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Abstract—The early detection of movement disorders is 
essential for clinicians in many diseases, and it forms an 
integral part of effective treatment planning for patients. 
Polymyalgia rheumatica (PMR) is an autoimmune 
musculoskeletal disease that affects muscles around the pelvic 
girdle and shoulder blade. It is currently unknown how the 
strained hip muscles around the pelvic girdle create mobility 
limitations in patients. This study presents an algorithm for 
the classification of the hip muscle activation pattern in clinical 
gait analysis using recurrent neural networks (RNNs). RNNs 
was chosen because of its ability to capture temporal 
dependencies and process sequential electromyography 
(EMG) data in gait classification. A clinical gait assessment 
was conducted at KATH hospital which collected 250 gait 
segments from 18 PMR patients and 7 healthy control 
subjects. EMG signals were recorded from the vastus lateralis 
(VL), rectus femoris (RF), biceps femoris (BF), and 
semitendinosus (SE). Different optimizers were used in the 
RNN model to classify the hip muscle activation of the two 
groups to discriminate the gait pattern. Four optimizers 
(Adamax, Adagrad, SGD, and RMSprop) were used to 
evaluate the best optimizer for the RNN model. The accuracy 
results recorded from a cross-validation were, Adamax = 89%, 
Adagrad = 83%, SGD = 85%, and RMSprop = 78%. Adamax 
was the best performing optimizer while RMSprop was the 
least performing in the gait classification. An average 
accuracy of 84% from the four optimizers was sufficient to 
distinguish the gait pattern of the two groups. The findings of 
this study are useful in discriminating gait patterns based on 
hip muscle activation. This will provide essential information 
for the early detection of gait impairments by clinicians to 
make more  informed a nd t i me ly  decisions. 
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I. INTRODUCTION

Movement disorders often occur in the elderly, people 

with physical injuries, and with musculoskeletal diseases. 

Human movement is largely controlled by the 

musculoskeletal and nervous systems. Muscular disorders 

may limit mobility in the lower extremity joints of the hips, 

knees, and ankles. Polymyalgia rheumatica (PMR) is a 

common autoimmune muscular disease, which is prevalent 

in older people, usually over the age of 50 years. [1] This 

disorder is usually characterized by muscle stiffness around 

the shoulder blade and pelvic girdle. Furthermore, the 

disease is associated with muscle pain and weakness that 

may impair the functioning of muscles. Electromyography 

(EMG) sensors have been introduced to extract muscle 

activation information for diagnostic purposes. EMG 

sensors measure muscle electrical activation because of 

biological processes during muscle contraction [2]. EMG 

sensors can be invasive or non-invasive used in recording 

the muscle activities of the motor unit and provide 

information about the muscle. The signals captured from 

these sensors are used for motion detection. The 

recognition of human motion based on EMG signals has 

widely been accepted by researchers as a promising 

technique for rehabilitation monitoring and prosthetic 

systems. [3] [4] EMG pattern recognition can be examined 

in online or offline mode where offline mode aims to 

achieve high accuracy. [5] There has been a surge in gait 

analysis with EMG data that has proven to be useful for 

clinicians. Machine learning models have been used in the 

past for gait analysis with EMG data to determine gait 

abnormality. [6] [7] These studies have reported the use of 

traditional machine learning models such as support vector 

machine (SVM), k-nearest neighbors (KNN), decision tree 

(DT), and random forest (RF).  However, traditional machine 

learning models had some limitations in their performance 

for different classification problems. Deep learning (DL) 

models have been employed in recent times which show 

great potential in analyzing EMG data [8] and they address 

some challenges that exist with traditional machine 

learning models. Deep neural networks (DNNs) were also 

developed based on artificial neural networks (ANNs) 

which are mostly used as classifiers after manual feature 

extraction. [9] Due to the availability of large datasets, deep 

learning has proven to be even more effective because it 

extracts high-level features and potentially learns 

hierarchical representations from low-level input samples. 

[10] Although surface electromyography (sEMG) signals

are time-series and thus exhibit time dependence, deep

learning techniques have proven to be a powerful tool for

analyzing this type of data. Furthermore, deep learning

provides the advantage of stability and reduces ambient

noise-related errors, especially for EMG classification in

real-time applications. [11] The processing of surface EMG

signals with deep neural network (DNN) architecture has

led to significant improvements in classification problems.

