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A B S T R A C T

Autonomous vehicles (AV)s have become a trending topic nowadays since they have the potential to solve
traffic problems, such as accidents and congestion. Although AV systems have greatly evolved, it still have
their limitations. For example, Google reported that their AVs have been involved in several collisions and
near misses. While most of these collisions and near misses were caused by third parties, the AVs should
be able to predict and avoid them. Events like this show that there is still room for improvement in the AV
system. This paper aims to present a review of the state-of-the-art algorithms proposed to enable AV behaviour
prediction systems to predict trajectories and intentions for pedestrians and vehicles. This will be achieved by
using information from previous literature review papers, recent works, and results obtained using well-known
datasets.
1. Introduction

Road traffic accidents and congestion have posed significant chal-
lenges for many countries today. Road traffic accidents claim the lives
of 1.35 million people annually and it is ranked 8th leading cause
of death worldwide (WHO, 2018). In addition, it has been reported
that road traffic accidents are responsible for 20 to 50 million non-
fatal causalities, and 95% of these accidents are caused by human
errors and imprudence. It reported in the UK that, in 2020 and 2021
there were 92,055 and 119,850 road traffic causalities, respectively,
and 1676 of these causalities led to death (GOVUK, 2020, 2021).
Congestion has a significant negative impact on society, affecting the
economy, environment, public health and safety (Afrin & Yodo, 2020;
Levy et al., 2010). Enforced legislation, advanced driving assistance
system (ADAS), other methods of transportation and road improve-
ments have been used to address these road traffic issues. However, it is
predicted that the number of road users will double by 2050 and these
current measures will not be sufficient (COLONNA, 2018). AVs are a
trending topic nowadays and companies such as Waymo and Uber have
already deployed several AVs on the roads to solve the aforementioned
road traffic problems. Although AV systems have considerably evolved,
they still have limitations such as efficiently and safely navigating in
complex scenarios. This could be achieved by avoiding congestion,
predicting, preventing, or mitigating any road traffic collisions. These
are challenging tasks since the AVs have to share the roads with human
road users, and as reported by World Health Organisation (WHO),
most road traffic collisions are linked to human error and imprudence.
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Another major AV limitation is gaining public confidence that they are
safe to ride. Authors (Petrović et al., 2020) investigated 300 traffic
collisions in California (US) between 2015 and 2017 that involved AVs.
They found that most of the collisions were caused by conventional
drivers, who were following the AVs too close, and violated the right-
of-way, traffic signals, and traffic signs. Google published a paper
reporting the performance of their Waymo driver between 2019 and
2020, to show transparency and make the public more comfortable
and confident with AVs. In the report, the Waymo driver drove 6.1
million miles and was involved in 47 road traffic collisions and near-
miss events - these include both actual and counterfactual simulated
events (Schwall et al., 2020). Most of the reported collisions were
induced by humans where one or more road traffic rules were broken,
such as violating the speed limit, driving on the wrong side of the road,
not obeying the stop sign or the red traffic light signal, performing inap-
propriate lane change or junction merging, not yielding the right of way
to the Waymo driver, and not yielding to the slowing down behaviour
of the Waymo’s driver. Although some of these cited events could not be
avoided by the AV drivers, for example, the conventional drivers hitting
the rear of the AV while it was stationary or slowing down, there were
instances where they could have been. For instance, accidents caused
by changing lane manoeuvre, merging from a junction, or making a
turning manoeuvre, could have been avoided if the AV was able to
make an accurate and longer prediction horizon of the trajectories and
intention of the conventional drivers. This shows that there is still room
for improvement in the AV system, mainly in the behaviour prediction
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of other road users since it enables the AVs to make a risk assessment
of the situation in order to take appropriate action. The goal of this
paper is to review the most relevant works that aimed to predict the
trajectories and intentions of vehicles and pedestrians.

There are several literature reviews covering both traditional and
Deep Learning (DL) techniques to predict the behaviour of vehicles,
for example, Lefèvre et al. (2014), Leon and Gavrilescu (2019), Shirazi
and Morris (2016), Sivaraman and Trivedi (2013) and Mozaffari et al.
(2020). Sivaraman and Trivedi (2013) briefly reviewed the behaviour
prediction of vehicles but at that time this topic was fairly new and
only traditional techniques were reviewed. Lefèvre et al. (2014) pre-
sented a survey and classified vehicle prediction behaviour algorithms
into physics-based, manoeuvre-based, and interaction-aware-based al-
gorithms. They concluded that a behaviour prediction algorithm needs
to consider the interaction between vehicles as well as the scene context
to have a longer prediction horizon. In addition, they reviewed the
existing risk assessment methods for autonomous vehicles and con-
cluded that a risk assessment module was highly dependent on the
behaviour prediction algorithm. In this review, the authors only cov-
ered traditional techniques since DL techniques for vehicle behaviour
prediction were still emerging at the time. Shirazi and Morris (2016)
reviewed techniques used to analyse vehicles, drivers, and pedestri-
ans’ behaviour at road intersections. Only traditional techniques were
analysed, however, the focus was not on the prediction behaviour
of the vehicles. Leon and Gavrilescu (2019) reviewed methods used
for vehicle tracking, behaviour prediction, and decision-making. Both
traditional and DL techniques have been covered. The authors con-
cluded that DL techniques had better results since they are more
robust, flexible and have better generalisation ability. Mozaffari et al.
(2020) performed a systematic and comparative review of the different
DL methods used to predict vehicle trajectories and its intentions.
They presented a more detailed taxonomy of the prediction behaviour
algorithms compared to Lefèvre et al. (2014). They categorised the al-
gorithms based on the type of input, the type of output, and the method
of prediction. Although the review was extensive and very informative,
the authors did not cover in detail what intention behaviour the works
were trying to predict, for example, lane change, overtaking, or making
a turn; and do not provide specific information on what datasets were
used.

The following works have performed pedestrian behaviour predic-
tion reviews, Chen, Ding, et al. (2020), Kong and Fu (2018), Ridel et al.
(2018), Rudenko et al. (2020), Sharma et al. (2022) and Ahmed et al.
(2019a). Kong and Fu (2018) presented traditional and DL techniques
that were used to recognise and predict human action. Ahmed et al.
(2019a) presented a survey on the detection and intention prediction
of pedestrians and cyclists. A review on pedestrian behaviour was
presented by Ridel et al. (2018), where they briefly described the
traditional and DL techniques that were used. Chen, Li, et al. (2020) dis-
cussed the required architecture, the traditional and DL techniques to
detect and predict pedestrian actions. Although, these works reviewed
DL techniques, only a limited amount of works were considered. A
detailed human trajectory prediction survey was done by Rudenko et al.
(2020), where they reviewed a substantial amount of published works
to propose a taxonomy, identify the available datasets and evaluation
metrics, and the limitations of the current methods. However, the
authors did not review methods used to predict pedestrian intentions. A
comprehensive survey was done by Sharma et al. (2022) on pedestrian
intention prediction for AV systems.

To the authors’ knowledge, the work presented by Gulzar et al.
(2021) is the only one that reviewed the behaviour prediction of both
pedestrian and vehicle. The authors presented a novel taxonomy that
unifies both pedestrian and vehicle behaviour prediction problems.
However, the authors did not explore the evaluation metrics, datasets,
features, and the results of the reviewed works.

Unlike the previously cited review works on both pedestrian and
2

vehicle behaviour prediction, this paper:
• Presents a behaviour prediction general problem formulation.
• Presents the most used terminologies in the pedestrian and vehi-

cle behaviour prediction domain.
• Reviews not only pedestrian or vehicle behaviour prediction al-

gorithms, but both of them;
• Briefly presents the most important traditional techniques and

focuses more on the DL techniques for pedestrian, and vehicles
prediction algorithms;

• Summarises the key information extracted from the reviewed
studies on predicting pedestrian and vehicle behaviour in tables.
These tables report the methods employed, the problem that the
algorithms are trying to solve, the datasets used, and the results
acquired.

• Reviews works that have performed prediction behaviour of het-
erogeneous agent traffic.

• Introduce a general framework for a behaviour prediction system
highlighting the system dependence on the AV’s hardware and the
perception module, and its typical outputs. In addition presents a
risk assessment for a general behaviour prediction system.

• Identifies the requirements and challenges to design a pedestrian
and vehicle behaviour prediction system for AV.

• Discusses whether the current techniques have met the previously
mentioned requirements, and suggests future works.

Some of the commonly used terminologies in the pedestrian and ve-
hicle behaviour prediction literature are listed below (Mozaffari et al.,
2020).

• Object behaviour: means the object trajectories or intentions.
• Object trajectory: vectors with a sequence of data, typically

comprised of tracking information that describes the path an
object had followed.

• Object intention: is a course of actions that an object intends to
perform to achieve its goal. In the vehicle domain, these courses
of action are known as manoeuvres, such as, turning, changing
lanes, stopping, cut-in/cut-out, etc. In the pedestrian domain,
these intentions are crossing/non-crossing, stopping, etc.

• Observation time horizon (OTH): the time that an algorithm
observes the past behaviours of an object to predict its future
behaviour.

• Prediction time horizon (PTH): Most of the reviewed works
use prediction horizon to refer to the time that an algorithm can
predict an object’s behaviour before it happens. However, in some
works, the term ‘prediction’ is replaced with ‘anticipation’, and it
is defined as the time that an algorithm can predict an object’s
behaviour before it begins. This paper adopts the term prediction
and its first meaning.

• Ego Vehicle (EV): observes the others traffic agents using on-
board sensors.

• Target object: the object that the EV is observing to predict its
behaviour.

• Surrounding objects: the objects that may interact with and
affect the behaviour of the target object.

• Multi-modal behaviour: means that an observed history of
behaviours could lead to multiple several potential future be-
haviours.

• Trajectory prediction: means to predict the future motion of
an object given a time frame of its and/or surrounding object’s
trajectories, contextual information, and interactions between the
objects in the scene.

• Intention prediction: usually uses the same history informa-
tion that trajectory prediction uses, however, the system aims to
predict the future discrete action of the target object.

• Interaction: influences that one or more objects have on each

other.
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Fig. 1. Object behaviour prediction full pipeline process. The detection and classifi-
cation stage outputs the object position, size, type, bounding box, segmentation, and,
global and local context information. The object tracking stage outputs the ID for each
detected object and its dynamics (e.g., speed). The output of the object behaviour
prediction module can be the object’s intention and its future trajectory.

A typical AV system architecture comprises perception, planning,
and acting modules (Durrant-Whyte, 2001; Galvao et al., 2021; Pendle-
ton et al., 2017; Siegwart et al., 2011). However, the Waymo driver
system has an additional module called behaviour prediction, which
comes before the planning module (Waymo, 2020). The perception
module is responsible to inform what is around the AV, for example,
static objects (e.g., traffic lights, traffic signs, road works, etc.) and
non-static objects (e.g., pedestrians, vehicles, etc.), and traffic road
contexts (e.g., road lanes, edges, curbs, pedestrian crossings, etc.). The
behaviour prediction module is responsible to anticipate the behaviour
(e.g., trajectories and intentions) of other traffic agents. The planning
module takes the perceived and predicted information to decide what
action the AV should take in order to achieve its final goal. Finally, the
acting module performs the actual motion of the AV through actuators
that control the steering wheel, accelerator, and brakes. This paper
adopts the Waymo driver architecture, that behaviour prediction is a
separate module in an AV system.

This paper is structured as follows: Section 2 presents a general
problem formulation for pedestrian and vehicle behaviour predic-
tion; Sections 3 and 4 present the most relevant algorithms used
to predict the behaviour of vehicles and pedestrians, respectively;
Section 5 presents behaviour prediction algorithms for heterogeneous
road agents; and Section 6 discusses the findings.

2. Behaviour prediction general problem formulation

A full pipeline of an object behaviour prediction system, as depicted
in Fig. 1, is composed of detection and classification, tracking, and
prediction stages. This paper only reviews works that studied the
behaviour prediction stage. Literature reviews on the detection and
tracking can be found in the following works (Abbas et al., 2021;
Ahmed et al., 2019b; Antonio & Romero, 2018; Dendorfer et al., 2021;
Galvao et al., 2021; Ragesh & Rajesh, 2019; Shobha & Deepu, 2018).

Based on the vehicle and pedestrian intention prediction problem
formulation proposed by Achaji et al. (2022), Biparva et al. (2021),
Bouhsain et al. (2020), Fernández-Llorca et al. (2020), Gazzeh and
Douik (2022), Izquierdo et al. (2021), Kotseruba et al. (2020), Naik
3

Fig. 2. An example of lane change prediction problem: F0 is where the vehicle
manoeuvre starts, F1 is where the actual manoeuvre happens, and F2 is the end of
the manoeuvre.

et al. (2022), Piccoli et al. (2020), Rasouli et al. (2019, 2020), Vitas
et al. (2020), Yang, Zhang, et al. (2022), Yao et al. (2021b), Zeng
(2022), Zhang, Angeloudis, and Demiris (2022), and Xue et al. (2018),
a general intention prediction problem formulation is as follows: a
sequence of feature vector {𝐹𝑡−𝑂𝑇𝐻 ,… , 𝐹𝑡} extracted from a given
sequence of video frames {𝑡 − 𝑂𝑇𝐻,… , 𝑡} acquired from an image
sensor is used by a model to determine the probability of the target
agent intention 𝐼 𝑡+𝑛𝑎 𝜖{0, 1}, where 𝑡 is the specific time of the last
observed frame and 𝑛 is the number of frames from the last observed
frame to the final frame of the event, also known as time-to-event
(TTE). The prediction intention estimation can be described by the
equation

𝑝(𝐼𝑎|𝐹𝑡−𝑇𝑜𝑏𝑠∶𝑡). (1)

Based on the vehicle and pedestrian trajectory prediction problem
formulation proposed by Altché and de La Fortelle (2017), Dai et al.
(2019), Deo and Trivedi (2018a, 2018b), Kim et al. (2017), Lee, Choi,
et al. (2017), Li et al. (2019a, 2019b), Mangalam et al. (2020), Mes-
saoud et al. (2019), Mohamed et al. (2020), Sadeghian et al. (2019),
Sun et al. (2020), Vemula et al. (2018), Xin et al. (2018), Xu et al.
(2018), Zhang et al. (2019), Zhu et al. (2019), and Gupta et al. (2018),
a general trajectory prediction problem could use the same sequence of
feature vector used by intention prediction algorithm. However, in this
case, the sequence’s purpose is to predict the future path of the target
agent, spanning up to the specified PTH. The trajectory prediction
estimation can be described by the equation

𝑝(𝐹𝑢𝑡𝑢𝑟𝑒𝑃𝑎𝑡ℎ𝑡∶𝑃𝑇𝐻 |𝐹𝑡−𝑇𝑜𝑏𝑠∶𝑡). (2)

Fig. 2 depicts an example of predicting a vehicle’s lane change
manoeuvre. Here, image sequences from 𝑡 −𝑁 to 𝑡 are used to extract
a sequence of feature vectors, which are subsequently used to make
predictions. In this case, a successful lane change manoeuvre predic-
tion occurs when the vehicle’s intention is correctly recognised before
reaching the F1 stage.

The differences among the reviewed problem formulation of vehicle
and pedestrian behaviour prediction are:

• Some problem formulations are for trajectories and others for
intention.

• The input features used may be different, for example, some
authors have used only position and speed, while others have
used local and global context vectors.

• Some considered top-view and others considered on-board view
datasets.

• Authors have used different predictive models.

The listed items above are further discussed in the following Sec-
tions 3–5.

In the literature, some works use predicted intentions to improve
the accuracy of the future trajectories, and other works use predicted
trajectories to improve the accuracy of the predicted intention (Biparva
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Fig. 3. General interactions among traffic agents and their environments. Object 1 is the target object (blue circled), the blue arrow shows the direct interaction between the
target object and object 2; the orange arrows show the interaction between object 2 and objects 3, 9, 11, 12, and 13; the yellow arrow shows the interaction between object 17
and object 3.
et al., 2021; Mozaffari et al., 2020). These works will be discussed in
the upcoming sections.

Before discussing the behaviour prediction of pedestrians and ve-
hicles, it is important to understand their potential interactions. As
depicted in Fig. 3, interactions among different traffic agents can
cascade and get very challenging, for example, in order to predict the
actions of object 1, it might be required to consider the actions of the:

• Object 2, since it can change direction and velocity.
• Object 3, since its action will affect the action of object 2.
• Object 17, since it will affect the action of object 3.
• Object 9, since it will affect the action of object 2.
• Object 13, since it can make a right turn, which will affect the

action of object 2.
• Object 11 or 13, since they may break the law by not obeying the

red traffic light.

