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Many financial time series not only have varying structures at different quantile levels and exhibit the phenomenon of condi-
tional heteroscedasticity at the same time but also arrive in the stream. Quantile double-autoregression is very useful for time
series analysis but faces challenges with model fitting of streaming data sets when estimating other quantiles in subsequent
batches. This article proposes a renewable estimation method for quantile double-autoregression analysis of streaming time
series data due to its ability to break with storage barrier and computational barrier. Moreover, the proposed flexible parametric
structure of the quantile function enables us to predict any interested quantile value without quantile curve crossing problem or
keeping the desirable monotone property of the conditional quantile function. The proposed methods are illustrated using cur-
rent data and the summary statistics of historical data. Theoretically, the proposed statistic is shown to have the same asymptotic
distribution as the standard version computed on an entire data stream with the data batches pooled into one data set, without
additional condition. Simulation studies and an empirical example are presented to illustrate the finite sample performance of
the proposed methods.
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1. INTRODUCTION

In economics and finance, considerable attention has been devoted to regression models with autoregressive errors
for time series data. Because volatility is fundamental to asset pricing, monetary policymaking, portfolio man-
agement and risk analysis, it is especially important to accurately forecast volatility. To capture the time-varying
volatility, it is necessary to take the conditional heteroscedasticity into account when a linear model is fitted
to financial time series. Among existing conditional heteroscedastic models, the double-autoregressive (DAR)
models (Ling, 2004) have recently attracted growing attention, see Cai et al. (2013), Li et al. (2015), Xu and
Zhao (2021), Zhu and Li (2022) and among others. Because it has two novel properties. First, it has a larger param-
eter space than that of the commonly used autoregressive (AR) model. Second, the quasi-maximum-likelihood
estimator for the DAR model is still asymptotically normal without assuming the moment condition on returns
(Ling, 2007), which does not hold for classic AR(p) model with independent and identically distributed errors.
The DAR model of order p is defined as

Yt = X⊤

t 𝜷0 + 𝜎(Xt,𝜶0)𝜀t, t = 1, … ,N, (1.1)
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where 𝜷0 and 𝜶0 are vector of unknown parameters, the noise 𝜀t is independent of p-dimensional covariates

Xt = (Yt−1, … ,Yt−p)⊤ and 𝜎(Xt,𝜶0) =
√

1 +
∑p

j=1𝛼0,jY
2
t−j.

Modeling conditional quantiles and volatility dynamics together is of extreme importance in econometrics and
finance. Obviously, the maximum likelihood and least squares estimations are both lack of robustness and may
cause larger bias. The quantile regression (QR) method proposed by Koenker and Bassett (1978) can not only
maintain the robustness of estimation, but also capture the characteristics of the whole conditional distribution.
This allows us to estimate the upper or lower tail of the conditional distribution of interest. In particular, it has
been widely used for the prediction of quantile-based risk measures, for example, the value at risk. Hence, it is
natural to consider QR for the DAR model as

QYt|t−1
(𝜏) = X⊤

t 𝜷0 + 𝜎(Xt,𝜶0)Q𝜀t
(𝜏), (1.2)

where QYt|t−1
(𝜏) is the conditional 𝜏th quantile of Yt given the up to t−1 information set t−1 and Q

𝜀t
(𝜏) is the 𝜏th

quantile of 𝜀t. For model (1.2), Cai et al. (2013) developed a Bayesian estimation method, Xu and Zhao (2021) pro-
posed an efficient estimator for 𝜷0 by constrainedly weighting information across quantiles, and Zhu and Li (2022)
studied a self-weighted conditional quantile estimation method to estimate (𝜷⊤0 ,𝜶

⊤

0 ,Q𝜀t
(𝜏))⊤ by minimizing the

following function:

argmin(𝜷⊤,𝜶⊤,b
𝜏
)⊤

N∑
t=p+1

𝜔t𝜌𝜏

(
Yt − X⊤

t 𝜷 + 𝜎(Xt,𝜶)b𝜏
)
, (1.3)

where 𝜌
𝜏
(r) = 𝜏r − rI(r < 0) is check loss function, I(⋅) is the indicator function and {𝜔t}N

t=p+1 are non-negative
random weights.

Our era has witnessed the massive explosion of data and a dramatic improvement on technology in collecting and
processing big data. Due to the explosive growth of data onto non-traditional sources such as mobile phones, social
networks, and e-commerce, streaming data are becoming a core component in big data analysis. For example,
when a passenger calls Lyft, real-time streams of data join together to create a seamless user experience. Through
this data, the application pieces together real-time location tracking, traffic stats, pricing, and real-time traffic data
to simultaneously match the rider with the best possible driver, calculate pricing, and estimate time to destination
based on both real-time and historical data. As streaming data grows rapidly in volume and velocity, storing
and combing data becomes increasingly challenging due to limited computer memory and storage. To reduce
the demand on computing memory and achieve real-time processing, the nature of streaming data calls for the
development of algorithms which require only ‘one pass’ over the data. However, the ordinary QR estimator does
not have a display expression, because the loss function 𝜌(⋅) in (1.3) is not a convex function. As a result, if a
quantile 𝜏 is not considered at the first batch, we cannot obtain its estimator in the subsequent batches, as in
ordinary quantile regression, because the data is one pass. Moreover, it is impossible to estimate all quantiles 𝜏
in (0, 1) at the beginning, which also increases the computational burden. In this article, we address the following
natural question:

Can we construct a QR estimator of QYt|t−1
(𝜏) in the model (1.2) with an explicit expression, which is an

increasing function of quantile level 𝜏?

For estimating the unknown parameters in the classical regression models under streaming data,
Schifano et al. (2016) developed online-updating algorithms for linear models and estimating equations. Luo
and Song (2020) proposed a renewable estimation for the generalized linear model. Luo et al. (2022) devel-
oped an incremental learning algorithm based on quadratic inference function to analyze streaming datasets
with correlated outcomes such as longitudinal data and clustered data. Yang and Yao (2022) studied an online
non-parametric method to dynamically update the estimates of mean and covariance functions for functional data.
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ANALYSIS OF STREAMING TIME SERIES DATA 3

Quan and Lin (2022) considered a one-pass non-parametric estimation method for non-parametric regression in the
streaming setting. The above methods for streaming data are all based on ordinary least squares or estimating
equations. Due to the second-order non-differentiable of the loss function 𝜌(⋅) in (1.3), we find that the above
methods for streaming data based on the least squares and estimating equations are not suitable for QR estima-
tor. To overcome the non-differentiability of the QR loss function, Jiang and Yu (2022) used a convolution-type
smoothing method to develop a renewable estimation. Chen et al. (2019) and Wang et al. (2022) also studied QR
estimation for streaming data. However, their methods are all required additional strict conditions on the sample
size of each bath. The above three QR methods for streaming data analysis, like (1.3), do not solve the problem
presented, because they still can only obtain an estimator at a quantile level at a time.