DNN architecture has been used previously for the

recognition of upper extremity gestures by converting

sEMG signals into images. [12] [13] One of the most used

deep learning models is the convolutional neural network

(CNN). However, with CNN the target learning features are

not effective in representing temporal properties of surface

EMG data. Therefore, recurrent neural networks (RNNs)

based on Long Short-Term Memory (LSTM) have been

proposed in recent works for sEMG classification. [14][15]

RNNs use their memory to process sequences of variable

length making it a beneficial competitor to NN and CNN.
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Nasri et al [16] presented the classification of EMG data for 

six hand gestures with recurrent neural networks. An 

accuracy of 77.85% was achieved in this study. To improve 

the accuracy of this classification, Koch et al [17] 

introduced a new loss function for the output of the RNN 

model where the prediction had more weight with a 10% 

improvement in true prediction accuracy. Reza et al [18] 

presented a real-time EMG classification via recurrent 

neural networks. EMG signals were extracted from hybrid 

time-frequency domain in a discrete wavelet transform. 

The authors introduced two sets of neural network-based 

architectures to minimize the prediction delay time and 

improve the classification accuracy. The results obtained 

from the proposal architectures outperformed other 

methods with a classification accuracy of 96% in 600 msec. 

Marco et al [19] presented a powerful approach for the 

detection of the muscle activation patterns of surface EMG 

signals in a gait analysis based on LSTM-RNNs. Results 

show that LSTM-MAD outperforms other approaches used 

with higher value of F1-score > 0.91 and Jaccard > 0.85 in 

the study. The proposed model was suitable for the 

discrimination of muscle activity for the gait analysis, 

rehabilitation, and prosthetic purposes. In [20] an LSTM 

model was used for the classification of the pathological 

and healthy gait patterns based on the sensory and 

goniometer dataset. The authors applied two different 

training optimizers which were adaptive moment 

estimation (ADAM) and Stochastic Gradient Descent 

(SGD) to train the LSTM model. The results from the two 

optimizers were compared for their performance. The 

ADAM optimizer achieved an overall accuracy of 91.72% 

which surpassed the 79.18% achieved with the SGD 

optimizer.  

     Inspired by previous work using RNNs, this paper adopts 
a similar approach with different optimizers for clinical gait 
classification. The main research question is to find the best 
optimizer that uses RNNs to identify gait patterns. 
Currently, it is not known if the strained hip muscles around 
the pelvic girdle affect the movement pattern of PMR 
patients. The motivation for this study is to use clinically 
available EMG data to determine recurrent neural network-
induced gait disturbances, which are of great importance to 
clinicians. RNNs was chosen because of its ability to 
capture temporal dependencies and process EMG data for 
gait classification. RNNs are well suited for EMG 
classification because they can successively model the time 
dependence of EMG signals. Furthermore, RNNs can 
process variable-length input sequences and produce 
variable-length output sequences, therefore making it more 
suitable for EMG classification problems, where the length 
of the input signal may vary with the duration of muscle 
activity. In this paper, we presented a clinical gait 
classification of PMR patients versus healthy control 
subjects using RNNs with different optimizers. The main 
contributions of this paper are, 

• Classification of strained hip muscles activation of

PMR patients using RNNs with different optimizers and

concluding on the best optimizer.

• Performance assessment in discriminating the gait

pattern between PMR patients and healthy control

subjects based on the RNNs model.

II. MATERIALS AND METHODS

A. Datasets Collections

The dataset used in this study was obtained from Komfo 
Anokye Teaching Hospital (KATH), where a clinical gait 
assessment was conducted from August to September 2022. 
The dataset included EMG data obtained from 18 patients 
with Polymyalgia rheumatica and 7 healthy control subjects. 
The patients were made up of 12 females and 6 males while 
the healthy control subjects were 5 females and 2 males. The 
age range for the participants was between 54 to 63 years. 
Ethical approval for the study was given by Brunel 
University which complies with the Helsinki declaration. 
Trigno Avanti from Delsys, a non-invasive sensor was used, 
to record the muscle signals. The muscles recorded were, 
vastus lateralis (VL), rectus femoris (RF), biceps femoris 
(BF), and semitendinosus (SE). Figure 1 shows the hip 
muscles recorded for the classification. These were the 
strained hip muscles around the pelvic girdle area which are 
mostly affected by the disease. The hair on the skin of 
participants was shaved and cleaned to give the Trigno 
Avanti sensor good conductive and accurate readings. The 
participants were asked to conduct 10 separate gait activity 
at their normal speed in a straight pathway. In total 250 gait 
segments were recorded where each participant conducted 
10 gait trials. The EMG signals from patients were indexed 
as 1 while control subjects were indexed as 0 for the 
classification. 