3. Vehicle behaviour prediction

In the vehicle behaviour prediction domain, the literature often
uses the terms prediction behaviour of drivers/vehicles or prediction
behaviour of target/surrounding vehicles. The former usually means to
predict the behaviour of the ego vehicle using its internal data, such as
the steering angle, brake pedal position, velocity, speed, indicators sta-
tus, etc. Berndt and Dietmayer (2009), Girma et al. (2020), Raimundo
and Favio (2021), Xing et al. (2017). This approach is suitable for AV
systems when considering vehicle-to-vehicle communication. The latter
approach involves the ego vehicle using on-board sensors to gather
information from the surrounding vehicles to predict their behaviour.
In this review, only the latter approach is reviewed, as vehicle-to-
vehicle communication is not yet available, and AVs would still share
roads with conventional human drivers.

Vehicle behaviour prediction is a crucial component of the AV
behaviour prediction system as it would enable the AV to perform risk
assessment, plan future movements, and make appropriate decisions
to avoid/mitigate the impact of collisions. Ideally, a vehicle behaviour
4

Table 1
Motion, context and intention features that can be used to predict vehicle behaviour.

Information Features

MOTION Target Vehicle (TV): Lateral/longitudinal position, velocity,
acceleration, yaw, yaw rate, and relative speed.
TV-to-lane: lateral offset, and lateral speed.
TV-to-Surrounding Vehicle (SV): distance from surrounding vehicles.

CONTEXT Road: Lane marking, number of lanes, lane width, lane curvature,
type of lines, entries, exits, left/right/forward arrows, crosswalks,
traffic light, traffic signs, type of roads (urban, country,
highway-motorway), bumps, road holes, road works, left/right-hand
side traffic, and junctions.
Vehicle: indicators, brake lights, warning lights, type of the vehicle,
and sirens’ light status.
Other road agents: pedestrians, animals, cyclists, and trams.
Environment: sunny, snowing, rainy, foggy, and dark.

INTENTION Braking, turning left/right, lane keeping, left/right lane change,
speeding, normal driving, aggressive driving, abnormal driving,
merging, exiting, cutting in/out, and yielding.

prediction algorithm should be fast, cost-effective, accurate, generalise
well in different traffic scenes, consider the interdependence between
agents, and have a long prediction horizon. A long prediction horizon
provides the AV with more time to make decisions and take appropriate
actions. A typical vehicle behaviour prediction pipeline consists of
multiple steps, starting with the detection of the target vehicle and
the surrounding vehicles. This detection information is used to obtain
tracking information. Subsequently, this tracking information is used
as an observation feature to predict future trajectories. In order to
enhance the quality and duration of predictions, context information of
the traffic scene and the intention manoeuvre of other vehicles can be
considered. Table 1 provides the type of motion, context, and intention
information that has been and could be used by the researchers to
predict vehicle behaviour.

Although vehicles have some characteristics that simplify their be-
haviour prediction, such as constrained movement due to their inertial
property, having to obey traffic road rules, and navigating inside the
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road boundaries. It is still a challenging task since their behaviour is
dependent on other vehicles’ actions, traffic regulations, road geometry,
and different driving environments (Lefèvre et al., 2014; Mozaffari
et al., 2020). Moreover, vehicles have multi-modal behaviour, different
types of vehicles might provide different motion information, and
prediction can be affected if surrounding vehicles are occluded.

The main two sources of data used to predict the behaviour of
vehicles are top-view and on-board sensors. Top-view data are captured
from static sensors usually installed on tall buildings, while on-board
sensors are captured from sensors installed on the EV. Top-view data
have the advantage of providing more precise information since the
acquired data have better quality, the vehicles surrounding the TV
are captured, and vehicles are not easily occluded. However, it only
covers a specific and fixed portion of the traffic scene, limiting the
algorithm to generalise to other traffic scenarios. Top-view sensors
are typically used in two types of traffic environments: highways-
motorways and complex traffic scenes, such as busy urban areas and
junctions. Highway-Motorway datasets can suffer imbalanced samples,
where there are more instances of constant velocity behaviour than
the specific manoeuvres of interest (Altché & de La Fortelle, 2017).
On-board sensor data can capture different traffic scenarios, however,
its data quality can be affected by noises, surrounding vehicles can be
occluded, and in order to detect all the vehicles surrounding the EV
and the TV, more than one sensor might be required (e.g., front, rear,
and sides cameras.) (Izquierdo et al., 2021). On-board sensor data is
particularly advantageous for AV applications because the algorithms
that use them, could be directly integrated into AVs, which are already
equipped with on-board sensors. Several sensors, such as cameras,
radar, and LIDAR could be used to acquire both top-view and on-board
data (Izquierdo et al., 2019; SIMulation, 2007; Zhou et al., 2020; Zyner
et al., 2019). However, this research mainly focuses on works that have
used camera sensors. For more information about the available datasets
for vehicle behaviour prediction, please refer to Izquierdo et al. (2021).
Table 2 summarise the most relevant vehicle trajectory and intention
prediction works from 2009 to 2022. From the table, it is observed the
following:

• Shift to Deep Learning and NGSIM Dataset: Up to 2016, the
majority of the works used traditional techniques and their OWN
datasets, however, after 2016 most of the works adopted DL
techniques and used the NGSIM dataset.

• Expanding Information Sources: Vehicle behaviour prediction
algorithms have evolved from using only motion information to
incorporating additional sources, including manoeuvre, interac-
tion, and driver-style information.

• Limited Use of Other Datasets: While the NGSIM dataset gained
popularity, other datasets such as Apollo, KITTI, LISA, INTERAC-
TION, HighD, and PREVENTION were rarely used.

• Trajectory Prediction Dominance: The majority of the research
efforts was to predict trajectories. It was not until 2020 that
more research began to address the prediction and recognition
of vehicle intentions.

• Focus on Lane Changing and Turning Manoeuvres: Most re-
search works focused on predicting the trajectories and intentions
related to lane changing and turning manoeuvres. Other types
of manoeuvres such as reversing, braking, and U-turns were
seldomly used.

• Evaluation Metrics: The most common evaluation metric for
trajectory prediction was the Root Mean Square Error (RMSE),
while for intention prediction, accuracy was the predominant
evaluation metric.

The following two subsections discuss the algorithms used to predict
ehicle behaviour. The first covers the algorithms used to predict
rajectories, and the latter, the algorithms used to detect and predict
5

ehicle intention.
3.1. Trajectory prediction

As reported in Table 2, vehicle trajectory prediction has been
achieved using one or more of the following approaches: physics-based,
manoeuvre-based, or interaction-aware motion models (Lefèvre et al.,
2014). Physics-based motion models were one of the first approaches
to be proposed and it uses the principles of physics to predict vehicle
motions. This approach is computationally efficient, meets real-time
requirements, and does not require the dataset to be human-labelled.
However, they are less suitable for complex scenarios like busy urban
scenarios and junctions. This is because they do not take into account
the TV intentions, the contextual information of the scene, or the
interaction between the TV and the SVs. This lack of information
limits the prediction horizon for the EV to less than 1 s (Lefèvre
et al., 2014). In order to overcome the limitation of a short prediction
horizon associated with the physics-based approach, manoeuvre-based
approaches were introduced. In the manoeuvre-based approach, the EV
uses the predicted intention of the TV to predict future trajectories. This
increases both the trajectory prediction horizon and accuracy, as the
predicted trajectory would match the predicted intention. However, if
the predicted manoeuvre is incorrect, the whole predicted trajectory
may also be inaccurate. The interaction-aware approach uses the tra-
jectories and the intentions of both the TV and the SVs to predict the
TV trajectory. This approach further extends the prediction horizon
and improves the accuracy of the predicted trajectories. On the other
hand, it comes with complexities in implementation, demands greater
computational power, and raises questions about how to determine
which vehicles should be considered as SVs, and not all SV might be
reliably detected by the EV.

The previously cited approaches have been implemented using ei-
ther traditional or DL techniques. Traditional techniques encompass
Linear methods like KF and Switching Linear Dynamic Models, as
well as Non-linear methods such as EKF, UKF, Switching Non-Linear
Dynamic Models, Particle filters, Bayesian filtering, Monte Carlo sim-
ulation, Naive Bayes Classifiers, Dynamic Bayesian Networks, HMM,
SVM, case-based reasoning, random decision Forest, Artificial Neural
Network (ANN), SVM, and Gaussian Process NN (Biparva et al., 2021).
Traditional techniques have the advantage of being fast to infer and
not requiring an extensive dataset. However, they struggle to generalise
well and have limited prediction horizons. Additionally, most tradi-
tional techniques do not inherently account for vehicle interactions
and may require additional features. The DL techniques used in the
literature were based on ANNs, Convolutional Neural Networks (CNN),
Fully Connect Networks (FCN), Recurrent Neural Networks (RNN),
Graph Convolutional Neural Networks (GCNN), Gated Recurrent Unit
(GRU), or Long-short Term Memory (LSTM) (Biparva et al., 2021). The
main advantage of DL techniques is their ability to implicitly extract
the required features to predict vehicle behaviour. Some DL techniques
even consider the interaction between vehicles by themselves, for
instance, RNN and GCNNs. Yet, DL techniques may not address the
multi-modal behaviour of vehicles as they tend to average the multiple
possible modalities to minimise the regression error. They also require
an extensive dataset to generalise well, take longer to train, may suffer
gradient vanishing, and may not provide accurate trajectory prediction
for longer time horizons.

The following paragraphs will discuss the most relevant DL algo-
rithms used to predict vehicle trajectories.

Altché and de La Fortelle (2017) and Kim et al. (2017), to the
authors’ knowledge, were one of the first ones to use LSTM-RNN to
predict the future trajectories of the surrounding vehicles by using their
past trajectories as input feature. Park et al. (2018) predicted future
trajectories using an encoder–decoder LSTM. The encoder encodes past
trajectories of the surrounding vehicles, while the decoder decodes
future trajectories in an Occupancy Grid Map (OGM). The authors

also applied a beam search algorithm, to reduce the error propagation
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Table 2
Relevant works for vehicle trajectory and intention prediction.

Work Methods Algorithm objectives Dataset-results

PF+RBF Hermes et al. (2009) Trajectory prototype. Particle Filter (PF) to track and
generate motion hypothesis. RBF to classify trajectories.
QRLCS to measure similarity between trajectories.
Evaluation: RMSE.

Predict future trajectories of the
ego and surrounding vehicles.

OWN
See Table 3.

Lim et al. (2010) Extended Kalman Filter
Evaluation: Mean Distance Error.

Estimate Position and Velocity. OWN
Graphs.

Kasper et al. (2012) Bayesian Networks.
Occupancy Grid Map (OGM).
Evaluation: FP, FN, and Accuracy.

Detection of lane change
manoeuvre.

OWN
Accuracy: 83.8%.

Kumar et al. (2013) SVM.
Bayesian Filter.
Evaluation: Recall, Precision, and F1-score.

Predict lane change manoeuvres
of the EV.

OWN
Recall: 1
Precision: 0.8
F1-score: 0.9
APT: 0.97 s

Yoon and Kum (2016) Target lane model to predict in which lane the target vehicle
will go.
3rd Order Linear System to model trajectory.
Auto encoder to cluster the available trajectories into 3
prototype trajectories.
Multi-layer Perceptron (MLP) network to predict the target
lane and the probability for each one of the prototype
trajectories.
OTH/PTH: (1 s, 2 s, 3 s, 4 s,5 s)/5 s.
Evaluation: Prediction time and absolute error of lateral
position.

Predict lane change of
surrounding vehicles.

NGSIM
Absolute error: 0.7 m.

Khosroshahi et al. (2016) Features: linear changes, angular changes, and angular
changes histogram.
Multi-layer LSTM.
Evaluation: Accuracy.

Classify manoeuvre intention at
intersections.

KITTI
2 classes: 85%.
3 classes: 75%.
8 classes: 65%.
12 classes: 40%.

Dueholm et al. (2016) Detection: DMP + Feature Pyramid + HOG
Tracking: MDP + TLD.
Trajectory: KF.
Evaluation: Recall.

Predict future trajectories of the
surrounding vehicles.

OWN
Recall: 92%

Kim et al. (2017) LSMT-RNN.
OGM.
Data-driven approach.
PTH: 0.5 s, 1 s, and 2 s.
Information: Position, the velocity of surrounding vehicles,
and velocity and yaw rate of ego vehicle.
Evaluation: Mean Absolute Error(MAE).

Predict the future position of the
surrounding vehicle using OGM.

OWN
MAE:1.51 for 2 s; 0.88 for 1 s;
and 0.59 for 0.5 s.

Lee, Kwon, et al. (2017) CNN.
Evaluation: Accuracy.

Predict lane change manoeuvre. OWN
Accuracy: 89.87%

DESIRE
Lee, Choi, et al. (2017)

Observation, sample generation, and rank refinement.
CVAE + RNN (GRU) to predict multi-modal trajectories
considering latent variables.
IOC (based on Reinforcement Learning) to rank and refine
the predicted trajectories.
Spatial Grid-Based Pooling Layer to extract interaction
feature.
SCF to combine agents’ interactions and scene context.
OTH/PTH: 2 s/4 s.
Evaluation: L2 distance error and miss rate.

Predict the future position of the
surrounding vehicles considering
static and dynamic scene context
and interaction between agents.

SDD KITTI
See Table 3.

Altché and de La Fortelle (2017) LSTM encoder–decoder.
Evaluation: average RMSE.

Predict the target vehicle’s future
position by considering
surrounding vehicles.

NGSIM
See Table 3.

Xing et al. (2017) Two LSTM networks, one to encode past trajectories and
predict intention manoeuvre, the other to encode past
trajectories, and the predicted manoeuvre to decode future
trajectories.
Evaluation: lateral and longitudinal RMSE.

Predict vehicle trajectory using
past trajectories and predicted
manoeuvre intention.

NGSIM
See Table 3.

Park et al. (2018) LSTM encoder–decoder.
OGM.
Beam search algorithm.
OTH/PTH: 3 s/2 s.
Evaluation: MAE.

Predict the future position of the
target and the surrounding
vehicles.

OWN
MAE (Grid): 1.27 for 2 s; 1.14
for 1.6 s; 0.99 for 1.2 s; 0.84
for 0.8 s; and 0.64 for 0.4 s.

(continued on next page)
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Table 2 (continued).
Work Methods Algorithm objectives Dataset-results

M-LSTM
Deo and Trivedi (2018b)

Tracking history and Manoeuvres classification (Lane change,
brake, and normal driving) to allow multi-modal prediction.
LSTM encoder–decoder to encode tracked history motions
and to decode multi-modal future motions.
OTH/PTH: 3 s/5 s.
Evaluation: RMSE.

Trajectory prediction of
surrounding vehicles considering
the interaction between traffic
agents.

NGSIM
See Table 3.

C-VGMM+VIM
Deo et al. (2018)

HMM for manoeuvre recognition.
IMM + VGMM to predict trajectories.
Markov Random Field for vehicle interaction.
PTH: 5 s
Evaluation: Manoeuvre classification accuracy, mean and
median error for the trajectory prediction.

Manoeuvre Intention (lane
change, overtaking, cutting-in,
drift into ego lane) and
Trajectory Prediction.

LISA-A
MAE overtakes and cut-ins: 2.49
for 5 s; 1.94 for 4 s; 1.39 for 3
s; 0.82 for 2 s; and 0.29 for 1 s.
MAE stop-and-go: 2.17 for 5 s;
1.65 for 4 s; 1.14 for 3 s; 0.64
for 2 s; 0.20 for 1 s.
Accuracy for overtakes and
cut-ins: 55.89%
Accuracy stop-and-go: 87.19%
Time: 6FPS.

CS-LSTM
Deo and Trivedi (2018a)

LSTM encoder–decoder to encode previous motion
information and to decode future motion.
Convolutional Social Pooling to learn agent’s
interdependence motions.
Multi-modal prediction (6 classes: RLC, LLC, NLC, brake, and
normal).
OTH/PTH: 3 s / 5 s.
Evaluation: RMSE and Negative log-likelihood (NLL).

Predict future motions of
surrounding vehicles taking into
consideration motion, spatial
configuration, and
interdependence between agents.

NGSIM
See Table 3.
Computation time: 0.29 s
(reported by Li et al. (2019b)).

SA-LSTM
Su et al. (2018)

Surrounding-Aware LSTM.
OTH: 6, 9, and 12 frames.
Evaluation: Accuracy.

Predict lane change manoeuvre
and future trajectories.

NGSIM
Avg. Accuracy: 86.19%.

MATF
Zhao et al. (2019)

Hybrid Model (LSTM + CNN)
LSTM to encode past trajectories for multiple agents.
CNN to encode context information.
MATF to fuse interaction, spatial structure, and context
information.
Conditional generative adversarial training to detect
uncertainty in predicting manoeuvres.
Environment: Highway-Motorway and pedestrian crowd
scenes.
OTH/PTH: 3 s / 5 s.
Evaluation: RMSE.

Trajectory prediction by
considering social interaction and
scene context.

NGSIM
See Table 3.

Benterki et al. (2019) Features: local position, velocity, acceleration, distance to
lane markings, yaw angle and rate, lateral velocity, and
acceleration.
ANN and SVM.
Evaluation: Recall, Accuracy, Precision, and F1-score.