Note that model (1.2), only Q
𝜀t
(𝜏) depends on 𝜏, while 𝜷0 and𝜶0 are independent of 𝜏. We adopt a parameterized

method to estimate Q
𝜀t
(𝜏), then a QR estimator of QYt|t−1

(𝜏) can be obtained, which is a function of quantile level 𝜏.
The easiest way to think of parameterizing Q

𝜀t
(𝜏) is𝜽b(𝜏) (Frumento and Bottai, 2016), where b(𝜏) is a set of known

functions of 𝜏. For instance, Q
𝜀t
(𝜏) = 𝜃0 + 𝜃1𝜏 under b(𝜏) = (1, 𝜏)⊤. However, it is difficult to parameterize the

quantile regression coefficients accurately, and their method cannot guarantee obtain the non-crossing of different
quantile estimators (Frumento et al., 2021). Population conditional quantile functions cannot cross each other for
different quantile orders; however, the estimated regression curves often violate this (Jiang and Yu, 2023). For
example, in some cases, the estimate of the 5th percentile is larger than that of the 10th percentile, which can be
very challenging for interpretation and further analysis.

In this article, we parameterized Q
𝜀t
(𝜏) as function (1.4) by the generalized lambda distribution (GLD), because

the GLD (Freimer et al., 1988) is defined by its quantile function (the inverse of the distribution function).

Q
𝜀t
(𝜏) = 𝜃0,1 + 𝜃0,2

{
𝜏
𝜃0,3 − 1
𝜃0,3

− (1 − 𝜏)
𝜃0,4 − 1

𝜃0,4

}
, (1.4)

where 𝜃0,1 is a location parameter, 𝜃0,2 > 0 an inverse scale parameter and 𝜃0,3, 𝜃0,4 are shape parameters.
The procedure (1.4) allows to estimate the whole quantile function of 𝜀t directly using a wider class of dis-
tributions, including those which are defined only via their quantile functions and that may not have closed
mathematical expressions of their density or distribution functions. Given the correct parameters, the GLD distri-
bution equates to several well-known distributions (e.g. the uniform, exponential, logistic) and for many others,
a close approximation is possible (e.g. Gaussian, Cauchy, Student’s t, chi-square, Gamma, Weibull, lognormal,
beta distribution). Figure 1 illustrates that GLD estimates the quantile function well, where the parameter of
GLD is obtained by Dedduwakumara et al. (2021). We refer the reader to Karian and Dudewicz (2000) for a
complete list of distributions that the GLD can represent and their corresponding parameters. Cai et al. (2013),
Cai (2016) and Cai and Li (2019) considered Bayesian estimations for double AR time series models, non-
linear time series models and threshold GARCH models, respectively, with 𝜀t following a generalized lambda
distribution. Zhang et al. (2021) developed a quantile index regression by Tukey lambda distribution, and their
proposed estimation method is not suitable for heteroscedasticity time series data. Combing (1.2) and (1.4),
we have

QYt|t−1
(𝜏) = X⊤

t 𝜷0 + 𝜎(Xt,𝜶0)
[
𝜃0,1 + 𝜃0,2

{
𝜏
𝜃0,3 − 1
𝜃0,3

− (1 − 𝜏)
𝜃0,4 − 1

𝜃0,4

}]
, (1.5)

where the unknown parameters 𝜸0 = (𝜷⊤0 ,𝜶
⊤

0 , 𝜃0,1, 𝜃0,2, 𝜃0,3, 𝜃0,4)⊤ are all independent of 𝜏. The approach (1.5)
allows us to estimate the quantile function of a response variable, rather than a sequence of quantiles. More-
over, it is worth noting that we can obtain non-crossing quantile estimators of QYt|t−1

(𝜏) under different 𝜏
according to

𝜕QYt|t−1
(𝜏)∕𝜕𝜏 = 𝜎(Xt,𝜶0)𝜃0,2

{
𝜏
𝜃0,3−1 + (1 − 𝜏)𝜃0,4−1

}
> 0,
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Figure 1. GLD estimation for quantile functions of three distributions

where 𝜎(Xt,𝜶0) and 𝜃0,2 are all positive. Model (1.5) also enables us to conduct the estimation of quantile levels
with rich observations and then to extrapolate the fitted structures to far tail, such as Value-at-Risk in economics
and finance.

To summarize, we develop a QR method for the DAR model (1.1) with streaming datasets. We first parameterize
Q
𝜀t
(𝜏) as function (1.4) by the generalized lambda distribution (GLD). The unknown parameters 𝜸0 in the model

(1.5) can be estimated by a convolution-type smoothing method, which only requires the availability of the current
data batch in the data stream and sufficient statistics of the historical data at each stage of the analysis. Theoretically,
it has the same asymptotic distributions as the standard version computed on an entire data stream with the data
batches pooled into one data set, without additional condition. Based on (1.5), we can estimate the conditional
quantile at a very high or low level of quantile level, and the quantile estimators of QYt|t−1

(𝜏) under different 𝜏s are
non-crossing. The most important thing is that it can be applied to streaming data analysis to obtain any wanted
conditional quantile estimation.

The remainder of this article is organized as follows. In Section 2, the estimation methods based on all data
are proposed. The renewable estimation method is developed in Section 3. Both simulation examples and the
application of real data is given in Section 4 to illustrate the proposed procedures. We conclude this article with a
brief discussion in Section 5. All technical proofs are provided in the Appendix.

2. ESTIMATION METHOD BASED ON ALL DATA

2.1. Self-weighted Composite Quantile Regression Estimation

We first study the estimation method based on all data with sample size N. Note that the unknown parameters
𝜸0 = (𝜷⊤0 ,𝜶

⊤

0 , 𝜃0,1, 𝜃0,2, 𝜃0,3, 𝜃0,4)⊤ are all independent of 𝜏, we therefore consider the following self-weighted
composite quantile regression (SWCQR) to achieve high efficiency:

�̂� = arg min
𝜸

K∑
k=1

N∑
t=p+1

𝜔t𝜌𝜏k

(
Yt − qt(𝜸, 𝜏k)

)
, (2.1)

where K is a fixed integer with 0 < 𝜏1 < · · · < 𝜏K < 1 and one can use the equally spaced quantiles at 𝜏k = k∕(K+1)
for k = 1, … ,K (Zou and Yuan, 2008), qt(𝜸, 𝜏) = X⊤

t 𝜷 + 𝜎(Xt,𝜶)
(
𝜃1 + 𝜃2

[
(𝜏𝜃3 − 1)∕𝜃3 − {(1 − 𝜏)𝜃4 − 1}∕𝜃4

])
,

𝜸 = (𝜷⊤,𝜶⊤, 𝜃1, 𝜃2, 𝜃3, 𝜃4)⊤ and {𝜔t}N
t=1 are non-negative random weights, which are to maintain the asymptotic

normality for heavy-tailed data with only a finite fractional moment, see Ling (2005) and Zhu and Li (2022).
Therefore, we can obtain the estimator Q̂Yt|t−1

(𝜏) of QYt|t−1
(𝜏) based on �̂� as

Q̂Yt|t−1
(𝜏) = qt(�̂�, 𝜏) = X⊤

t �̂� + 𝜎(Xt, �̂�)

[
�̂�1 + �̂�2

{
𝜏
�̂�3 − 1

�̂�3

− (1 − 𝜏)
�̂�4 − 1

�̂�4

}]
. (2.2)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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ANALYSIS OF STREAMING TIME SERIES DATA 5

Note that Q̂Yt|t−1
(𝜏) in (2.2) is a function of 𝜏, thus we can use it to estimate all conditional quantile

functions, especially for extreme conditional quantile functions. Moreover, Q̂Yt|t−1
(𝜏) under different 𝜏 ∈ (0, 1) are

non-crossing by

𝜕Q̂Yt|t−1
(𝜏)∕𝜕𝜏 = 𝜎(Xt, �̂�)�̂�2

{
𝜏
�̂�3−1 + (1 − 𝜏)�̂�4−1

}
> 0,

where 𝜎(Xt, �̂�) and �̂�2 are all positive.

