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ABSTRACT It is extremely common in engineering to design algorithms to perform various tasks. In data-
driven decision making in any field one needs to ascertain the quality of an algorithm. Therefore, a robust
assessment of algorithms is essential in deciding the best algorithm as well as in improving algorithms.
To perform such an assessment objectively is obvious in the case of a single performance metric, but it is
unclear in the case of multiple metrics. Nonetheless, F1 measure is widely used in cases with two metrics;
F1 measure represents the harmonic mean (HM) of two metrics. Of course, there are other means, e.g., the
arithmetic mean (AM) and the geometric mean (GM). As motivations for using them are intuitive and none of
them are based on any objective function, it is difficult to judge objectively which is the best one. In this paper,
the single metric case is examined to develop two objective functions that are applicable for any number of
metrics. These two objective functions lead to two different performance measures – the distance from the
origin (DO) and the distance from the ideal position (DIP). It introduces a new concept of the remaining
phase space for the evaluation of the quality of a performance measure. On further and closer examinations
of the original goal and the phase space of the metrics, amongst these five measures, either HM or DIP is
found to be the best. Specifically, it is found that HM is the best measure at the lower performance end,
while DIP is clearly the best measure at the higher performance end and is of much practical interest. Rules
for deciding the best algorithm and the order of a set of algorithms are presented. These results are derived
in the context of multiple independent and bounded metrics. Furthermore, several properties and detailed
discussions are provided, following which some published results are reviewed in the present context to
elucidate some points.

INDEX TERMS Algorithms, robust assessment, data, decision making, distance from the origin, distance
from the ideal position.

I. INTRODUCTION
In data-driven decision making in any field one needs to
establish the quality of an algorithm. It is extremely common
in engineering and science to design algorithms to perform
various tasks [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. For example, either in detection or classifi-
cation using machine learning, one develops and compares
many different algorithms. Therefore, it is essential to design
a robust performance metric to measure the performance of
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algorithms. Without this, it is not possible either to choose
the best/better algorithm or to gauge the improvement of an
algorithm.

In the case of a single performance metric, it is clear that
the best algorithm is the one corresponding to the largest
value of the performance metric, when 0 represents the worst
performance and 1 represents the best performance. That
said, it is unclear how to make this judgement in the case
of multiple metrics. Nonetheless, such decisions are made;
for example, F1 measure is widely used in cases with two
metrics, which is essentially the harmonic mean (HM) of
these two metrics. Of course, there are other means, e.g.,
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the arithmetic mean (AM) and the geometric mean (GM).
As motivations for using them are intuitive and not coming
from any objective function, it is difficult to judge objectively
which is the best one of these three.

In this paper it is assumed that every performance metric
is independent, important, and bounded. Without any loss
of generalisation, each metric is considered to be bounded
between 0 and 1, where 0 represents the worst performance
and 1 represents the best performance. The single metric
case is studied to develop two objective functions that offer
identical results in the single metric case and can easily be
extended to any number of metrics. These two objective
functions give rise to two different performance measures –
the distance from the origin (DO) and the distance from the
ideal position (DIP).

In the multiple-metric cases, it is always true that DO ≥

AM ≥ GM ≥ HM , the equality holds only when all metric
values are equal. Furthermore, in the phase space of multiple-
metric cases, it is proven in this paper that DO ≥ AM ≥ DIP
is always true, with the equality being valid only when all
metric values are equal. On further and closer examinations of
the original goal and the phase space of the metrics, amongst
these five measures it is demonstrated that HM is the best
measure at the lower performance end, but at the higher
performance end, which is of much practical interest, DIP is
clearly the best measure.

Three major contributions of this paper are considered to
be

1) It addresses a much-required knowledge gap in objec-
tive evaluation of performance measures. It is consid-
ered to be timely and is of relevance to many different
fields, including ones not illustrated in the paper.

2) It introduces a new concept of the remaining phase
space for the evaluation of the quality of a performance
measure.

3) It proposes two new performance measures, namely
DO and DIP. The DIP turns out to be the best amongst
the five measures examined in this paper.

In Section II, three existing performance measures are dis-
cussed. Two objective functions are developed leading to two
new performancemeasures which are proposed in Section III.
Several properties of these five measures, exemplifying their
similarities and differences, are presented in Section IV. Rel-
ative ranking of algorithms, which is the ultimate goal, is dis-
cussed in section V. Several published results are reviewed
and compared using these five measures in Section VI to
elucidate some points about these measures. Discussions in
Section VII offer more insights into these measures as well
as how they may be extended if all metrics are not equally
important. Finally, conclusions are presented in Section VIII.

II. PERFORMANCE MEASURES
To measure the performance of an algorithm it is essential to
have a performance metric. In this paper it is assumed that

1) every performance metric is bounded,

2) every performance metric is independent, and
3) every performance metric is important.

Whilst every metric is bounded, individually they do not have
to have the same bounds, since eachmetric is normalised such
that each is bounded between 0 and 1, where 0 represents
the worst performance and 1 represents the best performance.
It is further assumed that these metrics are equally impor-
tant, although this assumption can be relaxed as outlined
in Section VII. When one is using only one metric it is
easy to compare the performance of several algorithms. The
algorithm with the largest value of the metric is judged to be
the best amongst them. When there are several metrics, it has
not been so straightforward. For example, consider that there
are three algorithms (namely, A1, A2, and A3) and there is
only one metric (namely, m1). Denote the value of the metric
mj of the algorithm Ai as mj(Ai). Let m1(Ai) be 0.59, 0.59,
and 0.60 for i = 1, 2, and 3. In this case, one would judge the
algorithm A3 to be the best.

Now, consider that there are the same three algorithms
(namely, A1, A2, and A3), but use a different metric (namely,
m2). Let m2(Ai) be 0.93, 0.91, and 0.90 for i = 1, 2, and
3. In this case, one would judge the algorithm A1 to be the
best. So, A3 is found to be the best using only m1, while
A1 is found to be the best using only m2. Which is the best
algorithm if one uses both metrics?More on this can be found
in subsection VI-A. In the following are three subsections
reviewing three performance measures.

A. ARITHMETIC MEAN
The arithmetic mean (AM) is defined as

AM =
1
N

N∑
i=1

mi (1)

When there are several independent metrics, the AM provides
a score between the largest and the smallest metric values.
Also note that the value of AM is bounded between 0 (repre-
senting the worst possible value) and 1 (representing the best
possible value). Thus, the algorithm with the largest value of
AM can be considered the best. Although the use of AM is
not so common, a recent example of its use can be found in
[14]. The motivation for the use of AM appears to be related
to statistical averaging, but beyond that its relevance has not
been discussed in the literature.

B. HARMONIC MEAN
The harmonic mean (HM) is defined as

HM =

(
1
N

N∑
i=1

1
mi

)−1

(2)

When there are several independent metrics, theHM provides
a score between the largest and the smallest metric values.
Also note that the value of HM is bounded between 0 (repre-
senting the worst possible value) and 1 (representing the best
possible value). Thus, the algorithm with the largest value
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of HM can be considered the best. The use of HM is very
common. Some recent examples of its use can be found in
[6], [7], [8], [9], and [10].