Predict lane change manoeuvres
of the surrounding vehicles.

NGSIM
ANN Accuracy: 98.8%.
Prediction: 2.4 s.
SVM Accuracy: 97.1%.
Prediction: 1.9 s.

ST-LSTM
Dai et al. (2019)

Spatio-temporal LSTM.
Short-cut connections to avoid gradient vanishing.
Weighted sum to integrate the outputs.
Consider the 6 vehicles around the target vehicle.
OTH/PTH: 3 s/6 s.
Evaluation: RMSE.

Trajectory prediction by
considering spatial and temporal
information.

NGSIM I-80
See Table 3.

GRIP
Li et al. (2019b)

Fixed Graph Convolutional (10 blocks) Model to represent
interactions between agents.
Single LSTM encoder–decoder to make trajectory predictions.
OTH/PTH: 3 s/5 s.
Hardware: 4.0 GHz i7, 32GB memory, and NVIDIA Titan XP.
Evaluation: RMSE.

Predict surrounding vehicle
trajectories considering the
interaction between them.

NGSIM
See Table 3.
Computation time: 0.05 s.

GRIP++
Li et al. (2019a)

Dynamic Graph Convolutional (3 blocks) Model to represent
interactions between agents.
Three GRU-RNN encoder–decoder to make trajectory
predictions.
OTH/PTH: 3 s/5 s.
Hardware: 4.0 GHz i7, 32GB memory, and NVIDIA Titan XP.
Evaluation: RMSE, WSADE, and WSFDE.

Predict surrounding vehicle
trajectories considering the
interaction between them.

ApolloScape
WSADE: 1.2588.
WSFDE: 2.3631.
NGSIM
See Table 3.
Computation time: 0.02 s.

NLS-LSTM
Messaoud et al. (2019)

Local and non-local social pooling.
LSTM encoder–decoder.
Evaluation: RMSE.

Predict vehicle trajectory using
local and non-local social pooling.

HighD
See Table 3
NGSIM
See Table 3

(continued on next page)
7



Expert Systems With Applications 238 (2024) 121983L.G. Galvão and M.N. Huda
Table 2 (continued).
Work Methods Algorithm objectives Dataset-results

Benterki et al. (2020) Hybrid Model
ANN to classify manoeuvres.
LSTM to predict trajectories.
OTH: 3 s, 5 s, and 6 s.
PTH: 1 s, 3 s, and 5 s.
Evaluation: RMSE and classification accuracy.

Manoeuvre classification and
trajectory prediction.

NGSIM
See Table 3

Fernández-Llorca et al. (2020) Two stream CNN (Disjoint).
Spatio-temporal Multiplier Networks (ST) (cross-stream
connections).
ResNet-50 to extract both temporal and contextual
information.
OTH/PTH: 2 s/(1–2 s).
4 Sizes of RoI are used x1, x2, x3 and x4.
Dense optical flow to extract movement context.
Evaluation: Classification accuracy and Prediction Accuracy.

Recognition and prediction of
lane change/keep manoeuvre
using stacked visual cues from
videos.

PREVENTION
Disjoint
Classification Accuracy:89.46%.
Prediction Accuracy:91.02%.
ST
Classification Accuracy: 90.30%.
Prediction Accuracy: 91.94%.

ARIMA-Bi-LSTM
Zhang and Fu (2020)

Off-line Bi-LSTM.
Online ARIMA + Bi-LSTM.
PTH: 5 s.
Evaluation: RMSE and Accuracy.

Predict trajectories and turning
manoeuvres at intersections.

NGSIM-LP
GS: lateral 0.032; long. 0.1093.
TL: lateral 0.2719; long. 0.1592.
TR: lateral 0.1168 long. 0.3954
Accuracy: 94.2% at 1 s, 93.5%
at 2 s, and 74.5% at 3 s.

Izquierdo et al. (2021) TSM to differ between target and surrounding vehicles.
TIM to extract motion pattern.
Greyscale image to extract context information.
Compared various CNN models to detect and predict
manoeuvres.
OTH: 1 s.
Evaluation: Accuracy, precision, recall, anticipation (s), and
AUC.

Detection and prediction of lane
change performed by surrounding
vehicles. Present a baseline to
compare human performance
against automated systems. Briefly
compared the available datasets.

PREVENTION
Manoeuvre Detection:
Accuracy: 82.7%.
Anticipation:2.28 s.
Manoeuvre Prediction:
Accuracy: 83.4%.
Prediction: 0.72 s.

Biparva et al. (2021) 4 action recognition models were evaluated: Two-stream
CNN, Two-stream Inflated 3D CNN, STM network, and
SlowFast Network.
4 Sizes of RoI.
Dense optical flow to extract movement context.
OTH:PTH: 2 s/(1–2 s).
Evaluation: Accuracy (%).

Recognition and prediction of
lane change/keep event using
stacked visual cues from videos.

PREVENTION
Accuracy for STM: 91.91% for 2
s; 86.51% for 1 s.

ST-Conv-LSTM
Huang et al. (2021)

Spatial–temporal Convolutional LSTM.
OTH/PTH: 2.4 s/1 s.
Evaluation: Accuracy.

Predict lateral (lane change) and
longitudinal (holding, sharp
acceleration, deceleration, and
stopping) intention.

BDD100K
Accuracy: 57.9%.

IPTM-LSTM
Zhang, Song, et al. (2021)

Intention encoder–decoder LSTM.
Trajectory encoder–decoder LSTM.
IPTM.
Evaluation: Accuracy and RMSE.

Use intention to predict trajectory
of travelling straight, turning
left/right and braking.

NGSIM-LP
Avg. Intention Accuracy:
90.94%
RMSE: See Table 3
INTERACTION
Avg. Intention Accuracy:
86.92%.

LSTM-GAN
He et al. (2021)

LSTM + Generative Confrontation Network.
Evaluation: Accuracy.

Predict vehicle turning intention. OWN
Accuracy: 90.9%.

Luan et al. (2022) Game theory model to predict the intention of the driver.
Recognise the vehicle behaviour using past vehicle state.
Nash-optimisation function.
Evaluation: Lateral position error, yaw rate error,
probability error.

Predict the trajectory of lane
change manoeuvres using driver
style (aggressive or conservative)
and behaviour recognition.

NGSIM
Graphs.

AI-TP
Zhang, Zhao, et al. (2022)

Approach: Data-driven.
Features: Past trajectories.
Model(s): graph attention mechanism (AI-TP), ConvGRU,
Evaluation: MSE.

Trajectory prediction. NGSIM
See Table 3
caused by the greedy strategy that the decoder LSTM uses to maximise
the output probabilities.

Deo and Trivedi (2018b) presented a Manoeuvre-LSTM model that
encodes motion and interaction of the surrounding vehicles to assign
probabilities for each manoeuvre. The assigned probabilities enable
multi-modal trajectory predictions. During that period, the algorithm
achieved better RMSE results than the state-of-the-art algorithms, but
the RMSE values for long PTH were still high. Although the algo-
rithm considered the interaction between vehicles, it did not consider
8

their inter-dependencies. In order to overcome this limitation, (Deo &
Trivedi, 2018a) combined convolutional social pooling and encoder–
decoder LSTM to predict manoeuvres and future trajectories. The con-
volution social pooling can learn the interaction and interdependence
of the surrounding vehicles. The downside of the algorithm is that
the social tensor of the convolutional social network was fixed to the
defined spatial grid around the target vehicle, and it did not consider
visual context information. The disadvantage of the last two algorithms
is that the predicted trajectories are dependent on the manoeuvre classi-
fication performance. For example, Deo and Trivedi (2018a) compared

their algorithm with and without considering manoeuvre intention
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Fig. 4. Vehicle Trajectory Prediction Performance using the NGSIM dataset, with an
OTH of 3 s, and PTH ranging from 1–5 s (See Table 3).

and they reported that the algorithm without manoeuvre had better
performance.

Dai et al. (2019) claimed that the existing LSTM models suffered
from vanishing gradients and were not able to learn spatial interactions
between traffic agents. Therefore, they modified the conventional LSTM
model by adding shortcut connections and treated spatial interaction
between traffic agents as time series. Their model performed better
than the M-LSTM (Deo & Trivedi, 2018b) model, which considered
manoeuvre prediction information.

Li et al. (2019b) presented the Graph-based Interaction-aware Tra-
jectory Prediction (GRIP) algorithm to predict future trajectories of
the TV considering the SV information. GRIP used a GCNN to learn
interaction patterns between the TV and SVs. The learnt patterns were
then fed to an encoder–decoder LSTM model for predicting future
trajectories. GRIP became the state-of-the-art algorithm and was one
of the few works to report inference times. The disadvantage of GRIP
is that it used a fixed graph structure to learn the interaction between
agents, which may not be suitable for complex urban scenarios. In
response, Li et al. (2019a) proposed GRIP++, an enhanced version that
used both fixed and dynamic graphs to learn the interaction between
agents. GRIP++ offered improved computational efficiency compared
to the existing algorithms.

Benterki et al. (2020) proposed a hybrid method where they com-
bined ANN and LSTM. ANN was first used to classify the target vehicle’s
manoeuvre (LLC, RLC, and NLC) using the following manually se-
lected features: yaw, yaw rate, lateral velocity, and lateral acceleration.
Subsequently, the LSTM used the vehicle’s position and the predicted
manoeuvre to predict future trajectories. While the authors tested their
algorithm in a real vehicle scenario, only three tests were performed:
two for right lane changes and one for left lane-change manoeuvre.

Luan et al. (2022) used vehicle behaviour and driver style to predict
future trajectories. History trajectories of the surrounding vehicles were
used to determine the type of driver, whether aggressive or conserva-
tive. Then, the predicted type of driver was used by a game theory
model to predict the intention of the driver. Vehicle behaviour was
recognised by using past vehicle state. A comprehensive trajectory
was then predicted by feeding the predicted driver intention and the
recognised vehicle behaviour into two Nash-optimisation functions.
The authors claimed that with the inclusion of the type of driver
information, the prediction of the vehicle trajectory was improved,
9

however, their results could not be directly compared to state-of-the-art
algorithms such as (Deo & Trivedi, 2018a; Li et al., 2019a, 2019b).

The previously cited works did not take into account the visual
context of the scene, which is an important feature as it considers
the constraints of the environment. Authors (Lee, Choi, et al., 2017)
presented a Deep Stochastic Inverse Optimal Control RNN encoder–
decoder (DESIRE) network that considers scene context. The DESIRE
uses an RNN encoder to encode past trajectories, a Conditional Vari-
ational Auto-Encoder (CVAE) to enable multi-modal predictions, an
RNN decoder to decode future trajectories, and a CNN to extract scene
context information. In order to refine the predicted results, DESIRE
applies Inverse Optimal Control (IOC) to the predicted trajectories
and the extracted context information. The authors concluded that
the model achieving the best results was the one that considered
both scene context and vehicle interactions. Although their algorithm
performs better than linear methods, it cannot be directly compared
to other works in the literature, since they used different metrics and
datasets. Zhao et al. (2019) aimed to predict future trajectories using
interaction information between agents and the scene context. An LSTM
network was used to encode multi-agent past trajectories, and a CNN
was used to extract feature vectors from the scene context. The outputs
of the LSTM and CNN were fused using a multi-agent tensor fusion
(MATF) network, and the output of the MATF was then fed into an
FCN to predict the future trajectories. While these last two cited works
considered visual context and achieved good performance, they did not
outperform algorithms that did not consider visual contexts, such as
GRIP and ST-LSTM.

Table 3 and Fig. 4 report the results for most algorithms reviewed in
this paper. Note that the graph only contains the works that have used
the same dataset, OTH, PTH, and evaluation metrics. The following
observations can be made from the table and the graph:

• Not all algorithms can be directly compared since they have used
different datasets, metrics, OTH, and/or PTH. Additionally, some
of the works combined the predicted lateral and longitudinal
trajectories to calculate their metrics, while others calculated the
metrics for lateral and longitudinal trajectories, separately.

• When comparing the algorithms that used the same dataset,
metrics, OTH, and PTH, it is observed that GRIP has the best
performance for PTHs of 1 s, 2 s, and 3 s; while AI-TP has the
best performance for PTHs of 4 s and 5 s.

• With the exception of KITTI and LISA-A, all the other datasets
are top-view cameras, and the most frequently used dataset is the
NGSIM.

• The most used metric is RMSE.
• Most of the works adopted an OTH of 3 s and PTH of up to 5 s.
• It is noticed that the algorithms’ performance worsens as the

prediction horizon increases.

3.2. Intention recognition and prediction

The difference between intention recognition and prediction is that
for intention recognition, the manoeuvre can be recognised without any
anticipation, while for intention prediction, the manoeuvre event must
be recognised before it happens. Generally, the researcher specifies
the desired anticipation time and then the accuracy of the manoeuvre
detection is calculated. The intention of a vehicle’s manoeuvre can
be recognised by using either prototype trajectories or the manoeuvre
intention estimation method.

The literature assumes that there is a motion pattern for the dif-
ferent types of vehicle manoeuvres. Consequently, previous trajectory
samples can be used to define a set of prototypes of trajectories which
are then used to represent the different motion patterns. Vehicle ma-
noeuvres are then predicted by using initially observed trajectories
performed by the vehicle, and matching it to the best available motion
patterns. However, this approach is computationally expensive because
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Table 3
Results for the most relevant vehicle trajectory prediction works.

Work Dataset Metrics Axis Obs. Hor. 1 s 2 s 3 s 4 s 5 s 6 s

CV
Deo and Trivedi (2018a)

NGSIM RMSE Both 3 s 0.73 1.78 3.13 4.78 6.68 -

S-LSTM
Alahi et al. (2016)

NGSIM RMSE Both 3 s 0.65 1.31 2.16 3.25 4.55 -

GAIL-GRU
Kuefler et al. (2017)

NGSIM RMSE Both 3 s 0.69 1.51 2.55 3.65 4.71 -

C-VGMM+VIM
Deo et al. (2018)

NGSIM RMSE Both 3 s 0.66 1.56 2.75 4.24 5.99 -

M-LSTM
Deo and Trivedi (2018b)

NGSIM RMSE Both 3 s 0.58 1.26 2.12 3.24 4.66 -

CS-LSTM(M)
Deo and Trivedi (2018a)

NGSIM RMSE Both 3 s 0.62 1.29 2.13 3.20 4.52 -

CS-LSTM
Deo and Trivedi (2018a)

NGSIM RMSE Both 3 s 0.61 1.27 2.09 3.10 4.37 -

MATF GAN
Zhao et al. (2019)

NGSIM RMSE Both 3 s 0.66 1.34 2.08 2.97 4.13 -

ST-LSTM-1350
Dai et al. (2019) avg.

NGSIM RMSE Both 3 s 0.56 1.19 1.93 2.78 3.76 4.84

GRIP
Li et al. (2019b)

NGSIM RMSE Both 3 s 0.37 0.86 1.45 2.21 3.16 -

GRIP++
Li et al. (2019a)

NGSIM RMSE Both 3 s 0.38 0.89 1.45 2.14 2.94 -

AI-TP
Zhang, Zhao, et al. (2022)

NGSIM RMSE Both 3 s 0.47 0.1.05 1.53 1.93 2.31 -

NLS-LSTM
Messaoud et al. (2019)

NGSIM HighD RMSE Both 3 s 0.560.20 1.22 0.57 2.02 1.14 3.03 1.90 4.30 2.91 - -

OGM-LSTM
Kim et al. (2017)

NGSIM RMSE Lateral Longi. 0.56 3.05 1.24 6.70 - - - - - - - -

Dual LSTM
Xing et al. (2017)

NGSIM RMSE Lateral Longi. 5 s 0.15 0.47 0.26 1.39 0.38 2.57 0.45 4.04 0.49 5.77 - -

Altché and de La Fortelle (2017) NGSIM RMSE Lateral Longi. 0.11 0.71 0.25 1.98 0.33 3.75 0.40 5.96 0.47 9.00 - -

ANN-LSTM
Benterki et al. (2020)

NGSIM RMSE Lateral Longi. 3 s 0.043 0.122 - - 0.125 0.235 - - 0.235 0.264 - -

IPTM-LSTM
Zhang, Song, et al. (2021)

NGSIM-LP RMSE Both 3 s 0.77 1.34 2.19 – – -

MATF GAN
Zhao et al. (2019)

Massachusetts RMSE Both 3 s 0.75 1.4 2.0 2.7 – -

PF+RBF
Hermes et al. (2009)

OWN RMSE Both – 0.7 1.4 5.0 – – -

CS-LSTM(M)
Deo and Trivedi (2018a)

NGSIM NLL Both 3 s 0.58 2.14 3.03 3.68 4.22 -

C-VGMM+VIM
Deo et al. (2018)

LISA-A MAE Both 3 s 0.24 0.69 1.18 1.66 2.18 -

DESIRE
Lee, Choi, et al. (2017)

KITTI SDD DE PE Both 2 s 0.281.29 0.67 2.35 1.22 3.47 2.06 5.33 – –
it requires a substantial number of sample trajectories to determine the
numerous possible motion patterns.

