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Abstract
Magnetic resonance (MR) imaging is a widely employed medical imaging technique that
produces detailed anatomical images of the human body. The segmentation of MR im-
ages plays a crucial role in medical image analysis, as it enables accurate diagnosis,
treatment planning, and monitoring of various diseases and conditions. Due to the lack of
sufficient medical images, it is challenging to achieve an accurate segmentation, especially
with the application of deep learning networks. The aim of this work is to study transfer
learning from T1‐weighted (T1‐w) to T2‐weighted (T2‐w) MR sequences to enhance
bone segmentation with minimal required computation resources. With the use of an
excitation‐based convolutional neural networks, four transfer learning mechanisms are
proposed: transfer learning without fine tuning, open fine tuning, conservative fine
tuning, and hybrid transfer learning. Moreover, a multi‐parametric segmentation model is
proposed using T2‐w MR as an intensity‐based augmentation technique. The novelty of
this work emerges in the hybrid transfer learning approach that overcomes the overfitting
issue and preserves the features of both modalities with minimal computation time and
resources. The segmentation results are evaluated using 14 clinical 3D brain MR and CT
images. The results reveal that hybrid transfer learning is superior for bone segmentation
in terms of performance and computation time with DSCs of 0.5393 � 0.0007. Although
T2‐w‐based augmentation has no significant impact on the performance of T1‐w MR
segmentation, it helps in improving T2‐w MR segmentation and developing a multi‐
sequences segmentation model.
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1 | INTRODUCTION

The segmentation of magnetic resonance (MR) images is a
crucial task to perform various medical applications. Magnetic
resonance images are segmented to either extract the required
information from the MR modality itself or to perform map-
ping from another modality to MR modality such as pseudo‐
CT generation [1] and MR‐based attenuation correction for
positron emission tomography [2]. With this increasing interest
in MR modality in the clinical domain, multiple deep con-
volutional neural networks (CNN) have been successfully
applied to perform MR images segmentation [3–6]. However,
CNNs have the limitations of heavy computations and the

need of powerful computing resources with large memory
allocation. Transfer learning is a promising approach to over-
come this limitation and particularly with the existence of small
number of medical images.

Transfer learning refers to either transferring knowledge or
features from one domain to another domain or performing a
different task within the same domain. Recently with the wide
use of deep learning, transfer learning has been applied
extensively by sharing the learnt weights or the set of extracted
features of the pretrained model while changing the number of
neurons in the output layer depending on the new task.
Another view of transfer learning is training the deep model
using the data of one domain then testing it with the data of
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another domain. Another approach is training and testing the
deep model with the data of two different domains. The
focus of this section is the application of transfer learning with
deep neural networks to perform different tasks on medical
images.

Despite the disparity between different domain images, the
transfer learning from one domain to another has several ad-
vantages. It enables the training of deep networks with small
datasets, reduces overfitting, and decreases the training time.
Transferring the knowledge from a pretrained network pro-
vides a ready set of generic features such as edges, boundaries,
and colours which are useful for any image analysis task.

There are different approaches of transfer learning. First,
the knowledge can be transferred by only using the pretrained
weights to initialise the new model instead of random weights
initialisation which tends to cause overfitting with the training
data [7]. Second, the pretrained model's weights can be fine‐
tuned using the new datasets. The fine tuning process re-
quires freezing some layers of the network while retraining
others. The fine‐tuning process can be limited only to
retraining the last fully connected layer to perform the new task
or work with the new domain data.

Transfer learning can be applied to perform the same task
but using data from a different domain. This type is called
domain adaption, such as using datasets from different hos-
pitals, different scanners, and different scanning protocols. On
the other hand, transfer learning can convey the knowledge to
perform different tasks from different domains. This approach
has been widely applied by using the pretrained models with
natural images to perform medical image classification and
segmentation tasks.

This work aims to overcome the challenge of limited
medical images for training and developing a robust CNN for
brain segmentation by applying transfer learning and modality‐
based augmentation using multi‐MR sequences. Transferring
the knowledge from T1‐w to T2‐w MR sequences is studied by
investigating the optimal mechanism of fine tuning the pre-
trained CNN and the required size of the target datasets (T2‐w
MR) to fine tune the network. Four mechanisms of transfer
learning have been studied which are: (1) transfer learning
without fine tuning, (2) open fine tuning where CNN's weights
are initialised using the pretrained network's weights, (3) con-
servative fine tuning by retraining some pretrained layers and
freezing others, and (4) hybrid transfer learning which is the
main contribution that aims at solving the issues of other types
of fine tuning and enhances the transfer learning results. The
hybrid transfer learning approach consists of two parallel en-
coders which are fused using an aggregation component. The
output of both encoders is fed to a single decoder which
consists of the mirrored layers of the encoder to learn the
deconvolution. Another contribution is the augmentation
approach where the T2‐w MR images are considered an in-
tensity based augmentation technique. The objectives of this
augmentation are increasing the size of the training dataset and
building a segmentation model for multi‐MR sequences where
both T1‐w and T2‐w MR images are used to train the CNN
from scratch.

2 | RELATED WORK

In the medical domain, the application of transfer learning to
perform the same task with datasets from different domains
has been applied extensively to segment the MR images for
different diseases. For instance, Kushibar et al. [8] have used
brain MR volumes which are acquired with different scanners
and protocols to segment sub‐cortical brain structures.
Transfer learning has been applied by training the model with
one dataset then fine tuning the fully connected layers to
segment the images of the second dataset. It has been
concluded that transfer learning yields better results than the
network which is trained from scratch using the same number
of training images. It also has been found that the obtained
results with less training images using transfer learning are
similar to training a network from scratch.