2.2. Smoothing Self-weighted Composite Quantile Estimation

Because the loss function 𝜌
𝜏
(r) = 𝜏r − rI(r < 0) in (1.3) is non-differentiable, the SWCQR estimator in (2.1) has

no display expression, it is impossible to construct a renewable estimator for streaming data sets. To circumvent
the non-differentiability of the QR loss function, we estimate 𝜸0 by minimizing the following smoothing quantile
regression objective function:

�̃�∗ = arg min
𝜸

Sh(𝜸)

= arg min
𝜸

K∑
k=1

N∑
t=p+1

𝜔t
∫

+∞

−∞
𝜌
𝜏k
(s)Kh(s − Yt + qt(𝜸, 𝜏k))ds, (2.3)

where Kh(⋅) = K(⋅∕h)∕h, K(⋅) is a smooth kernel function and h is a bandwidth. The kernel smooth function is
used in (2.3) to estimate the distribution function, and the indicator function is used in (2.1), the details can see
Fernandes et al. (2021). Now Sh(𝜸) is twice continuously differentiable with the gradient and Hessian matrix

∇Sh(𝜸) =
K∑

k=1

N∑
t=p+1

𝜔t∇qt(𝜸, 𝜏k)
{

K∗((qt(𝜸, 𝜏k) − Yt)∕h) − 𝜏k

}
,

∇2Sh(𝜸) =
K∑

k=1

N∑
t=p+1

𝜔t

[
∇2qt(𝜸, 𝜏k)

{
K∗((qt(𝜸, 𝜏k) − Yt)∕h) − 𝜏k

}

+ ∇qt(𝜸, 𝜏k)
{
∇qt(𝜸, 𝜏k)

}⊤
Kh(qt(𝜸, 𝜏k) − Yt)

]
, (2.4)

respectively, where K∗(v) = ∫ v

−∞K(u)du, ∇ and ∇2 are the first and second derivatives of 𝜸, respectively. For
example, we can take an Epanechnikov kernel K(u) = (3∕4)(1 − u2)I(|u| ≤ 1), then

Sh(𝜸) =
K∑

k=1

N∑
t=p+1

𝜔t

[ h
16
{3 + 6e2

tk(𝜸)∕h2 − e4
tk(𝜸)∕h4}I{|etk(𝜸)| ≤ h}

+ 1
2
|etk(𝜸)|I{|etk(𝜸)| > h} + (𝜏 − 1∕2)etk(𝜸)

]
,

where etk(𝜸) = Yt − qt(𝜸, 𝜏k).

2.3. Large Sample Properties

To establish the asymptotic properties of the proposed estimators, the following technical conditions are
imposed.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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6 R. JIANG ET AL.

C1. {Yt} is strictly stationary and ergodic with E|Yt|r < ∞ for some 0 < r ≤ 1. The conditional density function
of Yt on t−1 ( fYt|t−1

) and its derivative function ( f ′Yt|t−1
) are uniformly bounded and fYt|t−1

is positive on the
support {x ∶ 0 < FYt|t−1

(x) < 1}, where FYt|t−1
is the distribution function of Yt on t−1.

C2. {𝜔t} is strictly stationary, ergodic, non-negative and measurable with respect to Xt with E(𝜔t||Xt||32) < ∞,
where || ⋅ ||2 is the 2-norm.

C3. 𝚺1 =
∑K

k=1E[fYt|t−1
(qt(𝜸0, 𝜏k))𝜔t∇qt(𝜸0, 𝜏k){∇qt(𝜸0, 𝜏k)}⊤] is a positive definite matrix.

C4. The kernel function K(⋅) is even, integrable, and twice differentiable with bounded first and second deriva-
tives such that ∫ K(u)du = 1, ∫ |u2K(u)|du < ∞, ∫ uK(u)du = 0 and ∫ u2K(u)du ≠ 0. In addition,
0 < ∫

∞
0 K∗(u){1 − K∗(u)}du < ∞.

Remark 2.1. Condition C1 is commonly used in the literature, see Zhu and Li (2022). For the random weights
{𝜔t}, there are many choices satisfying Condition C2, such as𝜔t = (1 +

∑p
j=1|Yt−j|3)−1. Condition C3 ensures that

𝚺−1
1 exists. Condition C4 is a mild condition on K(⋅) for smoothing approximation. For example, Epanechnikov

kernel K(u) = (3∕4)(1 − u2)I(|u| ≤ 1) satisfies condition C4.

Theorem 2.1. Suppose that conditions C1–C3 are satisfied and N → ∞. Then, we have

√
N(�̂� − 𝜸0)

L
−−−→

(
0,𝚺−1

1 𝚺2𝚺−1
1

)
,

and

Q̂YN+1|N
(𝜏) − QYN+1|N

(𝜏) = (�̂� − 𝜸0)⊤∇qN+1(𝜸0, 𝜏) + op(N−1∕2),

where
L

−−−→ represents the convergence in the distribution and 𝚺2 =
∑K

k=1

∑K
k′=1 min{𝜏k, 𝜏k′ }(1 − max{𝜏k, 𝜏k′ })

E[𝜔2
t∇qt(𝜸0, 𝜏k){∇qt(𝜸0, 𝜏k′ )}⊤].

Theorem 2.2. Suppose that conditions C1–C4 are satisfied. If h = o(N−1∕4), h(N∕ ln N)1∕3 → ∞ and N → ∞,
then, we have

√
N(�̃�∗ − 𝜸0)

L
−−−→

(
0,𝚺−1

1 𝚺2𝚺−1
1

)
,

and

Q̃
∗
YN+1|N

(𝜏) − QYN+1|N
(𝜏) = (�̃�∗ − 𝜸0)⊤∇qN+1(𝜸0, 𝜏) + op(N−1∕2),

where Q̃
∗
YN+1|N

(𝜏) = X⊤

N �̃�
∗ + 𝜎(XN , �̃�

∗)
(
𝜃
∗
1 + 𝜃

∗
2

[
(𝜏𝜃

∗
3 − 1)∕𝜃∗3 − {(1 − 𝜏)

𝜃
∗
4 − 1}∕𝜃∗4

])
and �̃�∗b =

(�̃�∗⊤b , �̃�
∗⊤
b , 𝜃

∗
b,1, 𝜃

∗
b,2, 𝜃

∗
b,3, 𝜃

∗
b,4)

⊤.

Through the result of Theorems 2.1 and 2.2, the smoothing SWCQR (SSWCQR) estimator �̃�∗ in (2.3) achieves
optimal efficiency and its asymptotic covariance matrix, which is the same as that of SWCQR estimator �̂� in (2.1).

3. RENEWABLE ESTIMATION METHOD FOR STREAMING DATASETS

3.1. Methodology

Now let us discuss how to use (2.3) to develop a renewable estimator for streaming data sets. Assume we have the
streaming data sets {D1, … ,Db} up to the bth batch, where Dj is the jth batch data set with a sample size of nj.

Then, the total sample size is Nb =
∑b

j=1nj. The data can exceed even a super computer’s memory when the number

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12725
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ANALYSIS OF STREAMING TIME SERIES DATA 7

of the blocks b is large enough. For model (1.1), Dj = {Xj,Yj} is the jth batch data set, where Yj = (Y1,j, … ,Ynj ,j
)⊤

and Xj = (X1,j, … ,Xnj,j
)⊤.