Fig. 1. Hip Muscles recorded.  

B. EMG Processing

The raw EMG signals recorded from the participants
were pre-processed for the classification. The signals were 
processed by using a high pass FIR filter with a linear phase 
and a cut of frequency between 20 Hz to 450 Hz. This 
frequency range gives the most effective function of muscle 
activities. [21] Figures 2 and 3 show the raw EMG and the 
enveloped signal respectively used for the analysis. 
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  Fig. 2. The raw EMG signals recorded from the hip muscles of participants 
in the gait cycle. 

C. EMG Features Extraction

In the time and frequency domain, extraction functions
were applied directly in the window of the raw EMG signals 
recorded from the muscles. The are many features extracted 
from EMG data that were used in previous literature. In this 
study, we used 10 statistical extraction features in the time 
and frequency domain. The features extracted were, Root 
Mean Square (RMS), Mean Absolute Value (MAV), 
Integrated EMG (IEMG), Simple Square Integral (SSI), 
Variance of EMG (VAR), Modified Mean Absolute Value 
(MMAV), Mean Frequency (MNF), Median Frequency 
(MDF), Mean Power (MNP) and Total Power (TP) which 
are similar features used by Sikidar et al [22].     

 Fig. 3. The enveloped EMG signals in the gait cycle. 

A sliding windowing technique was used 
to process and analyse the EMG signals. Sliding 
windowing divides the continuous signal into windows of 

fixed lengths, with some overlap between successive 
windows. This approach allows for both short-term and 
long-term muscle activity to be captured, providing a more 
comprehensive representation of signals.[23] Additionally, 
this approach enables the acquisition of temporal 
information and dependencies of the EMG signals 
recorded. To obtain successive subsets of the EMG data we 
combined the window length ranges between 10ms ~150ms. 

III. PROPOSED MODEL

The proposed model workflow in Figure 4 shows the 

classification in various phases. These phases were signal 

processing, feature extraction, and deep learning training of 

the RNNs model with different optimizers. The RNNs 

model was then evaluated for classification accuracy. 

 Fig. 4. Proposed model workflow. 

A. RNN Architecture

The RNN architecture consists of three layers which are
the input, hidden, and output layers [24]. The input layer 
takes the processed EMG signal as a feature vector and then 
returns an output. The feature vector represents a set of 
numerical features extracted from the EMG signal and used 
as input to the RNN model for classification. To classify 
these EMG signals using an RNN model, it is important to 
transform the EMG data into a format that the model can 
understand and learn. This transformation extracts 
meaningful features from the EMG signal to represent the 
underlying patterns. In a case where the neural network is 
deep, there are multiple hidden layers. From Figure 5, it is 
observed that the RNN architecture use a periodic hidden 
state. In this way, data can be passed on from one timestep 
to another, where each of these steps depends on the 
previous one. The RNN architecture description, 

• The input layer at time t-1 is plugged into RNN hidden

layer. The RNN cell then produces an output Y’t-1 from

a memory state input ht−1. The memory state is a result

of input Xt−1 and a previous value of the memory state

ht−2 in the RNN cell. In the initial timestep, it assumed
that h0 is a zero vector.

• The resultant input Xt−1 produces an output Y’t-1 the
RNN architecture moves several time steps forward
until a final step is reached for prediction.
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• In the hidden layer the data is passed from one timestep

which is a memory ht−1 to the next memory ht thus the
next memory depends on the previous memory value.
For a given matrix U connects the input layer to the
hidden layer while V which connects the hidden layer
to the output layer. W connects the memory layers
together. In the process of computing the variables is
given by equation (1).

ht = tanh(UXt + Wht-1)  (1) 

Fig. 5. RNN Architecture [24] 

B. RNN Training

In training the RNN model, we used 80% of the dataset
for training and 20% for testing. A cross-validation was used 
in evaluating the performance of each optimizer in the 
classification. In the training, patients were indexed as 1 
while healthy control subjects were indexed as 0 for the two 
classes. To test the effectiveness of the RNN model for gait 
classification, we used four different optimizers namely 
Stochastic gradient descent (SDG), Adaptive moment 
estimation Max (Adamax), Adagrad, and RMSprop.  