The application of domain adaptation to segment different
MR sequences has been investigated to segment left ventricle.
For instance, Vesal and his team [9] have used three different
cardiac MR sequences: late gadolinium enhancement (LGE),
T2‐w, and balanced steady‐state free precession (bSSFP).
Firstly, a network from scratch has been trained using 2 MR
sequences (T2‐w and bSSFP) then used to initialise another
network that aims at segmenting the third MR sequence (LGE)
using less number of images. This approach has been imple-
mented on 2D images, yet has not performed well on 3D
images. The results have shown the efficiency of domain
adaptation with augmentation techniques to improve the seg-
mentation results of the left ventricle.

Ghafoorian et al. [10] have used only 2 MR sequences: T1‐
w and fluid attenuated inversion recovery images. The con-
ducted experiments aim to study the optimal size of the new
domain data. Several experiments have been performed to
study the relation between the size of the new domain training
data and the number of the network's layers that should be
retrained to achieve optimal segmentation results. It has been
found that with only a few training images of the new domain,
the pretrained model with another MR sequence can be fine‐
tuned by just retraining the last fully connected layer to ach-
ieve an accurate domain adaptation model.

Additionally, Chen et al. [11] have performed the left
ventricle segmentation on cine MR images by transferring the
knowledge from a pretrained model on a public human cine
MR dataset. The results of Dice similarity coefficient (DSC)
have shown that the trained model with transfer learning
outperforms the trained model from scratch.

Kessler et al. [12] have applied transfer learning from a
different domain to carry out knee tissue segmentation using
three datasets consisting of different MR sequences acquired
by multiple scanners (GE, Siemens, Philips, Toshiba, and
Hitachi). It has been concluded that transfer learning helps to
improve the segmentation accuracy of a few knee joint tissues
of the new domain data while it preserves the model's capa-
bility to segment the source domain data.

Zhao et al. [13] have used transfer learning from different
MR sequences (T2‐w and diffusion‐weighted images) from four
different medical centres for the detection and segmentation of
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lymph nodes.Hippocampus segmentation of two different T1‐w
MR datasets using domain adaptation has been proposed by
Ataloglou et al. [14]. The deep network is initially trained with
one dataset and then fine‐tuned using only 15 samples of the
second dataset. It has been shown that transfer learning with fine
tuning from one dataset to another improves the DSC of hip-
pocampus segmentation. Besides the segmentation tasks, the
domain adaptation has been successfully applied to performMR
images synthesis [15], reconstruction [16], and classification [17],

On the other hand, transfer learning can be applied to
transfer knowledge from models trained to perform different
tasks on different domains. Many medical imaging tasks are
conducted by transferring the knowledge from pretrained
models on natural images such Imagenet dataset which con-
sists of 14 million 2D images.

For instance, Grimm et al. [18] performed segmentation of
brain volume and cerebrospinal fluid tissue on simulated T2‐w
MR images by transferring the knowledge from the pretrained
Vsual Geometry Group (VGG) 16 network. An encoder‐
decoder Segnet architecture is preinitialised with layers and
weights from a pretrained VGG 16 model and then fine‐tuned
by reducing the learning rate.

Brain tumour segmentation using transfer learning has
been applied by Cui et al. [19] who have proposed a fully
convolutional network which takes four input channels of four
different MR sequences named FLAIR, T1‐w, T2‐w, and
contrast enhanced T1‐w (T1‐c). The initial weights of the
network are initialised using the weights of the pretrained
model with ImageNet. Yet, the fourth input channel is ini-
tialised with the average weight of the three input channels.
The model is fine‐tuned afterwards using the SGD approach.

Kuzina et al. [20] have proposed a novel transfer learning
approach which is based on deep weight prior concept. They
have used a U‐net‐based generative Bayesian prior network
which takes the trained convolutional filters with the source
dataset to learn the prior on the target dataset. This method
has been evaluated to perform segmentation for two different
diseases: brain tumour and multiple sclerosis using two
different datasets of MR images. It has been revealed that the
trained network with the proposed approach outperforms the
network that is initialised randomly or from a pretrained
network.

Recently, brain tumour classification of MR images has
been addressed widely with transfer learning from models
trained with natural images, such as AlexNet [7, 21, 22],
VGG16 [23], VGG19 [24], ResNet34 [25], ResNet 101 [22],
ResNet 50 [22], GoogLeNet [22], and SqueezeNet [22].
Transfer learning from natural images to accomplish medical
images tasks has also been tested on MR images enhancement
[26], cine MR images super‐resolution [27], and detection of
meniscus region on MR images [28].

The application of transfer learning has become a crucial
step to build deep networks, especially with the availability of
trained networks with millions of images. The pretrained net-
works with natural images have been used as a starting point to
build new networks to perform various medical tasks. There
are many studies that have applied transfer learning to transfer
knowledge from MR images which acquired with different
scanners or from different institutions. Moreover, transfer
learning has been applied for different MR sequences such as
transferring the knowledge from T1‐w to FLAIR MR se-
quences. However, the transfer learning from the most com-
mon MR sequences such as from T1‐w to T2‐w has not been
investigated yet in the literature. Additionally, to the best of our
knowledge, the use of T2‐w images as an intensity‐based
augmentation has not been reported in any literature.

3 | MATERIAL AND METHODS

3.1 | Data description

Fifty patients underwent T1‐w MR and CT scanning and 14
patients out of the 50 underwent T2‐w MR scanning. The
patient's demographics and clinical characteristics are sum-
marised in Table 1. All patients gave informed consent.