In the two metrics scenario, HM is popularly referred to as
the F1 score. The F-measure was introduced by Chinchor in
the context of measuring the performance of message under-
standing systems [15]. The two metrics for this F-measure
were precision and recall.

For motivation, Chinchor wrote, ‘‘The F-measure is higher
if the values of recall and precision are more towards the cen-
ter of the precision-recall graph than at the extremes and their
sums are the same. So . . . a system which has recall of 50%
and precision of 50% has a higher F-measure than a system
which has recall of 20% and precision of 80%. This behaviour
is exactly what we want from a single measure.’’ [15].

In [16] Sasaki wrote, ‘‘The harmonic mean is more intu-
itive than the arithmetic mean when computing a mean of
ratios. Suppose that you have a finger print recognition sys-
tem and its precision and recall be 1.0 and 0.2, respectively.
Intuitively, the total performance of the system should be very
low because the system covers only 20% of the registered
finger prints, which means it is almost useless. The arithmetic
mean of 1.0 and 0.2 is 0.6 whereas the harmonic mean of
them is 1/3. As you see in this example, the harmonic mean
(0.333. . . ) is a more reasonable score than the arithmetic
mean.’’

The above comments can be abstracted as follows:
Notion 1: When comparing different measures,

a smaller value of a measure indicates a better measure.
The precursor to F-measure is the E-measure of van Rijs-

bergen [17], [34]. Essentially, E = 1 − F . Van Rijsbergen
also wrote about ‘‘an intuitive way of measuring’’ before
introducing the E-measure. Thus, the motivation for the use
of HM is more of an intuitive expectation and beyond that its
relevance has not been elucidated. Indeed, the same author
wrote, ‘‘The preceding argument in itself is not sufficient to
justify the use of this particular composite measure’’.

C. GEOMETRIC MEAN
The geometric mean (GM) is defined as

GM =

(
N∏
i=1

mi

) 1
N

(3)

When there are several independent metrics, theGM provides
a score between the largest and the smallest metric values.
Also note that the value of GM is bounded between 0 (repre-
senting the worst possible value) and 1 (representing the best
possible value). Thus, the algorithm with the largest value
of GM can be considered the best. We have not noticed any
instances of the use of GM in such contexts. The motivation
for the use of GM can be built around the fact that it provides
a score between the lowest and the highest values, but its
appropriateness has not been clarified.

It should be noted that GM has similar properties to HM
or F1 measure. For example, like the desirable property of

F-measure as commented by Chinchor [15], GM values are
also higher if the values of recall and precision are more
towards the centre of the precision-recall graph than at the
extremes and their sums are the same. Also, as considered
reasonable by Sasaki [16] of theHMmeasure,GM values are
lower than AM values.

III. PROPOSED MEASURES
In section II the three measures, namely AM, GM, and
HM, have been outlined. Of these, HM is widely used
and the most popular. There are intuitive motivations
for each of them, but these are not based on any cost
functions.

In the rest of this section, the one metric scenario is
explored to develop two cost functions, leading to two new
measures. One of these new measures appears to be very
appropriate in this context.

A. DISTANCE FROM THE ORIGIN
Remember the assumptions in this paper are that every per-
formance metric is bounded and they are independent. More-
over, each metric is normalised such that each is bounded
between 0 and 1, where 0 represents the worst performance
and 1 represents the best performance.

A single metric represents a segment of a straight line
between 0 and 1, and the largest value of this metric can
be construed as the maximum distance from the origin
(DO), i.e., from 0 to its value. Thus, one can maximise
the distance from the origin. For the case of a single met-
ric, both the largest value and the maximum distance from
the origin give the same result, i.e., they are essentially
the same.

In multiple metric cases, the distance from the origin can

be expressed as
√∑N

i=1m
2
i . When there are more than one

(e.g.,N ) metrics, then the space of metrics hasN dimensions.
While the maximum possible distance in one dimension is 1,
it is

√
N in this N -dimensional space. All the aforementioned

measures – AM, GM, and HM – are bounded between 0 and
1. To ensure the same property for DO, it is proposed that

DO =

√∑N
i=1m

2
i

√
N

(4)

When there are several independent metrics, theDO provides
a score between the largest and the smallest metric values.
Also note that the value of DO is bounded between 0 (repre-
senting the worst possible value) and 1 (representing the best
possible value). Thus, the algorithm with the largest value of
DO can be considered the best. There have been no references
in the literature of DO in the context of multiple metrics.
The motivation for the use of DO is built around the fact
that it provides a score between the lowest and the highest
values, and, more importantly, it is based on a cost function
that is appropriate and in common use in a single metric
scenario.
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B. DISTANCE FROM THE IDEAL POSITION
Remember that each metric is normalised such that it is
bounded between 0 and 1, where 0 represents the worst
performance and 1 represents the best performance.

As a single metric represents a segment of a straight line
between 0 and 1, the largest value of this metric can be
construed as the maximum distance from the origin (DO),
i.e., from 0 to its value. Since the ideal value is 1, one can
alternatively formulate the best being the minimum distance
from the ideal value of 1. Thus, one can minimise the distance
from the ideal position. For the case of a single metric, the
largest value and the maximum distance from the origin as
well as the minimum distance from the ideal position (DIP)
give the same result, i.e., all three produce the same outcome.

In multiple metric cases, the distance from the ideal posi-

tion can bewritten as
√∑N

i=1 (1 − mi)2.When there aremore
than one (e.g., N ) metrics, then the space of metrics has N
dimensions. While the maximum possible distance in one
dimension is 1, it is

√
N in this N -dimensional space. All

the aforementioned measures – AM, GM, HM, and DO – are
bounded between 0 (worst) and 1 (ideal). To keep the same
property for DIP, it is proposed that

DIP = 1 −

√∑N
i=1 (1 − mi)2

√
N

(5)

When there are several independent metrics, theDIP provides
a score between the smallest and the largest metric values.
Also note that the value of DIP is bounded between 0 (repre-
senting the worst possible value) and 1 (representing the best
possible value). Thus, the algorithm with the largest value of
DIP can be considered the best. Although there have been
no formulations in the literature of DIP in such contexts, the
motivation for the use of DIP is built around the fact that it
provides a score between the lowest and the highest values,
and, more importantly, it is based on a cost function that is
more appropriate than the rest, in that it aims to measure the
nearness to the ideal position which is the ultimate goal.

IV. PROPERTIES
There are seven subsections below exploring several prop-
erties of the aforementioned five measures, including the
two proposed measures - DO and DIP. These compare and
contrast the five measures. There are some graphical rep-
resentations included in the following. Without any loss of
generality, much of the discussions in this section will be in
the contexts of two metrics as their graphical representations
will be better appreciated on two dimensional plots. When
considering only two metrics, m1 will be labelled as x while
m2 will be labelled as y.

