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Summary

Researchers are often interested in the relationship between two variables, with
no single data set containing both. A common strategy is to use proxies for the
dependent variable that are common to two surveys to impute the dependent
variable into the data set containing the independent variable. We show that
commonly employed regression or matching-based imputation procedures lead
to inconsistent estimates. We offer a consistent and easily implemented two-step
estimator, “rescaled regression prediction.” We derive the correct asymptotic
standard errors for this estimator and demonstrate its relationship to alterna-
tive approaches. We illustrate with empirical examples using data from the US
Consumer Expenditure Survey (CE) and the Panel Study of Income Dynamics
(PSID).
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1 INTRODUCTION

Empirical researchers are often interested in the relationship between two variables, but no available data set contains
both variables. For example, a key question in fiscal policy and macroeconomics is the effect of income or wealth (or
changes in income or wealth) on consumption. Traditionally, consumption has been measured in dedicated household
budget surveys which contain limited information on income or wealth. Income or wealth, and particularly changes in
income and wealth, is measured in panel surveys with limited information on consumption.

A common strategy to overcome such problems is to use proxies for the dependent variable that are common to both
surveys and impute that dependent variable into the data set containing the independent variable (or variables). In the
first stage, the dependent variable is regressed on the proxies in the donor data set. In the second stage, the coefficients,
and possibly residuals, from the donor data set are combined with observations on the proxies in the main data set to
generate an imputed value of the missing dependent variable in the main data set. Hereafter, we refer to this as “regression
prediction.”

In this paper, we consider the consequences of estimating a regression with an imputed dependent variable and
how those consequences depend on the imputation procedure adopted. We show that the prediction error, or Berkson
measurement error, that the regression prediction procedure introduces into the dependent variable leads to inconsistent
estimates of the regression coefficients of interest. While classical measurement errors, which are orthogonal to the true
dependent variable, do not cause bias, Berkson measurement errors, which are orthogonal to the imputed dependent
variable, do cause an attenuation bias. We then show that under mild assumptions, the asymptotic attenuation factor
is equal to one minus the population R2 on the first stage regression of the variable to be imputed on the proxy or
proxies. This leads us to propose a “rescaled-regression-prediction” (hereafter RRP) estimator. We demonstrate that this
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easily implemented procedure provides consistent estimation of the second stage regression parameters, and those
parameters are identified even when the set of explanatory variables is larger than the set of proxies. We then derive the
correct standard errors for our two-step estimator.

When multiple proxies are available for a single dependent variable, we demonstrate an overidentification test is possi-
ble and that data combination by full nonlinear GMM (nlGMM, Arellano & Meghir, 1992) may be asymptotically more
efficient than RRP. However, Monte Carlo experiments show that RRP frequently dominates nlGMM in finite samples.

We further show that, in the case a single proxy variable is used, the RRP estimator is numerically identical to the
estimator from a procedure developed by Blundell et al. (2004, 2008) (hereafter BPP), also for imputing consumption,
in which the first stage involves, in contrast to regression prediction, regressing the proxy on the variable to be imputed,
and then inverting. However, the procedure proposed by BPP does not naturally extend to the case of multiple proxies.
Moreover, we show that the usual OLS standard errors from a regression of an imputed dependent variable, derived from
the BPP procedure, are too small (a point that the literature also seems to have overlooked). The equivalence of RRP and
the BPP procedure means that the correct asymptotic standards errors for the two-step RRP estimator can be used for
the BPP procedure as well.

Both regression prediction and the BPP procedure are currently used to impute dependent variables. However, the
choice of imputation methods used in different papers appears to be ad hoc. In a well-known paper, Skinner (1987)
proposed using the US Consumer Expenditure Survey (CE) and a regression prediction procedure to impute a consump-
tion measure into the Panel Study of Income Dynamics (PSID). BPP does not give explicit reasons for favouring their
imputation method over regression prediction, and on occasion, the same authors have switched from using the BPP
procedure to regression prediction in later papers. Examples of papers using versions of regression prediction include
Mulligan (1999), Browning et al. (2003), Meyer and Sullivan (2003), Attanasio and Pistaferri (2014), Charles et al. (2014),
Arrondel et al. (2015), Fisher et al. (2016) and Kaplan et al. (2020). Examples of papers using the BPP procedure include
Schulhofer-Wohl (2011), Guvenen and Smith (2014) and Attanasio et al. (2015). Some studies have observed that, empir-
ically, imputation by regression prediction seems to lead to biased estimates in specific contexts. However, they neither
offer an explanation nor realise that the problem is a general one. For example, Charles et al. (2014) note that the inter-
generational elasticity of consumption spending is lower when regression prediction is used to impute consumption to
the PSID than when true consumption data is used. Palumbo (1999) also obtains lower estimates of risk aversion when
using regression prediction to impute consumption than when using a version of the BPP procedure. We account for
these findings by formally setting out the nature of the biases associated with regression prediction, and demonstrating
that it specifically leads to an attenuation bias.

In the next section, we lay out our basic framework, and derive the main results. We also relate our results to the prior
literature, including regression prediction, the BPP procedure and nlGMM, and also contrast our estimator with the
2-sample IV approach proposed by Klevmarken (1982) and Angrist and Krueger (1992) (which Lusardi, 1996), applies
to combine CE consumption data with PSID income data). Section 3 takes up the question of efficiency and inference.
Monte Carlo evidence on finite sample performance of our estimator is presented in an Appendix. Section 4 provides two
empirical examples using the CE and PSID. Section 5 concludes.

2 CONSISTENCY AND IDENTIFICATION

2.1 Set-up and assumptions

Consider the following linear regression model
𝑦 = X𝛽 + 𝜖. (1)

where 𝛽 is the K × 1 parameter vector of interest. To make things concrete, the n × 1 vector 𝑦 could be consumption (or
nondurable consumption), and the n×K matrix X would include income or wealth and other determinants of consump-
tion. To keep the notation compact, variables have been de-meaned so there is no constant, but the addition of constants
(and non-zero means) is not important for the analysis that follows.

We assume that for any random sample i = 1, … ,n of {𝑦i,Xi}n
i=1 from the population the following hold:

A1 E(X ′
i Xi) = ΣXX is finite and non-singular, and E

(
X ′

i 𝜖i
)
= 0.

This means that given such a sample, an unbiased and consistent estimate of 𝛽 can be obtained by OLS on Equation (1).
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CROSSLEY ET AL.

Suppose however that we have no such data on {𝑦i,Xi}. In this case, there are conditions under which we can consis-
tently estimate 𝛽 given a proxy for 𝑦, denoted Z, and samples where 𝑦 and Z (but not X), and Z and X (but not 𝑦) are
observed.

Let subscripts 1 and 2 denote whether variables correspond to sample 1 or sample 2; from here forward, the absence of
a sample subscript indicates a population quantity. Using this notation, we would have a sample of data on {𝑦1i,Z1i} for
i = 1, … ,n1 and a second sample of data on {X2𝑗 ,Z2𝑗} 𝑗 = 1, … ,n2. Zm is an nm × L matrix of proxies (l = 1, … ,L)
for 𝑦 from sample m. In our consumption example, Z is often food spending. Food spending is captured in many general
purpose surveys, and is thought to be well-measured.

To derive asymptotic results for different estimators of 𝛽 that impute 𝑦 using Z, we make the following additional
assumptions:

A2 {𝑦1i,Z1i}
n1
i=1 and {X2𝑗 ,Z2𝑗}

n2
𝑗=1 are i.i.d random samples from the same population, with finite second moments and

which are independent.
A3 E

(
Z′

1iZ1i
)
= ΣZZ. ΣZZ is non-singular. E

(
X ′

2𝑗X2𝑗

)
= ΣXX (which from A1 is also non-singular) and E(𝑦2

1i) = E(𝑦2
2𝑗) =

𝜎𝑦𝑦 > 0.

In the derivations below we do not need to impose that E
(

Z′
2𝑗Z2𝑗

)
= ΣZZ or that E

(
X ′

1iX1i
)
= ΣXX , as it is never ambigu-

ous which samples are being used to calculate these objects. These equalities are however guaranteed by Assumptions
A2 and A3.

Assumptions A2 and A3 guarantee the existence of linear projections of Z onto 𝑦 and of 𝑦 onto Z

Z1i = 𝑦1i𝛾
′ + u1i (2)

where 𝛾 is L × 1 and u1i is 1 × L and
𝑦1i = Z1i𝜁 + 𝜉1i. (3)

The residuals u1i and 𝜉1i satisfy the conditions for Equations (2) and (3) to be linear projections (i.e., E(𝑦1iu1i) = 0
and E(Z′

1i𝜉1i) = 0). However, note that this is completely general in that we are not making any structural assumptions
about the joint distributions of 𝑦1i and Z1i; the orthogonality of 𝑦 and Z variables with the error terms u and 𝜉 arise by
construction. In addition, no homoscedasticity assumptions are placed on u or 𝜉.