The 3T MAGNETOM Skyra (64‐channel head coil)
scanner was used to acquire MR scans. 3D T1‐w and T2‐w
magnetisation‐prepared rapid acquisition gradient echo se-
quences are obtained with the following scanning parameters:
TE = 2.3 ms, TR = 1900 ms, T1 = 970 ms, flip angle = 8°, and
NEX = 1. The images have dimensions of 255 � 255 � 250,
and the voxel size is 0.86 � 0.86 � 1 mm.

CT scans were acquired with the Biograph mCT and the
Biograph 64 True Point Siemens scanners with dimensions of
512 � 512 � 150, and voxel size is 0.97 � 0.97 � 1.5 mm.

3.2 | Data preprocessing and labelling

Each volume consists of some black and blurry slices that do
not provide any useful information. These slices which are
located at the beginning and/or the end of each volume are
removed to avoid unnecessary information. Therefore, 48 sli-
ces are forming each patient's volume. Moreover, each slice is
resized to 256 � 256 matrix by removing the image's back-
ground. Another preprocessing step is unifying all volume's
resolutions by applying bilinear interpolation to some volumes.
Firstly, these matrices are resampled into 300 � 300 � 48 and
then resized into 256 � 256 � 48 to obtain the same di-
mensions for all volumes. Finally, MR images are normalised
using the local contrast normalisation approach.

TABLE 1 Demographics details of datasets.

Gender Age (mean ± SD) Clinical diagnosis

28 women and 22 men 61 � 12 years 44 neurodegenerative disease, 3 epilepsy, and 3 brain tumours
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Prior to generating labels, MR and CT images are co‐
registered to obtain common coordinates due the temporal
gap between CT and MR scans acquisition. Afterwards, CT
images are used to perform class labelling using intensity‐based
thresholding by segmenting each brain's pixel into one of the
three tissue classes: bone, soft tissue, and air. The Hounsfield
value thresholds for each tissue class are as follows:

� Bone = Hounsfield value > 600
� Air = Hounsfield value < −500
� Soft tissue = other Hounsfield values

3.3 | Methodology

A convolutional excitation‐based encoder‐decoder network
that was first suggested by the authors in refs. [29, 30] is
adopted in this work. In this network, two types of squeeze and
excitation (SE) blocks, channel squeeze and spatial excitation
block and spatial squeeze and channel excitation (cSE) block
are incorporated in the architecture after each three convolu-
tional layers. The architecture of this network is shown in
Figure 1.

The proposed transfer learning methodology consists of
four different strategies which are: (1) transfer learning using
open fine tuning, (2) transfer learning using conservative fine
tuning, (3) Hybrid transfer learning, and (4) multi‐modality‐
based augmentation.

3.3.1 | Transfer learning using open fine tuning

Fine tuning is the conventional way to conduct transfer
learning task. The fine tuning process requires adjusting the
weights of pretrained CNN layers. The most common way to
fine tune networks is to initialise the new network with the
weights of the pretrained network and fine tune all or some

number of layers. The required size of the data to fine tune the
model is much less than training a network from scratch. The
open fine tuning strategy requires to initialise the network with
the weights of the pretrained network with T1‐w MR images
and adjust them by unfreezing all pretrained layers using a
small dataset of T2‐w MR images. This mechanism uses the
pretrained network's weights as initialisation values and up-
dates the weights of the whole network using the target data-
sets. The main drawback of this network is the necessity of a
big enough target dataset that can be used to retrain the
network properly. This approach also requires a long training
time until the model reaches convergence. Figure 2 illustrates
the concept of open fine tuning.

3.3.2 | Transfer learning using conservative fine
tuning

The conservative fine tuning is another type of transfer
learning which entails using the weights of pretrained network
and tuning them on a specific number of the network's layers.
For instance, the first few layers of the CNN extract very
generic features which can be common for all types of images.
These layers should be frozen during the conservative fine
tuning process and only the last network's layers can be
retrained to adapt the weights to the new domain images. The
optimal number of network's layers that should be retrained
and the size of the dataset which can be used to conduct the
conservative fine tuning process are experimentally deter-
mined. Figure 3 shows a general illustration of the conservative
fine tuning concept.

3.3.3 | Hybrid transfer learning

The hybrid transfer learning consists of two parallel encoders
(dedicated and adapted) which carry the features of both T1‐w

F I GURE 1 Illustration of convolutional encoder‐decoder architecture with multiple squeeze and excitation blocks. This figure is best viewed in colour,
which is available in the online version.
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and T2‐w MR images. The two sets of features are aggregated
before passing to a single decoder. The main architecture of the
hybrid transfer learning network is demonstrated in Figure 4.

Dedicated encoder
The dedicated encoder is specifically designed to extract T2‐w
features by training the encoder from scratch using only T2‐w
MR images as training datasets. The design of the dedicated
encoder follows the design of the network's encoder shown in
Figure 1 which consists of nine convolutional layers on the
encoder path and three convolutional layers on the bottleneck
path with four attention blocks placed after each three con-
volutional layers.

Adapted encoder
The adapted encoder is a pretrained encoder with T1‐w images
which generate features maps with smaller dimensions than the
input image. All layers of this pretrained encoder are frozen to

preserve the learnt features from T1‐w images. The initially
conducted experiments have shown that the segmentation
accuracy of soft tissue and air classes of T2‐w images using
transfer learning without any fine tuning of the parameters is
promising. This observation inspired me to adapt the pre-
trained T1‐w encoder without any fine tuning.