A. ALL METRIC VALUES ARE EQUAL
Consider the scenario that m1 = m2 = . . . = mN = m. Then

AM =
1
N

N∑
i=1

mi = m

GM =

(
N∏
i=1

mi

) 1
N

= m

HM =

(
1
N

N∑
i=1

1
mi

)−1

= m

DO =

√∑N
i=1m

2
i

√
N

= m

DIP = 1 −

√∑N
i=1 (1 − mi)2

√
N

= m

Therefore, when all metric values are equal, all the five mea-
sures give the same value, i.e., at every point on the diagonal
on the x − y plane from (0,0) to (1,1), all measure values are
equal.

B. SUM OF TWO METRIC VALUES ARE CONSTANT
In this scenario, letm1 = (m− z) andm2 = (m+ z), such that
m is fixed but z is not zero and variable, and (m1+m2) = 2m.
Then

AM (m− z,m+ z) =
1
2

2∑
i=1

mi = m

Thus, AM (m,m) = AM (m− z,m+ z).
Now,

GM (m− z,m+ z) =

(
2∏
i=1

mi

) 1
2

=

√
((m− z) (m+ z))

=

√
m2 − z2 < m

Therefore, GM (m,m) > GM (m− z,m+ z).
Also,

HM (m− z,m+ z) =

(
1
2

2∑
i=1

1
mi

)−1

=
2 (m− z) (m+ z)

2m

=
m2

− z2

m
< m

Thus, HM (m,m) > HM (m− z,m+ z).
Now,

DO(m− z,m+ z) =

√∑2
i=1m

2
i

√
2

=

√
(m− z)2 + (m+ z)2

√
2

=

√
m2 + z2 > m

Therefore, DO (m,m) < DO(m− z,m+ z).
Finally,

DIP(m− z,m+ z) = 1 −

√∑2
i=1 (1 − mi)2

√
2

= 1 −

√
(1 − m+ z) (1 − m− z)

√
2

= 1 −

√
(1 − m)2 + z2
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Since ((1 − m)2 + z2) > (1 − m)2,
DIP(m− z,m+ z) < (1 − (1 − m)) = m. Hence,

DIP (m,m) > DIP(m− z,m+ z).

It may be helpful to consider some geometrical aspects.
On the m1 − m2 plane, the point described by m1 = m2 = m
lie on the main diagonal between (0,0) and (1,1). On the
other hand, the line described by the equation m1 + m2 =

2m is perpendicular to the main diagonal with the two lines
intersecting at the point (m, m).
At the intersecting point (m, m), all five measures give

the same value. As one moves away from this intersecting
point along the perpendicular line (m1 + m2 = 2m), DO
values increase monotonically and AM values remain con-
stant, while GM values, HM values, and DIP values decrease
monotonically. In this respect, GM, HM, and DIP behave
similarly.
Remember that Chinchor wrote, ‘‘The F-measure is higher

if the values of recall and precision are more towards the
center of the precision-recall graph than at the extremes and
their sums are the same. . . .This behaviour is exactly what we
want from a single measure.’’ [15]. What is now observed is
that GM and DIP have the same behaviour as the F-measure
in this respect. Therefore, in the spirit of the above reasoning,
GM and DIP should be considered further as well.

C. TWO-DIMENSIONAL PHASE SPACE
In this subsection, comparisons are made of the five measures
in the contexts of only two metrics, through their graphical
representations. This restriction to two metrics is helpful for
portrayals on two dimensional plots. Now the metric m1 is
labelled as x while the metric m2 is labelled as y.
To compare the five measures in the contexts of two met-

rics, the values of each of these measures are set to some fixed
value, f . For each measure, the curve corresponding to the
same fixed value is calculated.
For AM, x + y = 2f . This represents a straight line on the

x-y plane, with a slope of -1 and an intercept of 2f . This is
presented as the black line in Figure 1 for f = 0.72.
For GM,

√
xy = f . Thus, y = f 2/x. This is not a straight

line. The corresponding curve on the x-y plane is shown as
the magenta curve in Figure 1 for f = 0.72.

ForHM,
(
1
2 (

1
x +

1
y )
)−1

= f . Or, x+y = 2xy/f . Thus, y =

x
(
2x
f − 1

)−1
. This is not a straight line. The corresponding

curve on the x-y plane is depicted as the blue curve in Figure 1
for f = 0.72.

For DO,
√
x2 + y2/

√
2 = f . This represents a circle

around the centre at (0,0) of radius
√
2 f , and it can be

rewritten as y =
√
2f 2 − x2. The corresponding curve on the

x-y plane is drawn as the red curve in Figure 1 for f = 0.72.

For DIP, 1 −

√
(1−x)2+(1−y)2

√
2

= f . This can be rewritten

as (1 − x)2 + (1 − y)2 = 2 (1 − f )2, which represents a
circle around the centre at (1,1) of radius

√
2(1 − f ). The

FIGURE 1. For each of the five measures the curve of a measure is
depicted for a constant value of f = 0.72.

corresponding curve on the x-y plane is displayed as the green
curve in Figure 1 for f = 0.72.

Figure 1 depicts the curves for each of the fivemeasures for
the same fixed value of 0.72. The horizontal axis is the x-axis
and the vertical axis is the y-axis. The bottom left corner is the
origin and the top right corner represents the ideal values of
the metrics. The curves representDO in red, AM in black,GM
in magenta, HM in blue, and DIP in green. All these curves
are different, though they all intersect at (x, y) = (f , f ) . This
is a pictorial verification of the theoretical results in subsec-
tion IV-A. Also, the theoretical deductions in subsection IV-B
concerning what happens as one moves away from this inter-
secting point along the perpendicular line (x + y = 2f ) are
depicted in Figure 1.

Remember that the ideal position of (x, y) = (1, 1). It is
important to note that, for a fixed measure value of 0.72, DO
allows a more varied range combinations of (x, y) that are
further away from the ideal position than AM, which allows
a more varied range combinations of (x, y) that are further
away from the ideal position than GM, which allows a more
varied range combinations of (x, y) that are further away from
the ideal position thanHM, which allows a more varied range
combinations of (x, y) that are further away from the ideal
position than DIP.

Figure 1 presented five curves corresponding to the con-
stant f value of 0.72 (i.e., in the higher performance region),
for each of the five measures. In contrast, curves correspond-
ing to a different constant f value of 0.35, in the lower per-
formance region, for each of the five measures are displayed
in Figure 2 to evince different relationships between HM and
DIP curves. The following facts are noted:

1) The relative positions of DO, AM, GM, and HM curves
in Figure 1 and Figure 2 are the same, i.e., the remain-
ing phase space of HM < the remaining phase space
of GM < the remaining phase space of AM < the
remaining phase space of DO. It can be shown that this
is not only true for these two f values, but also it is true
for all f values.
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FIGURE 2. For each of the five measures the curve of a measure is
presented for a constant value of f = 0.35.