We also assume that:

A4 lim
n2→∞

n2
n1

= 𝛼 for some 𝛼 > 0.

This ensures that, as n1 tends to infinity, n2 does as well.
The key assumptions that we make to allow consistent estimation of 𝛽 are:

A5 E
(

Z′
1i𝑦1i

)
= E

(
Z′

2𝑗𝑦2𝑗

)
= ΣZ𝑦 which has at least one non-zero entry.

A6 E
(

X ′
2𝑗u2𝑗

)
= 0. Assumption A5 ensures that the proxies Z1 have information about 𝑦 (that the slope of the linear

projections in Equations (2) and (3) are not zero). Assumption A6 will be discussed further below.

Assumptions A1–A3 and A5 allow us to define the population R2 from a regression of 𝑦 on Z, 𝜙𝑦,Z ≡

Σ𝑦ZΣ−1
ZZΣZ𝑦∕

(
𝜎𝜖𝜖 + 𝛽′ΣXX𝛽

)
, and to guarantee that 0 < 𝜙𝑦,Z ≤ 1. Assumption A3 is necessary to ensure that this quantity

is defined. Assumption A5 ensures that it is strictly positive and thus that its reciprocal is also defined.
To compute variances for different estimators allowing for general forms of heteroscedasticity, we make the following

further assumptions:

A7 E(Z′
1i𝜉1i𝜉

′
1iZ1i) = ΩZ𝜉 which is finite and positive semi-definite.

A8 E(X ′
2𝑗𝛿2𝑗𝛿

′
2𝑗X

′
2𝑗) = ΩX𝛿 which is finite and positive semi-definite. 𝛿2 are residuals from a regression of Z2∕𝜙𝑦,Z on X2.

A9 {𝑦1i,Z1i}
n1
i=1 and {X2𝑗 ,Z2𝑗}

n2
𝑗=1 have finite fourth moments.

Finally, in what follows, we also make use of the following definitions and notation:

D1 E
(

X ′
2𝑗𝑦2𝑗

)
= ΣX𝑦 and E

(
X ′

2𝑗Z2𝑗

)
= ΣXZ.

D2 We define for instance Σ′
Z𝑦 = Σ𝑦Z.

D3 E
(

u′
1iu1i

)
= Σuu which under A2 is finite and positive semi-definite and E

(
𝜖2

2𝑗

)
= 𝜎𝜖𝜖 ≥ 0. With a single proxy,

E
(

u2
1i

)
= 𝜎uu ≥ 0.

D4 R2
𝑦1,Z1

is the sample analogue of 𝜙𝑦,Z (taken from sample 1).
D5 E(𝑦1i) = 𝜇𝑦.
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CROSSLEY ET AL.

2.2 Rescaled regression prediction (RRP)

Consider regressing 𝑦1 on Z1 in the first sample using the resulting coefficients to predict (impute) 𝑦 in the second, and
then regressing this regression prediction, 𝑦̂RP

2 , on X2. Denote the resulting vector of coefficient estimates by 𝛽RP. We first
show that 𝛽RP is not, in general, a consistent estimator of 𝛽. We then show that under a mild assumption the asymptotic
bias can be characterised, and this leads immediately to the consistent two-step estimator we propose.

Proposition 1. Given assumptions A1–A5, Regression of 𝑦̂RP
2 on X yields inconsistent estimates of 𝛽 unless (i) X is

contained within the span of Z or (ii) 𝑦 is contained within the span of Z or (iii) ΣX𝑦 = ΣXZ = 0.

Proof.

plim
(
𝛽RP) = plim

⎧⎪⎨⎪⎩
(X ′

2X2

n2

)−1 X ′

2Z2

n2

(
Z′

1Z1

n1

)−1
Z′

1𝑦1

n1

⎫⎪⎬⎪⎭
= plim

⎧⎪⎨⎪⎩
(

X ′

2X2

n2

)−1
X ′

2Z2

n2

(
Z′

1Z1

n1

)−1
Z′

1(Z1𝜁 + 𝜉1)
n1

⎫⎪⎬⎪⎭
= plim

⎧⎪⎨⎪⎩
(

X ′

2X2

n2

)−1
X ′

2Z2𝜁

n2

⎫⎪⎬⎪⎭ = plim
⎧⎪⎨⎪⎩
(

X ′

2X2

n2

)−1
X ′

2(𝑦2 − 𝜉2)
n2

⎫⎪⎬⎪⎭
where 𝜉2 is the difference between Z2 and the (unobserved) value of 𝑦2

= 𝛽 − plim

{(X ′
2X2

n2

)−1 X ′
2𝜉2

n2

}

= 𝛽 − plim

{(X ′
2X2

n2

)−1 (X ′
2𝑦2 − X ′

2Z2(Z′
2Z2)−1Z′

2𝑦2)
n2

}
.

Given Assumption A5, the second term will be zero if and only if (i) ΣX𝑦 = ΣXZ = 0 or (ii) ∃ some finite, non-zero
L × K matrix 𝜙 s.t X = Z𝜙 or (iii) ∃ some finite, non-zero L -vector 𝜆 s.t 𝑦 = Z𝜆.

If (i) holds both parts of the bias term are zero but note that this would imply that 𝛽 = 0 so that the estimator is consistent
at only one point in the parameter space. If (ii) or (iii) hold, the two parts of the bias term are equal (and so cancel). Note
though that (iii) implies that the first stage R2 is one, and if (ii) holds there is no need for data combination. Thus, the
regression prediction procedure only consistently estimates 𝛽 in extreme cases.

The source of the problem is that regression prediction results in a prediction, 𝑦̂RP
2 , that differs from 𝑦2 by a prediction

error or Berkson measurement error, 𝜉2 that is uncorrelated with Z2 but not uncorrelated with 𝑦2 and, in general, not
uncorrelated with X2. As is well known, classical measurement errors in an independent variable causes bias in linear
regression, but classical measurement errors in the dependent variable do not.1 This is because classical measurement
errors in 𝑦 are by assumption (and in contrast to Berkson errors) uncorrelated with 𝑦 and X . It is also widely recognised
that Berkson errors in an independent variable do not cause bias in a linear regression (Berkson, 1950; Wansbeek &
Meijer, 2000). What is less frequently recognised is that Berkson errors in a dependent variable do cause bias.

Figure 1 gives a geometric intuition for the problem for a case with a single proxy and independent variable. The solid
lines represent the vectors 𝑦, Z and X . The dashed lines illustrate orthogonal projections. The orthogonal projection of 𝑦
onto X (which would be obtained by regression with complete data) is labelled X𝛽. The regression prediction procedure
first projects the 𝑦 onto Z, giving 𝑦̂ = Z𝜁 , and then projects this vector onto X giving X𝛽RP. Note that X𝛽RP ≠ X𝛽.

1Nonclassical measurement in a dependent variable often causes bias, but not always. For example, Pischke (1995) shows that mean reverting—and
hence nonclassical—measurement errors in earnings reports affect only the transitory part of earnings. If schooling affects only the permanent part of
earnings, this explains with such mean-reverting measurement error does not attenuate estimates of the returns to schooling.
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CROSSLEY ET AL.

FIGURE 1 Regression prediction imputation procedure as projections

The same problem arises when we add residuals to the regression prediction to mimic the variance of the missing
variable. The true value of (unobserved) 𝑦2𝑗 can be decomposed into its projection onto Z and an orthogonal error

𝑦2𝑗 = 𝑦̂RP
2𝑗 + 𝜉2𝑗 . (4)

Consider then drawing a random residual from the first stage regression (𝜉1𝑗) to create a stochastic imputation

̂̂𝑦
RP
2𝑗 = 𝑦̂RP

2𝑗 + 𝜉1𝑗 = 𝑦2𝑗 − 𝜉2𝑗 + 𝜉1𝑗 . (5)

Then ̂̂𝑦
RP
2 differs from 𝑦2 by the error 𝜉1 − 𝜉2 which is by construction orthogonal to Z1, but not 𝑦2 or X2. Note that,

because it is randomly drawn from a separate random sample, 𝜉1 is orthogonal to 𝑦2. The problem with the composite
error 𝜉1 − 𝜉2 lies in the prediction error 𝜉2.

The proof of Proposition 1 notes that, given Assumptions A1-A5, E(X ′
2𝜉2) = 0 can hold only in extreme cases. The same

is not true of the alternative projection error, u2, associated with (2).
The next proposition shows that the further assumption A6 (E(X ′

2u2) = 0) implies a bias in 𝛽RP that takes a simple form.
The proofs of this and all subsequent propositions are collected in the Online Supplemental Appendix (Crossley et al.,
2021).