Aggregation module
The output of the dedicated encoder (T2‐w features) and the
adapted encoder (T1‐w features) are aggregated using a fusion
block. There are different possible mechanisms of aggregation,
such as concatenation, multiplication, maximum, and averaging
which are tested experimentally. The segmentation results us-
ing different aggregation blocks are recorded in the experi-
ments section. The aggregated features are passed to a decoder
which retrieves the original size of the input images using nine
convolutional layers, three unpooling layers, and three attention
blocks.

F I GURE 3 An illustration of the transfer learning concept using conservative fine tuning to segment T2‐w Magnetic resonance (MR) images. This figure is
best viewed in colour, which is available in the online version.

F I GURE 2 An illustration of the transfer learning concept using open fine tuning to segment T2‐w Magnetic resonance (MR) images. This figure is best
viewed in colour, which is available in the online version.
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3.3.4 | Multi‐modality based augmentation

The most conventional MR sequences are T1‐w and T2‐w
images. The main difference between these two sequences is
the appearance of the tissue which is called tissue intensity.
This variation of the intensity values between 2 MR sequences
can be considered as an intensity‐based augmentation tech-
nique. This idea is implemented by training the CNN with both
sequences of T1‐w and T2‐w images. This augmentation
technique firstly helps to increase the size of the training
datasets and secondly aims at building a CNN which is able to
segment multi‐MR sequences.

3.4 | Model input

The proposed CNN takes a 3D matrix as input with a size of
256 � 256 � 48. This massive number of voxels overwhelms
the memory of the graphical processing unit (GPU), causing
limitations in network architecture design and hyperparameter
selection, such as the number of filters per convolutional layer
and batch size. To address this issue, each volume is divided
into overlapped patches with dimensions of 128 � 128 � 48 to
reduce input size while increasing training dataset size. In
addition to that, the use of overlapped patches preserves the
spatial contextual information for each volume.

3.5 | Training setup

Thirty patients are used for training, 10 patients are used for
validation, and 10 patients are used for testing the CNN. The
Xavier/Glorot Uniform initialisation scheme is used to initi-
alise the network weights which relies on the number of input
and output neurons to determine the scale of initialisation
automatically. The network is trained with a batch size of 2
using the Adam optimiser, with an initial learning rate set to
0.0001, and when the training accuracy does not improve for
five consecutive epochs, the learning rate is reduced by a factor
of 0.75. Momentum decay is set to 0.9, and weight decay is set
to 0.0005. The training process ends after 200 epochs or earlier
if the training accuracy stops dropping for 10 continuous
epochs.

The fine tuning training is conducted using three folds
cross validation with a grid search mechanism to find the
optimal learning rate. For hybrid transfer learning where the
dedicated decoder is trained from scratch using T2‐w images,
the datasets are split as follows: training: 60%, validation: 20%,
and testing: 20%, respectively. The same training setup of T1‐w
CNN is applied to train the dedicated encoder with T2‐w as
well as the T2‐w based augmentation experiments where the
network is trained with both T1‐w and T2‐w MR sequences
using the size of datasets as described in Table 2. All experi-
ments are conducted on Tesla V100 GPU with 16 GB RAM.

F I GURE 4 An illustration of the hybrid transfer learning to segment T2‐w Magnetic resonance (MR) images. This figure is best viewed in colour, which is
available in the online version.
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3.6 | Evaluation metrics

The comparison between the segmented MR and segmented
CT (ground truth) images is performed using the following
evaluation metrics:

� Precision (PRE)

PRE ¼
TP

TP þ FP
ð1Þ

� Recall (REC)

REC ¼
TP

TP þ FN
ð2Þ

� Dice similarity coefficient (DSC)

DSC ¼
2� TP

ð2� TPÞ þ FP þ FN
ð3Þ

� Jaccard similarity coefficient (JSC)

JSC ¼
DSC

2 − DSC
ð4Þ

where TP stands for true positive, FN stands for false negative,
and FP stands for false positive. The segmentation perfor-
mance is assessed with 95% confidence intervals.

4 | RESULTS AND DISCUSSION

4.1 | Open fine tuning

The open fine tuning experiment shows the effect of transfer
learning by initialising the weights of the CNN using the
weights of the pretrained CNN with T1‐w images. The weights
are updated by retraining all layers of the CNN with T2‐w
images. Table 3 shows the comparison between the segmen-
tation results of T2‐w images without any fine tuning and three
folds cross validation open fine tuning for bone, soft tissue,
and air classes, respectively. The low accuracy of bone class
segmentation generated by using a pretrained model without
fine tuning indicates the inability of the model to segment the
bone of two different MR sequences (T1‐w and T2‐w). On the
other hand, the segmentation results of soft tissue and air
classes using the transfer learning without fine tuning shows
better performance than open fine tuning. The open fine
tuning approach requires the update of CNN's weights using a
limited number of training dataset of T2‐w MR images.
Although the CNN weights are initialised with the pretrained
model's weights, the process of open fine tuning needs more
T2‐w datasets to achieve promising segmentation results of the
three brain tissue classes.

4.2 | Conservative fine tuning

The study of the performance of the conservative fine tuning
approach requires conducting intensive experiments to find the
relationship between the required size of the target dataset and
the optimal number of CNN layers which need to be fine‐
tuned. Figure 5 illustrates the DSC of the three classes' seg-
mentation by conducting several experiments. Each experi-
ment involves fine tuning a different number of convolutional
layers starting by retraining the last fully connected layer until
the encoder's convolutional layers.

In general, the performance of the bone class segmentation
is increased by updating the weights of more convolutional
layers. Yet, the segmentation of the air and soft tissue classes
are slightly improved by retraining more convolutional layers.
Different evaluation metrics using three folds cross validation
are shown in Table 4 for bone, soft tissue, and air classes.