We begin with a simple scenario of two batches of data D1 and D2, where D2 arrives after D1. We want to update
the initial SSWCQR �̃�1 (or �̃�∗1) by minimizing (2.3) to a renewable SSWCQR (RSSWCQR) �̃� without using any
subject-level data but only some summary statistics from D1. By (2.3) and (2.4), the SSWCQR �̃�1 satisfies,

U(D1; �̃�1; h1) = 0, (3.1)

where U(Dj; 𝜸; h) =
∑K

k=1

∑
t∈Dj

𝜔t∇qt(𝜸, 𝜏k)
{

K∗((qt(𝜸, 𝜏k) − Yt)∕h) − 𝜏k

}
.

We propose a new estimator �̃�2 for streaming data {D1,D2} as a solution to the equation of the form

J(D1; �̃�1; h1)(�̃�2 − �̃�1) + U(D2; �̃�2; h2) = 0, (3.2)

where J(Dj; 𝜸; h) = 𝜕U(Dj; 𝜸; h)∕𝜕𝜸 =
∑K

k=1

∑
t∈Dj

𝜔t[∇2qt(𝜸, 𝜏k){K∗((qt(𝜸, 𝜏k) − Yt)∕h) − 𝜏k} + ∇qt(𝜸, 𝜏k){
∇qt(𝜸, 𝜏k)

}⊤
Kh(qt(𝜸, 𝜏k) − Yt)]. Equation (3.2) is according to

U(D1; �̃�2; h1) = U(D1; �̃�1; h1) + J(D1; �̃�1; h1)(�̃�2 − �̃�1) + Op(n1||�̃�2 − �̃�1||22)
= J(D1; �̃�1; h1)(�̃�2 − �̃�1) + Op(n1||�̃�2 − �̃�1||22),

where the last equation is according to (3.1), Op(⋅) means bounded with probability and the error term
Op(n1||�̃�2 − �̃�1||22) can be asymptotically ignored.

Through (3.2), the initial �̃�1 is renewed by �̃�2 only using the historical summary statistics, including sample
variance matrix J(D1; �̃�1; h1) and estimate �̃�1, instead of the subject-level raw data D1. Generalizing (3.2) to stream-
ing data sets {D1, … ,Db}, a renewable estimator �̃�b of 𝜸0 is defined as a solution to the following incremental
estimation equation:

b−1∑
j=1

J
(
Dj; �̃�j; hj

) (
�̃�b − �̃�b−1

)
+ U
(
Db; �̃�b; hb

)
= 0. (3.3)

Therefore, we can obtain the estimator Q̃
b

Yt|t−1
(𝜏) of QYt|t−1

(𝜏) for any 𝜏 ∈ (0, 1) and Xt in Db based on

�̃�b = (�̃�
⊤

b , �̃�
⊤

b , 𝜃b,1, 𝜃b,2, 𝜃b,3, 𝜃b,4)⊤ as

Q̃
b

Yt|t−1
(𝜏) = X⊤

t �̃�b + 𝜎(Xt, �̃�b)

[
𝜃b,1 + 𝜃b,2

{
𝜏
𝜃b,3 − 1
𝜃b,3

− (1 − 𝜏)
𝜃b,4 − 1

𝜃b,4

}]
. (3.4)

3.2. Large Sample Properties

The following theorem shows the asymptotic properties of the estimators �̃�b in (3.3) and Q̃
b

YNb+1|Nb
(𝜏) in (3.4).

Theorem 3.1. Suppose that conditions C1–C4 are satisfied. If hj = o(N−1∕4
j ), hj(Nj∕ ln Nj)1∕3 → ∞ with

Nj =
∑j

i=1ni and N1 → ∞, then, we have

√
Nb(�̃�b − 𝜸0)

L
−−−→

(
0,𝚺−1

1 𝚺2𝚺−1
1

)
,

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12725 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 R. JIANG ET AL.

and

Q̃
b

YNb+1|Nb
(𝜏) − QYNb+1|Nb

(𝜏) = (�̃�b − 𝜸0)⊤∇qN+1(𝜸0, 𝜏) + op

(
N−1∕2

b

)
.

Through the result of Theorems 2.2 and 3.1, it is interesting to notice that the renewable estimator �̃�b achieves
optimal efficiency and its asymptotic covariance matrix is the same as that of the SSWCQR estimator �̃�∗b in (2.3),
which is computed directly on all the samples. This implies that the proposed renewable estimator achieves the
same asymptotic distribution as the SSWCQR estimator.

3.3. Algorithm

Numerically, it is quite straightforward to find �̃�b from (3.3) using the Newton–Raphson method at the (r + 1)th
iteration:

�̃�
(r+1)
b = �̃�(r)b −

{
Ĵb−1 + J(Db; �̃�

(r)
b ; hb)

}−1
Û
(r)
b , (3.5)

where Ĵb−1 =
∑b−1

j=1 J(Dj; �̃�j; hj) and Û
(r)
b = Ĵb−1(�̃�

(r)
b − �̃�b−1) +U(Db; �̃�

(r)
b ; hb). We summarize the general algorithm

for the proposed RSSWCQR method by (3.5) as follows (Algorithm 1).

Algorithm 1. RSSWCQR estimation for streaming data sets

1: Input: streaming data sets D1,… ,Db,…, the quantile levels 𝜏1,… , 𝜏K ,kernel function K(⋅) and bandwidths hb

with b = 1, 2…
2: Initialize: calculate �̃�1 by minimizing (2.3) with D1 using the Newton–Raphson method as (3.5), and compute
J(D1; �̃�1; h1);
3: for: b = 2, 3,… do
4: read in data set Db;
5: select initial estimator �̃�(0)b = �̃�b−1 anditerate (3.5) until convergence to obtain �̃�b;
6: update Ĵb = Ĵb−1 + J(Db; �̃�b; hb);
7: save �̃�b and Ĵb and release data set Db from the memory;
8: end
9: Output: �̃�b for b = 2, 3,…

Note that in step 5 in Algorithm 1 and (3.5), we only use the subject-level data of current data Db and summary
statistics Ĵb−1 and �̃�b−1 from historical data batches up to b−1 rather than subject-level raw data of {D1, … ,Db−1}
to obtain �̃�b. Thus, our proposed renewable method is indeed an online estimation procedure. Moreover, by step 7
in Algorithm 1, we only need to save �̃�b and Ĵb to obtain the next estimator, which are p×1 and p×p, respectively.
The scale of the data to be stored is (p+ 1)p instead of Nbp, which is the sample size of the streaming data sets up
to b batches. Because p is assumed to be a fixed number in this article, our method greatly reduces the amount of
data storage.

4. NUMERICAL STUDIES

We first use Monte Carlo simulation studies to assess the finite sample performance of the proposed procedures
and then demonstrate the application of the proposed methods with a real data analysis. All programs are written

in R code. In all of the numerical experiments, we take 𝜔t =
(

1 +
∑p

j=1|Yt−j|3
)−1

for simplicity, which is also used

in Zhu and Li (2022).

