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Depth Mapping of Integral Images Through
Viewpoint Image Extraction With a Hybrid

Disparity Analysis Algorithm
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Abstract—Integral imaging is a technique capable of displaying
3–D images with continuous parallax in full natural color. It is one
of the most promising methods for producing smooth 3–D images.
Extracting depth information from integral image has various ap-
plications ranging from remote inspection, robotic vision, medical
imaging, virtual reality, to content-based image coding and manip-
ulation for integral imaging based 3–D TV. This paper presents
a method of generating a depth map from unidirectional integral
images through viewpoint image extraction and using a hybrid dis-
parity analysis algorithm combining multi-baseline, neighborhood
constraint and relaxation strategies. It is shown that a depth map
having few areas of uncertainty can be obtained from both com-
puter and photographically generated integral images using this
approach. The acceptable depth maps can be achieved from pho-
tographic captured integral images containing complicated object
scene.

Index Terms—Integral imaging, three–dimensional (3-D) acqui-
sition, 3-D image display, 3-D image reconstruction.

I. INTRODUCTION

THERE is growing evidence that three-dimensional (3-D)
imaging techniques will have the potential to establish a

future mass-market in the fields of entertainment and commu-
nications. One much discussed application is 3-D television.
Many different approaches have been adopted in attempts
to realize free viewing (auto-stereoscopic) 3-D TV. True
auto-stereoscopic 3-D visualisation systems exhibiting parallax
in all directions, which allow accommodation and convergence
to work in unison, are ideally required. Holography, which
demonstrates these characteristics, continues to be researched
by different groups in an effort to produce full color realistic
spatial images. However, the requirements for coherent light
sources, dark room conditions, and high mechanical stability
during recording reduce the practical utility of holographic
technique for general 3-D spatial video imaging applications.
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In the past decades, most of the research for 3-D display sys-
tems has centered on stereoscopic 3-D imaging, which requires
multiple cameras in capture and matching multiview displays
[1]–[3]. The requirement for wearing a special pair of glasses
can be avoided by using parallax barriers or lenticular decoders.
However, both types of presentation may cause eye strain, fa-
tigue, and headaches after prolonged viewing [2]. To date, this
has limited the acceptance and application of stereoscopic dis-
plays.

Integral imaging is a technique that is capable of creating and
encoding a true volume spatial optical model of the object scene
in the form of a planar intensity distribution by using unique
optical components [4]–[9]. It is akin to holography in that 3-D
information recorded on a 2-D medium can be replayed as a full
3-D optical model, however, in contrast to holography, coherent
light sources are not required. This conveniently allows more
conventional live capture and display procedures to be adopted.
With recent progress in the theory and microlens manufacturing,
integral imaging is becoming a practical and prospective 3-D
display technology and is attracting much interest in the 3-D
area [4]–[9].

To date, most researchers have concentrated on establishing
appropriate viewing parameter characterization and improved
image generation. However, there are many data processing is-
sues that require specialist solutions unique to integral images.
One of these issues, the knowledge of spatial position, is par-
ticularly useful for example when editing content or combining
real and computer generated 3-D integral images. Depth infor-
mation is also essential to enable content-based image coding
for future integral imaging based 3-D TV. This paper seeks to
address the particular issue of analysing integral images in order
to extract depth information from the planar-recorded integral
image. Depth information has many other applications of cause,
for example, in medical imaging, robotic vision, displays, and
surveillance systems.

Integral imaging involves many microlenses in one recording.
Consequently, a number of perspective 2-D images, as many as
there are lenses in the lens array, are obtained in a single capture
process. These images are called “elemental images” according
to the convention in the literature [4]–[14]. Matching corre-
sponding intensity distributions from the “elemental images”
using the convention depth measurement approaches is diffi-
cult and yields a very low resolution. As a rather new research
area, the literature on depth extraction from integral images is
limited. The first reported work is that of Manolache et al. in
1998, where the point-spread function of the optical recording
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is used to describe the associated integral image system and the
depth estimation task is tackled as an inverse problem. In the
practical case, the image inverse problem proves to be ill posed
and the discrete correspondents are ill conditioned due to the
inherent loss of information associated with the model in the
direct process. Therefore, the method can only be applied on
simulation using numerical data [10], [11].