TABLE 2 The size of training, validation, and testing datasets of
T1‐w and T2‐w Magnetic resonance (MR) sequences.

Data group T1‐w T2‐w

Training data 30 patients 8 patients

Validation data 10 patients 3 patients

Testing data 10 patients 3 patients

TABLE 3 The evaluation of the segmentation results of the three tissue classes by applying transfer learning without fine tuning and open fine tuning using
four different evaluation metrics: precision, recall, Dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC).

Bone Soft tissue Air

Model PRE REC DSC JAC PRE REC DSC JAC PRE REC DSC JAC

Transfer learning without fine tuning 0.5223 0.3038 0.3841 0.2377 0.8445 0.8484 0.8464 0.7338 0.9184 0.9481 0.9330 0.8744

Open fine tuning (fold = 1) 0.6913 0.4494 0.5447 0.3743 0.7615 0.8950 0.8229 0.6990 0.9292 0.8612 0.8939 0.8082

Open fine tuning (fold = 2) 0.6837 0.4043 0.5081 0.3406 0.7597 0.8988 0.8234 0.6999 0.9295 0.8620 0.8945 0.8091

Open fine tuning (fold = 3) 0.6980 0.3819 0.4937 0.3277 0.7460 0.8986 0.8152 0.6881 0.9275 0.8518 0.8880 0.7986

Open fine tuning (avg) 0.6910 0.4119 0.5155 0.3475 0.7558 0.8975 0.8205 0.6957 0.9287 0.8584 0.8922 0.8053
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The results show that the segmentation of bone and soft
tissue classes is enhanced as more convolutional layers are
retrained and the layer's parameters are updated. However, the
segmentation of air class requires retraining only six convolu-
tional layers to obtain the highest performance in terms of
precision, DSC, and JSC. The highest score of air class sensi-
tivity is achieved by retraining only the last fully connected
layer.

The required size of T2‐w MR images to train and fine
tune the pretrained model is investigated by selecting different
sizes of the training dataset and recording the DSC of the
segmentation results of each size. The results reveal that the
more convolutional layers are fined tuned, the highest DSC is
obtained with larger training datasets especially for bone and
soft tissue segmentation. In the case of using small training
datasets (e.g. two patients only), less convolutional layers are
required to be fine‐tuned to avoid overfitting. The segmenta-
tion performance of fine tuning only the last fully connected
layer to segment the three tissue classes is almost constant with
different sizes of the training datasets. The highest DSC of the
air class is achieved by fine tuning only three convolutional
layers with a dataset of eight patients. The conducted experi-
ments and the DSC of different classes reveal that fine tuning
the pretrained model with T1‐w MR images requires the largest
target dataset (T2‐w MR) in order to transfer the knowledge
properly and avoid overfitting.

4.3 | Hybrid transfer learning

The design of the hybrid transfer learning network consists of
an aggregation component where several experiments are
conducted to choose the best aggregation mechanism. The
operations of concatenation, multiplication, averaging, and

maximum are applied to integrate the two parallel encoders.
The concatenation operation requires more memory allocation
to train the network and the batch size of this experiment is set
to 1 instead of 2. The experiments of all other aggregation
operations are conducted using a batch size of 2.

The three cross validation results of different aggregation
mechanisms for the segmentation of bone, soft tissue, and air
classes are shown in Table 5. The evaluation metrics of the
bone class show that the multiplication of the feature maps of
each encoder generates higher segmentation performance.
However, the concatenation mechanism provides better seg-
mentation results for the soft tissue and air classes. It is worth
mentioning that the precision of the concatenation based re-
sults of the bone and air classes is better than the multiplication
mechanism.

4.4 | Methods comparison

The comparison between the segmentation results using
different transfer learning and fine tuning approaches is illus-
trated in Tables 6 to 8 for bone, soft tissue, and air classes,
respectively.

The conservative fine tuning approach which requires
retraining 18 convolutional layers using a dataset of 8 patients
generates the most precise bone segmentation compared to
other approaches. Yet, the hybrid fine tuning with the appli-
cation of multiplication aggregation operation outperforms the
other approaches in terms of sensitivity (recall), DSC, and JSC
of the bone class. On the other hand, the segmentation of the
air and soft tissue classes using the pretrained model with T1‐w
MR images is performing better than any fine tuning or
transfer learning approach. The main advantage of the appli-
cation of hybrid transfer learning and conservative fine tuning

F I GURE 5 The Dice similarity coefficient (DSC) of three tissue classes using conservative fine tuning.
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to segment the soft tissue and air classes is the significant
enhancement of the soft tissue sensitivity and the precision of
the air class.

Figure 6 illustrates the segmentation results of three
randomly selected 2D slices from the testing datasets of T2‐w
MR images. The segmentation results of the slice shown in the
first row indicate the ability of the pretrained model without
any fine tuning (column c) to segment the air cavities more
accurately than the hybrid transfer learning (column h). Yet, the
other approaches (d ‐ g) are not able to segment these regions
of air. The visual comparison of the different segmentation
approaches also shows that the transfer learning without fine
tuning or with open or conservative fine tuning are generating

many false positive pixels of the bone class as shown in the
second row. The hybrid transfer learning using the multipli-
cation aggregation mechanism is able to segment the bone
class more precisely and accurately as illustrated on the slices of
the second and third rows.

4.5 | Computation time

The computation time is an important factor while applying
transfer learning. The conducted experiments show that the
increase in the number of layers to be retrained increases the
computation time of training and fine tuning the CNN. The

TABLE 4 The evaluation of the segmentation results of the three tissue classes by applying conservative fine tuning using four different evaluation metrics:
precision, recall, Dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC).