2) The relative positions of DIP curve and HM curve in
Figure 1 and Figure 2 are different. In Figure 1 the
remaining phase space of DIP < the remaining phase
space of HM, while in Figure 2 the remaining phase
space of HM < the remaining phase space of DIP.

3) Exploring the above observations further, it can be
demonstrated that the remaining phase space of HM
is equal to the remaining phase space of DIP around
f = 0.63 (see section IV-F). Thus, the remaining phase
space of HM < the remaining phase space of DIP for
f < 0.63, while the remaining phase space of DIP <

the remaining phase space of HM for f > 0.63 (see
section IV-F).

D. CURVATURES
It is observed from Figures 1 and 2 that the curves of the five
measures corresponding to the same fixed value of the mea-
sures have different shapes at the intersection point (x, y) =

(f , f ). Below the curvatures of these five curves are explored.
The curvature, K , can be written as

K =

∣∣∣ d2ydx2

∣∣∣[
1 +

(
dy
dx

)2] 3
2

(6)

For AM, x+y = 2f . This leads to dy
dx = −1 and d2y/dx2 = 0.

As this is a straight line, it has no curvature (K = 0).
For GM,

√
xy = f . Or, 1

2xdy +
1
2ydx = 0. Or, dy/dx =

−y/x. Thus, d2y
dx2

=
2y
x2

=
2
f > 0 and dy/dx = −1 at

the intersection point (x, y) = (f , f ). Hence, the curvature
is 1/(

√
2 f ). Since, d

2y
dx2

> 0, it is concave upward.
For HM, x + y = 2xy/f . Or, dx + dy = (2ydx + 2xdy)/f .

Or, dy/dx = (2y− f )/(f − 2x). Thus, d
2y
dx2

=

(
2y−f

(f−2x)2

)
(2)+

1
(f−2x) (2

dy
dx ) =

4(2y−f )
(f−2x)2

=
4
f > 0 and dy/dx = −1 at the

intersection point (x, y) = (f , f ). Hence, the curvature is
2/(

√
2 f ). Since, d

2y
dx2

> 0, it is concave upward.

TABLE 1. Some observations on each of the five curves corresponding to
the constant measure value, f , at the intersection point (x,y) = (f,f).

ForDO,
√
x2 + y2/

√
2 = f . So, x2+y2 = 2f 2 and 2xdx+

2ydy = 0. Or, dy/dx = −x/y. Thus, d
2y
dx2

= −
1
y +

x
y2

dy
dx =

−
1
y −

x2

y3
= −

x2+y2

y3
= −

2f 2

y3
= −

2
f < 0 and dy/dx = 1 at

the intersection point (x, y) = (f , f ). Hence, the curvature is
1/

√
2 f . Since, d

2y
dx2

< 0, it is concave downward.
For DIP, (1 − x)2 + (1 − y)2 = 2 (1 − f )2. Therefore,

2 (1 − x) dx + 2 (1 − y) dy = 0. Or, dy/dx = −(1− x)/(1−

y). Thus, d2y
dx2

=
1

1−y −
1−x

(1−y)2
dy
dx =

1
1−y +

(1−x)2

(1−y)3
=

(1−x)2+(1−y)2

(1−y)3
=

2(1−f )2

(1−y)3
=

2
1−f > 0 and dy/dx = −1 at the

intersection point (x, y) = (f , f ) . Therefore, the curvature is
1/(

√
2(1 − f )). Since, d

2y
dx2

> 0, it is concave upward.
Some of these observations on each of the five curves

corresponding to the constant measure value, f , at the inter-
section point (x, y) = (f , f ) are presented in Table 1.

Few comments follow:

1) It is clear that, at the intersection point (x, y) = (f , f ),
the curvature of DO is concave downward while the
same for each ofGM,HM, andDIP is concave upward.
Considering that the ideal position is at (1, 1), measures
whose curves are concave upward are desirable.

2) At the intersection point (x, y) = (f , f ) , the curvature
of GM is 1/

√
2 f and the curvature of HM is 2/

√
2 f .

Independent of the value of f , the curvature of HM is
twice as large as that of GM, implying that the HM
curve is closer to the ideal position. More on this can
be found in sections IV-F and IV-G.

3) At the intersection point (x, y) = (f , f ) , the curvature
of DIP is 1/(

√
2(1 − f )). The relative values of curva-

tures ofDIP,HM, andGM depend on the value of f . For
higher values of f , the curvature of DIP is greater than
that ofGM andHM. For lower values of f , the curvature
of DIP is smaller than that of HM but greater than GM,
while, for even lower values of f , the curvature of DIP
is smaller than that of HM and GM. More along this
line be found in sections IV-F and IV-G.

E. TANGENT AM
Theorem 1: AM is a tangent to GM at the intersection point
(x, y) = (f , f ).
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Proof: For GM,
√
xy = f

1
2
xdy+

1
2
ydx = 0

dy
dx

= −
y
x

At the intersection point (x, y) = (f , f ) , dy/dx = −1. Or,
y = −x+c, where c = 2f as it passes through the intersection
point. Thus, the equation of the tangent toGM is y = −x+2f ,
which is the AM line represented by the black line in Figure 1.
QED.
Theorem 2: AM is a tangent toHM at the intersection point

(x, y) = (f , f ).
Proof: For HM,

x + y =
2xy
f

dx + dy =
2ydx + 2xdy

f
dy
dx

=
2y− f
f − 2x

At the intersection point (x, y) = (f , f ) , dy/dx = −1. Or,
y = −x+c, where c = 2f as it passes through the intersection
point. Thus, the equation of the tangent toHM is y = −x+2f ,
which is the AM line represented by the black line in Figure 1.
QED.
Theorem 3: AM is a tangent to DO at the intersection point

(x, y) = (f , f ).
Proof: For DO,

x2 + y2 = 2f 2

2xdx + 2ydy = 0
dy
dx

= −
x
y

At the intersection point (x, y) = (f , f ), dy/dx = −1. Or,
y = −x+c, where c = 2f as it passes through the intersection
point. Thus, the equation of the tangent toDO is y = −x+2f ,
which is the AM line represented by the black line in Figure
1. QED.
Theorem 4: AM is a tangent toDIP at the intersection point

(x, y) = (f , f ).
Proof: For DIP,

(1 − x)2 + (1 − y)2 = 2 (1 − f )2

2 (1 − x) dx + 2 (1 − y) dy = 0
dy
dx

= −
1 − x
1 − y

At the intersection point (x, y) = (f , f ) , dy/dx = −1. Or,
y = −x+c, where c = 2f as it passes through the intersection
point. Thus, the equation of the tangent toDIP is y = −x+2f ,
which is AM represented by the black line in Figure 1. QED.

In summary, the line of constant AM is the tangent to
each of the curves of constant GM, HM, DO, and DIP at the
intersection point (x, y) = (f , f ) along the diagonal line.