Proposition 2. Given assumptions A1–A6,

plim
(
𝛽RP) = 𝛽𝜙𝑦,Z. (6)

Proof. See Online Supplemental Appendix.

Thus, with A6, 𝛽RP is attenuated, and the degree of attenuation is one minus the first stage population R2 (1-𝜙𝑦,Z). It
is important to note that we are working with de-meaned versions of the variables: More generally, R2

𝑦1,Z1
is the centred

sample R2, 𝜙𝑦,Z is the centred population R2 and the result holds without demeaning the data.
As noted above, many authors have followed Skinner (1987) in regressing total consumption expenditure (𝑦1) on food

expenditure Z1 (and possible other proxies) in the Consumer Expenditure Survey (CE) and using the resulting coefficients
to predict 𝑦̂RP

2 in the PSID (and then regressing 𝑦̂RP
2 on X2). With a single spending category as the proxy, the first stage

linear projection here resembles an “inverse” Engel curve. R2s for food Engel curves are typically between 50 and 70%,
implying attenuation of between 30 and 50% in this literature.

In A6, note that u2 is not observed so when L = 1 this condition is not empirically verifiable (though see below for cases
when L > 1). It states that X should not affect Z independently of Y .

Condition A6 is an exclusion restriction, analogous to the exclusion restriction imposed in instrumental variable (IV)
procedures (discussed further below). It states that Z is partially uncorrelated with X , given 𝑦. The reason it may often be
possible to find proxies for which E(X ′

2iu2i) = 0, whereas E(X ′
2i𝜉2i) = 0 can only be satisfied in very special cases follows

from the fact that 𝑦 and 𝜉 are correlated by construction while 𝑦 and u are by construction uncorrelated.
As the attenuation in the regression prediction procedure is an estimable quantity, the bias can be corrected. One can

rescale 𝑦̂RP
2 by the estimated first stage (centred) R2

𝑦1,Z1
, or, equivalently, rescale 𝛽RP by the estimated first stage (centred)

R2
𝑦1,Z1

. We refer to the resulting estimator as “Rescaled Regression Prediction” (RRP), with the rescaled impute of 𝑦2

denoted 𝑦̂RRP
2 and the resulting estimate of 𝛽 denoted 𝛽RRP. The consistency of 𝛽RRP is a consequence of Proposition 2.
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CROSSLEY ET AL.

Corollary 1.

plim
(
𝛽RRP) = plim

(
𝛽RP

R2
𝑦1,Z1

)
= 𝛽.

Note that we do not need to assume that L ≥ K. Identification requires only that we have at least one proxy for the
dependent variable, regardless of dimensions of X .

It is also worth noting that the problem we highlight with regression prediction extends to several closely-related impu-
tation procedures. In particular, Lillard et al. (1986) and David et al. (1986) note that commonly employed hot-deck
imputation procedures can be interpreted as regression prediction plus an added residual. Such procedures draw a
matched observation, 𝑦1i, of the missing variable 𝑦2𝑗 , from a cell in the donor data set. Cells are defined by categorical
variables derived from Z. This replacement of the missing 𝑦2𝑗 with 𝑦1i from a donor observation matched on Z can be
viewed as a prediction using the coefficients from a saturated first stage regression on those categorical indicators for Z,
plus a residual from the first stage regression, and so is an example of the regression prediction procedure (with added
residuals), and our results apply. The RRP estimator is easily extended to allow for covariates and to panel data. This is
discussed in the Online Supplemental Appendix (Crossley et al., 2021).

2.3 Comparison with other estimation strategies

It is useful to compare RRP to two other (consistent) estimation strategies. First, Blundell et al. ((2004), (2008)), again
using the CE and PSID, first regress Z1 (food spending) on 𝑦1 then predict 𝑦̂BPP

2 = Z2
1
𝛾̂

(the BPP procedure). That is, they
estimate an Engel curve and then invert it to predict consumption. Second, one could not impute 𝑦2 at the observation
level at all, but to recover the parameter of interest (𝛽) from a combination of moments taken from the two surveys.
This two-sample nonlinear GMM estimator (nlGMM) was first suggested (for a different application) by Arellano and
Meghir (1992).2 Note that the BPP procedure does not extend naturally to multiple proxies (because of the need to invert).
However, full nlGMM, like our consistent two-step estimator (RRP), does extend to the case of multiple proxies.

Before taking up the case of multiple proxies, we note the relationship between these three estimators in the case of a
single proxy. Denote the estimates of 𝛽 from the BPP procedure and two-sample nlGMM by 𝛽BPP and 𝛽nlGMM respectively.

Proposition 3. If and only if there is a single proxy Z (a vector) 𝛽RRP, 𝛽BPP and 𝛽nlGMM are numerically identical.

Proof. See Online Supplemental Appendix.

This implies consistency of the BPP procedure. As the BPP procedure is identical to RRP (or nlGMM) when there is
one proxy, but does not extend to multiple proxies, it can be seen as a special case of RRP (or nlGMM).

Turning to the case of multiple proxies, assumptions A1–A6 imply the following KL + L moment conditions

G(𝛾, 𝛽) =
E
[

X ′
2𝑗,k

(
Z2𝑗,l − X2𝑗,k𝛽k𝛾l

)]
= 0 ∀k, l

E
[
𝑦′1i

(
Z1i,l − 𝑦𝑗𝛾l

)]
= 0 ∀l

(7)

where Z1𝑗,l is for example the lth column of Z1𝑗 . Following Arellano and Meghir (1992), these moments can be used to
consistently estimate (𝛾, 𝛽) using nlGMM.

By contrast, RRP exploits the restricted set of K + L moments.

E
[
Z2𝑗𝜁∕𝜙 − X2𝑗𝛽

]
= 0

E
[
Z′

1i(𝑦1i − Z1i𝜁 )
]
= 0.

(8)

2Here, in the just-identified case of a single proxy, one could regress Z1 on 𝑦1 to get 𝛾̂ , then regress Z2 on X2 to get 𝛽𝛾 , and take the ratio of the two to
estimate 𝛽. Thus, in this case, we would not need to use the generalised method of moments. For simplicity, we also refer to this estimator as 𝛽nlGMM .
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CROSSLEY ET AL.

We could also exploit a larger set of moments if we adopted RRP separately for each proxy l, and then combined the
results into a single estimate of 𝛽 using GMM. In particular, we could exploit the KL + L moments

E
[
X2𝑗,k(Z2𝑗,l𝜁l∕𝜙l − X2𝑗,k𝛽k)

]
= 0 ∀k, l

E
[
Z1i,l(𝑦1i − Z1i,l𝜁l)

]
= 0 ∀l.

(9)

It turns out that this “proxy-by-proxy” RRP estimator is numerically equivalent results to the nlGMM estimator using
the moments in (7).

Proposition 4. Proxy-by-proxy RRP using the moment conditions in (9) is numerically equivalent to nlGMM using the
moments in (7).

Proof. See Online Supplemental Appendix.

To summarise, with a single proxy, all of these approaches yield identical estimates. An attraction of RRP and nlGMM
over the BPP procedure is that they extend naturally to multiple proxies. Relative to nlGMM with multiple proxies, RRP
has the advantage that it is easier and quicker to estimate. Applied researchers may be more comfortable with a simple,
two-step regression-based approach. Further, we show below that it often performs better than nlGMM in finite samples.

2.4 Testing overidentification restrictions

As we noted above, A6 is not testable when L = 1. However, when L > 1, that is, when we have multiple proxies, it
is possible to test the overidentifying restrictions imposed by A6 in an analogous way to similar tests carried out for IV
estimators. Intuitively, we can test to see whether estimates of 𝛽 obtained from different proxies are consistent with one
another.

For nlGMM, the overidentifying restrictions can be tested using Hansen's J-statistic (Hansen, 1982).
It is also possible to test the overidentifying restrictions for the RRP estimator. Although this could be done in a number

of ways, our suggestion is a “double length” artificial regression (Davidson & MacKinnon, 1988), which can be made
heteroscedasticity robust by use of a sandwich variance estimator (Wooldridge, 1991). Consider the first “reduced form”
moments from (7). These moments are the source of the overidentification (when L > 1) and they can be tested after
RRP as follows.

• Construct the residual v2𝑗,l = (Z2𝑗,l − X2𝑗𝛽𝛾l) ∀l. Note that the vector of 𝛾 coefficients is not estimated directly in the
RRP procedure, but they can be recovered from the projection of 𝑦1 on Z1 using the fact that 𝛾 = (𝑦′1𝑦1)−1Z′

1Z1𝜁 .
• Replicate the second sample L times and stack.
• Generate v = vl for replicate l, and a set of replicate indicator variables d = d1, … , dL.
• Regress v on the full set of interactions between d and x in the stacked data.
• Test that all coefficients are zero.