In contrast, the manoeuvre intention estimation methods use vehicle
motion and road context features to classify the different types of ma-
noeuvres, for instance, stopping/non-stopping, turning left/right, etc.
Although this method is less complex than calculating the numerous
trajectory probabilities, a large training dataset is required to make the
system robust to the different road scenarios. Another limitation is that
the manoeuvre classes may not be sufficient to cover the real vehicle
intention complexity. For instance, the system may predict a braking
manoeuvre, but the braking can be normal or harsh. A proposed
solution is to sub-categorise the manoeuvre, for example, normal/harsh
stopping, normal/sharp right/left turn, however, this adds complexity
to the dataset labelling (Mozaffari et al., 2020).

Intention prediction algorithms can also use predicted trajectories
and interaction between vehicles to achieve better accuracy. Tradi-
tional methods used to predict the intention of vehicles are Heuristics,
10
Bayesian Networks, HMM, and SVM. DL methods commonly used are
RNN, LSTM, and action recognition models.

The following paragraphs will discuss the most relevant DL algo-
rithms used to predict vehicle intention manoeuvre.

Khosroshahi et al. (2016) implemented a multi-layer LSTM net-
work to classify manoeuvre intentions at complex intersections. They
extracted samples representing manoeuvres intentions from the KITTI
dataset to train and test the algorithm. The input features included
linear and angular changes, as well as a histogram of angular changes
of the vehicle trajectories. The authors performed experiments with
different numbers of manoeuvre classes: 2 (straight or turning), 3
(straight, turning left/right), 8 and 12 classes. The algorithm performed
well with 2 and 3 classes, but the accuracy significantly decreases with
8 and 12 classes.

Lee, Kwon, et al. (2017) transformed real-world images into a
simplified version of Bird’s Eye View (BEV) and fed them into a
CNN to predict lane change behaviour. Zhang and Fu (2020) used an
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offline Bidirectional LSTM to learn driving behaviour and an online
Auto-Regressive Integrated Moving Average (ARIMA) to learn past
trajectories and predict future ones. The outputs of the offline Bi-LSTM
and ARIMA were then fed into another Bi-LSTM to recognise turning
behaviour as left-turn, right-turn, or going straight. The algorithm went
through evaluation using the NGSIM Lankershim and Peachtree Street
dataset, and was able to meet real-time requirements while achieving
good accuracy recognition for the PTH of 1 s and 2 s. However,
accuracy dropped when considering PTH of 3 s, and it only considered
turning left/right and going straight manoeuvres. Whereas vehicles
at intersections can perform more complex manoeuvres as reported
by Khosroshahi et al. (2016). In addition, the dataset used was acquired
from top-view sensors while AVs are equipped with on-board camera
sensors. Benterki et al. (2019) compared two conventional methods
to predict lane-change manoeuvre, ANN and SVM. They concluded
that ANN and SVM have almost the same performance; however, ANN
showed the best results.

Izquierdo et al. (2021) used CNN, action recognition, and prediction
methods to recognise and predict lane-keeping/changing manoeuvres.
Instead of using a sequence of images, they encoded context, interac-
tion, and dynamic state information in a unique enriched image. The
enriched image was created by extracting the red channel from a grey-
scale version of the original image, using a target selection method
(TSM), and a temporal integration method (TIM). The authors also
investigated the human performance in recognising and predicting lane
changes. Their findings indicated that humans can detect 83.9% of the
lane change events with an average anticipation of 1.66 s before the
manoeuvre is completed. Only 3 out of 72 users were able to predict the
lane change events before they started, with an average prediction hori-
zon of 1.08 s. On the other hand, their best algorithm, which considers
the trade-off between accuracy and anticipation, achieved 86.4% accu-
racy with an average anticipation of 2.09 s when considering TTE equal
to 0. When TTE was set to 1 s, their algorithm achieved an anticipation
of 2.69 s, a prediction of 0.72 s, and an average accuracy of 83.4%.

Fernández-Llorca et al. (2020) and Biparva et al. (2021) recognised
and predicted lane-keeping/changing manoeuvres using video action
recognition approaches. Biparva et al. (2021) used four types of video
action recognition approaches: Two-stream CNN, Two-stream Inflated
3D CNN, spatio-temporal Multiplier Networks, and SlowFast Networks.
All of the aforementioned networks used spatial and temporal informa-
tion from a single image, a sequence of images, or a sequence of optical
flow images for recognition and prediction tasks. Moreover, four sizes
of RoI were used, denoted as x1, x2, x3 and x4, to consider the inter-
action between agents, and to extract contextual information around
the target vehicle. The network with the best recognition performance
was the SlowFast CNN achieving an accuracy of 90.98% with an OTH
of 2 s before the TTE. Meanwhile, the network with the best prediction
performance was the spatiotemporal multiplier, achieving an accuracy
of 91.94% with an OTH of 2 s. The limitations of the previously cited
works are as follows: the distribution of the manoeuvre classes was
imbalanced, with more lane-keeping samples than lane-changing ones;
the time required to recognise and predict a single instance was not
provided; and some of the algorithms, such as the SlowFast network,
was not able to complete its training due to the GPU memory limitation.

Furthermore, it was observed from the previous vehicle intention
prediction works that the authors have selected a fixed PTH to predict
the vehicle’s intentions. The drawback of using a fixed PTH is that
manoeuvre samples may vary in length. For instance, the lane-change
manoeuvre performed by an aggressive driver will be shorter than a
lane-changing manoeuvre performed by a normal driver.

4. Pedestrian behaviour prediction

At present, AV systems can effectively detect and track pedestrians,
however, this alone is not enough to prevent potential collisions. In or-
der to avoid a collision, AV systems must predict pedestrian behaviours.
11

This section aims to provide a literature review of the challenges and
Table 4
Features and information used to predict pedestrian intention.
Feature Information

Bbox coordinates Position, speed, height and width.

Bbox cropped image Pedestrian appearance, local and
surrounding context.

Full image Global context and some interaction
between different traffic objects.

Body Pose Displacement, action, skeleton, and
landmarks.

Ego vehicle position/speed Interaction between pedestrian and ego
vehicle. Pedestrian behaviour is affected
by ego vehicle speed.

techniques used over the years for addressing the pedestrian behaviour
prediction.

Pedestrian behaviour prediction has been applied in three main
types of datasets: datasets that are recorded using drones, for example,
ETH and UCY; datasets recorded from static cameras; and datasets
recorded from a car dash cameras, for example, Daimler, JAAD, PIE
or KITTI. Datasets from car cameras are more appropriate to train
models for AV because they provide more realistic representation.
However, when the car is in motion, it may affect the position of
the pedestrian bounding box, and pedestrians can be easily occluded.
Car cameras datasets can be categorised as either naturalistic or non-
naturalistic, as discussed by Fang and López (2018). In non-naturalistic
datasets, the pedestrian behaviours and intentions are performed by
actors, whereas, in naturalistic datasets, behaviours and intentions
are recorded from actual road traffic scenarios. Some of the features
that have been used for predicting pedestrian behaviour are listed in
Table 4. Pedestrian behaviour prediction has been heavily investigated
in the past years and it has many challenges. For instance, pedestrians
are highly dynamic, they can move in many directions and change them
very quickly, and can be easily occluded by other objects. They can
also become distracted by their own objects or external environments,
their movements may be influenced by other traffic agents, and they
can be difficult to detect in poor visibility conditions. As reported
in Tables 5 and 7, researchers have proposed various methods and
features to address these challenges over the years. From these tables,
the following observations can be made:

• Until 2018, most of the works used traditional methods and their
OWN dataset. Thereafter, most authors adopted DL techniques
and used the ETH and UCY datasets for trajectory prediction, as
well as JAAD and PIE datasets for intention prediction.

• Pedestrian behaviour prediction algorithms have evolved, from
solely using motion information to using pedestrian appearance,
body pose landmarks, local/global context, interactions between
agents, and ego vehicle dynamics.

• Prior to 2018, the focus was predominantly on trajectory predic-
tion, thereafter substantial research efforts have been dedicated
to predict pedestrian intentions.

• Most of the intention prediction works were to predict the cross-
ing intention.

• The most used evaluation metrics for intention prediction were
accuracy, F1-score, precision, recall, Area Under the Curve (AUC),
and Receiver Operating Characteristic Curve (ROC-AUC).

• The most used evaluation metrics for trajectory prediction were
Average Displacement Error (ADE), Average Final Displacement
Error (FDE), and MSE. Other metrics are Average Non-linear
Displacement Error (ANDE), Mean Average Displacement (MAD),
and Final Average Displacement (FAD).

The following subsections discuss some of the algorithms reported
in Tables 5 and 7. The first subsection provides an in-depth exploration
of trajectory prediction algorithms, while the subsequent subsection
explore intention prediction algorithms.
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Table 5
Relevant works for pedestrian trajectory prediction.

Work Methods Dataset/Results

Schneider and Gavrila (2013) Approach: Dynamic.
Features: constant velocity, acceleration, turn.
Models: Recursive Bayesian filters – Compared EKF and IMM
filters.
PTH: < 2 s.
Evaluation: MLPE.

Daimler
IMM has not shown
significant performance over
simpler models.

Keller and Gavrila (2013) Approach: Dynamic.
Features: optical flow.
Compared the performance between GDPMs, PHTM, KF and
IMMKF.
Provided human performance on classifying pedestrian
behaviour prediction.
Evaluation: Mean Combined Longitudinal and Lateral RMSE.

OWN (on-board)
GDPM and PHTM showed
better accuracy, however, they
are more computationally
expensive.
10–50 cm Time Horizon 0.77
s.

Kooij et al. (2014) Approach: Dynamic + Context.
Features: Head orientation, distance between vehicle and
pedestrian, distance between pedestrian and curb.
Models: Dynamic Bayesian Filters (SLDS).
Evaluation: Predictive log likelihood.

OWN (on-board)
Outperforms state-of-art
algorithm PHTM. Best result
of −0.33 was achieved in the
critical, vehicle-seen and
stopping scenario using the
full context information.

Social-LSTM Alahi et al. (2016) Approach: Data driven.
Features: Past trajectories.
Models: Social pooling layer, and LSTM.
OTH/PTH: 8 (3.2 s)/12 (4.8 s) frames.
Evaluation: ADE, FDE, and AND.

ETH and UCY
ADE/FDE/AND:
0.27/0.61/0.15.

Karasev et al. (2016) Approach: Dynamic + Context.
Features: pedestrian state (position, orientation, and speed),
predicted goals, environment context (building, sidewalk,
crosswalk, road and grass), dynamic environments such as
traffic lights, and assumed rational behaviour for the agent.
Models: Jump-Markov Process, and Rao-Blackwellized filter.
Evaluation: L2 error, and Average prediction error.

OWN (on-board) for training
and KITTI for evaluation.
Displayed in a graph.

Rehder et al. (2018) Approach: Data driven + Goal-directed.
Features: visual cues, predicted pedestrian destinations, and
trajectories.
Models: RMDN, LSTM, topology network, and Markov
Decision Process.
Evaluation: Predicted probability distribution, Average
accuracy of predicted destination, and prediction accuracy
over time.

OWN (on-board)
Outperformed IMM. Results
were not clear, but from graph
Prediction accuracy 10(−1) for
1.5 s. Destination plays an
important role when trying to
predict pedestrian intention.

SR-LSTM Zhang et al. (2018) Approach: Data driven and social behaviour.
Features: trajectories and current state of the neighbours.
Model(s): SR-LSTM and attention mechanism.
Evaluation: MAD, and FAD.

ETH and UCY
MAD: 0.45; FAD: 0.94.

Social-GAN
Gupta et al. (2018)

Approach: Data driven.
Features: Past trajectories.
Model(s): GAN, Pooling Module, and LSTM.
PTH: 8 and 12 metres.
Evaluation: ADE and FDE.

ETH, UCY
ADE: 0.39/0.58.
FDE: 0.78/1.18.

Social attention
Vemula et al. (2018)

Approach: Data driven.
Features: Past trajectories.
Model(s): ST-Graph, LSTM, and Attention.
OTH/PTH: 8 (3.2 s)/12 (4.8 s) time steps.
Evaluation: ADE and FDE.

ETH and UCY
ADE: 0.30 m.
FDE: 2.59 m.

SS-LSTM
Xue et al. (2018)

Approach: Data driven.
Features: Past trajectories, neighbour feature (occupancy
maps: grip, circle and log), and individual information.
Model(s): CNN, and Hierarchical-LSTM.
OTH/PTH: 8/12 frames.
Evaluation: ADE and FDE.

ETH and UCY
ADE: 0.070 pixels.
FDE: 0.133 pixels.

CIDNN
Xu et al. (2018)

Approach: Data driven.
Features: Past trajectories, and interactions.
Model(s): stacked-LSTM, and MLP.
OTH/PTH: 5/5 frames.
Hardware: Intel Xeon CPU E52643 4.40 and TITAN GPU.
Evaluation: ADE.

GC/ETH/UCY/CUHK/Subway
ADE:
0.012/0.09/0.12/0.008/0.016.
Inference: 0.43 ms

(continued on next page)
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Table 5 (continued).
Work Methods Dataset/Results

LSTM-Bayesian
Bhattacharyya et al. (2018)

Approach: Data driven.
Features: Bbox coordinates past trajectories and ego
vehicle odometry.
Model(s): Two stream architecture, Bayesian RNN
(LSTM), and CNN.
OTH/PTH: 0.5/1 s.
Evaluation: MSE in pixels and NLL.

CityScapes(on-board)
MSE/NLL: 505/3.92.

DBN-SLDS
Flohr et al. (2018)

Approach: Data driven.
Features: context cues (VRU actions, and its static and
dynamic environment).
Model(s): DBN and SLDS.
TTE = [−15, 0]
PTH:1 s.
Evaluation: Prediction error.

OWN (on-board,
non-naturalistic
Graphs.

MX-LSTM
Hasan et al. (2018)

Approach: Data driven.
Features: Past trajectories, and head pose estimation.
Model(s): tracklets, vislets, VFO social pooling, and
LSTM.
OTH/PTH: 8/12 frames.
Evaluation: MAD and FAD in metres.

UCY
MAD/FAD: 0.49/1.12 m.
Towncentre
MAD/FAD: 1.15/2.30 m.

Scene-LSTM
Manh and Alaghband (2018)

Approach: Data driven.
Features: Past trajectories and scene divided into grid
cells.
Model(s): Scene Data Filter, and Coupled-LSTM.
OTH/PTH: 3.2/4.8 s.
Evaluation: ADE, FDE and NDE.

UCY and ETH
ADE/FDE/NDE: 0.7/0.7/0.9.

SoPhie
Sadeghian et al. (2019)

Approach: Data driven.
Features: Past trajectories, social interactions, and images
of the scene.
Model(s): CNN, LSTM, GAN, Social and physical
attention mechanism.
PTH: 12 future timesteps.
Evaluation: ADE and FDE.

ETH, UCY
ADE: 0.54 m.
FDE: 1.15 m.
SDD
ADE: 16.24 pixels.
FDE: 29.38 pixels.

StarNet-DNN
Zhu et al. (2019)

Approach: Data driven.
Features: Past trajectories.
Model(s): StarNet DNN (Host and hub networks), and
LSTM.
PTH: 8 frames.
Hardware: Tesla V100 GPU.
Evaluation: ADE and FDE.

ETH and UCY
ADE/FDE: 0.30/0.57.
Inference: 0.073 s.

PECNet
Mangalam et al. (2020)

Approach: Data driven and goal directed.
Features: Past trajectories and estimated end point
destination.
Model(s): CVAE, attention mechanism, and social
pooling.
OTH/PTH: 3.2/4.8 s.
Evaluation: ADE and FDE.

ETH and UCY
ADE/FDE: 0.29/0.48 m.
SDD
ADE/FDE: 9.96/15.88 p.

ST-GCNN
Mohamed et al. (2020)

Approach: Data driven.
Features: Past trajectories and sequence of images.
Model(s): GCN, and TXP-CNN.
OTH/PTH: 3.2/4.8 s.
Evaluation: ADE and FDE.

ETH and UCY
ADE/FDE: 0.44/0.75 m.

RSBG
Sun et al. (2020)

Approach: Data driven.
Features: Past trajectories and local context.
Model(s): GCN, CNN, and LSTM.
OTH/PTH: 3.2/4.8 s.
Evaluation: ADE and FDE.

ETH and UCY
ADE/FDE: 0.48/0.99 m.

LVTA
Xue et al. (2020)

Approach: Data driven.
Features: Past trajectories and velocities.
Model(s): attention mechanism, and LSTM.
OTH/PTH: 3.2/4.8 s.
Evaluation: ADE and FDE.

ETH and UCY
ADE/FDE: 0.46/0.92 m.