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12725
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ANALYSIS OF STREAMING TIME SERIES DATA 9

4.1. Simulation Example 1: SWCQR Estimation

We study the performance of the SWCQR estimation proposed in Section 2.1. We generate data from the following
double-autoregressive model:

Yt = 0.5Yt−1 + 𝜀t

√
1 + 0.5Y2

t−1, t = 1, … ,N. (4.1)

Two error distributions of 𝜀t are considered: a standard normal distribution N(0, 1) and a t distribution with 3
degrees of freedom t(3). The sample size is N = 10,000.

To evaluate the performance of the estimation method, we calculate the absolute error (AE) of 𝛽0, 𝛼0

and Q
𝜀t
(𝜏) as: |𝛽 − 𝛽0|, |�̂� − 𝛼0| and |Q̂

𝜀t
(𝜏) − Q

𝜀t
(𝜏)|, where 𝛽0 = 𝛼0 = 0.5 and Q̂

𝜀t
(𝜏) = �̂�1 +

�̂�2

[
(𝜏�̂�3 − 1)∕�̂�3 − {(1 − 𝜏)�̂�4 − 1}∕�̂�4

]
. The true values of Q

𝜀t
(𝜏) for 𝜏 = 0.1, 0.5, 0.9 are −1.282, 0, 1.282 and

−1.638, 0, 1.638 for N(0, 1) and t(3), respectively.
We first investigate the sensitivity of the proposed SWCQR method to the K in (2.1). The most commonly used

K is 5, 9, and 19 (Zou and Yuan, 2008). The simulation results of AE are shown in Table I, which are based on
100 simulation replications. As can be seen from Table I that the AEs of 𝛽0, 𝛼0 and Q

𝜀t
(𝜏) are very close under

different errors and Ks. Therefore, the SWCQR estimation is insensitive to K. Moreover, from Table I, we can
see that all of the estimators are very close to the true values. In the following simulation, we will use K = 5 for
convenience of calculation.

Next, we consider the performance of the SWCQR estimation for QYN+1|N
(𝜏) at 𝜏 ∈ {0.1, 0.5, 0.9}. Moreover,

we compare our method with QR method in Zhu and Li (2022). To evaluate the performances of the estimation
methods, we calculate the mean absolute error (MAE = N−1∑N

t=1|Q̂Yt|t−1
(𝜏) −QYt|t−1

(𝜏)|). The simulation results
of the MAE in Table II show that the performances of SWCQR are all better than those of QR under different
quantile levels and errors.

Table I. The means and standard deviations (in parentheses) of AEs of 𝛽0, 𝛼0 and Q
𝜀t
(𝜏) under different Ks and errors for

simulation example 1

Error K AE of 𝛽0 AE of 𝛼0 AE of Q
𝜀t
(0.1) AE of Q

𝜀t
(0.5) AE of Q

𝜀t
(0.9)

N(0, 1) 5 0.013 (0.008) 0.026 (0.020) 0.017 (0.011) 0.011 (0.009) 0.019 (0.014)
9 0.013 (0.009) 0.027 (0.021) 0.017 (0.011) 0.011 (0.010) 0.019 (0.014)
19 0.013 (0.009) 0.025 (0.019) 0.015 (0.012) 0.011 (0.009) 0.017 (0.012)

t(3) 5 0.017 (0.012) 0.041 (0.027) 0.034 (0.025) 0.014 (0.010) 0.042 (0.027)
9 0.016 (0.012) 0.040 (0.026) 0.033 (0.024) 0.014 (0.010) 0.042 (0.028)
19 0.016 (0.012) 0.039 (0.024) 0.030 (0.024) 0.013 (0.010) 0.040 (0.028)

Table II. The means and standard deviations (in parentheses) of MAEs under different methods, quantile levels and errors for
simulation example 1

Error Method 𝜏 = 0.1 𝜏 = 0.5 𝜏 = 0.9

N(0, 1) QR 0.538 (0.027) 0.034 (0.020) 0.052 (0.021)
SWCQR 0.042 (0.023) 0.023 (0.013) 0.036 (0.016)

t(3) QR 4.133 (2.323) 0.105 (0.068) 0.248 (0.148)
SWCQR 0.189 (0.175) 0.081 (0.055) 0.169 (0.102)

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12725 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 R. JIANG ET AL.

4.2. Simulation Example 2: SSWCQR Estimation

We study the performance of the SSWCQR estimation proposed in Section 2.2. We generate data from the
model (4.1).

We first investigate the sensitivity of the proposed SSWCQR method to bandwidth selection h in (2.3). From
Theorem 2.2, we choose h = CN−1∕4∕ ln N, which satisfy the condition for h. We vary the constant C from
0.01 to 100. To evaluate the performance of the estimation method, we calculate the root square error (RSE):

RSE =
√
(𝛽 − 𝛽0)2 + (�̂� − 𝛼0)2 and MAE of QYN+1|N

(𝜏) in Section 4.1.
The results are shown in Tables III and IV. As can be seen from Tables III and IV that the RSEs and MAEs

of SWCQR and SSWCQR are very close under C = 0.01 and 0.1. Therefore, we take h = 0.1N−1∕4∕ ln N for
SSWCQR method in the subsequent simulation study.

4.3. Simulation Example 3: RSSWCQR Estimation

We study the performance of the RSSWCQR estimation proposed in Section 3.
We generate data from the model (4.1), where only the t(3) error is considered. Moreover, we fix the sample size

of each batch to nj = 500 for j = 1, … , b and vary the number of batches b = 10, 50,100, … , 1000. Simulation
results are based on 100 simulation replications. By Theorem 3.1 and the analysis in simulation 4.2, we take
hj = 0.1N−1∕4

j ∕ ln Nj.
We compare our proposed RSSWCQR estimator with the following two competitors: (1) the SSWCQR estima-

tor with full data; and (2) the average SSWCQR (ASSWCQR) estimator for the streaming data set, that is, estimate
each streaming data separately and then take its average. To evaluate the performance of the three methods, we
calculate the RSE in Section 4.2.

From Tables V and VI, we note that all the estimators are close to the true value because the RSEs are very
small, and for any given number of batches b, the RSEs of the proposed estimator (RSSWCQR) are very close to
those of SSWCQR and better than those of ASSWCQR.

Table III. The means and standard deviations (in parentheses) of RSEs and MAEs (×100) with different hs under N(0, 1) error
for simulation example 2

Method h RSE MAE (𝜏 = 0.1) MAE (𝜏 = 0.5) MAE (𝜏 = 0.9)

SWCQR – 3.801 (2.392) 3.608 (1.756) 2.657 (1.586) 3.817 (1.625)
SSWCQR 0.01 3.793 (2.372) 3.605 (1.751) 2.659 (1.584) 3.816 (1.617)

0.1 3.785 (2.393) 3.611 (1.767) 2.654 (1.589) 3.805 (1.619)
1 3.904 (2.299) 4.066 (2.458) 2.707 (1.547) 4.420 (2.751)

10 5.303 (5.775) 5.956 (4.143) 2.748 (1.765) 6.454 (4.379)
100 33.263 (9.974) 34.580 (26.447) 14.552 (19.098) 28.354 (23.461)

Table IV. The means and standard deviations (in parentheses) of RSEs and MAEs (×100) with different hs under t(3) error for
simulation example 2

Method h RSE MAE (𝜏 = 0.1) MAE (𝜏 = 0.5) MAE (𝜏 = 0.9)

SWCQR – 5.026 (2.829) 19.148 (19.969) 9.285 (8.279) 19.217 (18.956)
SSWCQR 0.01 5.026 (2.828) 19.135 (19.942) 9.288 (8.295) 19.195 (18.821)

