92 – – – – 0.89
𝑟 = 0.5 Model 2 0.81 0.80 0.78 0.82 0.81 0.79 – – – – 0.80

Model 4 0.82 0.81 0.80 0.84 0.81 0.83 – – – – 0.82

2 Model 1 0.81 0.78 0.82 0.79 0.83 0.82 – – – – 0.81
𝑟 = 0.8 Model 2 0.72 0.71 0.67 0.74 0.71 0.69 – – – – 0.71

Model 4 0.73 0.68 0.69 0.68 0.72 0.66 – – – – 0.69

3 Model 1 0.89 0.88 0.86 0.84 0.87 0.89 0.85 0.86 0.91 – 0.87
Model 2 0.82 0.79 0.76 0.80 0.83 0.85 0.80 0.77 0.75 – 0.80
Model 4 0.84 0.82 0.81 0.83 0.84 0.83 0.82 0.79 0.81 – 0.82

4 Model 1 0.90 0.85 0.82 0.85 0.86 0.87 0.86 0.84 0.88 – 0.86
Model 2 0.83 0.75 0.73 0.78 0.82 0.84 0.81 0.80 0.83 – 0.80
Model 4 0.81 0.83 0.76 0.80 0.82 0.78 0.82 0.84 0.83 – 0.81

5 Model 1 0.92 0.89 0.91 0.89 0.88 0.90 0.89 – – – 0.90
Model 2 0.81 0.83 0.78 0.77 0.84 0.80 0.79 – – – 0.80
Model 4 0.85 0.82 0.84 0.81 0.78 0.79 0.83 – – – 0.82

6 Model 1 0.85 0.87 0.83 0.84 0.85 0.82 0.85 0.87 0.81 0.86 0.85
Model 2 0.77 0.72 0.75 0.71 0.70 0.73 0.71 0.68 0.67 0.69 0.71
Model 4 0.76 0.78 0.75 0.79 0.77 0.81 0.75 0.79 0.74 0.72 0.77

GT𝑠, 𝑠 = 1,… , 𝑆: the rate of correctly classified areas in cluster 𝑠.

FIGURE 1 Maps of the spatial cluster patterns in Designs 1-4 of the simulation study. The left panel is used in Designs 1
and 2 with 𝑆 = 6 clusters while the right is used in Designs 3 and 4 with 𝑆 = 9 clusters. The legend indicates the significant
covariates in each cluster.Pr
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TABLE 4 Comparison results of the considered models in terms of the coefficient estimation measures in Design 1 of the
simulation study

Parameter Model MAE MSE CP

𝛽1 Model 1 0.28 0.22 0.89
Model 2 0.31 0.35 0.86
Model 3 0.34 0.36 0.85
Model 4 0.36 0.39 0.85

𝛽2 Model 1 0.55 0.46 0.83
Model 2 0.59 0.57 0.81
Model 3 0.60 0.53 0.81
Model 4 0.54 0.50 0.79

𝛽3 Model 1 0.47 0.53 0.92
Model 2 0.52 0.55 0.90
Model 3 0.59 0.51 0.86
Model 4 0.53 0.58 0.89

𝛽4 Model 1 0.32 0.27 0.93
Model 2 0.54 0.58 0.89
Model 3 0.36 0.33 0.91
Model 4 0.35 0.37 0.92

Abbreviations: MAE, mean absolute error; MSE, mean squared error; CP, coverage probability.

TABLE 5 Comparison results of the considered models in terms of the coefficient estimation measures with 𝑟 = 0.5 in Design
2 of the simulation study

Parameter Model MAE MSE CP

𝛽1 Model 1 0.30 0.20 0.88
Model 2 0.35 0.38 0.84
Model 3 0.32 0.39 0.82
Model 4 0.38 0.42 0.80

𝛽2 Model 1 0.53 0.49 0.84
Model 2 0.62 0.55 0.80
Model 3 0.64 0.52 0.81
Model 4 0.57 0.58 0.80

𝛽3 Model 1 0.49 0.56 0.91
Model 2 0.57 0.62 0.88
Model 3 0.61 0.56 0.85
Model 4 0.55 0.56 0.87