Davidson and MacKinnon (1988) show that tests based on double-length regressions are asymptotically valid. In the
Online Supplemental Appendix (Crossley et al., 2021), we show using Monte Carlo simulations that this test also performs
well, and is appropriately sized, in finite samples. The same is true for its heteroscedastic version when the errors are
heteroscedastic. However, it is worth noting that in the case of weak proxies, neither version is well sized.

2.5 Estimating other moments of 𝑦

It is useful also to think about other moments, as these imputation procedures have been used to study dispersion as
well as regression coefficients. For example, Blundell et al. (2008), Attanasio and Pistaferri (2014) and Fisher et al. (2016)
study consumption inequality. There are a number of reasons why one might wish to impute 𝑦 from some other sample
to calculate means, variances and covariances rather than calculating them directly in the initial sample. For example,
one might want to calculate variances among subsets of the population that cannot be defined in the first sample but can
be defined in the second. In addition, we might be interested in the growth of 𝑦 among particular individuals along with
variances and covariances for these growth rates from panel data, but may only directly observe 𝑦 in cross-sectional data.
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CROSSLEY ET AL.

For instance, Blundell et al. (2008) calculate variances of growth rates in total consumption expenditures for households
in the PSID, and covariances of these growth rates with the growth in incomes, where total consumption is imputed to
the PSID from the cross-sectional CE.

We continue with the case of a single proxy to allow comparison of regression prediction to BPP and RRP and consider
the case of a single X variable for ease of exposition (though the results extend to cases where K > 1). nlGMM recovers
𝛽 directly and does not generate unit level estimates of 𝑦. The imputes 𝑦̂RP

2 and 𝑦̂RRP
2 are numerically different,

𝑦̂RP
2 = Z2(Z′

1Z1)−1Z′
1𝑦1, (10)

𝑦̂RRP
2 = Z2(Z′

1Z1)−1Z′
1𝑦1∕R2

𝑦1,Z1
. (11)

Algebra analogous to the proof of Proposition 3 shows that 𝑦̂RRP
2 and 𝑦̂BPP

2 are numerically identical for the case when all
variables have been de-meaned. They will differ by an additive constant in the event a non-zero intercept shift is present
in Equation (2).

Proposition 5. Denote sample moments based on 𝑦̂RP
2 by sRP

𝑦𝑦 and SRP
𝑦X ; and analogously for 𝑦̂RRP

2 . Then, given assumptions
A1–A6,

(i) plim
(

sRP
𝑦𝑦

)
= 𝜎𝑦𝑦 × 𝜙𝑦,z

(ii) plim
(

SRP
𝑦X

)
= Σ𝑦X × 𝜙𝑦,z

(iii) plim
(

sRRP
𝑦𝑦

)
= 𝜎𝑦𝑦∕𝜙𝑦,z

(iv) plim
(

SRRP
𝑦X

)
= Σ𝑦X

where again 𝜙𝑦,Z is the population R2 from the first stage regression and, for instance, sRP
𝑦𝑦 = 1

n2
𝑦̂RP′

2 𝑦̂RP
2 and SRP

𝑦X =
1

n2
𝑦̂RP′

2 X2.

Proof. See Online Supplemental Appendix.

Proposition 5 states that the sample variance of 𝑦̂RP
2 underestimates the population variance of 𝑦, while SRP

𝑦X is not a
consistent estimator of Σ𝑦X . This gives an additional intuition for the inconsistency of 𝛽RP as an estimator of 𝛽 as with a
scalar X the OLS estimate of 𝛽 is just SRP

𝑦X∕sRP
𝑦𝑦 . Moreover, adding a residual to 𝑦̂RP

2 does not correct this. Similarly, the RRP
estimator is consistent for 𝛽 because it is consistent for Σ𝑦X .

Simple algebra also establishes that, when L = 1

sRRP
𝑦𝑦 = sBPP

𝑦𝑦 (12)

and

SRRP
𝑦X = SBPP

𝑦X . (13)

This follows from the numerical equivalence of the de-meaned values of 𝑦̂RRP
2 and 𝑦̂BPP

2 . Thus, plim sBPP
𝑦𝑦 = plim sRRP

𝑦𝑦 >

𝜎𝑦𝑦 > plim sRP
𝑦𝑦 . Turning again to our motivating consumption example, Attanasio and Pistaferri (2014) show that trends

in sBPP
𝑦𝑦 and s𝑦𝑦 (where 𝑦 is observed) are similar, but that there is a level difference. The similarity in trends suggests that

the first stage R2
𝑦1,Z1

is roughly constant across years in their data. We confirm this in our empirical example below.
For completeness, we can also consider means. Had we not de-meaned the data, then it is straightforward to show that

the average of 𝑦̂RP
2 gives a consistent (and unbiased) estimate of the population mean of 𝑦. However, if RRP is implemented

by rescaling 𝑦̂RP
2 (rather than rescaling 𝛽RP), it then immediately follows that the mean of this rescaled prediction of 𝑦

is not a consistent estimator of the mean of 𝑦. One implication is that a statistical agency aiming to add an imputed 𝑦̂
to a data release could not add a single variable that would be appropriate both for use as a dependent variable and for
estimating quantities that depend on the first moment of 𝑦 (poverty rates, for example).
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CROSSLEY ET AL.

2.6 Related literature

In this paper, we study the use of proxies to predict a dependent variable.3 Regression prediction of a dependent variable
induces a prediction or Berkson measurement error. Berkson measurement errors in a dependent variable cause bias
in a linear regression, and this seems to be much less noted than the innocuous cases of Berkson measurement error
in an independent variable, or classical measurement error in a dependent variable.4 Two exceptions are Hyslop and
Imbens (2001) and Hoderlein and Winter (2010). Hyslop and Imbens (2001) show attenuation bias in a regression of 𝑦̂
on X where 𝑦̂ is an optimal linear prediction generated by a survey respondent (not the econometrician). Relative to the
imputation problem we study, key differences include the fact that it is the survey respondent doing the prediction, and
the assumption that the respondent's information set includes Z, 𝛽 and E(X). They also assume (in our notation) that
Z = 𝑦 + u; (𝛾 = 1). Hoderlein and Winter (2010) study a similar problem, but in a nonparametric setting. Again, in their
model it is the survey respondent, rather than the econometrician, doing the predicting. They illustrate their results using
self-reported data on consumption expenditure.

Dumont et al. (2005) study corrected standard errors in a regression with a “generated regressand.” Their work is moti-
vated by the two-stage procedure for mandated-wage regression proposed by Feenstra and Hanson (1999). In this paper,
domestic prices are first regressed on some structural determinants (trade and technology variables). The estimated con-
tributions of these variables to price changes are then in turn regressed on factor shares to identify the changes in factor
prices “mandated” by changes in product prices.

In this context, the first stage is

𝑦i = Zi𝜁 + 𝜉i (14)

(where 𝑦i are in this case product prices and Zi are some structural determinants of those prices) and the second stage is
not (1) but rather L separate equations:

Zi,l𝜁l = Xi𝛽l + 𝜖i,l (15)

(where Xi are factor shares). Here, Zi,l𝜁l is not observed and so is replaced by the first stage estimate Zi,l𝜁l. Of course 𝜁 differs
from 𝜁 by an estimation error (Z′Z)−1Z′𝜉, but, given the set-up, the stochastic element 𝜉 is orthogonal to Z, and so also X ,
and thus causes problems for inference but not inconsistency. Although the motivation and second-stage regressand are
different, this procedure is analogous to the BPP procedure (using 𝑦i as a proxy for Zi,l𝜁l), so the Berkson measurement
error problem does not arise.

We also contribute to the literature on data combination; see the excellent survey by Ridder and Moffitt (2007). One
approach to data combination problems is statistical matching. This can be used to create synthetic observations which
each have values of 𝑦, X and Z. As first noted in Sims (1972), the use of this approach to identify features of the joint
distribution 𝑓 (𝑦,X ,Z) makes the strong and untestable assumption that, conditional on Z, 𝑦 is independent of X . An
alternative is to assume that, conditional on X , 𝑦 is independent of Z. This leads to the 2-sample IV (2SIV) and 2-sample
2SLS approaches. 2SIV was first proposed by Klevmarken (1982) and popularised by Angrist and Krueger (1992). Inoue
and Solon (2010) show that 2SIV is not in general efficient because it does not take account of the fact that Z1 and Z2
will be different in finite samples. They suggest the 2-sample two-stage least squares estimator is therefore preferred.
Pacini and Windmeijer (2016) provide robust inference for that estimator. 2SIV has been applied to the combination of
CE consumption data and PSID income data by Lusardi (1996).