Bone Soft tissue Air

Model PRE REC DSC JAC PRE REC DSC JAC PRE REC DSC JAC

Fine tune FC (fold = 1) 0.5105 0.2700 0.3532 0.2145 0.7411 0.8627 0.7973 0.6629 0.9141 0.8630 0.8878 0.7983

Fine tune FC (fold = 2) 0.5114 0.2687 0.3523 0.2138 0.7409 0.8632 0.7974 0.6631 0.9143 0.8629 0.8879 0.7984

Fine tune FC (fold = 3) 0.5115 0.2685 0.3522 0.2137 0.7409 0.8633 0.7974 0.6631 0.9144 0.8629 0.8879 0.7984

Fine tune FC (avg) 0.5111 0.2691 0.3526 0.2140 0.7410 0.8631 0.7974 0.6630 0.9143 0.8629 0.8879 0.7983

Fine tune 3 Conv (fold = 1) 0.5642 0.3018 0.3932 0.3932 0.7433 0.8979 0.8133 0.6853 0.9331 0.8561 0.8929 0.8066

Fine tune 3 Conv (fold = 2) 0.6315 0.2210 0.3274 0.1957 0.7335 0.9117 0.8129 0.6848 0.9366 0.8551 0.8940 0.8082

Fine tune 3 Conv (fold = 3) 0.6395 0.2801 0.3896 0.2419 0.7424 0.9010 0.8140 0.6864 0.9318 0.8596 0.8943 0.8087

Fine tune 3 Conv (avg) 0.6117 0.2676 0.3701 0.2770 0.7397 0.9035 0.8134 0.6855 0.9338 0.8569 0.8937 0.8079

Fine tune 6 Conv (fold = 1) 0.7063 0.2946 0.4158 0.2624 0.7434 0.9122 0.8192 0.6938 0.9370 0.8587 0.8961 0.8118

Fine tune 6 Conv (fold = 2) 0.6762 0.2894 0.4053 0.2542 0.7401 0.9113 0.8169 0.6904 0.9361 0.8547 0.8936 0.8076

Fine tune 6 Conv (fold = 3) 0.6702 0.3417 0.4526 0.2925 0.7478 0.9044 0.8187 0.6930 0.9331 0.8574 0.8937 0.8077

Fine tune 6 Conv (avg) 0.6842 0.3086 0.4246 0.2697 0.7438 0.9093 0.8182 0.6924 0.9354 0.8569 0.8944 0.8090

Fine tune 9 Conv (fold = 1) 0.6687 0.4124 0.5102 0.3424 0.7559 0.8986 0.8211 0.6965 0.9316 0.8587 0.8937 0.8078

Fine tune 9 Conv (fold = 2) 0.7107 0.2645 0.3855 0.2388 0.7393 0.9147 0.8177 0.6916 0.9368 0.8565 0.8949 0.8097

Fine tune 9 Conv (fold = 3) 0.6786 0.3157 0.4309 0.2746 0.7463 0.9085 0.8195 0.6942 0.9325 0.8561 0.8926 0.8061

Fine tune 9 Conv (avg) 0.6860 0.3309 0.4422 0.2853 0.7472 0.9073 0.8194 0.6941 0.9336 0.8571 0.8937 0.8070

Fine tune 12 Conv (fold = 1) 0.6135 0.3234 0.4235 0.2686 0.7492 0.8963 0.8162 0.6894 0.9278 0.8583 0.8917 0.8045

Fine tune 12 Conv (fold = 2) 0.6027 0.3527 0.4450 0.2862 0.7516 0.8882 0.8142 0.6866 0.9243 0.8583 0.8901 0.8019

Fine tune 12 Conv (fold = 3) 0.6218 0.3156 0.4187 0.2648 0.7480 0.8972 0.8158 0.6890 0.9273 0.8577 0.8911 0.8037

Fine tune 12 Conv (avg) 0.6127 0.3306 0.4291 0.2732 0.7496 0.8939 0.8154 0.6883 0.9264 0.8581 0.8910 0.8034

Fine tune 15 Conv (fold = 1) 0.7147 0.3313 0.4527 0.2926 0.7488 0.9075 0.8205 0.6957 0.9333 0.8599 0.8951 0.8101

Fine tune 15 Conv (fold = 2) 0.7066 0.3214 0.4418 0.2835 0.7455 0.9091 0.8192 0.6938 0.9327 0.8560 0.8927 0.8062

Fine tune 15 Conv (fold = 3) 0.6657 0.3592 0.4667 0.3043 0.7507 0.8971 0.8174 0.6912 0.9287 0.8588 0.8924 0.8056

Fine tune 15 Conv (avg) 0.6957 0.3373 0.4537 0.2935 0.7483 0.9046 0.8190 0.6935 0.9316 0.8582 0.8934 0.8073

Fine tune 18 Conv (fold = 1) 0.7343 0.3500 0.4740 0.3106 0.7504 0.9092 0.8222 0.6981 0.9339 0.8596 0.8952 0.8103

Fine tune 18 Conv (fold = 2) 0.6864 0.3624 0.4743 0.3109 0.7485 0.9034 0.8187 0.6930 0.9302 0.8546 0.8908 0.8031

Fine tune 18 Conv (fold = 3) 0.6956 0.3558 0.4708 0.3078 0.7494 0.9049 0.8199 0.6947 0.9313 0.8567 0.8924 0.8058

Fine tune 18 Conv (avg) 0.7055 0.3560 0.4730 0.3098 0.7494 0.9059 0.8202 0.6953 0.9318 0.8569 0.8928 0.8064
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TABLE 5 The evaluation of the segmentation results of the three tissue classes by applying hybrid transfer learning with different aggregation mechanisms
using four different evaluation metrics: precision, recall, Dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC) with three folds cross
validation.