Holistic-LSTM
Quan et al. (2021)

Approach: Data driven.
Features: bbox past trajectories, crossing intention,
pedestrian scale, depth estimation, and global scene
dynamics (depth and optical flow).
Model(s): ConvLSTM, modified LSTM with more inputs,
and attention mechanism.
OTH/PTH: 0.5/1 s.
Evaluation: MSE, CMSE, and CFMSE of the bbox
coordinates.

JAAD
MSE: 389.
PIE
MSE: 167.
S-KITTI
MSE: 525/1.5 s.

(continued on next page)
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Table 5 (continued).
Work Methods Dataset/Results

Bi-TraP
Yao et al. (2021a)

Approach: Data driven and Multi-modal goal estimation.
Features: bbox past trajectories.
Model(s): CVAE, Gaussian distribution, GMM, and
Bi-directional GRU.
OTH/PTH (JAAD/PIE): 0.5/1.5 s.
OTH/PTH (ETH/UCY): 3.2/4.8 s.
Evaluation: ADE and FDE.

JAAD
ADE: 1206.
PIE
ADE: 511.
ETH-UCY
ADE/FDE: 0.18/0.35.

BA-PTP
Czech et al. (2022)

Approach: Data driven.
Features: vehicle odometry, bbox, body, head
orientation, and pose.
Model(s): attention mechanism and Bi-GRU,
OTH/PTH (PIE): 0.5/1.5 s.
OTH/PTH (ECP): 0.6/1.6 s.
Evaluation: MSE, CMSE, and CFMSE.

PIE
MSE/CMSE/CFMSE:
420/383/1513.
ECP-Intention
MSE/CMSE/CFMSE:
768/680/1966

SGNet
Wang et al. (2022)

Approach: Data driven, and goal directed.
Features: Past trajectories.
Model(s): Stepwise goal estimator, attention mechanism,
GRU, and CVAE.
OTH/PTH (JAAD, PIE, HEV-I): 1.6/0.5,1.0,1.5 s.
OTH/PTH (ETH & UCY): 3.2/4.8 s.
OTH/PTH (NuScenes): 2/6 s.
Evaluation: MSE, CMSE, CFMSE, ADE and FDE.

JAAD
MSE/CMSE/CFMSE:
1049/996/4076 p (1.5 s).
PIE
MSE/CMSE/CFMSE:
442/413/1761 p (1.5 s).
ETH and UCY
ADE/FDE: 0.35/0.83
Euclidean space.
NuScenes
ADE/FDE: 1.32/2.50.

PTPGC
Yang, Sun, et al. (2022)

Approach: Data driven.
Features: Past trajectories, length of attributes, and
number of pedestrians.
Model(s): Graph attention, convLSTM, and Temporal
CNN.
OTH/PTH: 3.2/4.8 s.
Evaluation: ADE and FDE.

ETH and UCY
ADE/FDE: 0.67/1.29.
4.1. Trajectory prediction

Both traditional and DL techniques have been used in order to
predict pedestrian trajectories. Traditional techniques relies on hand-
crafted functions, such as EKF, IMM, and social forces, to predict pedes-
trians’ future trajectories. However, these functions have limitations
in handling complex scenarios. To address this, several researchers
adopted DL techniques such as: CNN, Generative Adversarial Net-
work (GAN), GCNN, LSTM, GRU, CVAE, attention mechanism, and/or
Multi-Layer Perceptron (MLP).

Although LSTM networks have many advantages, it struggles to
learn dependencies between multiple correlated sequences. For this
reason, Alahi et al. (2016) proposed a Social LSTM network to predict
pedestrian trajectories. Social pooling layers were introduced to enable
LSTM networks to share their hidden state. This enables the algorithm
to learn interactions among pedestrians. Social-LSTM only considers
motion features to model human interactions, however, Xu et al. (2018)
argues that spatial position should also be considered. For this reason,
they presented a model where MLP layers were used to encode location,
and LSTM was used to encode motion for each neighbour. Both sets of
encoded information were then used as input to a crowd interaction
module to predict pedestrian displacement. In a different approach, Xue
et al. (2020) used two LSTM layers to encode the pedestrian’s location
and velocity, along with a temporal attention mechanism to extract the
most relevant features from the velocity and location inputs.

Humans are highly dynamic, which makes the task of predict-
ing their trajectories more challenging. In response to this, Rehder
et al. (2018) implemented a DNN that would first predict the future
destinations of the pedestrians, and then predict their future trajec-
tories. They have used CNN, LSTM and Mixture Density Network to
predict potential destinations, and another CNN to plan and predict
future trajectories based on these potential destinations. CVAE was
used by Mangalam et al. (2020) to predict future endpoints, these then
were subsequently used to predict multi-modal longer-term trajecto-
ries. They also presented a novel self-attention-based social pooling
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layers that extract relevant features from the neighbours using non-
local attention. Yao et al. (2021a) also proposed a goal-direct method,
where they combine CVAE and bi-directional GRU to encode past
trajectories and decode multi-modal future trajectories. Goal-directed
models have the disadvantage that only one goal is estimated over a
long-term prediction. For this reason, if a pedestrian changes direction
the estimated goal may be incorrect, and consequently affecting the
estimated predicted trajectories. Wang et al. (2022) proposed a method
where they model and estimate goals continuously by using RNNs.

While many studies relied on historical trajectories for predicting
future ones, they often overlooked the current state of the pedestrian.
In order to overcome this issue, Zhang et al. (2019) introduced a state
refinement LSTM that considered both the current and previous state
of the target pedestrian and the surrounding pedestrians. This state
refinement module enables the network to incorporate interactions
through a message-passing mechanism. It also uses a motion gate as
an attention mechanism to focus on the most relevant features of the
neighbours.

Previous research, when considering human-to-human interactions,
would often take into account only nearby neighbours, even though
more distant neighbours might also influence the behaviour of the
target pedestrian. A GAN was presented by Gupta et al. (2018) that
not only considers local neighbours but all neighbours in the scene. The
GAN network comprises an LSTM generator to generate multi-potential
trajectories, a pooling module to learn human-to-human interactions,
and an LSTM discriminator to select acceptable trajectories from the
generated ones. Similarly, Vemula et al. (2018) considered all the
pedestrians in the scene using a spatio-temporal graph and LSTM. Ad-
ditionally, they adopted an attention mechanism to learn the relevance
of each agent, regardless of how far they are from each other. A star-
like network was introduced by Zhu et al. (2019) to account for all
agents in the scene. The network has a centralised hub network, which
gathers motion information from all pedestrians in the scene, and a
host network for each pedestrian. The host networks query the hub

network for social information to predict trajectories. Graph attention
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and convolutional LSTM were also proposed by Yang, Sun, et al. (2022)
to consider the surrounding neighbours.

Xue et al. (2018) emphasised the importance of considering scene
layout when predicting pedestrian trajectories. As a result, they used
three different LSTMs to learn information about individuals, social
interactions, and scene layout. One LSTM used the trajectory of the
target pedestrian as its input, another used an occupancy map as
its input, and the final one used feature vectors extracted from the
original image by a CNN as its input. Likewise, Manh and Alaghband
(2018) took scene layout into account, where they used a two-level
grid structure of the original image and trajectory information as
inputs to a two-stream LSTM for predicting future trajectories. CNN,
LSTM, attention mechanism, and GAN were used by Sadeghian et al.
(2019) to predict trajectories using both past trajectories and scene
context as inputs. The CNN extracted scene-related features, the LSTM
extracted motion-related features, the attention mechanism extracted
both the physical and position relevant features, and the GAN generated
multiple trajectories and then selected the most suitable ones.

Mohamed et al. (2020) classified methods such as social pooling
or the combination of hidden state features, used to model human
interactions, as ‘‘aggregation methods’’. They claimed that these types
of methods have limitations in accurately modelling human interac-
tions because the aggregation occurs within the feature space and
does not directly model physical interactions. Furthermore, some of
these aggregation methods, such as pooling layers, may overlook to
capture important information. Given these considerations, the authors
proposed a social spatio-temporal GCN (ST-GCN) to model interactions
among pedestrians. The ST-GCN model’s output is subsequently used
as input for a time extrapolate CNN to predict future trajectories.

The above works have not considered group-based interactions,
which involve two or more individuals exhibiting similar movements,
behaviours, or goals. A recursive social behaviour graph and GCN
was implemented by Sun et al. (2020) to explore and learn group-
based interactions. The authors also used CNN and LSTM to obtain an
individual representation of each pedestrian in the scene. The individ-
ual representations, along with the learned group-based features, were
combined and used by a decoder LSTM to predict future trajectories.

Bhattacharyya et al. (2018) claimed that they were the pioneers in
using an on-board dataset to predict pedestrian behaviour. The authors
used a two-stream LSTM architecture to encode bounding box coordi-
nates, ego-vehicle odometry information, and feature vectors extracted
from the original image by a CNN. Another work that used an on-board
dataset is (Czech et al., 2022), in which the authors used a multi-
stream RNN to individually encode bounding box coordinates, head
orientation, body orientation, pose skeleton, and past trajectories. The
encoded information from each stream is fused through an attention
mechanism and subsequently input to an RNN decoder to predict future
bounding boxes. The drawback of the latter two algorithms is that they
did not consider social interaction among the agents.

Hasan et al. (2018) argues that head orientation and movement are
correlated. Consequently, they proposed a two-stream LSTM to encode
both trajectory and head orientation information. The two encoded
information, were then merged using a View Frustum social pooling
layer. The disadvantage of this method is that it is only suitable for
top-view and BEV datasets.

Usually, when a system adopts LSTM networks and requires the
use of multiple types of inputs, these inputs are first combined be-
fore being fed to LSTM cells. This practice is required because LSTM
cells are designed to accept only a single input sequence, which can
constrain their ability to capture relevant information from various
input sources. Quan et al. (2021) adapted the conventional LSTM cell
to accept four additional input sequences: vehicle speed, pedestrian
intention, correlation among frames, and bounding box location. The
vehicle speed was estimated by using optical flow and depth informa-
tion; the pedestrian intention was estimated using convLSTM; and the
correlation among frames was derived from optical flow images.
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Fig. 5. Pedestrian Trajectory Prediction Performance using the ETH and UCY datasets,
with an OTH of 3.2 s, a PTH of 4.8 s, and Average Displacement Error (ADE) in metres
(See Table 6).

Table 6 and Fig. 5 report the results for the most relevant studies in
pedestrian trajectory prediction. It is not possible to directly compare
all of them since some of them have used different datasets, metrics,
OTH, and PTH. However, when examining the results of the algorithms
that used the same dataset, metrics, OTH, and PTH, the Bi-Trap (Yao
et al., 2021a) algorithm outperformed others. Bi-Trap achieved ADE
and FDE values of 0.18 m and 0.35 m, respectively.

4.2. Intention recognition and prediction

The difference between pedestrian intention recognition and pre-
diction aligns with what was explained on Section 3. Recognition does
not require anticipation, while prediction does. The main methods
used to predict pedestrian intentions include CNN, GCNN, GRU, LSTM,
attention mechanism, multi-tasking, and transformer networks.

CNN: Fang et al. (2017) and Fang and López (2018) used CNNs to
extract human skeleton features and used SVM/RF classifier to predict
if the pedestrian is crossing the road. Abdulrahim and Salam (2016)
also used CNNs, along with depth information to learn 3D human body
landmarks, including additional information such as the pedestrian
shoulders, neck, and face. While CNNs can extract spatial features, their
capability to capture temporal dependencies is limited. To overcome
this limitation, Yang et al. (2021) implemented a 3D-CNN to extract
spatio-temporal information. Additionally, Piccoli et al. (2020) pro-
posed an alternative model called FuSSI-Net, designed to extract both
spatio-temporal information. FuSSI-Net is a spatio-temporal Dense-net
that takes a sequence of bounding boxes and skeleton features as
inputs to predict crossing intention. Although these last two models can
extract spatial and temporal information, they are limited to short-time
horizon prediction and become computationally expensive as the input
sequence length increases.

LSTM: Rasouli et al. (2019) used LSTM to encode local context,
trajectories, and ego vehicle information. Subsequently, the encoded
information was decoded to estimate the probability of a pedestrian
crossing the road. Bouhsain et al. (2020) used bounding box coor-
dinates and velocities features as inputs for a sequence-to-sequence
LSTM, which was used to predict both the pedestrian intentions and
the future position of the pedestrians’ bounding boxes. In a different
approach, Lian et al. (2022), introduced a stacked-LSTM model, where
appearance, context, and dynamic features of the pedestrian were
used to predict crossing intentions. LSTM networks have the ability
to learn and memorise features over the long term, as they capture
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Table 6
Results for the most relevant pedestrian trajectory prediction works.
Work Dataset OTH PTH ADE FDE AND MAD FAD MSE

Social-LSTM
Alahi et al. (2016)

ETH & UCY 3.2 s 4.8 s. 0.27 m 0.61 m 0.15 m – – –

Scene-LSTM
Manh and Alaghband (2018)

ETH & UCY 3.2 s 4.8 s 0.7 m 0.7 m 0.9 m – – –

Social-GAN
Gupta et al. (2018)

ETH & UCY 3.2 s 4.8 s 0.48 m 0.98 m – – – -

Social-attention
Vemula et al. (2018)

ETH & UCY 3.2 s 4.8 s 0.30 m 2.59 m – – – -

Sophie
Sadeghian et al. (2019)

ETH & UCY
SDD

3.2 s 4.8 s 0.54 m
16.24 pi

1.15 m
29.38 pi

– –
–

–
–

–
–

StarNet-DNN
Zhu et al. (2019)

ETH & UCY 3.2 s 4.8 s 0.30 m 0.57 m – – – -

PECNet
Mangalam et al. (2020)

ETH & UCY
SDD

3.2 s 4.8 s 0.29 m
9.96 pi

0.48 m
15.88 pi

– –
–

–
–

–
–

ST-GCNN
Mohamed et al. (2020)

ETH & UCY 3.2 s 4.8 s 0.44 m 0.75 m – – – –

RSBG
Sun et al. (2020)

ETH & UCY 3.2 s 4.8 s 0.48 m 0.99 m – – – –

LVTA
Xue et al. (2020)

ETH & UCY 3.2 s 4.8 s 0.46 m 0.92 m – – – –

Bi-TraP
Yao et al. (2021a)

ETH & UCY
JAAD
PIE

3.2 s
0.5 s
0.5 s

4.8 s
1.5 s
1.5 s

0.18 m
1206
511

0.35 m
–
–

– –
–

–
–

–
–
–

SGNet
Wang et al. (2022)

ETH & UCY
JAAD
PIE
NuScenes

3.2 s
1.6 s
1.6 s
2 s

4.8 s
1.5 s
1.5 s
6 s

0.35 m
–
–
1.32

0.83
—
—
2.5

– –
–

–
–

-
1049
442
-

SGNet
Wang et al. (2022)

ETH & UCY 3.2 s 4.8 s 0.35 m 0.83 m – – – –

PTPGC
Yang, Sun, et al. (2022)

ETH & UCY 3.2 s 4.8 s 0.67 m 1.29 m – – – –

SS-LSTM
Xue et al. (2018)

ETH & UCY 3.2 s 4.8 s 0.070 npu 0.133 npu – – – -

SR-LSTM Zhang et al. (2018) ETH & UCY 3.2 s 4.8 s – – – 0.45 0.94 –

CIDNN
Xu et al. (2018)

ETH & UCY 4 s 4 s 0.11 – – – – –

MX-LSTM
Hasan et al. (2018)

UCY
Towncentre

3.2 s 4.8 s – –
–

–
–

0.49 m
1.15 m

1.12 m
2.30 m

–
–

Holistic-LSTM
Quan et al. (2021)

JAAD
PIE
S-KITTI

0.5 s 1 s
1 s
1.5 s

– –
–

–
–

389
167
525

BA-PTP
Czech et al. (2022)

PIE
ECP

0.5 s
0.6 s

1.5 s
1.6 s

– –
–

–
–

420
768
long-distance dependencies (Chung et al., 2014). Nevertheless, they
have limitations in extracting spatial features, managing dependencies
among the extracted features, exhibiting longer training times, and
assigning uniform attention to all inputs, even though some inputs can
be more relevant than others (Sharma et al., 2022). Ahmed et al. (2023)
used a 2D pose estimator in conjunction with LSTM to predict crossing
behaviour of the pedestrian.

GRU: GRUs serve as an alternative to LSTMs, as they also learns
temporal information. Kotseruba et al. (2020) used pedestrian appear-
ance features, which were extracted using a VGG network, and ego
vehicle velocity information as inputs for a GRU network to predict
pedestrian intentions. Rasouli et al. (2020) used pedestrian appearance,
global context, body pose, bounding boxes, and ego-vehicle speed
features as inputs to a stacked GRU network to predict pedestrian
crossing behaviour. These features were gradually integrated into the
GRU network, starting with pedestrian appearance, followed by global
context, body pose, bounding boxes, and concluding with the ego
vehicle speed. GRUs offer the advantage of requiring less memory and
being faster than LSTMs. However, they tend to be less accurate when
handling with long input sequences (Chung et al., 2014).
16
GCN: A spatio-temporal GCN was presented by Zhang, Angeloudis,
and Demiris (2022), where they used a sequence of skeleton features
to predict crossing intentions. The skeleton joints were connected by
nodes and edges to learn both spatial and temporal features. Cadena
et al. (2022) used two GCNs, which took human body key points,
local context, and ego speed information as inputs to predict crossing
intentions. GCNs has the advantage of extracting interactions among
the target pedestrian and its neighbours, considering both spatial and
temporal dependencies (Sharma et al., 2022). In addition, GCNs can
handle non-Euclidean data formats, such as scenarios where pedestrians
are dispersed across a scene, which cannot be represented using a grid-
like structure. However, they can only handle short-term sequences and
do not perform well when applied to regression tasks.