𝛽4 Model 1 0.30 0.29 0.92
Model 2 0.57 0.60 0.86
Model 3 0.39 0.36 0.89
Model 4 0.38 0.41 0.88

Abbreviations: MAE, mean absolute error; MSE, mean squared error; CP, coverage probability.Pr
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TABLE 6 Comparison results of the considered models in terms of the coefficient estimation measures with 𝑟 = 0.8 in Design
2 of the simulation study

Parameter Model MAE MSE CP

𝛽1 Model 1 0.42 0.29 0.83
Model 2 0.46 0.47 0.77
Model 3 0.44 0.49 0.78
Model 4 0.49 0.51 0.75

𝛽2 Model 1 0.62 0.57 0.79
Model 2 0.69 0.72 0.75
Model 3 0.67 0.69 0.74
Model 4 0.64 0.62 0.77

𝛽3 Model 1 0.58 0.64 0.82
Model 2 0.65 0.67 0.77
Model 3 0.69 0.63 0.79
Model 4 0.62 0.65 0.80

𝛽4 Model 1 0.35 0.33 0.84
Model 2 0.68 0.66 0.79
Model 3 0.48 0.41 0.83
Model 4 0.45 0.47 0.84

Abbreviations: MAE, mean absolute error; MSE, mean squared error; CP, coverage probability.

TABLE 7 Comparison results of the considered models in terms of the coefficient estimation measures in Design 3 of the
simulation study

Parameter Model MAE MSE CP

𝛽1 Model 1 0.24 0.27 0.92
Model 2 0.31 0.35 0.88
Model 3 0.33 0.39 0.82
Model 4 0.28 0.32 0.90

𝛽2 Model 1 0.27 0.25 0.91
Model 2 0.26 0.34 0.87
Model 3 0.31 0.37 0.82
Model 4 0.35 0.32 0.86

𝛽3 Model 1 0.43 0.38 0.88
Model 2 0.46 0.52 0.85
Model 3 0.48 0.42 0.83
Model 4 0.55 0.51 0.90

𝛽4 Model 1 0.26 0.29 0.93
Model 2 0.49 0.55 0.79
Model 3 0.28 0.34 0.84
Model 4 0.33 0.27 0.86

𝛽5 Model 1 0.28 0.31 0.90
Model 2 0.52 0.48 0.80
Model 3 0.43 0.45 0.82
Model 4 0.41 0.49 0.84

Abbreviations: MAE, mean absolute error; MSE, mean squared error; CP, coverage probability.Pr
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TABLE 8 Comparison results of the considered models in terms of the coefficient estimation measures in Design 4 of the
simulation study

Parameter Model MAE MSE CP

𝛽1 Model 1 0.26 0.31 0.93
Model 2 0.28 0.37 0.90
Model 3 0.30 0.35 0.82
Model 4 0.33 0.42 0.84

𝛽2 Model 1 0.25 0.23 0.90
Model 2 0.29 0.21 0.91
Model 3 0.32 0.39 0.87
Model 4 0.30 0.36 0.89

𝛽3 Model 1 0.33 0.25 0.92
Model 2 0.36 0.32 0.86
Model 3 0.31 0.42 0.82
Model 4 0.40 0.48 0.88

𝛽4 Model 1 0.23 0.27 0.89
Model 2 0.57 0.51 0.76
Model 3 0.29 0.36 0.81
Model 4 0.31 0.29 0.87

𝛽5 Model 1 0.32 0.36 0.91
Model 2 0.56 0.61 0.83
Model 3 0.41 0.37 0.86
Model 4 0.38 0.44 0.88

Abbreviations: MAE, mean absolute error; MSE, mean squared error; CP, coverage probability.