To see the contrast between 2-sample two-stage least squares and our approach, start from (1), and consider the linear
projection of X2 on Z2:

X2𝑗 = Z2𝑗𝜃 + 𝜈2𝑗 . (16)

3Wooldridge (2002) contains an excellent overview of the use of proxies for independent variables and Lubotsky and Wittenberg (2006) and Bollinger
and Minier (2015) are recent papers on the optimal use of multiple proxies for an independent variable. Ridder and Moffitt (2007) gives a broad survey
of the literature on data combination.
4Berkson measurement error in an independent variable is also a problem in nonlinear models. See for example Blundell et al. (2019). The distinction
between a “measurement error” in the sense of a classical measurement error and a “forecast error,” or Berkson measurment error has also been
important in the literature on GDP revisions (Mankiw & Shapiro, 1986).
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CROSSLEY ET AL.

Note that E(Z′
2𝑗𝜈2𝑗) = 0 by definition. Then replace assumptions with A5 and A6 with parallel assumptions:

A10 E
(

Z′
1iX1i

)
and E

(
Z′

2𝑗X2𝑗

)
both have rank K.

A11 E
(

Z′
1i𝜖1i

)
= 0.

alongside the order condition, that

A12 L ≥ K.

Under these assumptions, the 2-sample-2SLS estimator is

𝛽2S2SLS = (X̂1
′X̂1)−1X̂1

′
𝑦1 (17)

where X̂1 = Z1(Z′
2Z2)−1Z′

2X2 is consistent for 𝛽.
This approach is typically taken where Z is a grouping variable or variables (e.g., birth cohort, occupation, birth cohort

× education).
Again, A11 states that, conditional on X , 𝑦 is uncorrelated with Z. In contrast, our A6 states that conditional on 𝑦, Z

is (partially) uncorrelated with X . In fact, a useful proxy must have information about 𝑦 over and above the information
in X . To see this, considering the combination of Equations (1) and (2):

Z1i = X1i𝛽𝛾
′ + 𝜖1i𝛾

′ + u1i. (18)

Given A5, then A11 can only hold in the knife-edge case, E
(
𝛾𝜖′1i𝜖1i

)
= −E(u′

1i𝜖1i) (note also that A5 implies that 𝛾 ≠ 0).
This means that a variable may be a plausible instrument or a plausible proxy, or neither; but not both.5

With 2-sample 2SLS, we use Z to imputeX (and as the resulting prediction or Berkson error is in an independent variable,
this two-stage procedure does not cause inconsistency). An additional virtue of this procedure is that we can relax the
exogeneity requirement in A1, for example, allowing for classical measurement error in X .

On the other hand, there is no equivalent of the order condition A12 in the proxy framework set out in Section 2.1. That
is, there is no need to ensure that there are at least as many proxies as explanatory variables for RRP and nlGMM, even
though we require that there are at least as many instruments as endogenous variables in X to employ two-sample IV.

Cross and Manski (2002) consider a quite general data combination problem. They consider identification of the
“long” regression E(𝑦i|Xi,Zi) when only the joint distributions 𝑓 (𝑦,Z) and 𝑓 (X ,Z) are known. Of course, if E(𝑦i|Xi,Zi)
can be recovered, then the missing “short” regression, E(𝑦i|Xi), follows from the application of the law of total expec-
tation (using 𝑓 (X ,Z)). Cross and Manski (2002) consider both partial identification when nothing else is known, and
identification under exclusion restrictions. The exclusion restrictions they study are those proposed by Sims (1972) and
Klevmarken (1982). Thus, again, the most important difference in our approach is that we consider the alternative
exclusion restriction A6.

3 INFERENCE AND PRECISION

3.1 Intuition from the one proxy, homoscedastic case

If we strengthened the assumptions listed in Section 2 to include homoscedasticity (E
(
𝜖2

i |Xi
)
= 𝜓𝜖𝜖 > 0) and conditional

independence of the error term (E(𝜖i|Xi) = 0), then direct estimation of (1) on complete data would result in an asymptotic
variance for 𝛽 of (ΣXX )−1𝜓𝜖𝜖 . When we impute 𝑦̂ from one data set to another, there are two losses of precision resulting
from (i) imputation and (ii) the combination of two different samples of the underlying population. Moreover, applying
the usual OLS standard error formula, the regression of 𝑦̂ on X results in standard errors that are too small. We use the
one-proxy (and single X variable), and homoscedastic case to illustrate these points, and then give a correct formula for
the asymptotic standard errors with possibly multiple proxies and heteroscedastic errors.

5A similar point is made with respect to proxy and IV approaches to an “omitted variable” (a missing independent variable) in Wooldridge (2002).
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CROSSLEY ET AL.

With a single proxy, 𝛽nlGMM , 𝛽RRP and 𝛽BPP are numerically identical, so we derive the asymptotic variance from the
nlGMM approach. The first stage (2) and reduced form (18) give two moments

E
(
𝑦′1i(Z1i − 𝑦1i𝛾

′)
)
= E

(
𝑦′1iu1i

)
= 0,

E
(

X ′
2𝑗(Z2𝑗 − X2𝑗𝛽𝛾

′)
)
= E

(
X ′

2𝑗(𝜖2𝑗𝛾
′ + u2𝑗)

)
= 0

which identify the parameters 𝛾 and 𝛽.
It is informative to first consider implementing 𝛽nlGMM (or equivalently 𝛽BPP or 𝛽RRP) on a single sample, containing all

of 𝑦, Z, X (of course, a researcher would have no reason to do this, but it delivers a useful intuition). In this one-sample
case, given the further assumptions E

(
u2

i |𝑦i
)
= 𝜓uu and E(ui|𝑦i) = 0, the asymptotic variance-covariance matrix of the

moments is

F =
[
𝜓uu𝜎𝑦𝑦 𝜓uuΣXX𝛽
𝜓uuΣXX𝛽

(
𝛾2𝜓𝜖𝜖 + 𝜓uu

)
ΣXX

]
(19)

where the off-diagonal terms are not zero because the moments come from the same random sample. The asymptotic
variance covariance matrix of (𝛽, 𝛾) is

(
G′F−1G

)−1 where G is the gradient of the moments with respect to the parameters.
The asymptotic variance of 𝛾̂ is of course 𝜎−1

𝑦𝑦 𝜓uu. The asymptotic variance of 𝛽 is

As𝑦mpVar(𝛽) = (ΣXX )−1𝜓𝜖𝜖
𝜙𝑦,Z

. (20)

Thus the loss of asymptotic precision due to imputation (relative to the direct estimation of (1)), is inversely related to
the first stage population R2 (𝜙𝑦,Z). Note the similarity of this precision loss to the precision loss in the case of linear IV
estimation (relative to OLS), which is related to a first stage R2 in the same way (Shea, 1997).

Turning now to the realistic two-sample case, the asymptotic variance-covariance matrix of the moments becomes

F =
[
𝛼𝜓uu𝜎𝑦𝑦 0

0
(
𝛾2𝜓𝜖𝜖 + 𝜓uu

)
ΣXX

]
where note that the off-diagonal terms are now zero because the moments come from independent random samples. The
asymptotic variance covariance matrix of (𝛽, 𝛾) is again

(
G′F−1G

)−1 where G is the gradient of the moments with respect
to the parameters. The asymptotic variance of 𝛾̂ is the same as before (though now multiplied by the term 𝛼). 𝛼

(
𝜎𝑦𝑦

)−1
𝜓uu.

The asymptotic variance of 𝛽 is

As𝑦mpVar(𝛽) = (ΣXX )−1 (𝜓𝜖𝜖 + 𝛾−2𝜓uu
)
+ 𝛼Σ−1

𝑦𝑦 𝛽
2𝛾−2𝜓uu

= (ΣXX )−1𝜓𝜖𝜖 + 𝛾−2(ΣXX )−1𝜓uu + 𝛼𝛽2𝛾−2𝜎−1
𝑦𝑦 𝜓uu.

This can be written as

As𝑦mpVar(𝛽) = (ΣXX )−1𝜓𝜖𝜖
𝜙𝑦,Z

+ (1 + 𝛼)𝛽2
(1 − 𝜙𝑦,Z

𝜙𝑦,Z

)
. (21)

The second term inside the brackets represents the loss of asymptotic precision, due to the use of two different samples.
Precision is greater in (20) because the covariances between moments in Equation (19) have a stabilising influence on the
estimates 𝛽. These covariance terms are zero in the two sample case.

Finally, the usual OLS standard errors from a regression of an imputed dependent variable (derived from RRP or the
BPP procedure) are incorrect, but can easily be corrected. The OLS standard errors (as produced by standard software
packages) are
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CROSSLEY ET AL.