0.1 5.021 (2.861) 19.552 (20.308) 9.290 (8.250) 19.437 (18.793)
1 5.626 (4.964) 21.716 (24.196) 9.707 (8.804) 23.856 (27.371)
10 6.499 (5.527) 28.491 (31.817) 11.750 (14.279) 30.227 (29.600)

100 27.755 (13.860) 112.837 (112.735) 38.714 (68.155) 76.548 (62.371)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12725
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ANALYSIS OF STREAMING TIME SERIES DATA 11

Table V. The means and standard deviations (in parentheses) of RSEs (×100) with different bs and methods under N(0, 1) error
for simulation example 3

b SSWCQR RSSWCQR ASSWCQR

10 5.054 (3.378) 6.507 (4.288) 5.502 (3.192)
50 2.280 (1.200) 2.653 (1.452) 2.503 (1.552)
100 1.278 (0.744) 1.528 (0.741) 1.830 (1.239)
200 1.180 (0.762) 1.317 (0.749) 1.643 (0.815)
300 0.985 (0.714) 1.091 (0.627) 1.539 (0.953)
400 0.826 (0.664) 0.915 (0.595) 1.493 (0.826)
500 0.721 (0.582) 0.793 (0.539) 1.474 (0.800)
600 0.641 (0.529) 0.745 (0.536) 1.448 (0.726)
700 0.630 (0.431) 0.711 (0.501) 1.474 (0.665)
800 0.591 (0.385) 0.661 (0.414) 1.444 (0.612)
900 0.540 (0.333) 0.646 (0.402) 1.391 (0.589)
1000 0.472 (0.314) 0.605 (0.397) 1.343 (0.531)

Table VI. The means and standard deviations (in parentheses) of RSEs (×100) with different bs and methods under t(3) error
for simulation example 3

b SSWCQR RSSWCQR ASSWCQR

10 5.931 (4.083) 7.909 (5.294) 7.987 (6.081)
50 2.957 (2.045) 3.811 (2.424) 3.994 (2.445)
100 2.007 (1.353) 2.692 (1.818) 3.208 (1.933)
200 1.665 (1.029) 2.098 (1.202) 3.066 (1.616)
300 1.384 (0.861) 1.772 (1.232) 2.944 (1.507)
400 1.204 (0.770) 1.596 (1.030) 2.836 (1.333)
500 0.922 (0.646) 1.421 (0.841) 2.840 (1.123)
600 0.879 (0.640) 1.266 (0.819) 2.855 (1.139)
700 0.809 (0.599) 1.232 (0.787) 2.830 (1.044)
800 0.758 (0.525) 1.224 (0.774) 2.892 (0.956)
900 0.746 (0.466) 1.195 (0.726) 2.887 (0.954)
1000 0.682 (0.417) 1.100 (0.667) 2.966 (0.859)

Table VII. Summary statistics for S&P500 returns

Mean Median Std.dev. Skewness Kurtosis Min Max

0.033 0.059 1.138 −1.128 24.853 −22.918 10.964

4.4. Real Data Example: S&P500 Index Data

To illustrate the practical usefulness of application of our proposed methods, a daily data of S&P500 index
between 1 January 1980 and 19 September 2022 with 10,772 observations in total. The data is downloaded
from the website of Yahoo Finance (https://hk.finance.yahoo.com). The daily returns are computed as 100 times
the difference of the log of the prices, that is, Yt = 100 ln(pt∕pt−1), where pt is the daily price. Table VII col-
lects the summary statistics of {Yt}, where the sample skewness -1.128 indicates possible asymmetries in the
volatility, and the sample kurtosis 24.853 implies heavy tail of {Yt}. Figure 2 also gives the time series plot for
S&P500.

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12725 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Figure 2. The time series plot of the daily return series: 1980–2022

We first consider the different order p for the following two double-autoregressive models (p = 1, 2):

Yt = 𝛽Yt−1 + 𝜀t

√
1 + 𝛼Y2

t−1, (4.2)

and

Yt = 𝛽1Yt−1 + 𝛽2Yt−2 + 𝜀t

√
1 + 𝛼1Y2

t−1 + 𝛼2Y2
t−2. (4.3)

The mean absolute fitting error (MAFE=N−1∑N
t=1|Yt−X⊤

t �̂�|) is used to compare the fitting data of the model (under
different p), where N = 10772 and �̂� is obtained by SWCQR. The results of MAFE under different models (4.2)
and (4.3) are the same as 0.775. Therefore, in the following study, for convenience, we only consider model (4.2).

Since Value-at-Risk (VaR) is an important risk measure for financial assets, we use the model (4.2) to forest the
conditional quantile of {Yt}. The first 10,594 observations from 1980 to 2021 are used for model estimation and the
remaining 178 observations are reserved for the out-of-sample evaluation. Figure 3 shows that the performances
of QR and SWCQR are very close.

Next, we consider the proposed method RSSWCQR in Section 3. We consider b = 42 for the 42 years from
1980 to 2021, and the data of 1980 is regarded as the first streaming data. From Table VIII and Figure 4, we can
see that the estimated coefficient of 𝛽 and VaRs under 𝜏 = 0.1 and 0.9 are all very close. Moreover, we calculate
the relative absolute error (RAE) of SWCQR as

RAE = 1
N

N∑
t=1

|Q̂Yt|t−1
(𝜏) − Q̂

SWCQR

Yt|t−1
(𝜏)|

|Q̂SWCQR

Yt|t−1
(𝜏)|

× 100%,

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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Figure 3. VaR forecasts at the level of 10% and 90% from 1 January 2022 to 19 September 2022 by QR and SWCQR methods.
Y is the true value

Table VIII. The estimated coefficient of 𝛽 (×10−3) by methods SWCQR, SSWCQR, RSSWCQR and ASSWCQR for model
(4.2)

SWCQR SSWCQR RSSWCQR

−7.941 −8.235 −6.304

J. Time Ser. Anal. (2023) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12725 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Figure 4. VaR forecasts at the level of 10% and 90% from 1 January 2022 to 19 September 2022 by SWCQR, SSWCQR, and
RSSWCQR methods

where Q̂
SWCQR

Yt|t−1
(𝜏) is obtained by SWCQR and the data are from 2022. RAEs at 𝜏 = 0.1 and 0.9 of SSWCQR are

0.070% and 0.358%, respectively. RAEs at 𝜏 = 0.1 and 0.9 of RSSWCQR are 1.450% and 7.647%, respectively.
The results of RAEs also show SSWCQR and RSSWCQR are close to SWCQR.

5. CONCLUSION

In this article, we considered a renewable non-crossing QR for the DAR model with streaming datasets by a
parameterized method. In this way, the proposed quantile DAR model allows us to study the whole conditional

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. (2023)
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distribution of financial returns and then obtain the corresponding multi-step ahead conditional predictive distribu-
tions. Moreover, the method requires only the availability of the current data batch in the data stream and sufficient
statistics on the historical data (the latest estimator and the cumulative Hessian matrix) in each stage of the anal-
ysis. The scale of the data to be stored is (p + 1)p instead of Nbp, which is the sample size of streaming data sets
up to b batches. Because p is assumed to be a fixed number in this article, our method greatly reduces the amount
of data storage. Theoretically, the proposed estimators achieve optimal efficiency, and their asymptotic covari-
ance matrices are the same as those of the estimators with full data. The algorithm of the proposed renewable
non-crossing QR estimation is fast and scalable due to a convolution-type smoothing approach of the objective
function.