F. AREAS ABOVE THE CURVES
The ideal position in Figure 1 is (1,1). So, it is instructive to
calculate how much of the phase space (i.e., area on the x-y
plane) remains between each of these five curves and the ideal
position when each of these measures are set to some fixed
value, f . As one reaches the ideal position, no phase space
will be left over. Thus, the least remaining phase space (i.e.,
area) is desirable. In the following calculations, without any
loss of generality, it is considered that f ≥ 1/

√
2 .

Notion 2: The measure that leaves the least remaining
phase space between each of these five curves and the ideal
positionwhen it is set to some fixed value, f, is considered
the best.

For AM, x + y = 2f . Thus, the remaining phase space
between this AM straight line and the ideal position is a
right-angled triangle with corners at (2f − 1, 1), (1, 1),
and (1, 2f − 1). Therefore, the remaining phase space is
2 (1 − f )2.

For GM,
√
xy = f . Or, y = f 2/x. Here, the remaining

phase space is the area between the GM arc and the ideal
position defined by the three points at (f 2, 1), (1, 1), and
(1, f 2). It can be shown that the remaining phase space is
(
(
1 − f 2

)
+ 2f 2 ln (f )).

For HM, x + y = 2xy/f . Now, the remaining phase space
is the area between the HM arc and the ideal position defined
by the three points at (f /(2 − f ), 1), (1, 1), and (1, f /(2 −

f )). It can be demonstrated that the remaining phase space is(
1 − f −

(
f 2

2

)
(ln (2 − f ) − ln(f ))

)
.

For DO,
√
x2 + y2/

√
2 = f . Or, x2 + y2 = 2f 2. So, the

remaining phase space is the area between the DO circular
arc and the ideal position defined by the three points at
(
√
2f 2 − 1, 1), (1, 1), and (1,

√
2f 2 − 1). It can be shown that

the remaining phase space is
(
1 −

√
2f 2 − 1 − ϑ f 2

)
, where

ϑ = 2 sin−1
(√

f 2 −
√
2f 2 − 1/

(√
2 f
))

.

ForDIP, (1 − x)2+(1 − y)2 = 2 (1 − f )2 . In this case, the
remaining phase space is the area between the DIP circular
arc and the ideal position, which is one quarter of a circle of
radius (

√
2−

√
2 f ). Therefore, the remaining phase space is

(π
4 )(

√
2 −

√
2 f )2 = π (1 − f )2/2.

Figure 3 depicts the remaining phase space (i.e., area on
the x-y plane) between each of these five curves and the ideal
position when each of these measures are set to some fixed
value, f . Note that the maximum possible phase space is 1.
The horizontal axis represents the f -values while the vertical
axis represents the remaining phase spaces. For any fixed
value of f ,DO (red) has the most phase space left, AM (black)
has less phase space left, GM (magenta) has lesser phase
space left, HM (blue) has even less phase space left, and DIP
(green) has the least phase space left. Thus, in this range of f
values, DIP guarantees the smallest phase space as well as is
nearest to the ideal position.

It is clear from Figure 3 that the remaining phase spaces
for all five measures go to 0 as f goes to 1. Although this is
not surprising since the ideal position is reached when f goes
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FIGURE 3. For each of the five measures the remaining phase space
between the curve of a measure for a constant value of f and the ideal
position versus f in the range (0.72, 1) is displayed.

FIGURE 4. For each of the five measures the ratio of the remaining phase
space between the curve of a measure for a constant value of f and the
ideal position over the same of DIP versus f in the range (0.72, 1) is
shown.

to 1, something interesting is observed when one considers
the ratios of the remaining phase spaces of four measures with
respect to DIP as f goes to 1. In Figure 4, the horizontal axis
represents the f -values while the vertical axis represents the
ratios of remaining phase spaces. It displays the ratio of the
remaining phase spaces of DO and DIP in red, the ratio of
the remaining phase spaces of AM and DIP in black, the ratio
of the remaining phase spaces of GM and DIP in magenta,
and the ratio of the remaining phase spaces of HM and DIP
in blue. The first observation is that, as f tends to 1, all four
ratios converge to the same value, but it is different from 1.

For AM, the remaining phase space is 2 (1 − f )2. Let f =

(1 − ε) . Then f tends to 1, as ε goes to 0. In this case,
2 (1 − f )2 = 2ε2. For GM, the remaining phase space, as f
tends to 1, is

((
1 − f 2

)
+ 2f 2 ln (f )

)
=

(
1 − (1 − ε)2

)
+

2 (1 − ε)2 ln(1 − ε) ≈ 2ε2, as ε goes to 0. For HM, the

FIGURE 5. For each of the five measures the remaining phase space
between the curve of a measure for a constant value of f and the ideal
position versus f in the range (0,1) is presented.

remaining phase space between the blue curve and the ideal
position is

(
1 − f −

(
f 2

2

)
(ln (2 − f ) − ln(f ))

)
≈ 2ε2, as

f tends to 1, which is equivalent to ε going to 0. For DO,
the remaining phase space is

(
1 −

√
2f 2 − 1 − ϑ f 2

)
, where

ϑ = 2 sin−1
(√

f 2 −
√
2f 2 − 1/

(√
2 f
))

≈ 2ε2, as ε tends

to 0, i.e., f tends to 1. For DIP, the remaining phase space
is π (1 − f )2 /2 = πε2/2. It is clear that the values of each
of AM, GM, HM, and DO tends to the same value of 2ε2,
except that of DIP which tends to πε2/2. Thus, the ratios of
the remaining phase space of AM, GM, HM, and DO over
DIP are the same at 2ε2/(πε2/2), which is equal to 4/π and
is different from 1.
The second observation is that the ratio of the remain-

ing phase spaces of AM and DIP appears to be constant,
i.e., independent of the value of f . Indeed, this ratio is
(2 (1 − f )2)/(π (1 − f )2 /2) = 4/π = 1.273, and this is
independent of the value of f as long as f ≥ 1/

√
2 .

In Figure 3, the remaining phase spaces for all five mea-
sures, for f values between 0.72 and 1, have been displayed
in the higher performance end. To appreciate the whole phase
space, i.e., lower performance (f < 0.63) and higher perfor-
mance (f > 0.63) regions, the remaining phase spaces for
all five measures for f values in the complete range of 0 to
1 are displayed in Figure 5. It is clear that HM is the best in
the lower performance region and that DIP is the best in the
higher performance region.

G. RELATIVE VALUES
For any pair of metrics (x, y), it can be proven that the value
of HM ≤ the value of GM ≤ value of AM ≤ the value of DO.
For example, (x + y)2 − 4xy = (x − y)2 ≥ 0. Therefore,
4AM2

− 4GM2
≥ 0 and AM ≥ GM . Also, (x + y)2 −

2xy = x2 + y2 ≥ 0. Or, 2GM4/HM2
− 2GM2

≥ 0. Or,
GM2/HM2

− 1 ≥ 0. Thus, taking the positive root, GM ≥
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HM . Now,
(
2x2 + 2y2

)
−
(
x2 + y2 + 2xy

)
= (x − y)2 ≥ 0.