In the author’s previous work, a practical approach for ob-
taining depth by viewpoint image extraction and disparity anal-
ysis was explored and presented [13]. The viewpoint image was
formed by sampling pixels from different microlens rather than
a macro block of pixels corresponding to a microlens unit. Each
“viewpoint image” presented a two-dimensional (2-D) parallel
recording of the 3-D scene from a particular direction and had
a much higher pixels numbers (resolution) than the “elemental
images” in a typical integral image. Object depth was then cal-
culated from the viewpoint image displacement using a new
depth equation, which gave the mathematical relationship be-
tween object depth and correspondence viewpoint image dis-
placement. To improve the performance of the disparity anal-
ysis, an adaptation of the multi-baseline technique taking ad-
vantage of the information redundancy contained in multiple
viewpoint images of the same scene was used. The developed
method was validated and successfully applied to both captured
and computer generated integral images. The idea of viewpoint
image extraction on 3-D object reconstruction was also reported
by Arimoto and Javidi [14].

The integral imaging requires only one recording in obtaining
3-D information and therefore no calibration is necessary to ac-
quire depth values. The compactness of using integral imaging
in depth measurement was soon attracting attention as a novel
depth extraction technique [15], [16]. In the conventional stereo
matching system, the quantization error is increased with the ob-
ject depth and a considerable quantization error will be caused
when the object depth is large. While different to the conven-
tional stereo vision method, the quantization error obtained from
the extracted viewpoint images is maintained at a constant value
and irrelevant with the depth [13], [16]. To take the advantage of
both, Park et al.. proposed a method for extracting depth infor-
mation using a specially designed lens arrangement [16]. The
lens array is composed by rectangular lens with a long vertical
pitch size and fine horizontal pitch size. The subimage (view-
point image) was formed through the extracting (modifying)
pixels along horizontal direction only. The horizontal subim-
ages were used to reduce quantization error when the object
depth is large and the vertical subimages preserves the charac-
ters of the conventional stereo match and achieves a small quan-
tization error when object depth is small. The result suggests a
compact and high precision depth-measuring instrument based
on integral imaging. The scope of the integral imaging appli-
cation also has been further extended to 3-D object recognition
[4], [18].

In the previous work the window size for matching was
chosen experimentally [13]–[16]. In general, a smaller matching
window gives a poor result within the object/background region
while a larger window size gives a poorer contour of the object.
This work addresses the problem of choosing of an appropriate
window size in obtaining the improved depth results. More

Fig. 1. Direction selectivity in the integral image recording.

precisely, a Neighborhood constraint and relaxation technique
is adapted by considering the spatial constraints in the image.
The results show that a hybrid disparity analysis algorithm
formed by combining both the modified multi-baseline tech-
nique and the neighborhood constraint and relaxation technique
gives an improvement in the depth maps generated for both
computer-generated and captured integral images.

II. VIEWPOINT IMAGE EXTRACTION AND DEVELOPED

DEPTH EQUATION

The key feature of the integral imaging is the use of a mi-
crolens array to record the object scene, Fig. 1. Each microlens
in the array can be regarded as a very small, low-resolution
camera, therefore the “elemental images” under each microlens
is very small. (In a typical case, where the pitch size of a lentic-
ular sheet is 600 m and the image has a resolution of 600 dpi,
there are less than 15 pixels under a micro lens). Matching cor-
responding intensity distributions from the “elemental images”
is consequently difficult due to the very low resolution.

Integral image data exists in 2-D format but contains all
the information necessary for 3-D spatial represent. The depth
information is embedded in the recording in a unique manner.
Fig. 1 illustrates the direction selectivity in the integral image
recording. The recording film is placed at the focal plane of
the microlens sheet. For all the rays in the same direction,
the recording pixels will have identical local positions under
their own corresponding microlens. The different recording
positions only depend on which microlens surface the ray
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Fig. 2. Illustration of viewpoint image extraction (For simplicity, assume there
are only four pixels under each microlens. Pixels in the same position under
different microlenses, represented by the same pattern, are employed to form
one viewpoint image).