TABLE 9 Comparison results of the considered models in terms of the coefficient estimation measures in Design 5 of the
simulation study

Parameter Model MAE MSE CP

𝛽1 Model 1 0.25 0.27 0.93
Model 2 0.29 0.33 0.88
Model 3 0.31 0.28 0.87
Model 4 0.28 0.31 0.90

𝛽2 Model 1 0.28 0.32 0.91
Model 2 0.33 0.37 0.85
Model 3 0.31 0.29 0.88
Model 4 0.34 0.41 0.84

𝛽3 Model 1 0.21 0.26 0.94
Model 2 0.26 0.34 0.90
Model 3 0.29 0.37 0.87
Model 4 0.24 0.28 0.91

𝛽4 Model 1 0.35 0.31 0.92
Model 2 0.57 0.64 0.82
Model 3 0.39 0.34 0.87
Model 4 0.42 0.37 0.85

Abbreviations: MAE, mean absolute error; MSE, mean squared error; CP, coverage probability.Pr
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TABLE 10 Comparison results of the considered models in terms of the coefficient estimation measures in Design 6 of the
simulation study

Parameter Model MAE MSE CP

𝛽1 Model 1 0.31 0.36 0.91
Model 2 0.37 0.42 0.85
Model 3 0.35 0.44 0.83
Model 4 0.33 0.41 0.87

𝛽2 Model 1 0.34 0.41 0.90
Model 2 0.39 0.45 0.87
Model 3 0.42 0.37 0.84
Model 4 0.33 0.45 0.88

𝛽3 Model 1 0.28 0.22 0.92
Model 2 0.34 0.45 0.83
Model 3 0.37 0.42 0.86
Model 4 0.31 0.39 0.88

𝛽4 Model 1 0.39 0.43 0.90
Model 2 0.53 0.62 0.81
Model 3 0.45 0.40 0.86
Model 4 0.47 0.41 0.83

Abbreviations: MAE, mean absolute error; MSE, mean squared error; CP, coverage probability.

TABLE 11 Comparison of the considered models in terms of the variable selection measures in Design 1 of the simulation
study, based on different cutoff values

Cutoff value Model SA1 SA2 SA3 SA4 Average
0.50 Model 1 0.846 0.829 0.845 0.879 0.850

Model 2 0.831 0.808 0.816 0.812 0.817
Model 3 0.825 0.819 0.803 0.826 0.818

0.65 Model 1 0.712 0.685 0.765 0.743 0.726
Model 2 0.697 0.661 0.734 0.720 0.703
Model 3 0.693 0.667 0.739 0.722 0.705

0.80 Model 1 0.574 0.483 0.766 0.530 0.588
Model 2 0.535 0.462 0.739 0.491 0.557
Model 3 0.526 0.460 0.734 0.523 0.561
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TABLE 12 Comparison of the considered models in terms of the variable selection measures in Designs 2-6 of the simulation
study, with the cutoff value fixed at 0.5

Design Model SA1 SA2 SA3 SA4 SA5 Average

2 Model 1 0.842 0.831 0.839 0.858 – 0.843
𝑟 = 0.5 Model 2 0.823 0.815 0.812 0.796 – 0.812

Model 3 0.806 0.813 0.801 0.819 – 0.809
2 Model 1 0.802 0.791 0.804 0.825 – 0.806

𝑟 = 0.8 Model 2 0.773 0.784 0.786 0.739 – 0.771
Model 3 0.760 0.753 0.764 0.785 – 0.766

3 Model 1 0.871 0.823 0.836 0.845 0.818 0.839
Model 2 0.829 0.844 0.817 0.796 0.802 0.818
Model 3 0.833 0.837 0.798 0.809 0.825 0.820

4 Model 1 0.856 0.822 0.814 0.789 0.793 0.815
Model 2 0.824 0.782 0.801 0.753 0.722 0.776
Model 3 0.831 0.815 0.784 0.773 0.766 0.794

5 Model 1 0.869 0.846 0.862 0.833 – 0.853
Model 2 0.820 0.814 0.816 0.771 – 0.805
Model 3 0.832 0.829 0.835 0.781 – 0.819

6 Model 1 0.827 0.824 0.833 0.818 – 0.826
Model 2 0.774 0.795 0.801 0.763 – 0.783
Model 3 0.782 0.791 0.794 0.786 – 0.788

TABLE 13 The run times (mins) for various simulation settings

Settings Design 1 Design 2 Design 3 Design 4 Design 5 Design 6
𝑁 159 159 159 159 616 616
𝑇 8 8 12 12 12 12
𝑃 4 4 5 5 4 4
𝑆 6 6 9 9 7 10

Time 5.35 5.41 12.87 12.93 15.42 15.73

TABLE 14 Comparison of the considered models in terms of the goodness-of-fit measures in the real data analysis