• Stochastic Gradient Descent (SGD): It is one of the 
simplest and most widely used optimization 
algorithms. SGD updates the model parameters at 
each training iteration by computing the gradient of 
the loss function with respect to the 
parameters. It performs parameter updates based on a 
small set of randomly selected training samples to 
increase computational efficiency. 

• AdaGrad: This optimization algorithm adjusts the 
learning rate of each parameter based on the past 
gradient sum of squares. Rare features get major 
updates and common features get minor updates. 
AdaGrad is well suited for processing sparse data and 
is commonly used in natural language processing. 

• RMSprop: It is an optimization algorithm that adjusts 
the learning rate of each parameter based on the 
average of the last quadratic gradients. This reduces 
learning rate variabilities or fluctuations and 
allows rapid convergence, especially in low-gradient 
scenarios.  

• Adamax: It is a variant of Adam that replaces the 
second moment of the gradient with the infinity 
norm. It is more robust for heavy gradients and is 
suitable for models with sparse gradients. 

These optimizers were evaluated for their performance in 
the classification problem. The metrics used for the 
performance evaluation were accuracy, precision, recall, and 
F1-score. 

Accuracy: It is one of the simplest ways of evaluating a 
classifier performance. It describes the ratio of the number of 
correct predictions over the total data instances in the class. 

�������� =
�	
��

�	
��
�	
��
(2) 

Precision: It defines the ratio of the true positive 
outcomes divided by the total prediction of true positives 
and false positives in a specific class. 

�������� =
�	

�	
�	
(3) 

Recall: It is defined as the ratio of accurately positive 
class observation that is identified in a model. 

������ =
�	

�	
��
(4) 

F1-score: It is defined as the overall measure of the 
precision and recall. It is the weighted harmonic average of 
accuracy and sensitivity. 

F1-score = � ×
��������∗������

��������
������
 (5) 

 where TP = True Positive, FP = False Positive, TN = 

True Negative and FN = False Negative. 

TABLE I 
OPTIMIZERS PERFORMANCE REPORT

Optimizer Adamax Adagrad SGD RSMprop 

Metrics Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

0 

1 

accuracy 

macro avg.  

weighted avg. 

1.00 0.85 0.92 
0.71 1.00 0.83 

0
−
.86 0

−
.92 

0.89 

0.88 
0.92 0.89 0.89 

0.86 0.92 0.89 
0.75 0.60 0.67 

0
−
.80 0

−
.76  

0.83

0.78 
0.83 0.83 0.83 

1.00 0.67 0.80 
0.78 1.00 0.88 

0
−
.89 0

−
.83 

0.85

0.84 
0.88 0.85 0.84 

0.91 0.77 0.83 
0.57 0.80 0.67 

0
−
.74 0

−
.78 

0.78

0.75 
0.82 0.78 0.79 

IV. RESULTS AND DISCUSSION

In this section, the classification results of RNN model 
with different optimizers used for our EMG data are 
presented. Table I shows the classification performance for 
accuracy, precision, recall and F1-score. From the 
classification report shown in Table I, we recorded the 
performance of each optimizer in classifying the hip 
muscle activation pattern in a clinical gait assessment. The 

F1-score for the model used was processed based on the 
test data to take care of the imbalance class. The imbalance 
occurred because 180 gait segments were collected from 
patients and 70 gait segments from healthy controls. To 
test the prediction for the healthy and impaired gait 
patterns the optimization algorithms were compared. From 
Table I, Adamax had an accuracy of 0.89, Adagrad was 
0.83, SDG was 0.85 and RSMprop was 0.78 for the 
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classification. An average accuracy of 0.84 from the four 
optimizers was sufficient to distinguish the gait pattern of 
the two groups. Precision is important in deep learning 
classification as it focuses on the accuracy of positive 
predictions, especially in scenarios involving high costs 
associated with class imbalances. This was required to 
make informed decisions and accurately assess the 
performance of the optimizers in the RNN model. The 
macro average value in the classification report was used 
to determine the performance metrics across two classes. 
The macro average precision values recorded for the 
optimizers were, 

• Adamax: The macro average value for precision
recorded was 0.86 in the gait classification.

• Adagrad: For this optimizer, the precision macro
average value was 0.80 for the classification.

• SGD: For this optimizer the macro average value
recorded for precision was 0.89 in the classification.

• RMSprop: The macro average precision value
recorded was 0.74 for this optimizer.