Fig. 3. One captured integral image (a) and the extracted viewpoint images
II horseman (b) (The images have been scaled for illustration purpose. The blur
appearing in (a) is caused by the special II recording format. A 3-D scene can
be replayed with a microlens sheet having proper parameters).

reaches. From the image point of view, all pixels in the integral
image at the same local position under different microlenses
contain the recording of the object scene from the same di-
rection. As an example, all pixels marked as only contain
data recorded from the direction, Fig. 1. In this work, the
viewpoint image is artificially synthesized by sampling all
the pixels at one microlens interval displacement. Therefore,
it contains the recording from one particular view direction.
Fig. 2 graphically illustrates how the viewpoint images are
extracted. Fig. 3 shows one example of unidirectional integral
image and the extracted viewpoint images. The pixels numbers
of the formed viewpoint image (along horizontal direction)
will depend on the size of the integral image. In the typical

Fig. 4. Geometric model in obtaining the depth equation.

case described above, where the pitch size of the microlens
sheet is 600 m and the image has a size of 12 cm, there will
be 200 pixels in one formed viewpoint image along horizontal
direction. Matching corresponding intensity distributions from
the formed “viewpoint images” is, therefore, easier compared
to the “elemental images.” It is important to point out that the
viewpoint image is different from the traditional 2-D image. It
is a parallel projection recording of the 3-D space rather than a
perspective projection as in the common 2-D recording.

In previous work [13], the depth equation, which gives the
mathematical relationship between the object depth and the
corresponding viewpoint image pair displacement, was derived
through geometrical analysis of the optical recording process.
The depth equation is given as

(1)

where is the corresponding depth to be calculated, are
the pitch size and the focal length of the recording microlens,

is the disparity of the object point within two extracted view-
point images and is the sampling distance between the two
viewpoint images, as in Fig. 4 (see [13]). This equation gives
the relationship of object depth and the corresponding disparity
between two extracted viewpoint images. For an object at a par-
ticular depth, the depth can be calculated from the viewpoint
images by establishing the corresponding disparity [13].

III. UNITS DISPARITY ANALYSIS

A. Disparity Analysis Using a Correlation-Based
Block-Matching Algorithm With Multi-Baseline Technique

An immense amount of published literature and algorithms
relating to correspondence are available [19]–[24]. Perhaps the
simplest and most effective of correspondence algorithms is the
block-matching method [19]. This was adopted and used in con-
junction with a modified multi-baseline algorithm in the pre-
vious work [13], [16]. Modifications to the original multi-stereo
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algorithm [20], proposed by Okutomi and Kanade, were made
to accommodate the fact that the viewpoint images are different
from a traditional 2-D image [13], [16].

The modified multi-baseline algorithm can be described as
follows. Given viewpoint image pairs with different sample
distances, find the depth that minimizes the Sum of the
SSD-in-distance function

(2)

(3)

where ,
is the number of pixels within the window. The local

window intensity adjustment is introduced in order to reduce
the error caused by the variation of the illumination between
different viewpoint images. This is particularly important in
analyzing the disparity between viewpoint images due to the
directional illumination differences. The matching judgment
is carried out using an accumulated score functions from all
the viewpoint image pairs with different sample distances.
The modification used is to replace the SSSD-in-inverse-dis-
tance function used in the stereo vision by a
SSSD-in-distance function . The performance of
this modified multi-baseline algorithm has been reported [13].
The main problem identified in performance was that due to the
fixed matching window size used. In general, the smaller the
matching window the poorer the result within the object/back-
ground region due to the low signal-to-noise ratio (SNR),
while choosing a bigger matching window size improves the
matching results within the object/background region but gives
a worse contour of the object. Improvement in selecting an
appropriate window size was therefore an imperative.