Model DIC DIC3 MPL MSPE
Model 1 15018 15003 -7275 105
Model 2 15170 15114 -7347 144
Model 3 15213 15185 -7321 137
Model 4 15014 15156 -7339 133

Abbreviations: DIC, deviance information criterion; MPL, marginal predictive likelihood; MSPE, mean square prediction error.Pr
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cluster 1, with X1

cluster 2, with X2

cluster 3, with X3

cluster 4, with X1 , X3

cluster 5, with X2 , X4

cluster 6, with X1 , X2 , X3

cluster 7, with X2 , X3 , X4

cluster 1, with X1

cluster 2, with X3

cluster 3, with X3 , X4

cluster 4, with X1 , X3

cluster 5, with X2 , X4

cluster 6, with X1 , X2

cluster 7, with X2 , X3 , X4

cluster 8, with X1 , X2 , X4

cluster 9, with X1 , X3 , X4

cluster 10, with X1 , X2 , X3 , X4

FIGURE 2 Maps of the spatial cluster patterns in Designs 5-6 of the simulation study. The left panel is used in Design 5 with
𝑆 = 7 clusters while the right is used in Design 6 with 𝑆 = 10 clusters. The legend indicates the significant covariates in each
cluster.
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FIGURE 3 Plots of the true significant temporal trends and estimated ones from Model 1 for the first covariate effect in
the selected four clusters in Design 1. The solid line is the true temporal trend, the dashed line is the average of the posterior
estimates, and the dot-dashed lines are 95% credible intervals for the posterior estimated profiles.
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FIGURE 4 The map of AT𝑖 from Model 1 in Design 1 of the simulation study. The measure AT𝑖 evaluates the capability of
spatial cluster recovery for area 𝑖. The areas with darker colors have relatively higher cluster detection accuracy rates.

FIGURE 5 Maps of the standardized incidence ratios for the low birth weight incidence data in Georgia through 2007-2018Pr
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FIGURE 6 Maps of the six potential risk factors for LBW data in the year of 2018 in Georgia
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FIGURE 7 The goodness-of-fit measures for the proposed model with different number of clusters 𝑆

FIGURE 8 The map of estimated spatial clusters for the LBW incidence dataPr
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FIGURE 9 Maps of the estimated selection indicators for the six considered covariates for the LBW data in Georgia. The
colored areas represent that the corresponding covariates are significant in the region; otherwise, the covariates are not correlated
with the outcome in the corresponding clusters.
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FIGURE 10 The temporal trends of the estimated coefficients for the six considered covariates for the LBW data. Different
linetypes and colors represent the regression coefficients in different clusters.

FIGURE 11 Maps of the estimated standardized incidence ratios (SIR) of LBW data based on the proposed method in years
2008, 2012 and 2016Pr
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FIGURE 12 Maps of the England circulatory data. (a) Averaged standardized incidence ratios (SIR) for circulatory hospital
admissions across England local authorities between 2001 and 2010. (b)-(d) Average values of the covariates over all years for
poverty, PM10 and urbanization level, respectively.
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FIGURE 13 The map of estimated spatial clusters for the circulatory disease data in EnglandPr
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Poverty PM10 Urbanization

Excluded

Included

FIGURE 14 Maps of the estimated selection indicators for the covariates in the circulatory disease data in England. The
colored areas represent that the corresponding covariates are significant in the region; otherwise, the covariates are not correlated
with the outcome in the corresponding clusters.
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FIGURE 15 The temporal trends of the estimated coefficients for the significant covariates in the circulatory disease data.
Different linetypes and colors represent the regression coefficients in different clusters.

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed


	A Bayesian multi-stage spatio-temporally dependent model for spatial clustering and variable selection
	Abstract
	Introduction
	Bayesian multi-stage spatio-temporal modeling
	Proposed model
	Bayesian inference

	Model assessment criteria
	Cluster detection accuracy
	Variable selection and coefficient estimation accuracy
	Goodness-of-fit measures

	Simulation Study
	Data generation
	Simulation results
	 Prior sensitivity analysis

	Real data analysis
	Low birth weight data
	Data description
	Analysis results

	England circulatory disease data
	Data description
	Analysis results


	Discussion
	Acknowledgements
	Conflict of interest
	References