Or, 4DO2
−4AM2

≥ 0. Taking the positive root, one finds that
DO ≥ AM . This concludes the proof, in two metrics cases,
that DO ≥ AM ≥ GM ≥ HM and the equality sign applies
when x = y.

It well known that the result in above paragraph is true
more generally than the 2-metric cases.
Theorem 5: DO ≥ AM is true in multiple metric cases.
Proof: Now,

AM =
1
N

N∑
i=1

mi = m

Let mi = m+ zi, for i = 1, . . . ,N . Then
N∑
i=1

zi = 0. Thus,

N (DO)2 =

N∑
i=1

m2
i =

N∑
i=1

(m+ zi)2 ,

= Nm2
+

N∑
i=1

z2i + 2m
N∑
i=1

zi,

N (DO)2 = Nm2
+

N∑
i=1

z2i

Hence,

N 2 (DO)2 = N 2m2
+ N

N∑
i=1

z2i = N 2 (AM)2 + N
N∑
i=1

z2i

Therefore, one obtains DO ≥ AM for multiple metrics cases.
The equality sign only applies when all metric values are
equal. QED.
In mathematics, the square-root of the average of the sum

of squares is sometimes referred to as the quadratic mean
(QM), i.e.,

QM =

√∑N
i=1m

2
i

N
≡ DO.

For a set of positive real numbers, it is known [18], [19], [35]
that DO ≥ AM ≥ GM ≥ HM .

The situation with respect to DIP is explored below.
In the 2-metric cases, 4 (1 − DIP)2 − 4 (1 − AM)2 =

2
(
(1 − x)2 + (1 − y)2

)
− 4

(
1 −

x+y
2

)2
= (x − y)2 ≥ 0.

Thus, (1 − DIP)2−(1 − AM)2 ≥ 0. Taking the positive root,
AM ≥ DIP. Therefore, DO ≥ AM ≥ DIP.
Theorem 6: AM ≥ DIP is true in multiple metric cases.
Proof: As no proof of this theorem appears to exist in the

literature, it is provided here. Now,

(1 − DIP)2 =
1
N

N∑
i=1

(1 − mi)2

= 1 −
2
N

N∑
i=1

mi +
1
N

N∑
i=1

m2
i

TABLE 2. A toy example with two metrics (m1, m2) and five measures –
AM, GM. HM, DO, and DIP.

TABLE 3. Another toy example with two metrics (m1, m2) and five
measures – AM, GM. HM, DO, and DIP.

= 1 − 2AM + DO2

In the multiple metric cases, it is already known that DO ≥

AM . Therefore,

(1 − DIP)2 = 1 − 2AM + DO2

≥ 1 − 2AM + AM2

= (1 − AM)2

Taking the positive root, one obtains AM ≥ DIP for multiple
metrics cases. The equality sign only applies when all metric
values are equal. Therefore, DO ≥ AM ≥ DIP. QED.

Relations between DIP and GM as well as DIP and HM
are more complicated. For example, there is a region of phase
space where GM < DIP and another region of phase space
where GM > DIP. It can be shown that GM = DIP on the
curve described by

√
x +

√
y =

√
2 . On the left-hand side

of the curve (lower performance region) GM < DIP and on
the right-hand side of this curve (higher performance region)
GM > DIP. Similarly, in the lower performance region of
the phase space HM < DIP and in the higher performance
region of the phase space HM > DIP.

In summary, in the lowest performance region of the phase
space DO ≥ AM ≥ DIP ≥ GM ≥ HM . In the lower
performance region of the phase space DO ≥ AM ≥ GM ≥

DIP ≥ HM , while in the higher performance region of the
phase space DO ≥ AM ≥ GM ≥ HM ≥ DIP.

V. RELATIVE RANKING OF ALGORITHMS
In the Tables 2 to 7 below, each algorithm covers a row.
A row consists of several cells; there are two cells for the
two metric values (except for Table 7 which has three cells
for three metric values) and five cells for AM, GM, HM,
DO, and DIP measure values corresponding to the same pair
(or trio) of metric values. To compare the performance of
several algorithms, one can review only AM values or only
GM values or onlyHM values or onlyDO values or onlyDIP
values of these algorithms, as this is about relative ranking
within one measure only. Therefore, the largest value within
a column, representing a specific measure, corresponds to the
best algorithm according to that specific measure.
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TABLE 4. Based on published results on medical image segmentation
using ISIC-2017 dataset [21] and two metrics (Sensitivity and Specificity).

TABLE 5. Based on published results on change detection of remote
sensing images using LEVIR-CD dataset [28] and two metrics (Recall and
Precision).

The objectives here are to find the best algorithm as well
as to order the algorithms in the presence of several mea-
sures. In this case one needs to compare the AM value of an
algorithm in a specific case with the GM value of the same
algorithm in the same case and theHM value of the same algo-
rithm in the case as well as the DO value of the same
algorithm in the same case and the DIP value of the same
algorithm in the same case.

For any pair of metrics (x, y), it has been proven in sec-
tion IV-G that the value of HM ≤ the value of GM ≤ value
of AM ≤ the value of DO. It has also been shown in sec-
tion IV-C that the remaining phase space of HM under some
specified constraint is less than the remaining phase space
of DIP, while outside of that constraint the remaining phase
space of DIP is less than the remaining phase space of HM.
From considerations of both the nature of measure values
and remaining phase spaces in conjunction with notions 1
(section II-B) and 2 (section IV-F), it is possible to write
simple recipes for finding the best algorithm as well as the
order of the algorithms in the presence of several measures in
the following Tables.

1) It is clear from section IV-G that, independent of the
region of the phase space, of these five measures either
HM is the best or DIP is the best. In the lower per-
formance region (f < 0.63) HM is the best and in
the higher performance region (f > 0.63) DIP is

the best for two-metric cases. Figure 5 offers a visual
verification in the case of two metrics.

2) To find the best algorithm, find the smallest measure
value along a row (i.e., for a specific algorithm). In each
row (i.e., for each algorithm) there is one such smallest
value (marked in green). Now find the largest of these
smallest values in a Table. The algorithm correspond-
ing to this largest value (marked in italic, green, and
bold in the Tables below) is the best algorithm based
on these measures and these metrics.

3) To order the algorithms, find the smallest measure
value (marked in green in the Tables 2 to 7 below)
along a row (i.e., for a specific algorithm). In each
row (i.e., for each algorithm) there is one such smallest
value (marked in green). Now order these smallest
values from the largest to the smallest in a Table. The
algorithm corresponding to the largest value is the best
algorithm (marked in italic, green, and bold) and the
algorithm corresponding to the smallest value in green
is the worst algorithm based on these measures and
these metrics. Basically, the orders of the algorithms
follow the orders of smallest values in green.