B. Neighborhood Constraint and Relaxation Technique

The problem of choosing an appropriate matching window
size is a basic problem existing in stereo matching. Perhaps the
most successful work was the adaptive window algorithm been
reported by Kanade and Okutomi [20].

The algorithm first employs a statistical model in computing
the uncertainty of disparity estimate, which takes into account
of both intensity and disparity variances, and then searches for
a window that produces the estimate of disparity with the least
uncertainty for each pixel of an image. The statistical model re-
lies on an additive Gaussian white noise distribution assump-
tion within the image, which is satisfactory for most 2-D image.
In our current task, however, sampling discrete pixels forms
the viewpoint images and the noise distribution within in one
viewpoint image cannot simply be modeled by the Gaussian
white noise. As a result, applying the adaptive window algo-
rithm directly cannot give a positive improvement. A Neighbor-
hood constraint and relaxation technique was, therefore, con-
sidered appropriate for choosing a suitable window size in our
task. The foundation of the neighborhood constraint and relax-
ation technique is based on the spatial-consistency rule. That

Fig. 5. The neighborhood (B) of a matching block B .

is, the depth is piecewise continuous in the space [22], [24].
Therefore, the disparity can be more robustly estimated if the
disparity within the neighborhood is considered. To better deter-
mine the matching position of a feature block , the neigh-
boring blocks are considered rather than individually
considering each single block. This allows singular and erro-
neous depth estimation from a small matching window size to
be corrected by considering the surrounding depth (just like me-
dian filtering).

By assigning different weighting factors to different neigh-
boring blocks, the matching window size and shape can be adap-
tively controlled according to the matching contents. Moreover,
the neighborhood relaxation was used to allow local variation of
the disparity in considering the fact that the expected disparity of
a neighboring block is not necessarily equal to the center block.
Neighborhood relaxation provides better flexibility leading to
more accurate depth estimation.

In considering the neighborhood constraint, the new score
function used in determining the matching position can be in-
troduced as

(4)

where represents the window around pixel , whose
disparity is to be determined. is the set of neigh-
boring blocks of , as shown in Fig. 5 and
is the weighting factor for the different neighbor blocks.
The weighting scheme is introduced to reduce the estimation
error caused when the neighborhood block contains pixels
at different depths. The weighting factors can be made to be
dependent on several factors: In terms of the distance factor,
the closer the spatial distance of the neighboring block to the
central block, the greater the possibility that they have the
same/similar depth. The further the distance between the neigh-
boring block and the center block, the less effect the block has
on the final score. In terms of the color similarity factor, based
on the fact that the blocks within the same object usually have
high color similarity, it is reasonable to put a high weighting
factor on those blocks that have high similarity in color to the
central block. The weighting factor for those blocks with color
similarity lower than a particular threshold is set to zero, where
the spatial-consistency rule is not satisfied. By adjusting the
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weighting factor, the neighborhood of a block can be involved
flexibly and adaptive in the matching process.

Neighborhood relaxation is subsequently used to allow for
local variations of the depth among neighboring blocks. That
is, the expected depth of a neighboring block is close to but not
necessarily equal to the central block under the spatial-consis-
tency rule. This effectively allows some depth variations among
the neighboring blocks . The overall score function can then be
expressed as

(5)

Equation (5) is the completed score criterion for the neighbor-
hood constraint and relaxation. The neighborhood constraint is
implemented by summing the SSD functions of the windows in
the neighborhood. The neighborhood relaxation is implemented
by incorporating to allow a certain degree of disparity excur-
sion between neighboring blocks. The first item reflects the in-
fluence of the feature block while the second the influence of
the neighbors. The neighborhood of a block is, therefore, made
adaptive by adjusting the weighting factor.

The expected disparity is obtained on the position where the
score function has the minimum

(6)

A features block pre-selection is implemented by evaluating
the variance of the blocks before disparity analysis. When
the intensity variance within the block is smaller than a given
threshold, the block can be considered as “untraceable”. Only
the blocks that contain enough features for a confident match
are kept for further analysis. It is an efficient and informative
procedure. In the final depth map, the depth of these positions
can be recovered from the neighborhood blocks.