V̂ OLS(𝛽RRP) = (X2X2)−1(𝑦̂2 − X2𝛽
)′ (

𝑦̂2 − X2𝛽
)
= (X2X2)−1 (𝑦̂′2𝑦̂2 − 𝑦̂′2X2(X ′

2X2)−1X ′
2𝑦̂2

)
= (X ′

2X2)−1 [𝑦′1𝑦1(Z′
1𝑦1)−1Z′

2Z2(Z′
1𝑦1)−1𝑦′1𝑦1 − 𝑦′1𝑦1(Z′

1𝑦1)−1Z′
2X2(X ′

2X2)−1X ′
2Z2(Z′

1𝑦1)−1𝑦′1𝑦1
]
.

With some algebra, it is straightforward to show that

plim
(

V̂ OLS(𝛽RRP)
)
= (ΣXX )−1𝜓𝜖𝜖

𝜙𝑦,Z
+ 𝛽2

(1 − 𝜙𝑦,Z
𝜙𝑦,Z

)
= As𝑦m Var(𝛽RRP) − 𝛼𝛽2

(1 − 𝜙𝑦,Z
𝜙𝑦,Z

)
.

(22)

So, the usual OLS standard errors are too small, by 𝛼𝛽2
(

1−𝜙𝑦,Z
𝜙𝑦,Z

)
. Given assumption A9, the OLS standard errors can be

corrected using available consistent estimates of 𝛼, 𝛽 and 𝜙𝑦,Z, n2
n1

, 𝛽 and R2
𝑦1,Z1

(or simply by using the nlGMM standard
errors).

3.2 Asymptotic standard errors—general case

If there is more than one proxy, 𝛽RRP ≠ 𝛽nlGMM . Here, we derive the asymptotic variance of 𝛽RRP and relate it to uncorrected,
“naive” estimates of the standard errors one would obtain from the second stage RRP regression (of 𝑦̂ on X). Our formula
allows for possibly heteroscedastic errors and can, for example, straightforwardly be extended to provide cluster-robust
standard errors. Our approach closely follows that of Pacini and Windmeijer (2016) who provide robust standard errors
for two sample 2SLS.

Proposition 6. Given assumptions A1–A8, 𝛽RRP has asymptotic variance

As𝑦mp Var(𝛽RRP) = Σ−1
XX

[
ΩX𝛿 + 𝛼

ΣXZ

𝜙𝑦,Z
Σ−1

ZZΩZ𝜉Σ−1
ZZ

ΣZX

𝜙𝑦,Z

]
Σ−1

XX .

Proof. See Online Supplemental Appendix.

Given the further assumption A9, this formula can be estimated using sample analogues of ΣXX , 𝜙𝑦,z, ΣXZ, 𝛼, ΩZ𝜉 and
ΩX𝛿 . It can also be written as

As𝑦mp Var(𝛽RRP) = V OLS(𝛽RRP) + 𝛼Σ−1
XX

ΣXZ

𝜙𝑦,Z
VOLS(𝛾̂)

ΣXZ

𝜙𝑦,Z
Σ−1

XX

where V OLS(𝛽RRP) are once again the (asymptotic) “naive” variances estimated using the second stage residuals. This
expression can be used to adjust robust estimates for the variances of coefficients in the first and second stage regressions
that are provided by Stata and other software packages. A Stata package that estimates the RRP estimator and provides
the correct standard errors is available from the authors at https://github.com/spoupakis/rrp. The results in Proposition
6 can straightforwardly be extended to situations where we impute the dependent variable into panel data and where we
use instrumental variables for X .

3.3 Efficiency of alternative estimators

Standard results show that 𝛽nlGMM is asymptotically efficient when estimated via GMM using the optimal weight matrix.
We showed in Proposition 4 that it is possible to write the nonlinear GMM moment conditions expressed in (7) as

a set of RRP equations (each using a single proxy). This implies that that 𝛽nlGMM can be thought of as an optimally
weighted combination of individual RRP estimators. We also showed that 𝛽RRP with multiple proxies can be expressed
as the solution to a (restricted) set of K +L moment conditions. In particular, the first KL “reduced form” moments in (7)
are replaced by just K moments, with each using a (rescaled) linear combination of all L proxies.
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CROSSLEY ET AL.

The analogy to 2SLS, where a linear combination of instruments replaces the instrument-by-instrument moments of
full GMM, is obvious. As with 2SLS, there is a potential loss of asymptotic efficiency. However, as with 2SLS, RRP is easier
to implement than full GMM (it can be implemented with two regression), and it may be more efficient in finite samples
(because it avoids estimation of the GMM weighting matrix).

While RRP is not in general asymptotically efficient, we can show that it has desirable asymptotic properties. In
particular, RRP minimises the variance of imputation errors

Proposition 7. Given assumptions A1–A6, RRP minimises the variance of imputation errors among the class of
consistent, two-sample, estimators for 𝛽.

Proof. See Online Supplemental Appendix.

The Online Supplemental Appendix (Crossley et al., 2021) provides Monte Carlo evidence on the finite sample
performance of alternative estimators under various assumptions. We find that RRP outperforms (or performs as well
as) nlGMM in finite samples under different cases of varying strength, precision, and correlation of the proxies, under
both homoscedastic and heteroscedastic error terms.

4 EMPIRICAL ILLUSTRATIONS

In this section, we illustrate our results with two empirical examples using the PSID (Panel Study of Income Dynam-
ics, 2019) and the CE Interview Survey.

4.1 Housing wealth effects

We begin with an exercise similar to that of Skinner (1989) (making use of the imputation procedure set out
in Skinner, 1987). This is to estimate the elasticity of consumption spending with respect to changes in housing wealth by
regressing nondurable consumption spending on demographics, lags and leads of total family income and house values.
We do this using the 2005–2013 waves of the PSID when a more-or-less complete measure of nondurable expenditures is
available. Following the approach taken by Skinner (1989) for an earlier period, when spending data were only available
for a subset of goods in the PSID, we also impute nondurable consumption spending from the CE into the PSID. This
allows us to compare results from different imputation procedures with the complete data case (using the PSID's own
consumption measures). In this respect, our exercise is similar to that used in Attanasio and Pistaferri (2014), who assess
the accuracy of the imputed consumption measures they use in the early years of the PSID with those available in the
PSID in later years.

Our measure of nondurable consumption is the sum of spending on food at home, food away from home, utilities
(including gas and electricity), gasoline, car insurance, car repairs, clothing, vacations and entertainment. For proxies, we
use the log sum of total food spending (whether at home or away from home) and log utility spending. Our demographics
controls are the size of the household, age, age squared, the log earnings of the household head (set to zero for those with
zero earnings) and a dummy for having zero earnings. We annualise consumption measures and then take logs in both
surveys.

Our sample selection choices in the PSID are chosen to mirror those used in Skinner (1989). In particular, we take a
sample of homeowners, who are observed in all waves from 2005 to 2013, who do not move, are not observed with zero
incomes and who are not observed renting over the sample period. To prevent our results being driven by extreme values,
we exclude those with incomes or house values in the top and bottom 1% of the PSID sample.

In the CE Interview Survey, we take a sample of homeowners. The CE Interview Survey aims to interview households
over four quarters, asking retrospective consumption questions over the previous three months in each interview. We take
only those individuals who were observed in all four interviews, and whose final interview was held a year coinciding with
the biennial PSID survey waves from 2005–2013. We then average spending over each of the previous four quarters they
were observed and keep only one observation per household. By averaging over multiple waves, we reduce measurement
error in consumption and get consumption values which are more in the spirit of the questions households are asked
in the PSID (households in the PSID are asked about their spending over the previous year, or “usual” spending in an
average week or month). We run our imputation regressions separately in each year, which would for example allow for
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CROSSLEY ET AL.

(1) (2) (3) (4) (5) (6)
2005 2007 2009 2011 2013 All years

log Food 0.568** 0.550** 0.545** 0.554** 0.560** 0.555**

(0.012) (0.008) (0.008) (0.008) (0.009) (0.004)
log Utilities 0.387** 0.387** 0.415** 0.395** 0.396** 0.396**

(0.015) (0.010) (0.011) (0.011) (0.011) (0.006)
Partial R2 0.720 0.746 0.744 0.751 0.747 0.743
N 1590 2896 2759 2668 2470 9899

Note: Standard errors in parentheses. Additional controls for age, age squared, family
size, log of head's earnings (set to zero if earnings are zero), a dummy for head's
earnings being greater than zero, and (in the pooled regression) year dummies. The
partial R2 reported here is obtained by regressing our dependent variables on our
proxies after partialling out the effects of other covariates in an initial regression.
*p < 0.05.
**p < 0.01.

TABLE 1 Imputing nondurable consumption spending
using CES

the fact that changes in relative prices might change the relationship between food and total spending from one period
to the next.6

Table 1 shows the results from our first stage imputation regressions. We note that the relationships between the
proxy variables and total nondurable consumption and the fit of the imputation regressions remain very stable across the
different survey years. Column (6) shows results pooling across all years (2005, 2007, 2009, 2011 and 2013).