Attention Mechanism: Lian et al. (2022) also used a self-attention
mechanism to extract the most relevant information from the pedes-
trian appearance, the pedestrian’s surroundings, and dynamic fea-
tures. Rasouli et al. (2019) combined different attention mechanism
layers at different locations of the network to investigate their impact
on the model performance. Attention mechanism approaches enable
networks like LSTM to focus more on the most relevant features, and
less on redundant ones.
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Table 7
Relevant works for pedestrian intention prediction.

Work Methods Problem Dataset/Results

Schneider and Gavrila (2013) Approach: Dynamic.
Features:
Recursive Bayesian filters – Compared EKF and IMM filters
(constant velocity/acceleration/turn).
PTH: < 2 s.
Evaluation: MLPE.

Trajectory and intention
prediction.

Daimler
IMM has not shown
significance performance over
simpler models.

Keller and Gavrila (2013) Approach: Dynamic.
Features:
Compared the performance between GDPMs using optical
flow information, PHTM, KF and IMMKF.
Provided human performance on classifying pedestrian
behaviour prediction.
Evaluation: Mean Combined Longitudinal and Lateral RMSE.

Trajectory and intention
prediction.

OWN (on-board)
GDPM and PHTM showed
better accuracy, however, they
are more computationally
expensive.
10–50 cm Time Horizon 0.77
s.

Bonnin et al. (2014) Approach: Dynamic + Context.
Features: distance and time to curb, distance and time to
ego lane, distance and time to zebra crossing, distance and
time to collision point, difference of time to collision point,
face, global and relative orientation.
Single Neural Network as classifier to learn the different
features.
Inner-city and zebra model.
PTH: 1 s.
Evaluation: TPR and FPR.

Intention prediction (crossing). OWN (on-board) Inner-city
dataset, zebra dataset and
combination of both ICZ.
Inner-city model: 31% TPR,
0.0 FPR, PTH 0.72 s for the
zebra dataset. TPR 29%, PTH
0.67 s for the inner-city
dataset. TPR 31%, PTH 0.72 s
for the ICZ dataset.
Zebra crossing model: 100%
TPR, 3.23 s PTH for the zebra
dataset. 86% TPR, 28% FPR
and 1.73 s PTH for the
inner-city dataset.
CMT model: 62% TPR, 2.59 s
PTH for the ICZ dataset.

Neogi et al. (2017) Approach: Dynamic + Context.
FLDCRF.
Features: pedestrian position (distance to curb, and left or
right side of the road), pedestrian–vehicle interaction, optical
flow.
Evaluation: average probability, time to stop and time to
cross.

Intention prediction. NTUC (OWN, on-board and
actors)
Average probability > 0.7
predicting 1.2 s before the
action.

Minguez et al. (2018) Approach: Dynamic.
Balanced-GDPMs to reduce 3-D time relevant information
into low dimensional information and to assume future
latent positions.
Features: Skeleton motion analysis.
Four models to predict start, stop, walk and stand actions.
HMM is used to select which model to use to predict future
pedestrian path and poses.
Evaluation: MED against TTE.

Predict pedestrian actions. CMU-UAH
Achieved MED of 41.24 mm
for TTE of 1 s, for starting
activity; and MED of
238.01 mm for TTE of 1 s for
stopping activity.

Fang et al. (2017) Approach: Data Driven.
Features: Skeleton.
CNN for pose estimation.
Deep association for tracking.
Evaluation: Intention probability vs TTE.

Intention prediction
(crossing/not crossing).

Daimler
0.8 predictability with
TTE=12 (750 ms).

CV
Fang and López (2018)

Approach: Data Driven.
Features: Skeleton.
CNN for pose estimation.
Deep association for tracking.
Evaluation: Accuracy.

Intention prediction
(crossing/not crossing).

See Table 8

PIE (int)
Rasouli et al. (2019)

Approach: Data driven.
Features: bbox coord, image context, and image bbox.
RNN (LSTM).
Evaluation: Accuracy, and F1-score.

Intention prediction (crossing). See Table 8

Bouhsain et al. (2020) Approach: Data Driven.
Features: bboxes coordinates and velocities.
PV-LSTM
Multi-task sequence to sequence learning
Evaluation: ADE, FDE, Accuracy.

Pedestrian intention and
pedestrian bbox predictions
(crossing).

See Table 8.

Liu et al. (2020) Approach: Context, Temporal, and Data driven.
Features:
Graph Convolution and GRU to learn spatio-temporal
relationship.
Evaluation: Accuracy.

Intention prediction (crossing). Stanford-TIR
A: 79.10%.
JAAD
A: 79.28%.

(continued on next page)
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Table 7 (continued).
Work Methods Problem Dataset/Results

Abughalieh and Alawneh (2020) Approach: Data driven.
Features: pedestrian body landmarks considering depth
information.
CNN.
Evaluation: Accuracy.

Intention prediction (walking
and crossing).

OWN (on-board)
A: 89%.

FUSSI-net
Piccoli et al. (2020)

Approach: Data driven, target-agent context.
Features: Skeleton and bbox.
DenseNet.
Evaluation: Accuracy.

Intention prediction (crossing). See Table 8

SFR-GRU
Rasouli et al. (2020)

Approach: Data driven.
Features: pose, 2D bbox, appearance, global context, and
ego speed.
Stacked-RNN (GRU).
Evaluation: Accuracy, Precision, recall, F1-score, and AUC.

Intention prediction (crossing). See Table 8

C+B+S+Int
Kotseruba et al. (2020)

Approach: Data driven.
Features: surrounding, appearance, context, bbox, and ego
vehicle speed.
single GRU.
PTH: 2 s.
Evaluation: Accuracy, AUC, F1, Precision, and recall.

Intention prediction (crossing).
Studied human performance.

See Table 8

Razali et al. (2021) Approach: Data driven and key body landmarks.
Features: PAF and PIF.
Uses only one RGB image.
Multitask learning.
CNN (ResNet).
Evaluation: Precision for different prediction horizon.

Recognition and Intention
prediction (crossing) in
real-time.

JAAD
Recognition: −0 s: 81.7%; −1
s: 83.6%; −2 s: 83.5%; −3 s:
83%; −4 s: 82.7%.
Prediction: −1 s: 42.6%; −2 s:
46.1%; −3 s: 46.3%; −4 s:
46.0%.
FPS: 5.

Zhang, Abdel-Aty, et al. (2021) Approach: Data Driven.
Features:: pose-key-points.
Compared SVM, RF, GBM, and XGBoost models.
Evaluation: Accuracy.

Intention prediction (crossing
at red light).

CCTV
A: 92%: 1 s; 92%: 2 s; 88.9%:
3 s; 92.5%: 4 s.

PCIR
Yang et al. (2021)

Approach: Data driven, context, and behavioural.
Features: pedestrians, ego vehicle, and environment.
3D-CNN.
Evaluation: AP.

Intention detection (crossing). See Table 8

Chen et al. (2021) Approach: Data driven.
Features: bbox, body pose, road objects.
Graph encoder, CNN, and LSTM.
PTH: 1.5 s.
Evaluation: Balanced Accuracy and F1 score.

Intention prediction (crossing). See Table 8

I+A+F+R Yao et al. (2021b) Approach: Data driven, and multi-task.
ARN Attentive Relation Network.
CNN, MLP, and GRU.
PTH: 1–2 s.
Features: bbox context and coordinates, relation, and visual.
Evaluation: Accuracy, F1-score, ROC-AUC, precision.

Intention and action
prediction (crossing).

See Table 8
Inference: < 6 ms.

PCPA
Kotseruba et al. (2021)

Approach: Data driven.
Features: bbox, pose, local context, and ego vehicle speed.
3D CNN + single-RNN (GRU) + attention mechanism.
Evaluation: Accuracy, AUC, and F1.

Intention prediction (crossing). See Table 8

Yang, Zhang, et al. (2022) Approach: Data driven.
Features: local and global context, bbox, pose-key-points.
Attention mechanism, 2D CNN, and RNN.
Evaluation: Accuracy, F1, and recall.

Intention prediction (crossing). See Table 8

Graph+
Cadena et al. (2022)

Approach: Data driven.
Features: context, ego vehicle velocity, and key body
landmarks.
Graph Convolutional Network.
Evaluation: Accuracy.

Intention Prediction (crossing). See Table 8
Inference: 6 ms.

ST-CrossingPose
Zhang, Angeloudis, and Demiris
(2022)

Approach: Data driven.
Features: skeleton-based.
Spatio-Temporal GCN.
Evaluation: Accuracy, AUC, F1-score, Precision, and Recall.

Intention prediction (crossing). JAAD
Recognition: 63%.
See Table 8

Achaji et al. (2022) Approach: Data Driven.
Features: bbox.
Transformer Networks.
PTH: 1 s and 2 s.
Test human ability for pedestrian action prediction.
Evaluation: Accuracy and F1-Score.

Intention recognition and
prediction (crossing).

PIE A:91%.
F1:0.83.
CP2A A:91%.
F1:0.91.

(continued on next page)
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Table 7 (continued).
Work Methods Problem Dataset/Results

Scene-STGCN
Naik et al. (2022)

Approach: Data Driven.
Features:
Scene Spatio-Temporal GCN.
Evaluation: Accuracy, F1-score, AP, and ROC-AUC.

Intention recognition
(crossing).

See Table 8

Zeng (2022) Approach: Data driven.
Features: body land-marks.
SqueezeNet and GRU.
Hardware: AMD Ryzen 5 3600, G Force RTX 3070.
Evaluation: Accuracy and ROC-AUC.

Intention prediction (crossing).
Light-weight and inference
speed.

See Table 8

CA-LSTM
Lian et al. (2022)

Approach: Data driven. context and dynamic.
Features: appearance, velocity, and walking angle.
Attention LSTM.
Evaluation: Accuracy, F1-score, recall metrics.

Intention Prediction (crossing). See Table 8

Gazzeh and Douik (2022) Approach: Data driven.
Features: pedestrian localisation and environment contest
(lane lines).
ML and DL.
Evaluation: Accuracy.

Intention recognition in
real-time.

See Table 8

Ma and Rong (2022) Approach: Data driven.
Features: pedestrian pose (skeleton), pedestrian to vehicle
distance, and ego vehicle information.
Multi-feature fusion.
Random forest classifier.
PTH: 0.6 s.
Evaluation: Accuracy and AUC.

Intention prediction (crossing). See Table 8

Ahmed et al. (2023) Approach: Data driven.
Features: Past trajectories, velocity, and 3D joint estimation.
Model(s): Position and Velocity LSTM.
PTH: 0.4 s.
Evaluation: Accuracy.

Intention prediction (crossing). JAAD and PIE
Accuracy: 89%/91%.
Transformers: Even though attention mechanism have the ability
o focus on the most relevant features, it was reported by Achaji et al.
2022) that its effectiveness might be reduced when coupled with LSTM
etworks. For this reason, Achaji et al. (2022) proposed a framework
ased on three types of transformer networks: encoder-only, encoder-
ooling, and encoder–decoder architectures. The proposed framework
sed only the pedestrian bounding box information as its input. The
uthors argued that their model outperformed other methods that used
ultiple input features. Transformer networks offer the advantage of
arallel input processing, which accelerates training stage. On the other
and, the ability to process the input data in parallel restricts the model
o take advantage of the sequential nature of the input.

Multiple Methods: many studies have used more than one method
o predict pedestrian intention. Liu et al. (2020) used GCN to gen-
rate a pedestrian-centring graph for each observation frame. These
raphs connect the target pedestrian to its surrounding, allowing the
lgorithm to learn relation between the pedestrian and the scene. In
ddition, edges were introduced between the pedestrian nodes in each
edestrian-centring graph to allow the algorithm to learn temporal
nformation. The resulting interconnected graphs were then fed into

GRU network to predict crossing intention. Chen et al. (2021) used
combination of methods, including a CNN to extract features from

raffic objects and pedestrian appearance, a GCN to auto encode the
xtracted features, another framework to extract human skeleton, and
n LSTM network to predict crossing intentions. CNN, ARN, MLP and
RU were used by Yao et al. (2021b) to predict crossing intentions.
he CNN was used to extract global features, ARN was used to extract
elational features from detected traffic objects, MLP was used for
ntention classification, and the LSTM was used for intention prediction.
ne major difference of this work is that the network also takes the
redicted intention output as input. Kotseruba et al. (2021) used 3D-
NN, RNN, and attention mechanism. The 3D-CNN was used to encode

ocal features from a sequence of cropped bounding boxes, the RNN
as used to encode the bounding-box coordinates, pose landmarks and
19

he ego-vehicle speed. Finally, an attention mechanism was used to
combine the most relevant features. Yang, Zhang, et al. (2022) used
2D-CNN, stacked-RNN, and attention mechanism. Spatio-temporal GCN
was used by Naik et al. (2022) to encode the input image, image
class and location information tensors. Then the output of the spatio-
temporal GCN was fed into an LSTM network to generate long-term
predictions. Zeng (2022) used SqueezeNet to extract visual features and
used GRU to extract temporal dependencies. They also used a multi-
tasking approach to predict both pedestrians’ intentions and poses. One
primary advantage of using multiple models is that each model can
compensate for the limitations of others. For example, CNN, GCN, and
attention mechanism can aid the limitations of an LSTM network to
extract spatial information, handle non-Euclidean data, and prioritise
relevant features, respectively.

Full-Pipeline: Gazzeh and Douik (2022) presented a full pipeline
model which includes detection, tracking, and crossing intention pre-
diction. They used YOLOv4 for object detection, DeepSort for tracking,
Canny Edge for lane line detection, and linear SVM for intention pre-
diction. Another full pipeline system was implemented by Piccoli et al.
(2020), where they used YOLOv3 for detection, DeepSort for track-
ing, and spatio-temporal Densenet for intention prediction. YOLOv5,
DeepSort, and an LSTM network with an attention mechanism were
used by Lian et al. (2022) to detect, track, and predict pedestrian in-
tention, respectively. A multi-task network was implemented by Razali
et al. (2021) to recognise pose state and predict pedestrian intentions.
ResNet was used to extract features, Part-Intensity-Fields (PIF), and
Part-Association-Fields (PAF) to produce channels and pose joints, and
a head network to predict pedestrian intentions.

Table 8 presents the results achieved by the most relevant pedes-
trian intention prediction works in the literature. Unfortunately, direct
comparisons between these studies are not possible due to variations
in different problem formulations, OTH, TTE, datasets, and metrics.
For example, the work that achieved the best accuracy was Zhang,
Angeloudis, and Demiris (2022), however, the authors used their own
dataset. The second best was Bouhsain et al. (2020) but they used an
observation horizon and TTE of 0.6 s.
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5. Heterogeneous road agents

All the previously mentioned works primarily focused on predicting
the behaviour of either pedestrians or vehicles. However, in a real-
world traffic scenario, complex interactions occur among various types
of agents, each with different dimensions and dynamics. Consequently,
it is crucial to consider the interaction between heterogeneous agents.
Several works have addressed the detection and behaviour prediction
of heterogeneous agents.

For example, authors (Ma et al., 2019) introduced the TrafficPre-
ict algorithm, which was developed to learn motion patterns and
redict the trajectories of different types of traffic agents, including
edestrians, bicycles and cars. They adopted the 4D Graph network
n conjunction with an RCNN LSTM to learn the movements and
nteractions of traffic agents. The authors used an OTH of 2 s to predict
horizon of 3 s. They achieved a state-of-the-art average displacement

rror of 0.085 and a final displacement error of 0.141. DeepTAgent
s another heterogeneous system presented by Chandra, Randhavane,
t al. (2019) in which they used Mask R-CNN to detect objects, a
NN to extract tracking features, and a Heterogeneous Interaction
odel (HTMI) that considered collision avoidance behaviour to predict

he agents’ position, velocity and subsequently their trajectory and
nteractions. The authors (Chandra, Bhattacharya, et al., 2019) pre-
ented a hybrid network for predicting the trajectory of road agents
nd modelling their interactions. They used a CNN to capture local
nformation, such as the agent’s shape and position, and an LSTM
etwork for trajectory prediction. In dense, diverse traffic situations,
he algorithm demonstrated a notable performance of 30% over state-
f-the-art methods. However, it did not outperform the state-of-the-art
lgorithms in sparse and homogeneous traffic scenes. Li, Yang, et al.
2020) presented a framework called EvolveGraph. In this framework,
hey encoded an observation graph to infer an interaction graph, and
ubsequently, decoded both the observation and interaction graphs to
redict future trajectories. Zhang, Zhao, et al. (2022) implemented
he Attention-based Interaction-aware Trajectory Prediction (AI-TP)
odel. This model used Graph Attention Network (GAT) to represent

nteraction among heterogeneous traffic agents and used a Convolu-
ional GRU (ConvGRU) to make predictions. A multi-agent trajectory
rediction system was performed by Mo et al. (2022) where a three-
hannel framework was used to account for dynamics, interactions
nd road structure. Moreover, a novel Heterogeneous Edge-enhanced
raph ATtention network (HEAT) was proposed to extract interaction
eatures. Dynamic features were extracted from the agents’ previous
rajectories, interaction patterns were represented through a directed
dge-feature heterogeneous graph and extracted with the HEAT net-
ork. The road structure information was shared among all agents
sing a gate mechanism. Finally, all the information acquired from the
revious process was combined to predict trajectories.