VI. EXAMPLES
In this section, seven examples, both created ones and pub-
lished ones, are reviewed to elucidate some points about these
five measures. In each of Tables 2 to 7 the largest value within
a column, representing a specific measure, corresponds to
the best algorithm according to that specific measure and is
highlighted in bold. The relative orders of the algorithms are
highlighted in green and italic, with the cell containing green
and bold number in italic corresponds to the best algorithm
based on these measures and these metrics.

A. TABLE 2
Table 2 presents a toy example involving two metrics
(m1,m2) and three algorithms A1,A2,A3. According to m1
and DIP, A3 is the best, while A1 is the best according to m2,
AM, GM, HM, and DO.

If one considers the ordering (best being the first) of the
algorithms according to thesemetrics andmeasures, one finds
(A3,A1 = A2) for m1, (A1,A2,A3) for m2, (A1,A2 = A3) for
AM, (A1,A3,A2) for GM, (A1,A3,A2) for HM, (A1,A2,A3)
for DO, and (A3,A1,A2) for DIP. Of the five measures, GM
and HM offer the same ordering while the remaining three
differ from each other as well as fromGM andHM. Following
the above rules (see section V), it can be noted that

1) A3 is the best algorithm. A1 is the second-best algo-
rithm. A2 is the worst algorithm.

2) Only DIP offers the best ordering amongst the five
measures.

B. TABLE 3
This is another toy example involving two metrics (m1,m2)
and three algorithms A1,A2,A3 presented in Table 3.
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TABLE 6. Based on published results on change detection of remote sensing images using CCD dataset [33] and two metrics (Recall and Precision).

TABLE 7. Based on published results on medical image segmentation using ISIC-2017 dataset [21] and three metrics (Accuracy, Sensitivity, and
Specificity).

According tom1, AM,GM,HM, andDO, A3 is the best, while
A1 is the best according to m2, HM, and DIP.
If one considers the ordering (best being the first) of the

algorithms according to thesemetrics andmeasures, one finds
(A3,A2,A1) for m1, (A1,A2,A3) for m2, (A3,A2,A1) for AM,
(A3,A2,A1) for GM, (A1 = A2 = A3) for HM, (A3,A2,A1)
for DO, and (A1,A2,A3) for DIP. Of the five measures,
AM, GM, and DO offer the same ordering while HM cannot
separate the three algorithms and DIP suggest a completely
different ordering. Following the above rules (see section V),
it can be noted that

1) A1 is the best algorithm. A2 is the second-best algo-
rithm. A3 is the worst algorithm.

2) Only DIP offers the best ordering amongst the five
measures.

C. TABLE 4
In 2021 Xie et al. proposed the Segmentation-Emendation-
reSegmentation-Verification (SESV) framework to improve
the accuracy of existing medical image segmentation mod-
els [20]. They used, amongst others, the dataset provided
by the International Skin Imaging Collaboration skin lesion
segmentation challenges held in 2017 (ISIC-2017) [21]. They
evaluated their SESV framework with PSPNet [22], U-Net
[23], and FPN [24] as the base segmentation network and
compared their results with the corresponding previously
published results.

This is an example with real data, involving two metrics
(Sensitivity and Specificity) and six algorithms. It can be
observed that their framework in conjunction with X (where
X is either PSPNet or UNet or FPN) improved the sensitivity
compared with X in ISIC-2017 dataset but the specificity was

reduced. Considering these two metrics in this dataset, which
algorithm is the best?

Five measure have been calculated for each pair of sensi-
tivity and specificity values for each of the aforementioned
six algorithms and these are presented in Table 4. According
to AM, GM, HM, and DO, SESV-UNet [20] is the best,
while SESV-FPN [20] is the best according to DIP. All five
measures agree that PPSNet [22] is the worst algorithm.
Following the above rules (see section V), it can be noted that
1) SESV-FPN is the best algorithm and PSPNet is the

worst algorithm.
2) Only DIP offers the best ordering amongst the five

measures.

D. TABLE 5
Change detections in remote sensing images have many
practical applications, e.g., environmental oversight, disas-
ter monitoring, and urban planning. The aim of change
detections is to identify differences between two images
of the same geographical locations captured at two dif-
ferent times [25]. There are several state-of-the-art meth-
ods for change detection in remote sensing images,
e.g., FC-EF [26], FC-Siam-Di [26], FC-Siam-Conc [26],
FCN-PP [27], STANet [28], IFNet [29], FDCNN [30],
SNUNet [31], and DSAMNet [32].

This is another example with real data. In this case the
dataset is LEVIR-CD [28]. LEVIR-CD is a large publicly
available change detection dataset with a variety of com-
plex change features. In Table 5 there are two metrics
(Recall,Precision) and nine algorithms. Five measures have
been calculated for each pair of recall and precision values
for each of these nine algorithms. According to AM, GM,
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TABLE 8. Order of algorithms, based on two metrics (Recall and Precision) according to five measures (AM, GM, HM, DO, and DIP), extracted from the
results in Table 5.

HM, and DO, SNUNet [31] is the best, while STANet [28]
is the best according to DIP. Considering this dataset, which
algorithm is the best? Again, following the above rules (see
section V), it is observed that, for the LEVIR-CD dataset,

1) STANet is the best algorithm and FC-Siam-Conc is the
worst algorithm.

2) Only DIP offers the best ordering amongst the five
measures.

E. TABLE 6
Similar to Table 5, Table 6 relates to change detections in
remote sensing images. This is yet another example with
real data. The dataset is CCD [33], which is also a pub-
licly available dataset, capturing seasonal changes in the
same geographical area from Google Earth. There are sev-
eral state-of-the-art methods for change detection in remote
sensing images, e.g., FC-EF [26], FC-Siam-Di [26], FC-
Siam-Conc [26], FCN-PP [27], STANet [28], IFNet [29],
FDCNN [30], SNUNet [31], and DSAMNet [32].

In Table 6 there are two metrics (Recall,Precision) and
nine algorithms. Five measure have been calculated for each
pair of recall and precision values for each of these nine
algorithms. According to AM, GM, HM, DO, and DIP,
DSMANet [32] is the best. Thus, all five measures concur
on which algorithm is the best. Interestingly, in this case,
all five measures concur that FC-Siam-Conc is the worst
algorithm. Again, following the above rules (see section V),
it is observed that, for the CCD dataset,

1) DSMASNet is the best algorithm and FC-Siam-Conc
is the worst algorithm.

2) Amongst the five measures only DIP offers the best
ordering of all algorithms.

F. TABLE 7
In this subsection the background research is the same as
in section VI-C, involving the Segmentation-Emendation-
reSegmentation-Verification (SESV) framework to improve
the accuracy of existing medical image segmentation mod-
els [20]. Again, in this subsection, the real dataset was
provided by the International Skin Imaging Collaboration
skin lesion segmentation challenges held in 2017 (ISIC-
2017) [21].