Table 2 shows the results from regressions of consumption spending on income variables and house values in the PSID.
The first column shows results using the consumption measure available in the PSID. This is the complete data case.
The second column shows results using the regression prediction procedure employed by Skinner, and the third column
shows results using RRP. The fourth column shows results estimated using nlGMM.

The complete data results from the PSID suggests that each 10% increase in house values is associated with a 1.14%
increase in consumption spending. When we impute consumption using unscaled regression prediction, we underesti-
mate the effects of housing wealth on consumption (with the estimated effect falling to 0.87%). Using RRP (inflating 0.87
by inverse of the partial R2 in Table 1), we obtain a value of 1.16% which is very similar to that obtained using the com-
plete data in the PSID. Column (4) shows results using nlGMM. This implies that a 10% increase in home values results
in a 1.29% increase in spending, which is again closer to the result using complete data than regression prediction. Since
we have more than one proxy, we can also test the exclusion restriction A6 by calculating Hansen's J-statistic for nlGMM
and using our double-length artificial regression for RRP. Both tests fail to reject the overidentification restrictions.

These results illustrate the theoretical results of Section 2. The similarity between the results using RRP and nlGMM
and the results using complete data confirms that A6 holds in these data, and moreover, that our demographic covariates
adequately control for any sample differences between the PSID and the CE Interview Survey.

4.2 Consumption inequality

As a second exercise, we examine the evolution of consumption inequality using actual and imputed nondurable con-
sumption measures. This is in the spirit of the longer run analysis of consumption and inequality carried out in Attanasio
and Pistaferri (2014).

To do this, we impute consumption measures for all households in the PSID (including non-homeowners) and plot
the standard deviation over time for imputed consumption from the regression prediction procedure and from RRP. We
then compare this with the standard deviation of nondurable consumption spending as measured in the PSID. To prevent
this measure being unduly influenced by extreme values, we trim the top and bottom 1% of consumption spending in the
PSID. The results are shown in Figure 2.

6Our approach differs from the approach used in Skinner (1989) in two key respects. First, Skinner (1989) imputes the absolute level of consumption
using the absolute levels of food and utility spending before taking logs of the imputed values in the PSID, while we use the log of nondurable con-
sumption, food and utility spending throughout. To avoid the need to remove observations with no spending on food away from home, we combine
food at home and food away from into a food spending variable. Second, we use a measure of nondurable consumption that is narrower than that used
in Skinner (who takes the sum of all spending, less mortgage interest, furniture and automobiles and including imputed spending on owner-occupied
housing). This allows us to compare the results we obtain with our imputed spending measures with those in the PSID.
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TABLE 2 Empirical Example: Log nondurable
consumption on house values

(1) (2) (3) (4)
PSID CE (RP) CE (RRP) CE + PSID (nlGMM)

log Incomet−3 0.047** 0.035* 0.047* 0.048*

(0.017) (0.016) (0.021) (0.021)
log Incomet−2 0.065** 0.043* 0.057* 0.045**

(0.016) (0.014) (0.019) (0.018)
log Incomet−1 0.040** 0.023 0.031 0.024

(0.015) (0.014) (0.019) (0.018)
log Incomet 0.109** 0.075** 0.101** 0.123**

(0.022) (0.020) (0.027) (0.026)
log Incomet+1 0.105** 0.073** 0.098** 0.098**

(0.016) (0.015) (0.020) (0.019)
log House value 0.114** 0.087** 0.116** 0.129**

(0.016) (0.016) (0.021) (0.020)
DLR F-stat 0.85
J-statistic 9.32
𝜒2 test (p value) 0.62 0.16
N 5407 5407 5407 5407

Note: Standard errors in parentheses. Standard errors are clustered at the individual level.
Additional controls for age, age squared, family size, log of head's earnings (set to zero if
earnings are zero), a dummy for head's earnings being greater than zero, and year dummies.
Column (1) shows results using the measures of nondurable consumption contained in the PSID
as the dependent variable. Column (2) uses the unscaled regression prediction procedure to
impute consumption spending into the PSID from the CE survey. Column (3) shows results
when nondurable consumption is imputed to the PSID from the CE using re-scaled regression
prediction (RRP). Column (4) shows results when coefficients are estimated using
nonlinear GMM.
*p < 0.05.
**p < 0.01.

FIGURE 2 Standard deviation of log consumption. Note: Authors'
calculations using the PSID. Lines show the standard deviation of log
nondurable spending in the PSID (“Actual”), the standard deviation of imputed
log consumption using regression prediction (“Imputed (RP)”), the standard
deviation of imputed log consumption using re-scaled regression prediction
(“Imputed (RRP)”), and the standard deviation of log consumption using
rescaled regression prediction corrected using the relationship in Proposition 5
(“Imputed and corrected (RRP)”)

The standard deviation of consumption spending shows similar trends in all three series. The fact that imputed and
observed consumption move in similar ways over time is consistent with the findings of Attanasio and Pistaferri (2014)
who use the latter as a check for the former in their analysis. The link between movements in the regression prediction
and RRP imputed measures reflects the stability of the first stage R2 over time.

We also note that the regression prediction measure tends to understate the level of consumption inequality, while RRP
tends to overstate it. This was shown analytically in Section 2. This example reinforces the point that while RRP does not
lead to biased estimates of regression coefficients, it does lead to biased estimates of the unconditional population mean
and variance. When we apply the correction implied by Proposition 5 to the RRP estimate of the standard deviation, we
obtain roughly the correct standard deviation. Once again, this suggests that the key assumption A6 is appropriate in this
application.
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5 SUMMARY AND CONCLUSION

Although using regression prediction to impute the dependent variable in a regression model induces measurement errors
“on the left,” it is not necessarily innocuous. We have shown that the resulting Berkson errors in the dependent variable
result in inconsistent estimates of the regression slope. This procedure has been much used to impute consumption to
data sets with income or wealth, following a suggestion by Skinner (1987). We propose an alternative two-step estimator
(RRP) which overcomes this inconsistency by rescaling by the first stage (imputation) R2. Even then, we have shown that
the usual OLS standard errors are not correct, but they can be corrected with estimable quantities.

Our results have use beyond the applications we demonstrate. For example, suppose a researcher has data with which
to estimate a regression, but suspects that the dependent variables is measured with (possibly non-classical) error. The
researcher also has a validation sample including the same dependent variable and a “gold-standard” measure of the
dependent variable (for example from administrative data). This maps naturally into our set-up, treating the original
measure of the dependent variable as the proxy, Z, and the “gold-standard” measure as 𝑦. If the assumptions of our
framework hold, the RRP estimator is a consistent estimator of the regression parameters of interest.

Our analysis demonstrates that the preferred method of imputation may depend on the intended application. For
example, it matters if the imputed variable will be a dependent variable or an independent variable, or whether the param-
eter of interest is a regression slope, or something else. This poses a challenge to data providers who may wish to include
imputed variables in a standardised data set for multiple users.

Imputation of a dependent variable from a complementary data set is a potentially useful part of the applied
econometrician's toolkit, but it must be done with care.

ACKNOWLEDGEMENTS
We thank Rob Alessie, Richard Blundell, Chris Bollinger, Mick Couper, Abhimanyu Gupta, Jörn-Steffen Pischke, Joachim
Winter and participants in a workshop New Perspectives on Consumption Measures (STICERD LSE, 2016), for useful
comments. Financial support from the ESRC through a grant to Essex University for “Understanding Household Finance
through Better Measurement” (reference ES/N006534/1) is gratefully acknowledged. Crossley and Levell acknowledge
support from the ESRC through the ESRC-funded Centre for Microeconomic Analysis of Public Policy at the Institute
for Fiscal Studies (grant reference ES/M010147/1). Crossley also acknowledges support through the Research Centre on
Micro-Social Change (MiSoC) at the University of Essex, (reference ES/L009153/1) and Levell also acknowledges support
through the grant “Advancing Microdata Models and Methods” (grant reference ES/P008909/1). The collection of PSID
data used in this study was partly supported by the National Institutes of Health under grant number R01 HD069609 and
R01 AG040213, and the National Science Foundation under award numbers SES 1157698 and 1623684.

OPEN RESEARCH BADGES

This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to
reproduce the reported results.

DATA AVAILABILITY STATEMENT
All data used to generate the results in this paper are available at http://qed.econ.queensu.ca/jae/datasets/crossley001/.

REFERENCES
Angrist, J. D., & Krueger, A. B. (1992). The effect of age at school entry on educational attainment: An application of instrumental variables

with moments from two samples. Journal of the American Statistical Association, 87(418), 328–336.
Arellano, M., & Meghir, C. (1992). Female labour supply and on-the-job search: An empirical model estimated using complementary data sets.