The graphs for the performance of the optimizers in the 

RNN model are shown in Figure 6. The optimizers were 

evaluated in discriminating the gait patterns between the 

two groups. From Figure 6, we observed that Adamax was 

the best optimizer with 0.89 accuracy while the accuracy of 

RSMprop was 0.78 which was the least performing. SGD 

and Adagrad were good with classification accuracies of 

0.85 and 0.83 respectively. Adamax recorded the highest 

accuracy in discriminating between healthy and impaired 

gait patterns. In terms of sensitivity Adamax and SDG 

performed better in correctly predicting impaired gait 

patterns compared to Adagrad and RMSprop. It was noted 

that Adagrad was the least sensitive optimizer in identifying 

impaired gait patterns. For the F1-score, the SGD optimizer 

outperformed Adamax with 0.88 while Adamax recorded 

0.83 in identifying impaired gait. Adagrad and RSMprop 

performed poorly for F1-score in identifying impaired gait 

patterns. Figure 7 shows the ROC curve for each of the 

optimizers used in the classification. ROC curves are 

essential tools in deep learning classification for evaluating 

performance, comparing models, and handling imbalanced 

datasets. From Figure 7, it is observed that adamax was the 

best while RMSprop was the least performing. 

 In [20] the authors focused on using sensory signals to 

clinically assess human gait and diagnose neurological 

disease. They used a deep learning approach, specifically 

LSTM-RNN to classify healthy and unhealthy gait patterns 

using a sensory dataset. The performance of two 

optimization algorithms, Stochastic Gradient Descent 

(SGD) and ADAM, were compared in the classification 

process. The results indicated that the test classification 

accuracies of SGD and ADAM were 79.18% and 91.72%, 

respectively. 

 Fig. 6. Graphs of the optimizers performance 

 Fig. 7. Accuracy plot for the optimizers 

 Comparing the previous study conducted by Narayan 
[20] to our study, we used RNNs with four different 
optimizers to determine the best algorithm for classifying 
the gait patterns between PMR patients and healthy controls. 
Our results showed that Adamax had the highest accuracy 
at 89%, and SGD at 85%. The results showed that the 
Adamax optimizer outperformed the SGD in classifying 
healthy and unhealthy walking patterns when applying 
RNNs. The performance of the SGD optimizer in the RNNs 
was better compared to the LSTM-model in previous work. In 
addition, we used four optimizers to evaluate the performance 
of the RNNs which address one shortcoming of Narayan’s 
work [20] that used only two optimization algorithms. 
Furthermore, a comparison of this study with a recent work 
by Kumar et al [25] on gait disturbance based on EMG data. 
We used RNNs with different optimizers, but in previous 
work, the author investigated machine and deep learning 
techniques for classifying gait patterns. Whereas in the 
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previous study, RNNs achieved an accuracy of 91.3%, our 
results indicated that the best optimizer recorded 89% in 
identifying gait patterns between patients and controls. The 
accuracy achieved in this work is significant compared to 
the marginal difference in other previous works. The 
limitation of this work involves the imbalance of data 
between patients and healthy controls. Even though the 
dataset was imbalanced, we used appropriate metrics which 
considered both classes in terms of precision, recall, F1-
score, and ROC curve. Another measure we used to mitigate 
this limitation was to increase the sample of the minority 
class (control subjects) by using the synthetic minority 
oversampling technique (SMOTE). With this technique, we 
increased the sample size of control subjects and reduced 
the sample size of patients by randomly removing instances 
in training with the RNNs model. The results obtained from 
this analysis are promising and would be essential in the 
detection of gait disorders. This will provide useful 
information for designing rehabilitation protocols. 

V. CONCLUSIONS & FURTHER WORK 

The early detection of gait impairments plays an integral 
role in designing appropriate treatment plans for patients 
with musculoskeletal disease. In this study, we presented the 
RNNs model using different optimizers to discriminate the 
gait pattern of polymyalgia rheumatica patients and healthy 
control subjects. The results indicated that Adamax was the 
best-performing optimizer with an accuracy of 89% while 
the least-performing was RMSprop at 78%. Adagrad and 
SGD performed fairly well with an accuracy of 83% and 
85% respectively. Overall, the performance of the optimizers 
was significant to distinguish the gait pattern of the two 
groups.  This information would be useful to clinicians to 
assist in the early detection of gait disorders and adopt 
corrective measures. In the future, this model may be 
extended for the classification of muscles of the lower 
extremities for other musculoskeletal diseases. We would 
also investigate the possibility of using Transformers for 
EMG classification with a balanced large dataset. 
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