Bone Soft tissue Air

Model PRE REC DSC JAC PRE REC DSC JAC PRE REC DSC JAC

Aggregation: concatenation (fold = 1) 0.7057 0.4308 0.5350 0.3652 0.7423 0.8965 0.8122 0.6837 0.9259 0.8436 0.8828 0.7902

Aggregation: concatenation (fold = 2) 0.6761 0.2122 0.3230 0.1926 0.7346 0.9042 0.9042 0.6816 0.9301 0.8587 0.8930 0.8067

Aggregation: concatenation (fold = 3) 0.7026 0.3925 0.5036 0.3366 0.7335 0.8995 0.8081 0.6780 0.9268 0.8384 0.8804 0.7863

Aggregation: concatenation (avg) 0.6948 0.3451 0.4539 0.2981 0.7368 0.9001 0.8415 0.6811 0.9276 0.8469 0.8854 0.7944

Aggregation: multiplication (fold = 1) 0.5471 0.6018 0.5731 0.4017 0.7850 0.8254 0.8047 0.6732 0.9065 0.8710 0.8884 0.7992

Aggregation: multiplication (fold = 2) 0.3990 0.6340 0.4897 0.3243 0.7855 0.8006 0.7930 0.6570 0.9058 0.8489 0.8764 0.7800

Aggregation: multiplication (fold = 3) 0.5420 0.5685 0.5549 0.3840 0.7794 0.8239 0.8010 0.6681 0.9035 0.8691 0.8860 0.7953

Aggregation: multiplication (avg) 0.4960 0.6014 0.5393 0.3700 0.7833 0.8166 0.7996 0.6661 0.9053 0.8630 0.8836 0.7915

Aggregation: average (fold = 1) 0.6769 0.4945 0.5715 0.4001 0.7637 0.8912 0.8225 0.6986 0.9293 0.8594 0.8930 0.8066

Aggregation: average (fold = 2) 0.5972 0.4784 0.5312 0.3617 0.7672 0.8459 0.8047 0.6732 0.9071 0.8678 0.8870 0.7969

Aggregation: average (fold = 3) 0.6804 0.3997 0.5036 0.3366 0.7434 0.8973 0.8131 0.6851 0.9271 0.8469 0.8852 0.7941

Aggregation: average (avg) 0.6515 0.4576 0.5355 0.3661 0.7581 0.8781 0.8134 0.6856 0.9212 0.8580 0.8884 0.7992

Aggregation: maximum (fold = 1) 0.6723 0.4906 0.5673 0.3959 0.7553 0.8904 0.8173 0.6911 0.9275 0.8512 0.8877 0.7981

Aggregation: maximum (fold = 2) 0.6284 0.4087 0.4953 0.3292 0.7550 0.8773 0.8116 0.6829 0.9234 0.8630 0.8922 0.8053

Aggregation: maximum (fold = 3) 0.6793 0.4146 0.5149 0.3467 0.7461 0.8998 0.8158 0.6889 0.9293 0.8475 0.8865 0.7962

Aggregation: maximum (avg) 0.6600 0.4380 0.5258 0.3573 0.7521 0.8892 0.8149 0.6876 0.9267 0.8539 0.8888 0.7999

TABLE 6 The comparison between the segmentation results of the bone class by applying different approaches of transfer learning using four different
evaluation metrics: precision, recall, Dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC).

Model PRE REC DSC JSC

Transfer learning without fine tuning 0.5223 � 0.0007 0.3038 � 0.0006 0.3841 � 0.0006 0.2377 � 0.0006

Open fine tuning 0.6910 � 0.0006 0.4119 � 0.0006 0.5155 � 0.0007 0.3475 � 0.0006

Conservative fine tuning (tune 18 Conv layers) 0.7055 � 0.0006 0.3560 � 0.0006 0.4730 � 0.0007 0.3098 � 0.0006

Hybrid transfer learning (aggregation with multiplication) 0.4960 � 0.0007 0.6014 � 0.0006 0.5393 � 0.0007 0.3700 � 0.0006

TABLE 7 The comparison between the segmentation results of the soft tissue class by applying different approaches of transfer learning using four
different evaluation metrics: precision, recall, Dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC).

Model PRE REC DSC JSC

Transfer learning without fine tuning 0.8445 � 0.0002 0.8484 � 0.0002 0.8464 � 0.0002 0.7338 � 0.0002

Open fine tuning 0.7558 � 0.0002 0.8975 � 0.0001 0.8205 � 0.0002 0.6957 � 0.0002

Conservative fine tuning (tune 18 Conv layers) 0.7494 � 0.0002 0.9059 � 0.0001 0.8202 � 0.0002 0.6953 � 0.0002

Hybrid transfer learning (aggregation with concat) 0.7368 � 0.0002 0.9001 � 0.0001 0.8415 � 0.0002 0.6811 � 0.0002

TABLE 8 The comparison between the segmentation results of the air class by applying different approaches of transfer learning using four different
evaluation metrics: precision, recall, Dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC).