From the numerical studies in Section 4, we can see that the parameterization of quantile functions by GLD
works very well, and our proposed renewable method is very close to the estimator directly using all data.
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APPENDIX A: PROOF OF MAIN RESULTS

Proof of Theorem 2.1. Let 𝝁 =
√

N
(
𝜸 − 𝜸0

)
and 𝜈tk = qt

(
𝜸, 𝜏k

)
− qt

(
𝜸0, 𝜏k

)
. By Taylor expansion, we have

𝜈tk = 𝝁⊤∇qt

(
𝜸0, 𝜏k

)
∕
√

N + 𝝁⊤∇2qt

(
𝜸∗, 𝜏k

)
𝝁∕ (2N), where 𝜸∗ is between 𝜸 and 𝜸0. Then �̂� =

√
N
(
�̂� − 𝜸0

)
is

also the minimizer of the following criterion:

LN (𝝁) =
K∑

k=1

N∑
t=p+1

𝜔t

{
𝜌
𝜏k

(
etk − 𝝁⊤∇qt

(
𝜸0, 𝜏k

)
∕
√

N − 𝝁⊤∇2qt

(
𝜸∗, 𝜏k

)
𝝁∕ (2N)

)
− 𝜌

𝜏k

(
etk

)}
,

where etk = Yt − qt

(
𝜸0, 𝜏k

)
. By the identity (Knight, 1998),

𝜌
𝜏
(x − y) − 𝜌

𝜏
(x) = y {I (x < 0) − 𝜏} + y

∫

1

0
{I (x ≤ ys) − I (x ≤ 0)} ds,

LN (𝝁) can be rewritten as

LN (𝝁) = 𝝁⊤UN + VN (𝝁) + R1 + R2 + R3, (A1)

where

UN =
1√
N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

) {
I
(
etk < 0

)
− 𝜏
}
,
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VN (𝝁) = 𝝁⊤
1√
N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

)
∫

1

0

{
I
(
etk ≤ 𝝁

⊤∇qt

(
𝜸0, 𝜏k

)
s
)
− I
(
etk ≤ 0

)}
ds,

R1 = 𝝁⊤
1

2N

K∑
k=1

N∑
t=p+1

𝜔t∇2qt

(
𝜸∗, 𝜏k

) {
I
(
etk < 0

)
− 𝜏
}
𝝁,

R2 = 𝝁⊤
1√
N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

)
∫

1

0

{
I
(
etk ≤ 𝜈tks

)
− I
(
etk ≤ 𝝁

⊤∇qt

(
𝜸0, 𝜏k

)
s
)}

ds,

R3 = 𝝁⊤
1

2N

K∑
k=1

N∑
t=p+1

𝜔t∇2qt

(
𝜸∗, 𝜏k

)
∫

1

0

{
I
(
etk ≤ 𝜈tks

)
− I
(
etk ≤ 0

)}
ds𝝁.

Note that,

E
{

VN (𝝁) |t−1

}
= 𝝁⊤ 1√

N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

)
∫

1

0

{
FYt|t−1

(
qt

(
𝜸0, 𝜏k

)
+ 𝝁⊤∇qt

(
𝜸0, 𝜏k

)
s
)

− FYt|t−1

(
qt

(
𝜸0, 𝜏k

))}
ds

= 𝝁⊤ 1
2N

K∑
k=1

N∑
t=p+1

fYt|t−1

(
qt

(
𝜸0, 𝜏k

))
𝜔t∇qt

(
𝜸0, 𝜏k

)
∇qt

(
𝜸0, 𝜏k

)⊤
𝝁 + op

(||𝝁||22
)
,

= 1
2
𝝁⊤𝚺1𝝁 + op

(||𝝁||22
)
.

By Lemmas 1 and 2 in Zhu and Li (2022), we can obtain

VN (𝝁) = E
{

VN (𝝁) |t−1

}
+
[
VN (𝝁) − E

{
VN (𝝁) |t−1

}]

= 1
2
𝝁⊤𝚺1𝝁 + op

(||𝝁||2 + ||𝝁||22
)
,

R1 + R2 + R3 = op

(||𝝁||2 + ||𝝁||22
)
. (A2)

Thus, by (A1) and (A2), we have

LN (𝝁) = 𝝁⊤UN +
1
2
𝝁⊤𝚺1𝝁 + op

(||𝝁||2 + ||𝝁||22
)
.

It follows by the convexity lemma (Pollard, 1991) that the quadratic approximation to LN (𝝁) holds uniformly for
𝝁 in any compact set. Thus, it follows that

√
N
(
�̂� − 𝜸0

)
= �̂� = −𝚺−1

1 UN + op (1)
L

−−−→
(
0,𝚺−1

1 𝚺2𝚺−1
1

)
. (A3)

By (A3), we can obtain

Q̂YN+1|N
(𝜏) − QYN+1|N

(𝜏) = qN+1 (�̂�, 𝜏) − qN+1

(
𝜸0, 𝜏
)

=
(
�̂� − 𝜸0

)⊤∇qN+1

(
𝜸0, 𝜏
)
+ op

(
N−1∕2
)
. (A4)

This completes the proof by (A3) and (A4). ◾
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Proof of Theorem 2.2. Denote �̃�∗ =
√

N
(
�̃�∗ − 𝜸0

)
, which is also the minimizer of the following criterion:

L̃N (𝝁) =
K∑

k=1

N∑
t=p+1

𝜔t
∫

+∞

−∞
𝜌
𝜏k
(s)Kh

(
s − etk + 𝝁⊤∇qt

(
𝜸0, 𝜏k

)
∕
√

N

+ 𝝁⊤∇2qt

(
𝜸∗, 𝜏k

)
𝝁∕ (2N)

)
ds −

K∑
k=1

N∑
t=p+1

𝜔t
∫

+∞

−∞
𝜌
𝜏k
(s)Kh

(
s − etk

)
ds

= 𝝁⊤ 1√
N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

) {
K∗ (−etk∕h

)
− 𝜏k

}

+ 𝝁⊤ 1
2N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

) {
∇qt

(
𝜸0, 𝜏k

)}⊤
Kh

(
−etk

)
𝝁 + op

(||𝝁||22
)
+ Op

(||𝝁||32
)
, (A5)

where the last equation in (A5) is similar to the proof of Theorem 2.1. Moreover, by conditions C1 and C4, we
can obtain

E
{

Kh

(
−etk

) |t−1

}
− fYt|t−1

(
qt

(
𝜸0, 𝜏k

))

= E
{

Kh

(
qt

(
𝜸0, 𝜏k

)
− Yt

) |t−1

}
− fYt|t−1

(
qt

(
𝜸0, 𝜏k

))

=
∫

+∞

−∞
Kh

(
qt

(
𝜸0, 𝜏k

)
− y
)

f
(
y|t−1

)
dy − fYt|t−1

(
qt

(
𝜸0, 𝜏k

))

=
∫

+∞

−∞
K (s)
{

fYt|t−1

(
qt

(
𝜸0, 𝜏k

)
+ hs
)
− fYt|t−1

(
qt

(
𝜸0, 𝜏k

))}
ds

= O
(
h2
)
. (A6)

By (A5) and (A6), we have

L̃N (𝝁) = 𝝁⊤
1√
N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

) {
K∗ (−etk∕h

)
− 𝜏k

}

+ 1
2
𝝁⊤𝚺1𝝁 + op

(||𝝁||22
)
+ Op

(||𝝁||32
)
.