All the previously cited works have predicted the trajectories and
nteractions among the agents. However, they have not taken into con-
ideration their intentions, such as crossing/not-crossing, braking/non-
raking. Also, they have not incorporated the information provided
y road static objects like traffic lights and road signs. Static road
raffic objects play a crucial role in directing, informing, and controlling
oad users’ behaviour. Furthermore, there is limited research on how
o use detection and prediction information to identify potential and
eveloping hazards.

The authors (Chen et al., 2018) proposed a multi-task learning
odel that combines both object detection and distance prediction to

dentify dangerous traffic road objects. They used SSD CNN to detect
ars, vans, and pedestrians. The input image was divided into a grid
ap with four vertical and three horizontal distances. Depending on

he category of the target vehicle and its location, the network assigned
danger level using blue, green, yellow, and red bounding boxes,
here blue and red represented the least and the most dangerous levels,
20

espectively. However, predicting the target vehicle’s velocity using a
grid map limits the velocity resolution and might not give realistic
measurements. Also, relying solely on the distance between the ego
and the target vehicle is not enough. For example, an ego vehicle
might maintain a safe distance from the target vehicle, but the target
vehicle can suddenly brake and change its velocity. Therefore, it would
be beneficial for the ego vehicle to predict and recognise instances
when the target vehicle is braking or experiencing a sudden change
in velocity.

Authors (Li, Wang, et al., 2020) considered themselves pioneers in
combining object detection and intention recognition to assess the risks
in a complex traffic scenarios. Their objective was to detect both non-
static objects such as vehicles and pedestrians, and static objects such as
traffic lights, and then use the gained information to evaluate potential
hazards ahead. In order to detect the objects, they used the YOLOv4 and
the BDD100K dataset and achieved an mAP of 52.7%. For recognising
the pedestrian intention (crossing or not-crossing), they used VGG-19
CNN and Part Affinity fields, achieving an accuracy of 97.5%. To pre-
dict vehicle intentions, including braking and turning, they employed
the EfficientNet CNN, achieving a recognition accuracy of 94%. Lastly,
for recognising traffic light state (red, green, or amber), they used
the MobileNet CNN, achieving an accuracy of 97.75%. Nevertheless,
using only the brake and the turn signal lights information to predict
vehicle behaviour and assess danger is not sufficient since braking
behaviour can exhibit varying intensities. For example, normal braking,
characterised by a gradual decrease in the vehicle’s velocity, is typically
regarded as a potential hazard. In contrast, harsh braking, involving
a sudden and significant change in the vehicle’s velocity, is seen as a
developing hazard. Furthermore, there are situations where the target
vehicles abruptly change their direction without using their turn signal,
which also poses a developing hazard. Therefore, the ego vehicle must
be capable of detecting sudden changes in the vehicle’s direction and
velocity. Similarly, depending only on pedestrian crossing/not crossing
intentions limits the system to make a long prediction horizon, as
pedestrians can cross at different velocities, and may suddenly change
their goal destination.

6. Discussion

This paper has surveyed several works that investigate the be-
haviour prediction of pedestrians and vehicles. Based on the findings,
this section presents a general framework diagram, outlines risk as-
sessment, discusses challenges, examines techniques, outlines require-
ments, and suggests potential future directions for pedestrian and ve-
hicle behaviour prediction systems.

6.1. General framework for a behaviour prediction system

A proposed general framework for a behaviour prediction system is
depicted in Fig. 6. The camera sensor outputs RGB images which are
used by the detection and image processing algorithms.

The detection algorithm is responsible for detecting both static
and non-static road objects, including road lanes, vehicles, vulnerable
road users, traffic lights, and road signs. The position information
of the detected objects, represented by bounding boxes, is then used
by a tracking algorithm to assign a unique ID to each object. This
ID assignment enables the system to track past trajectories of each
detected object, which serves as input for subsequent processing.

The image processing algorithm uses the RGB images from the
camera sensor as well as the past trajectories of the detected objects
to generate optical flow, depth, appearance, global and local context
images. An example of how image processing uses past trajectories is
the use of the bounding box information to crop the RGB image at the
specific location of the detected object. This cropping operation pro-
vides local context information for further analysis and decision-making

within the system.
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Fig. 6. General behaviour prediction framework. The behaviour prediction module consists of an automated feature extractor (CNN, 3D-CNN, GCN, FCN, CVAE, GAN, etc.), an
embedding layer (FCN and ANN), and a time series algorithm (RNN, GRU, and LSTM). It is dependent on the perception module (Detection, tracking, image processing, interaction
representation, and feature engineering) which is dependent on the ego vehicle sensors (camera, GPS, and wheel encoder). Additionally, the outputs of the behaviour prediction
modules are sent to the planning module.
The interaction representation algorithm uses the past trajectories of
the objects to calculate distances between the traffic agents, construct
graph networks with vertices and edges, and generate grid maps that
account for interactions between traffic agents.

The feature engineering algorithm uses the past trajectories of ob-
jects and internal sensors data from the AV (e.g., steering wheel angle,
yaw rate, wheel encoder, etc.) to derive additional features. For ex-
ample, to use the differences between the objects’ positions between
consecutive frames to calculate their velocities.

The outputs of the perception module are then fed into the au-
tomated feature extractor and the embedding algorithms within the
behaviour prediction module. Automated feature extractors are deep
learning algorithms designed to generate feature vectors representing
spatial properties of the inputs. Embedding uses a linear transformation
to transform the inputs into a desired output feature size. The time
series algorithm uses the combined feature vectors generated by the
automated feature extractor and the embedding layer to learn temporal
information, enabling it to predict various aspects of object behaviour,
including future trajectories, future intentions, goals, and current in-
tentions. Note that the predicted goals and recognised intentions can
be used by the embedding layer and the time series algorithm as extra
information for predicting future trajectories.

Finally, the outputs of the behaviour prediction module are then
used by the AV’s Planning module, which in turn uses this information
to plan the actions of the AV to achieve its final goal.

6.2. Risk assessment for behaviour prediction system

Authors (Bhavsar et al., 2017) proposed a risk assessment for a
AV. They mentioned that AV failures can arise from various aspects,
including vehicular components such as hardware, software, mechan-
ical systems, communication infrastructure, and interactions between
the passenger and the AV Human Machine Interface system. Based on
their finding, this paper presents a risk assessment specifically for an
AV behaviour prediction system. This assessment identifies, analyses,
and provides recommendations for mitigating and controlling these
identified risks.

6.2.1. Risk identification
Based on the general framework for a behaviour prediction system

depicted in Fig. 6, the following risks have been identified:

• Camera sensor failure: this includes hardware malfunctions,
blocked field of view, and noise (electricity, heat, and illumina-
tion).
21
• Computing components failure: computer or GPU failure.
• Sensor Failure: Failure in the steering wheel, wheel encoder, GPS,

and IMU sensors.
• Detection algorithm failure: missed detections, poor intersection

over union, false-positive and false-negative classification.
• Tracking algorithm failure: missed tracking and incorrect associa-

tion of objects between frames. For instance, an object might not
be tracked in the next frame or objects might swap their IDs due
to overlap.

• Image processing failure: incorrect optical flow and depth estima-
tion.

• Interaction representation failure: noisy and incorrect distance
calculation, as well as incorrect graph or grid representation of
the object interactions.

• Feature Engineering failure: redundant features, noisy estimates
speed and acceleration due to poor detection and tracking per-
formance.

• Cybersecurity failure: remote hacking, vehicle spoofing, insider
threat, and tampering with sensor data.

6.2.2. Risk analysis
The authors (Bhavsar et al., 2017) discussed several methods for

analysing risks in automotive contexts, including situation-based analy-
sis, ontology-based analysis, failure modes and effects analysis (FMEA),
and fault tree analysis (FTA). From their investigation, they concluded
that FTA is the most suitable method for conducting a risk assessment
on AV features. For this reason, this paper also adopts FTA to per-
form a risk analysis on the behaviour prediction system. FTA methods
have the following advantages, being event-orientated, enabling the
diagnosis of the root cause of failures, facilitating an understanding
of how subsystems can impact each other, having a straightforward
and graphical nature for ease of comprehension, and aiding in decision-
making regarding the control of identified risks. The proposed FTA is
depicted in Fig. 7. A qualitative analysis of the proposed FTA reveals
that the system is highly vulnerable because any failure occurrence
of the basic events (EVX) can lead to the failure of the behaviour
prediction system. For instance, if the detection algorithm fails, it can
cascade failures throughout the tracking algorithm, image processing,
interaction representation, and feature engineering, ultimately in the
failure of the behaviour predictions system.

In order to quantitatively analyse the behaviour prediction system,
it is required to know the probability of failure for each event (EVX),
which depends on the hardware, software, and cybersecurity in use.
However, a general mathematical model to calculate the overall system
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Fig. 7. Fault tree analysis for a Behaviour Prediction System. The circle shapes with the square shapes are the basic events that may lead to failures on the top events. The square
shape after the TOP GATE is the top event which means the failure of the behaviour prediction system. The ‘‘OR’’ gates mean that if one of its input events occurs it will output
an event as true.
failure from an FTA diagram depicted in Fig. 7 is given by the following
equation (Ruijters & Stoelinga, 2015; Xing & Amari, 2008),

𝑄0(𝑡) ≤ (1 −𝛱𝑗=1𝑘[1−𝑄̌𝑗 (𝑡)]
) (3)

where 𝑄0(𝑡) is the top event (failure of the behaviour prediction sys-
tem), ̌𝑄𝑗 (𝑡) is the failure probability of a minimal cut-set. For instance,
the probability that the TOP GATE in the proposed FTA diagram
happens is given by,

𝑄0(𝑡) ≤ (1 − [1 − 𝑃 (𝐺𝑇 1)] ∗ [1 − 𝑃 (𝐺𝑇 2)] ∗ [1 − 𝑃 (𝐺𝑇 3)]) (4)

where

𝑃 (𝐺𝑇 1) = (1 − [1 − 𝑃 (𝐸𝑉 1)] ∗ [1 − 𝑃 (𝐸𝑉 2)] ∗ [1 − 𝑃 (𝐸𝑉 3)]) (5)

and,

𝑃 (𝐺𝑇 2) = (1 − [1 − 𝑃 (𝐸𝑉 4)] ∗ [1 − 𝑃 (𝐸𝑉 5)] ∗ [1 − 𝑃 (𝐸𝑉 6)]

∗ [1 − 𝑃 (𝐸𝑉 7)])
(6)

and
𝑃 (𝐺𝑇 3) = (1 − [1 − 𝑃 (𝐸𝑉 8)] ∗ [1 − 𝑃 (𝐸𝑉 9)] ∗ [1 − 𝑃 (𝐸𝑉 10)]

∗ [1 − 𝑃 (𝐸𝑉 11)]).
(7)

6.2.3. Risk control
Based on the identification and analysis of risks, it has been con-

cluded that a behaviour prediction system is vulnerable. Below are
some recommendations to mitigate these risks:

• Given that any hardware failure can cause a top event, it is
recommended to have backups for hardware components with a
high probability of failure, for example, to have an extra camera
22
sensor. The disadvantage of this approach is that it is expensive
and requires more space in the vehicle.

• For the general prediction behaviour system in question, it is
observed that it relies on three types of information (RGB image,
engineering feature, and interaction) for predictions. Therefore it
is recommended to enable the system to function in a degraded
mode by using one or two pieces of information if one of them
fails.

• The detection and tracking algorithms are important for the sys-
tem, as their outputs are used by the other algorithms. Thus, it
is recommended to make use of sensor fusion, since if one of the
hardware or the algorithms responsible for detecting and tracking
the object fails the system can work in a degraded mode.

6.3. Behaviour prediction system challenges

Table 9 summarises the main challenges in the research of be-
haviour prediction of traffic agents. These challenges are categorised
into target agents, systems, resources, and uncertainties. Target agents
refer to the unique characteristics of these agents that make their
behaviour challenging to predict. System challenges are related to the
inherent characteristics of the system, considering its design and eval-
uation. Resource challenges are associated with the hardware and data
required for training and operating the system. Uncertainties include
events such as hardware malfunctions, cybersecurity vulnerabilities,
and software failures.

6.4. Behaviour prediction system requirements

An AV behaviour prediction system needs to meet several key
requirements to ensure its effectiveness:
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Table 8
Results for the most relevant pedestrian intention prediction works.

Work Dataset Obs. Hor. TTE Acc(%) AUC(%) F1(%) Rec.(%) Prec(%) ROC-AUC(%)

Gazzeh and Douik (2022)
JAAD – Recog. 92.88 – – – – –

Fang and López (2018) JAAD 0.5 s Next-Frame 88 – – – – –

STRR-Graph
Liu et al. (2020)

JAAD 0.5 s Next-Frame 76.98 – – – – –

FUSSI-net
Piccoli et al. (2020)

JAAD 0.5 s Next-Frame 76.6 – – – – –

PIEint
Rasouli et al. (2019)

PIE 0.5 s Next-Frame 79 – 87 – 90 73

CA-LSTM
Lian et al. (2022)

JAAD 0.5 s Next-Frame 89.68 – 75.38 85.96 – –

PV-LSTM
Bouhsain et al. (2020)

JAAD 0.6 s 0.6 s 91.48 – – – – –

Ma and Rong (2022) BPI – 0.6 s 89.5 99.2 – – – –

SFR-GRU
Rasouli et al. (2020)

PIE 0.5 s 2 s 84.4 82.9 72.1 80 65.7 –

C+B+S+Int
Kotseruba et al. (2020)

PIE 0.5 s 2 s 83 85 81 85 79 –

PCIR
Yang et al. (2021)

JAAD – – 89.6 – – – – –

Chen et al. (2021) PIE 0.5 s 1.5 s 79 – 78 – – –

I+A+F+R
Yao et al. (2021b)

JAAD
PIE

0.5 s
–

1-2 s 87
84

92
88

70
90

–
–

66
96

–
–

Yang, Zhang, et al. (2022) JAAD
PIE

0.5 s 1-2 s 83
89

82
86

63
80

81
81

51
79

–
–

GRAPH+
Cadena et al. (2022)

JAAD
PIE

0.5 s 1–2 s 86
89

88
90

65
81

75
79

58
83

–
–

Achaji et al. (2022) PIE 0.5 s 1–2 s 91 91 83 – – –

Scene-STGCN
Naik et al. (2022)

PIE 0.5 s 1–2 s 83 – 89 – 96 85

PCPA
Kotseruba et al. (2021)

JAAD
PIE

0.5 s
–

0.5-1 s 85
87

86
86

68
77

–
–

–
–

–
–

ST-CrossingPose
Zhang, Angeloudis, and Demiris
(2022)

OWN 0.5 s 1 s
2 s

92
92

84.9
84.1

83.7
79.7

81.8
79.7

85.9
81.3

–
–

Zeng (2022) JAAD -s -s 84 – – – – 85
• Good Evaluation Metric Performance: AV behaviour prediction
system is a safety-critical system, therefore it must perform well
in terms of evaluation metric performance to prevent traffic colli-
sions. For example, if the system fails to predict that a pedestrian
will cross the road, it could lead to a serious collision.

• Long Prediction Horizon (PTH): A system with a long PTH can
plan and react well in advance, reducing the chances of collisions
and improving overall safety.

• Fast Inference Time: Given that an AV behaviour prediction
system must operate in a real-time, it must have a low inference
time and require a low hardware resource.

• Low Cost: To make AVs accessible to a wide range of people,
the behaviour prediction system should be cost-effective, ensuring
that AVs are affordable for all social classes

• Low Hardware Resource Requirement: Efficient utilisation of
hardware resources is important, as it allows the system to run
on hardware with limited capacity.

• Robustness: The system should be robust and able to handle
various scenarios and conditions on the road, ensuring reliable
performance in different situations.