C. Implementation of the Hybrid Disparity Analysis Algorithm

The hybrid disparity analysis algorithm combines both the
modified multi-baseline technique and the neighborhood con-
straint and relaxation technique described in the previous sec-
tion. It is implemented using C language and was run under the
UNIX operating system. The major parameters used in the al-
gorithm are:

1) basic block matching window size (BW);
2) feature block pre-selection threshold (FBPT);
3) neighborhood block number (NBN).
Fig. 6 shows the arrangement of the neighborhood block se-

quence in the algorithm. The neighborhood block is arranged
in a sequence according to the distance to the center block. The
closer blocks (1,2,3,4) are followed by further blocks (5,6,7,8).
The number NBN defines the number of blocks in the sequence
that can be chosen as “neighbor.” A bigger NBN gives a bigger
neighborhood. Usually, NBN is chosen as the following num-
bers: 4, 8, 12, 20, 24, 28, 36, 44, and 48. As an example, when

, all blocks with number no more than 12 (marked
in grey in Fig. 6), are chosen as the neighborhood to the feature
block. In the experiment, the distance factor (DF) was defined
according to the inverse distance to the central block, the color

Fig. 6. Neighborhood blocks sequence used in the hybrid algorithm.

similarity factor (CSF) was defined according to the color dif-
ference. The DF and CSF were described in (7) and (8), respec-
tively

(7)

(8)

where and are the distant factor and color factor coef-
ficient, respectively, and and are the average in-
tensity of the blocks and , respectively. As a result, a
close neighboring block gives more contribution to the evalua-
tion function. The further the distance between the neighboring
block and the center block, the less effect the block has on the
final score. The blocks have high color similarity to the central
block will have a relatively high weighting factor, vice versa.

To combine the multi-baseline and neighborhood constraint
and relaxation techniques, a function is used to re-
place function in the score function in (4).

The score function combining the two techniques can be
written as

(9)

The depth is obtained directly at the position where the score
function has the minimum using all the extracted viewpoint im-
ages.

IV. EXPERIMENTAL WORK

A. Computer Generated Unidirectional Integral Image

A simple computer generated unidirectional integral image,
CGII box, is initially considered, as shown in Fig. 7(a). Fig. 7(b)
shows the eight extracted viewpoint images from 7(a). The 3-D
scene, which contains a thin box placed in front of a plane
background, can be replayed using a microlens sheet with ap-
propriate parameters. Fig. 8(a) is the ground-truth map of the
object scene. Fig. 8(b)–(d) compares the depth maps obtained
from different disparity analysis algorithms with best results.
(b) GF algorithm: Use basic block matching criterion, chose the
median as the final result. (c) MB algorithm: Use traditional
block matching criterion with multi-baseline technique only.
(d) MB-NCR algorithm: Use the neighborhood constraint and
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Fig. 7. A computer-generated unidirectional integral image CGII box.

Fig. 8. Ground Truth depth map and depth maps obtained from different algo-
rithms on the CGII box. (a) Ground Truth. (b) GF. (c) MB. (d) MB+NCR.

relaxation criterion with multi-baseline technique. Table I list
the major parameters, run time and error statistic results for each
algorithm. Both root-mean-squared (rms) error and percentage
of bad pixels indicates that the best depth map was achieved with
the MB-NCR algorithm. The modified multi-baseline technique
effectively removes the mismatch within the object region by ac-
cumulating the evaluation function from multiple viewpoint im-
ages while the neighborhood constraint and the relaxation algo-
rithm achieves a further improvement through flexibly choosing
the matching area. Compares with the depth maps obtained from
other algorithms, almost all the false matching results exist in
the object region has been removed with a good object contour
perceived in Fig. 8(d).

Another computer-generated integral image (CGII-balls),
which contains several objects at different depths and a plain
background, was further used for test. The UII data is shown in
Fig. 9.