Model PRE REC DSC JSC

Transfer learning without fine tuning 0.9184 � 0.0002 0.9481 � 0.0001 0.9330 � 0.0001 0.8744 � 0.0002

Open fine tuning 0.9287 � 0.0001 0.8584 � 0.0002 0.8922 � 0.0002 0.8053 � 0.0002

Conservative fine tuning (tune 6 Conv layers) 0.9354 � 0.0001 0.8569 � 0.0002 0.8944 � 0.0002 0.8090 � 0.0002

Hybrid transfer learning (aggregation with concat) 0.9276 � 0.0001 0.8469 � 0.0002 0.8854 � 0.0002 0.7944 � 0.0002
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conservative fine tuning experiments show that the fine tuning
of 12 or nine convolutional layers requires the same amount of
computation time to train one epoch. However, they differ in
the number of required epochs to achieve model convergence.
The lowest number of epochs is 21 which is recorded by fine
tuning nine convolutional layers. The total computation time is
the computation time per epoch multiplied by the required
number of epochs to train the model until the model reaches
convergence.

Figure 7 illustrates the total computation time for different
fine tuning approaches. Although hybrid transfer learning re-
quires a longer time to execute one epoch compared to other
methods, only a few epochs are needed for the model to reach
the convergence state. Overall, the hybrid transfer learning

requires less amount of time to complete the training followed
by conservative fine tuning by retraining 18 convolutional
layers and then open fine tuning. The recorded computation
time refers to using eight patients to train the model.

4.6 | T2‐w based augmentation

The segmentation results of the application of intensity‐based
augmentation by using the T2‐w MR sequences as augmented
images are illustrated in Table 9 for the bone, soft tissue, and
air classes. The conducted experiments involve testing the
model with T1‐w and T2‐w MR images to investigate the
capability of the model to segment two types of MR sequences

F I GURE 6 The segmentation results of three randomly selected slices from the testing datasets of T2‐w Magnetic resonance (MR) images. (a) MR images,
(b) CT images which is used as ground truth, (c) the segmentation results using transfer learning without fine tuning, (d) the segmentation results using open fine
tuning, (e) the segmentation results using conservative fine tuning (6 Conv), (f) the segmentation results using conservative fine tuning (18 Conv), (g) the
segmentation results using hybrid transfer learning (multiplication aggregation), and (h) the segmentation results using hybrid transfer learning (concatenation
aggregation).

F I GURE 7 The total computation time of
different transfer learning approaches.
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and the ability of the model to preserve the T1‐w features after
the addition of T2‐w images.

Firstly, the model is trained with only T1‐w images without
the application of augmentation and tested to segment T1‐w
and T2‐w MR images. The evaluation metrics of the three
classes show that the model is not able to segment T2‐w
images properly with low DSC for the bone class (0.3841).

Secondly, the model is trained with 30 T1‐w and eight T2‐
w MR images and tested to segment T1‐w and T2‐w MR
images. The difference percentage of the segmentation results
of the T2‐w bone class is high. This enhancement indicates the
ability of the augmentation technique to include the T2‐w
features which in turn enhances the segmentation results of
T2‐w images and builds a multimodality segmentation model.
On the other hand, the T2‐w‐based augmentation technique is
not affecting the segmentation results of T1‐w images. The
lack of segmentation improvement indicates that the model is
able to preserve the features of T1‐w images even after
training the model with two different MR sequences. The
sensitivity of the soft tissue class remains stable while the
precision of the air class is improved by 0.03% after the
application of T2‐w‐based augmentation.

Figure 8 illustrates the visual segmentation results of two
randomly selected slices from the testing datasets of T1‐w and
T2‐w MR images. The comparison between the segmentation
results of T1‐w MR images before and after the application of
augmentation does not reveal a significant enhancement for
the bone class. However, the segmentation of the air cavities
before the augmentation is more accurate. Nevertheless, the
segmentation of the T2‐w images is highly improved after
the T2‐w‐based augmentation where many false positives of
the bone and air classes disappeared.

5 | CONCLUSION

The application of transfer learning from T1‐w to T2‐w MR
sequences for MR segmentation has been proposed in this
work by exploring different mechanisms of domain adapta-
tion. The knowledge from a pretrained model with T1‐w MR
images is transferred to segment T2‐w images using four ap-
proaches which are: transfer learning without fine tuning, open
fine tuning, conservative fine tuning, and hybrid transfer
learning. The mainly proposed approach which is hybrid
transfer learning solves the issue of overfitting when fine
tuning CNN models with a small dataset. This approach
outperforms others in terms of bone segmentation in T2‐w
MR images when considering both performance and compu-
tation resources. The segmentation results of soft tissue and air
classes in T2‐w MR images using the transfer learning from
T1‐w MR images without any fine tuning show the best per-
formance with minimal computation time. The experiments of
conservative fine tuning reveal that retraining only six con-
volutional layers is able to produce better segmentation results
for air classes with acceptable computation time. On the other
hand, the segmentation results of the bone and soft tissue
classes reveal better performance with fine tuning 18T
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convolutional layers which require more computation time.
The technique of T2‐w‐based augmentation has not shown a
significant impact on the performance of T1‐w MR segmen-
tation. However, this augmentation technique helps to improve
the T2‐w MR segmentation and build a multi‐modality or
multi‐sequences model which is able to segment different MR
sequences. The performance of the segmentation of T1‐w MR
images is better than T2‐w MR images because the size of T1‐
w dataset is larger than T2‐w dataset. The increase of the size
of the target training datasets helps the conservative fine tuning
of CNN. No relevant transfer learning method such as trans-
ferring knowledge from brain T1‐W to T2‐w MR sequences
has been suggested in previous literature to validate the pro-
posed hybrid transfer learning technique. The hybrid transfer
learning technique can be expanded in the future to incorpo-
rate various MR modalities and transfer knowledge between
them. Furthermore, it would be worthwhile to explore the use
of different CNN architectures in conjunction with the pro-
posed hybrid transfer learning technique.
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