The Review of Economic Studies, 59(3), 537–559.
Arrondel, L., Lamarche, P., & Savignac, F. (2015). Wealth effects on consumption across the wealth distribution: Empirical evidence. (Working

Paper 1817): ECB Working Paper Series.
Attanasio, O., Hurst, E., & Pistaferri, L. (2015). The evolution of income, consumption, and leisure inequality in the United States, 1980–2010.

In: Carroll, C. D., Crossley, T. F., & Sabelhaus, J. (Eds.), Improving the measurement of consumer expenditures (pp. 100–140). National Bureau
of Economic Research, University of Chicago Press.

Attanasio, O., & Pistaferri, L. (2014). Consumption inequality over the last half century: Some evidence using the new PSID consumption
measure. American Economic Review: Papers & Proceedings, 104(5), 122–126.

1292

 10991255, 2022, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2921 by T

est, W
iley O

nline L
ibrary on [10/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://qed.econ.queensu.ca/jae/datasets/crossley001/


CROSSLEY ET AL.

Berkson, J. (1950). Are there two regressions? Journal of the American Statistical Association, 45(250), 164–180.
Blundell, R., Horowitz, J., & Parey, M. (2019). Estimation of a nonseparable heterogenous demand function with shape restrictions and berkson

errors. (Technical report): Cemmap.
Blundell, R., Pistaferri, L., & Preston, I. (2004). Imputing consumption in the PSID using food demand estimates from the CEX. (IFS Working

Paper WP04/27): The Institute for Fiscal Studies.
Blundell, R., Pistaferri, L., & Preston, I. (2008). Consumption inequality and partial insurance. American Economic Review, 98(5), 1887–1921.
Bollinger, C. R., & Minier, J. (2015). On the robustness of coefficient estimates to the inclusion of proxy variables. Journal of Econometric

Methods, 4(1), 101–122.
Browning, M., Crossley, T. F., & Weber, G. (2003). Asking consumption questions in general purpose surveys. Economic Journal, 113(491),

F540–F567.
Charles, K. K., Danziger, S., Li, G., & Schoeni, R. (2014). The Intergenerational Correlation of Consumption Expenditures. American Economic

Review: Papers & Proceedings, 104(5), 136–140.
Cross, P. J., & Manski, C. F. (2002). Regressions, short and long. Econometrica, 70(1), 357–368.
Crossley, T. F., Levell, P., & Stavros, P. (2021). Online supplemental appendix to regression with an imputed dependent variable. Journal of

Applied Econometrics.
David, M., Little, R. J. A., Samuhel, M. E., & Triest, R. K. (1986). Alternative methods for CPS income imputation. Journal of the American

Statistical Association, 81(393), 29–41.
Davidson, R., & MacKinnon, J. G. (1988). Double length artificial regressions. Oxford Bulletin of Economics and Statistics, 50(2), 203–217.

https://ideas.repec.org/a/bla/obuest/v50y1988i2p203-17.html
Dumont, M., Rayp, G., Thas, O., & Willemé, P. (2005). Correcting standard errors in two-stage estimation procedures with generated

regressands. Oxford Bulletin of Economics and Statistics, 67(3), 421–433.
Feenstra, R. C., & Hanson, G. H. (1999). The impact of outsourcing and high-technology capital on wages: Estimates for the United States,

1979-1990. The Quarterly Journal of Economics, 114(3), 907–940.
Fisher, J., Johnson, D., Latner, J. P., Smeeding, T., & Thompson, J. (2016). Inequality and mobility using income, consumption, and wealth for

the same individuals. RSF: The Russell Sage Foundation Journal of the Social Sciences, 2(6), 44–58.
Guvenen, F., & Smith, A. A. (2014). Inferring labor income risk and partial insurance from economic choices. Econometrica, 82(6), 2085–2129.
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029–1054. http://www.jstor.

org/stable/1912775
Hoderlein, S., & Winter, J. (2010). Structural measurement errors in nonseparable models. Journal of Econometrics, 157(2), 432–440.
Hyslop, D. R., & Imbens, G. W. (2001). Bias from classical and other forms of measurement error. Journal of Business & Economic Statistics,

19(4), 475–481.
Inoue, A., & Solon, G. (2010). Two-sample instrumental variables estimators. The Review of Economics and Statistics, 92(3), 557–561.
Kaplan, G., Mitman, K., & Violante, G. L. (2020). Non-durable consumption and housing net worth in the great recession: Evidence from easily

accessible data. Journal of Public Economics, 189, 104176.
Klevmarken, A. (1982). Missing variables and two-stage least-squares estimation from more than one data set. (Working Paper Series 62):

Research Institute of Industrial Economics.
Lillard, L., Smith, J. P., & Welch, F. (1986). What do we really know about wages: The importance of non-reporting and census imputation.

Journal of Political Economy, 94(3), 489–506.
Lubotsky, D., & Wittenberg, M. (2006). Interpretation of regressions with multiple proxies. The Review of Economics and Statistics, 88(3),

549–562.
Lusardi, A. (1996). Permanent income, current income, and consumption: Evidence from two panel data sets. Journal of Business & Economic

Statistics, 14(1), 81–90.
Mankiw, G. N., & Shapiro, M. D. (1986). News or noise: An analysis of GNP revisions. Survey of Current Business, 66, 20–25.
Meyer, B., & Sullivan, J. X. (2003). Measuring the well-being of the poor using income and consumption. Journal of Human Resources, 38(4),

1180–1220.
Mulligan, C. (1999). Galton versus the human capital approach to inheritance. Journal of Political Economy, 107(S6), 184–224.
Pacini, D., & Windmeijer, F. (2016). Robust inference for the two-sample 2SLS estimator. Economics Letters, 146(C), 50–54.
Palumbo, M. (1999). Uncertain medical expenses and precautionary saving near the end of the life cycle. The Review of Economic Studies, 66(2),

395–421.
Panel Study of Income Dynamics (2019). Public Use Dataset. Produced and distributed by the Survey Research Center, Institute for Social

Research, University of Michigan, Ann Arbor, MI.
Pischke, J.-S. (1995). Measurement error and earnings dynamics: Some estimates from the PSID validation study. Journal of Business &

Economic Statistics, 13(3), 305–314.
Ridder, G., & Moffitt, R. (2007). The econometrics of data combination. Handbook of Econometrics, 6, 5469–5547.
Schulhofer-Wohl, S. (2011). Heterogeneity and tests of risk sharing. Journal of Political Economy, 119(5), 925–958.
Shea, J. (1997). Instrument relevance in multivariate linear models: A simple measure. The Review of Economics and Statistics, 79(2), 348–352.
Sims, C. A. (1972). Comments and rejoinder (on Okner (1972)). Annals of Economic and Social Measurement, 1(3), 343–345.
Skinner, J. (1987). A superior measure of consumption from the panel study of income dynamics. Economics Letters, 23(2), 213–216.
Skinner, J. (1989). Housing wealth and aggregate saving. Regional Science and Urban Economics, 19(2), 305–324.
Wansbeek, T., & Meijer, E. (2000). Measurement Error and Latent Variables in Econometrics. Amsterdam: Elsevier.

1293

 10991255, 2022, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2921 by T

est, W
iley O

nline L
ibrary on [10/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://ideas.repec.org/a/bla/obuest/v50y1988i2p203-17.html
http://www.jstor.org/stable/1912775
http://www.jstor.org/stable/1912775


CROSSLEY ET AL.

Wooldridge, J. M. (1991). On the application of robust, regression-based diagnostics to models of conditional means and conditional variances.
Journal of Econometrics, 47(1), 5–46.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of the article.

How to cite this article: Crossley, T. F., Levell, P., & Poupakis, S. (2022). Regression with an imputed dependent
variable. Journal of Applied Econometrics. 37(7), 1277–1294. https://doi.org/10.1002/jae.2921

1294

 10991255, 2022, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2921 by T

est, W
iley O

nline L
ibrary on [10/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/jae.2921
https://doi.org/10.1002/jae.2921

	Regression with an imputed dependent variable
	Abstract
	1 INTRODUCTION
	2 CONSISTENCY AND IDENTIFICATION
	2.1. Set-up and assumptions
	2.2. Rescaled regression prediction (RRP)
	2.3. Comparison with other estimation strategies
	2.4. Testing overidentification restrictions
	2.5. Estimating other moments of y
	2.6. Related literature

	3 INFERENCE AND PRECISION
	3.1. Intuition from the one proxy, homoscedastic case
	3.2. Asymptotic standard errors—general case
	3.3. Efficiency of alternative estimators

	4 EMPIRICAL ILLUSTRATIONS
	4.1. Housing wealth effects
	4.2. Consumption inequality

	5 SUMMARY AND CONCLUSION
	REFERENCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