Fig. 10(a)–(d) shows the depth maps obtained from different
algorithms on Fig. 9. The major parameters and the run time for
each algorithm are listed in Table II. Fig. 10(a): MB algorithm
using a matching window size; Fig. 10(b): MB algorithm
using a matching window size; Fig. 10(c): MB+NRC al-
gorithm using a basic matching window size; Fig. 10(d):

TABLE I
MAJOR PARAMETERS AND THE STATISTIC DATA FOR FIG. 7

Fig. 9. Computer-generated unidirectional integral image CGII balls.

Fig. 10. Depth maps from different algorithms on the CGII balls. (a) MB1. (b)
MB2. (c) MB +NCR. (d) MB +NCR + PreSelection.

TABLE II
MAJOR PARAMETERS FOR OBTAINING FIG. 10

MB+NCR algorithm plus feature block pre-selection. As ex-
pected, a smaller matching window gives more error within
the object region [Fig. 10(a)] while a bigger matching window
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Fig. 11. Depth map from captured UII data, horseman.

gives a worse contour of the object Fig. 10(b). A good compro-
mise was achieved through flexibly choosing the matching area
using the NCR technology, Fig. 10(c). The plain background
was clearly marked out with the Feature Block Pre-Selection
technology, Fig. 10(d). Objects at different depths have been
successfully detected: The red ball in the foreground appears
as the color orange. The golden ribbon-like object that traverses
the scene and passes beneath the red ball is color coded from or-
ange through yellow to green. The blue ball behind the recording
plane appears in the color light blue and the yellow ring in the
rearmost is blue. The background region (without pattern) is de-
tected and represented by dark blue. The positions of the ob-
jects can be clearly interpreted from the depth map given in
Fig. 10(d). Continuous depth variation is also perceivable. For
example, the depth variation of the red ball can be clearly ap-
preciated from the color coded depth map. The errors mostly
appear in the occluded region, on the left of the blue ball and to
the right of red ball.

B. Captured Unidirectional Integral Image

Further experiments were carried out on real integral image
data. Two images, labeled as II Horseman and II Tank were
analyzed. Both images can be replayed by using a lenticular
sheet with suitable parameters. The first image, II Horseman,
Fig. 3(a) contains a man sit on a horse with black background.
The eight extracted viewpoint images are shown in Fig. 3(b).

Fig. 11 shows the depth map obtained from above described
hybrid disparity algorithm. The different depths of the horse and
the man who sits up on the horse can be correctly perceived
from the extracted depth map. The head of the horse appears
as yellow, the forelegs of the horse, the man light blue and the
rear-legs and tail of the horse a darker blue according to the
color scale chosen for increasing depth. The background region
was detected by the feature block pre-selection and marked in
dark blue. The second image, II tank, contains a tank model on
a simulated sandbank basement. Fig. 12(a) shows two of the
eight viewpoint images. The extracted depth map is shown in
Fig. 12(b). The depth variations within the tank and basement
are perceivable within the depth map. A brighter color means a
position in the front of the scene. The picture was taken from
the upper-front corner position of the tank. The tank is standing
on the middle of the terrain.

Fig. 12. Depth map (b) and one of the 2-D views (a) of the captured UII data,
II tank. (a) Two 2-D viewpoint images of II tank. (b) Extracted depth map.

V. CONCLUSION

Following the previous work on extracting depth informa-
tion from integral images using viewpoint images, the current
work uses a hybrid algorithm combining both multi-baseline
and neighborhood constraint and relaxation techniques with fea-
ture block pre-selection in disparity analysis to improve the per-
formance of the depth estimation. Experiments prove that the
algorithm works effectively in achieving a good balance of re-
duced mismatching while maintaining a good object contour.
Using the hybrid algorithm, the depth maps can be generated
from both the computer generated and photographic integral
image containing natural scene with acceptable quality. A rec-
ognizable depth map achieved from a photographic-captured
integral image contains a complicated object scene in the first
time.
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