Thus, by the convexity lemma, we have

√
N
(
�̃�∗ − 𝜸0

)
= �̃�∗ = −𝚺−1

1
1√
N

K∑
k=1

N∑
t=p+1

𝜔t∇qt

(
𝜸0, 𝜏k

) {
K∗ (−etk∕h

)
− 𝜏k

}
+ op (1) . (A7)

Next, we consider that

E
{

K∗ (−etk∕h
) |Xt

}
=
∫

qt(𝜸0,𝜏k)

−∞
E
{

Kh

(
s − Yt

) |t−1

}
ds

=
∫

qt(𝜸0,𝜏k)

−∞
fYt|t−1

(s) ds + O
(
h2
)

= 𝜏k + O
(
h2
)
, (A8)
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and

E
[{

K∗ (−etk∕h
)}2|t−1

]
= 𝜏k − 2hfYt|t−1

(
qt

(
𝜸0, 𝜏k

))
∫

∞

0
K∗ (s) {1 − K∗ (s)} ds + O

(
h2
)

= 𝜏k + O (h) . (A9)

Then, by (A7)–(A9) and condition h = o
(
N−1∕4
)
, we have

√
N
(
�̃�∗ − 𝜸0

) L
−−−→

(
0,𝚺−1

1 𝚺2𝚺−1
1

)
. (A10)

This completes the proof by (A4) and (A10). ◾

Proof of Theorem 3.1. Define a function

Gb (𝜸) =
b−1∑
j=1

J
(
Dj; �̃�j; hj

) (
𝜸 − �̃�b−1

)
+ U
(
Db; 𝜸; hb

)
. (A11)

Thus, we have

Gb

(
�̃�b

)
−Gb

(
𝜸0

)
=

b−1∑
j=1

J
(
Dj; �̃�j; hj

) (
�̃�b − 𝜸0

)
+ U
(
Db; �̃�b; hb

)
− U
(
Db; 𝜸0; hb

)

=

{
b−1∑
j=1

J
(
Dj; �̃�j; hj

)
+ J
(
Db; 𝜸0; hb

)}(
�̃�b − 𝜸0

)
+ Op

(
nb||�̃�b − 𝜸0||22

)
. (A12)

According to (3.3), the renewable estimator �̃�b satisfies Gb

(
�̃�b

)
= 0.Thus, from (A11) and (A12), we can obtain

{
b−1∑
j=1

J
(
Dj; �̃�j; hj

)
+ J
(
Db; 𝜸0; hb

)}(
�̃�b − 𝜸0

)
+

b−1∑
j=1

J
(
Dj; �̃�j; hj

) (
𝜸0 − �̃�b−1

)

+ U
(
Db; 𝜸0; hb

)
+ Op

(
nb||�̃�b − 𝜸0||22

)
= 0. (A13)

By U
(
D1; �̃�1; h1

)
= 0, we have

U
(
D1; 𝜸0; h1

)
= U
(
D1; �̃�1; h1

)
+ J
(
D1; �̃�1; h1

) (
𝜸0 − �̃�1

)
+ Op

(
n1||�̃�1 − 𝜸0||22

)
,

= J
(
D1; �̃�1; h1

) (
𝜸0 − �̃�1

)
+ Op

(
n1||�̃�1 − 𝜸0||22

)
. (A14)

By (3.2), we can obtain

U
(
D2; 𝜸0; h2

)
= U
(
D2; �̃�2; h2

)
+ J
(
D2; �̃�2; h2

) (
𝜸0 − �̃�2

)
+ Op

(
n2||�̃�2 − 𝜸0||22

)

= −J
(
D1; �̃�1; h1

) (
�̃�2 − �̃�1

)
+ J
(
D2; �̃�2; h2

) (
𝜸0 − �̃�2

)
+ Op

(
n2||�̃�2 − 𝜸0||22

)
(A15)

Thus, combining (A14) and (A15),

U
(
D1; 𝜸0; h1

)
+ U
(
D2; 𝜸0; h2

)
=

2∑
j=1

U
(
Dj; �̃�j; hj

) (
𝜸0 − �̃�2

)
+

2∑
j=1

Op

(
nj||�̃�j − 𝜸0||22

)
. (A16)
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Similarly to (A16), at the (b − 1)th data batch, it is easy to show that

b−1∑
j=1

U
(
Dj; 𝜸0; hj

)
=

b−1∑
j=1

J
(
Dj; �̃�j; hj

) (
𝜸0 − �̃�b−1

)
+

b−1∑
j=1

Op

(
nj||�̃�j − 𝜸0||22

)
. (A17)

Plugging (A17) into (A13), we get

{
b−1∑
j=1

J
(
Dj; �̃�j; hj

)
+ J
(
Db; 𝜸0; hb

)}(
�̃�b − 𝜸0

)
+

b∑
j=1

U
(
Dj; 𝜸0; hj

)

+
b∑

j=1

Op

(
nj||�̃�j − 𝜸0||22

)
= 0. (A18)

By Theorem 2.2 and N1 → ∞, �̃�1 is
√

N1-consistent. If
{
�̃�j

}b−1

j=1
are
√

Nj-consistent, we can proof that �̃�b is√
Nb-consistent. Thus, by the proof of Theorem 2.2 and conditions hj → 0 and hjNj →∞, we have

1
Nb

{
b−1∑
j=1

J
(
Dj; �̃�j; hj

)
+ J
(
Db; 𝜸0; hb

)}

= 𝚺1 +
1

Nb

Op

⎛
⎜⎜⎝

b∑
j=1

njh
2
j +

√√√√ b∑
j=1

nj∕hj

⎞
⎟⎟⎠

= 𝚺1 + op (1) . (A19)

By (A8), (A9), the Lemma 1 in Fernandes et al. (2021) and condition hj = o
(

N−1∕4
j

)
, we have

1
Nb

b∑
j=1

U
(
Dj; 𝜸0; hj

)
= Tb +

1
Nb

Op

⎛
⎜⎜⎝

b∑
j=1

njh
2
j +

√√√√ b∑
j=1

njhj

⎞
⎟⎟⎠

= Tb + op

(
N−1∕2

b

)
, (A20)

where Tb = N−1
b

∑b
j=1

∑
i∈Dj

∑K
k=1𝜔t∇qt

(
𝜸0, 𝜏k

) {
I
(
Yi − qt

(
𝜸0, 𝜏k

)
< 0
)
− 𝜏k

}
. The last equation in (A20) is

according to
∑b

j=1nj∕Nj ≤ 1+ log
(
Nb∕N1

)
and
∑b

j=1nj∕
√

Nj ≤ 2
√

Nb, which is the Lemma 3 in Han et al. (2021).
Plugging (A19) and (A20) into (A18), we can obtain

(
𝚺1 + op (1)

) (
�̃�b − 𝜸0

)
+ Tb +

nb

Nb

Op

(||�̃�b − 𝜸0||22
)
+ op

(
N−1∕2

b

)
= 0. (A21)

Then, we can proof that �̃�b is
√

Nb-consistent. Finally, by (A21), Theorem 3.1 can be proved in a similar way to
Theorem 2.2. ◾
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