In subsectionVI-C, only twometrics (Sensitivity, Specificity)
and six algorithms have been considered. Now an additional
metric (namely, Accuracy) is taken into account. Thus, the
threemetrics (Accuracy, Sensitivity, Specificity) and the same
six algorithms are considered in this section and are presented
in Table 7. It can be observed that their framework in con-
junction with X (where X is either PSPNet or UNet or FPN)
improved both the accuracy and sensitivity compared with X
in ISIC-2017 dataset but the specificity was reduced. Consid-
ering these three metrics in this dataset, which algorithm is
the best?

Five measure have been calculated for each tuple of accu-
racy, sensitivity and specificity values for each of these six
algorithms and these are presented in Table 7. According
to AM, GM, HM, and DO, SESV-UNet [20] is the best,
while SESV-FPN [20] is the best according to DIP. All five
measures agree that PPSNet [22] is the worst algorithm.
Following the above rules (see section V), it can be noted that

1) SESV-FPN is the best algorithm and PSPNet is the
worst algorithm.

2) Amongst the five measures only DIP offers the best
ordering of all algorithms.

G. TABLE 8
This example with two metrics comes from the higher perfor-
mance region. Summarising the results from Table 5, Table 8
presents, in columns 2 to 6, the order of algorithms, based on
twometrics (Recall andPrecision) according to fivemeasures
(AM, GM, HM, DO, and DIP). The column 1 presents the
order of algorithms, considering the remaining phase space
and following section V(3). The last row records the number
of algorithms in the correct order, according to the column 1,
for each of the five measures. In this case, of the nine algo-
rithms AM, GM, HM, DO, and DIP correctly identify the
order of 3, 3, 3, 2, and 9 algorithms respectively. Thus, DO
finds the lowest number of algorithms in the correct order,
while only DIP finds all nine algorithms in the correct order.

H. TABLE 9
This example with three metrics comes from the higher
performance region. Summarising the results from Table 7,
Table 9 presents, in columns 2 to 6, the order of algorithms,
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TABLE 9. Order of algorithms, based on three metrics (Accuracy, Sensitivity, and Specificity) according to five measures (AM, GM, HM, DO, and DIP),
extracted from the results in Table 7.

based on three metrics (Accuracy, Sensitivity, and Specificity)
according to five measures (AM, GM, HM, DO, and DIP).
The column 1 presents the order of algorithms, considering
the remaining phase space and following section V(3). The
last row records the number of algorithms in the correct order,
according to the column 1, for each of the five measures.
In this case, of the six algorithms AM,GM,HM,DO, andDIP
correctly identify 1, 2, 4, 1, and 6 respectively. Thus, AM and
DO find the least number of algorithms in the correct order,
while only DIP finds all six algorithms in the correct order.

VII. DISCUSSION
Below are some merited remarks:

1) In the case of a single metric, all the five measures
(namely, AM, GM, HM, DO, and DIP) produce the
identical outcome. This is not surprising, yet it is an
important feature.

2) All the five measures (namely, AM, GM, HM, DO,
and DIP), including the two proposed measures, are
symmetric with respect to different metrics, which is
essential if they are all independent and equally impor-
tant.

3) In section IV, much of the explorations are in the case
of two independent and equally important metrics to
aid the visualisations of some selected example results.
In this case, the phase space represents an area, but the
phase space in any three metrics case will be a volume,
while the phase space in more than three metrics case
will be a hyper-volume.

4) In section IV-F, it is clear from Figures 4 and 5 that,
for larger f values, the remaining phase space for DIP
is smaller than any of the other four measures, i.e.,
DIP is the best. More than that is the fact that, even
when f is asymptotically close to 1, DIP remains the
best measure. Also, asymptotically as f tends to 1,
all four ratios converge to the same value of 4/π ,
implying that the performance of AM, GM, HM, and
DO will be similar, even though it will remain the
case that the performance of DO < the performance
of AM < the performance of GM < the performance
of HM.

5) In the case of the metrics being independent but not
equally important, one can extend these five measures
in multiple-metric cases, using appropriate weightings
of the metrics. For example, HM with two equally

important metrics is popularly known as F1 measure.
A more general formulation is Fβ measure [15], with
unequal weights, can be written as

Fβ =

(
1

β2 + 1
1
m1

+

(
1 −

1
β2 + 1

)
1
m2

)−1

in the two-metric case. This can be further extended to
multiple metric cases.

6) There are some similarities as well as differences
amongst the five measures. But, AM, GM, and HM
are not based on any relevant cost function except for
some intuition. In contrast, the major advantage of the
proposed DO and DIP is that they are based on explicit
cost functions, which produce the correct result in the
case of a single metric. Theoretical investigations in
this paper demonstrate that DO is the worst of the five
measures explored in this paper.

7) Further considerations of the cost functions as well
as the remaining phase space, in the context of the
problem, lead one to credit DIP as the better of the two
proposed measures. It is not necessary to consider AM,
GM, and DO for deciding which is the best algorithm,
since either HM or DIP will be better in every region
of the phase space.

8) Of these five measures, in two-metric cases the recom-
mendation is to useHM for f < 0.63 (i.e., for the lower
performance end) (see Figure 5). On the other hand, the
recommendation is to useDIP for f > 0.63 (i.e., for the
higher performance end) (see Figure 5).

VIII. CONCLUSION
To be able to perform comparative assessment of algorithms
is essential in deciding the best algorithm and their rankings
in data-driven decision making in any field. How to perform
such an assessment objectively is obvious in the case of a
single performance metric, but this is not so clear in the
case of multiple metrics. In this paper, the harmonic mean
(HM) [in two-metric cases, this is known as F1 measure
which is widely used], the arithmetic mean (AM), and the
geometric mean (GM) have been reviewed. In the phase space
of multiple-metric cases, it is always true that DO ≥ AM ≥

GM ≥ HM , the equality is valid only when all metric values
are equal.
The single metric case has been examined to develop

two objective functions that are applicable for any number
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of metrics. These two objective functions have led to two
different performancemeasures – the distance from the origin
(DO) and the distance from the ideal position (DIP). In the
phase space of multiple-metric cases, it is proven that DO ≥

AM ≥ DIP, the equality is valid only when all metric values
are equal.

A new concept of the remaining phase space for the eval-
uation of the quality of a performance measure is introduced
in this paper. On further and closer examinations of the
original goal and the remaining phase space of the metrics,
amongst these five measures, either HM or DIP is the best.
Moreover, it is proven that HM is the best measure at the
lower performance end, but at the higher performance end,
which is of much practical interest, DIP is clearly the best
measure.

Rules for deciding the best algorithm and the order
of a set of algorithms have been presented. Theoretical
results have been derived in the context of multiple inde-
pendent and bounded metrics. Furthermore, several prop-
erties of the five measures and detailed discussions have
been provided. Some published comparison results have
been reviewed in the present context to elucidate some
points and to conclude that DIP is the best measure out
of the five considered in the region of much practical
interests.
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