• Prediction of Various Non-Static Objects: The system should be
capable of predicting the behaviour of different types of non-static
objects on the road, including pedestrians, vehicles, animals, and
23

cyclists, to ensure comprehensive safety.
Evaluation metrics, long prediction horizons, and robustness are
interrelated. For instance, as the prediction horizon increases the eval-
uation metric performance tends to decrease. In addition, as a system
becomes more robust, its evaluation metric performance is expected
to increase. The major challenges that limit behaviour prediction algo-
rithms from meeting the previously mentioned requirements stem from
the fact that an agent’s behaviour depends on other agents in the scene,
the local and global context, and their final goal. Various approaches
have been proposed to address these challenges:

• Social pooling layers (Alahi et al., 2016; Deo & Trivedi, 2018a),
Graph representation, GCN, self-attention based social pooling
(Mangalam et al., 2020), message passing mechanism (Zhang
et al., 2019), occupancy maps (Kasper et al., 2012; Park et al.,
2018; Xue et al., 2018), view frustum social pooling (Hasan
et al., 2018), and star-like networks to model interactions be-
tween agents (Zhu et al., 2019).

• CNNs to extract agents’ appearance, body pose, local context,
global context, and to classify intentions (Biparva et al., 2021;
Chen et al., 2021; Fang et al., 2017; Fernández-Llorca et al., 2020;
Izquierdo et al., 2021; Yang, Zhang, et al., 2022; Yao et al., 2021b;
Zhao et al., 2019).

• Attention mechanisms and transformer networks to focus on the
most relevant information (Achaji et al., 2022; Lian et al., 2022;

Rasouli et al., 2019).
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Table 9
Behaviour prediction research challenges.

Type of challenge Class Challenges

Target Agents Pedestrian Highly dynamic, can move in many directions and change them
very quickly, be easily occluded, be distracted by their own objects
or external environments, their motion can be affected by other
traffic agents, might be under the influence of drugs or alcoholic
drinks, and they are hard to see in poor visibility condition.

Vehicle Dependent on other vehicles’ actions, traffic rules, road geometry,
different driving environments, vehicles have multi-modal
behaviour, different types of vehicles have different motion
properties, drivers might be under the influence of drugs or
alcoholic drinks, and target vehicles might be occluded.

*System Design To achieve a good evaluation metric performance, long PTH,
real-time inference, low hardware resources, and robustness.

Evaluation Works have used different types of datasets, evaluation metrics,
observation and prediction horizon, and hardware setup. Therefore,
works cannot be directly compared and the actual progress of
pedestrians and vehicle behaviour prediction research cannot be
measured.

*Resources Hardware Smaller size GPUs that can process deep learning algorithms in
real-time, sensors that enable the AV to perceive 360-degree road
view, and affordable hardware to enable all social classes to afford
AVs.

Data Several existing datasets are not publicly available and they are not
standardised to enable cross-dataset evaluation and progressive
training pipeline techniques.

*
Uncertainties Hardware Failure Camera, GPS, IMU, steering wheel, and wheel encoder sensor

failure.

Cyber Attack Remote hacking, vehicle spoofing, insider threat, and tampering
with sensor data.

Software Failure Perception module (detection, tracking, image processing,
interaction representation, and feature engineering) failure.
• 3D-CNNs and temporal-Densenet to learn short-term temporal
information (Biparva et al., 2021; Kotseruba et al., 2021; Piccoli
et al., 2020; Yang et al., 2021).

• LSTMs and GRUs to learn long-term temporal information (Bouh-
sain et al., 2020; Chung et al., 2014; Kotseruba et al., 2020;
Rasouli et al., 2019, 2020).

• A modified version of the LSTM cell that accepts more than one
input sequence set (Quan et al., 2021).

• CVAE was used to estimate the final goals of the agents to extend
the prediction time horizon (Lee, Choi, et al., 2017; Mangalam
et al., 2020; Wang et al., 2022; Yao et al., 2021a).

• Heterogeneous agent behaviour prediction works have been pre-
sented to enable the system to predict the behaviour of different
non-static object behaviour (Chandra, Bhattacharya, et al., 2019;
Chandra, Randhavane, et al., 2019; Chen et al., 2018; Li, Wang,
et al., 2020; Li, Yang, et al., 2020; Ma et al., 2019; Mo et al.,
2022). However, these works have primarily focused on pedestri-
ans, cyclists, and vehicles, while there are other objects such as
animals, disabled individuals, scooters, toys (balls), skate riders,
etc.

• Combination of two or more methods to compensate their limita-
tions (Chen et al., 2021; Kotseruba et al., 2021; Liu et al., 2020;
Naik et al., 2022; Yang, Zhang, et al., 2022; Yao et al., 2021b;
Zeng, 2022).

• Systems that can predict the behaviour of heterogeneous agents
(Chandra, Bhattacharya, et al., 2019; Chandra, Randhavane, et al.,
2019; Li, Wang, et al., 2020; Li, Yang, et al., 2020; Ma et al.,
2019).

Inference time, low cost, and low hardware resource requirements
re also interrelated. For example, if a system consumes less memory
nd computational power, it results in cheaper hardware requirements,
aking the overall system more cost-effective. Typically, when a sys-

em requires less memory, such as for processing image inputs, the
24
system’s overall inference time is expected to be shorter. However,
there may be a trade-off between accuracy and inference time. For
example, using multiple-feature information can increase the system’s
accuracy but may lead to longer inference times compared to a sys-
tem using a single type of feature. The following methods have been
proposed in order to achieve low inference time, low cost, and low
hardware resource requirements:

• GCN, which represents interactions between agents effectively
without relying on additional information like original images,
cropped images, or contextual information (Li et al., 2019a,
2019b).

• Dual-LSTM, which allows the system to learn more information
from past trajectories without requiring extra input features (Xin
et al., 2018).

• Fusion of multiple input features (context, interaction, trajec-
tories, and appearance) into an enriched image representation,
rather than processing a sequence of images (Izquierdo et al.,
2021).

6.5. Behaviour prediction system further work

Despite the techniques presented to meet the specified require-
ments, there is still work to be done from the authors’ perspective. For
example:

• Most of the works, both for pedestrians and vehicles, were im-
plemented using either a top-view or BEV dataset, which may
not be ideal for an AV system. Only in the past five years
have researchers started implementing algorithms using on-board
datasets such as PREVENTION, Appolo, JAAD, and PIE. Moreover,
most of the works that used on-board datasets focused on imple-
menting intention prediction algorithms, and most of proposed
algorithms cannot be directly compared.
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• While some works have used the same datasets, evaluation met-
rics, observation time horizon, and prediction time horizon, these
works were implemented on top-view and BEV datasets. For ex-
ample, many vehicle trajectory predictions have used the NGSIM
dataset with an OTH of 3 s, a PTH of 5 s, and the MSE evalu-
ation metric. Several pedestrian prediction trajectory algorithms
adopted the ETH and UCY dataset, with an OTH of 3.2 s, a PTH of
4.8 s, and the ADE and FDE evaluation metric. If these datasets
were ideal for AV systems, then the best vehicle trajectory pre-
diction algorithms would be GRIP (Li et al., 2019b), GRIP++ (Li
et al., 2019a), and AI-TP (Zhang, Zhao, et al., 2022), and the best
pedestrian trajectory prediction algorithm would be the Bi-Trap
algorithm (Yao et al., 2021a).

• There is a lack of research on unusual behaviour exhibited by
pedestrians and vehicles. For example, pedestrians might exhibit
unusual behaviour when under the influence of toxic substances,
involved in fights, or disoriented. Similarly, vehicles may display
unusual behaviour when the driver is under the influence of
toxic substances, and is distracted with their personal belongings,
or if the vehicle is an emergency vehicle, garbage truck, road
sweeper, carrying an abnormal load, or experiencing mechanical
malfunctioning.

• There is a limited research on decreasing inference time, and
more emphasis should be placed on addressing this demand.

• Standardising datasets would enable cross-dataset evaluation and
the development of progressive training pipeline techniques.

• Introducing universal metrics would allow for direct comparisons
of algorithm performance.

• When considering a full pipeline system (detection, tracking and
behaviour prediction), it is necessary to account for perception
uncertainties due to sensor noise, fuzzy features, or unknown in-
puts (Liu et al., 2022). Since there are a limited number of works
that have implemented a full pipeline system, more works consid-
ering the entire pipeline process are recommended to investigate
the effect of possible noise.

Based on the literature review the following suggestions are given
o further improve and accelerate the development of the Autonomous
ehicle Behaviour Prediction System:

• Encourage more research works to adopt on-board view datasets
for predicting both pedestrian and vehicle behaviour, including
intention and trajectories.

• Standardise existing dataset to enable cross-dataset evaluation
and progressive training pipeline techniques.

• Choose or create a standard evaluation metric to enable direct
comparison among algorithms.

• Develop datasets that have instances of abnormal pedestrian and
vehicle behaviours to enable research on the recognition and
prediction of abnormal pedestrian and vehicle behaviour.

• Implement behaviour prediction algorithms on resource-constra-
ined hardware, such as Jetson Orin, and Jetson Xavier GPUs,
which are low-cost, small in size, lightweight, and consume low
power.

• Investigate more methods to select the target object and the
objects that directly interact with the target object.

The general object detection problem serves as an example of
he importance of having a large dataset and standard evaluation
etrics. The field has achieved an acceptable level of maturity be-

ause researchers have access to publicly available large image bench-
ark datasets, such as the ImageNet (Russakovsky et al., 2015) and
OCO (Lin et al., 2014). These datasets enabled the authors to directly
ompare their detection algorithm performance and to measure the
dvancement of object detection research.
25
7. Conclusion

AV systems must not only detect pedestrians and vehicles but also
predict their behaviour to avoid or mitigate collisions. Therefore, the
purpose of this literature review, was to survey the most relevant
pedestrian and vehicle behaviour prediction algorithms to identify
the requirements for a behaviour prediction algorithm, the challenges
associated with predicting pedestrian and vehicle behaviour, whether
current techniques have met these requirements, and what steps are
needed to enable AVs to predict pedestrian and vehicle behaviours. In
conclusion, the review shows that:

• An AV behaviour prediction system must have a good evalua-
tion metric performance, long prediction horizon, fast inference
time, must be cost-effective, robust, require minimal hardware
resources, and predict various types of non-static objects on the
road.

• The main challenges in predicting the behaviour of traffic agents
involve modelling their interactions, establishing relationship be-
tween the agents and the scene, and achieving a balance between
good evaluation metric performance and low inference times.

• Current techniques do not fully meet these requirements for
several reasons:

– when predicting for long-term horizons, evaluation metric
performance significantly decreases;

– while top-view and BEV datasets are commonly used in the
literature, there are limited works that adopted on-board
datasets, which are more suitable for AVs;

– on-board datasets usually only use a single forward-facing
camera, limiting the behaviour prediction system to con-
sider only agents ahead, whereas considering agents around
the ego vehicles using multiple cameras is essentials (Zhang,
2021);

– more investigation is required to develop models that can
predict intention and trajectory simultaneously; although
some authors (Li et al., 2019a, 2019b) claimed that their
system has achieved real-time inference times, they have
used top-view cameras, whereas systems that use on-board
sensors may require more processing time;

– there are no works that consider abnormal behaviour exhib-
ited by traffic agents.

• Most of the reviewed works have not considered the full pipeline
behaviour prediction process, which consists of detection, clas-
sification, and tracking. More research should focus on the full
pipeline process to assess the performance of each stage and its
impact on the final prediction results.

Abbreviations
AV Autonomous Vehicle.
ADAS Advanced Driver Assistance System.
WHO World Health Organisation.
DL Deep Learning.
OTH Observation Time Horizon.
PTH Prediction Time Horizon.
EV Ego Vehicle.
TTE Time-To-Event.
KF Kalman Filter.
EKF Extended Kalman Filter.
HMM Hidden Markov Model.
SVM Support Vector Machine.
ANN Artificial Neural Network.
OGM Occupancy Grid Map.
CNN Convolutional Neural Network.



Expert Systems With Applications 238 (2024) 121983L.G. Galvão and M.N. Huda

V
M
S

D

t
L
a

D

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

C

C

C

C

FCN Fully Connected Network.
RNN Recurrent Neural Network.
GCNN Graph Convolutional Neural Network.
LSTM Long-short Term Memory.
RMSE Root Mean Square Error.
GRIP Graph-based Interaction-aware Trajectory

Prediction.
LLC Left Lane Change.
RLC Right Lane Change.
NLC No Lane Change.
DESIRE Deep Stochastic Inverse Optimal Control RNN

encoder–Decoder.
CVAE Conditional Variational Auto Encoder.
IOC Inverse Optimal Control.
BEV Bird’s Eye View.
ARIMA Auto-Regressive Integrated Moving Average.
TSM Target Selection Model.
TIM Temporal Integration Method.
RoI Region of Interest.
AUC Area Under the Curve.
ROC-AUC Receiver Operating Characteristic Curve - AUC.
ANDE Average Non-Linear Displacement Error.
MAD Mean Average Displacement.
FAD Final Average Displacement.
GAN Generative Adversarial Network.
MLP Multi-layer Perceptron.
MDN Mixture Density Network.
ST-GCN Spatial–Temporal Graph Convolutional

Network.
GRU Gated Recurrent Unit.
PIF Part-Intensity-Fields.
PAF Part Association Fields.
AI-TP Attention-Based Interaction-aware Trajectory

Prediction.
HEAT Heterogeneous Edge-enhanced Graph

Attention Network.
MATF Multi-Agent Tensor Fusion.
VGMM Variational Gaussian Mixture Models.
WSADE Weight Sum of Average Displacement Error.
WSFDE Wight Sum of Final Displacement Error.
NGSIM-LP NGSIM Lankershim and Peachtree.
RBF Radial Basis Function.
MLPE Mean Lateral Position Error.
ADE Average Displacement Error.
FDE Final Displacement Error.
FMEA Failure Modes and Effects Analysis
FTA Fault Tree Analysis

CRediT authorship contribution statement

Luiz G. Galvão: Conceptualization, Methodology, Investigation,
isualization, Writing – original draft, Writing – review & editing.
. Nazmul Huda: Conceptualization, Writing – review & editing,

upervision, Resources, Funding acquisition, Project administration.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
uiz G. Galvao reports financial support was provided by Engineering
nd Physical Sciences Research Council.

ata availability
26

No data was used for the research described in the article.
Acknowledgements

This research was funded by EPSRC DTP Ph.D. studentship at Brunel
University London, United Kingdom.

References

Abbas, A. F., Sheikh, U. U., AL-Dhief, F. T., & Haji Mohd, M. N. (2021). A
comprehensive review of vehicle detection using computer vision. Telkomnika,
19(3).

bdulrahim, K., & Salam, R. A. (2016). Traffic surveillance: A review of vision
based vehicle detection, recognition and tracking. International journal of applied
engineering research, 11(1), 713–726.

bughalieh, K. M., & Alawneh, S. G. (2020). Predicting pedestrian intention to cross
the road. IEEE Access, 8, 72558–72569, Publisher: IEEE.

chaji, L., Moreau, J., Fouqueray, T., Aioun, F., & Charpillet, F. (2022). Is attention
to bounding boxes all you need for pedestrian action prediction? In 2022 IEEE
intelligent vehicles symposium (pp. 895–902). IEEE.

frin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards
a sustainable and resilient transportation system. Sustainability, 12(11), 4660,
Publisher: Multidisciplinary Digital Publishing Institute.

hmed, S., Al Bazi, A., Saha, C., Rajbhandari, S., & Huda, M. N. (2023). Multi-
scale pedestrian intent prediction using 3D joint information as spatio-temporal
representation. Expert Systems with Applications, 225, Article 120077, Publisher:
Elsevier.

hmed, S., Huda, M. N., Rajbhandari, S., Saha, C., Elshaw, M., & Kanarachos, S.
(2019a). Pedestrian and cyclist detection and intent estimation for autonomous
vehicles: A survey. Applied Sciences, 9(11), 2335, Publisher: MDPI.

hmed, S., Huda, M. N., Rajbhandari, S., Saha, C., Elshaw, M., & Kanarachos, S.
(2019b). Visual and thermal data for pedestrian and cyclist detection. In Towards
autonomous robotic systems: 20th annual conference, TAROS 2019, London, UK, July
3–5, 2019, proceedings, Part II 20 (pp. 223–234). Springer.

lahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., & Savarese, S. (2016).
Social LSTM: Human trajectory prediction in crowded spaces. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 961–971).

ltché, F., & de La Fortelle, A. (2017). An LSTM network for highway trajectory
prediction. In 2017 IEEE 20th international conference on intelligent transportation
systems (pp. 353–359). IEEE.

ntonio, J. A., & Romero, M. (2018). Pedestrians’ detection methods in video images:
A literature review. In 2018 international conference on computational science and
computational intelligence (pp. 354–360). IEEE.

enterki, A., Boukhnifer, M., Judalet, V., & Choubeila, M. (2019). Prediction of
surrounding vehicles lane change intention using machine learning. In 2019 10th
IEEE international conference on intelligent data acquisition and advanced computing
systems: technology and applications, vol. 2 (pp. 839–843). IEEE.

enterki, A., Boukhnifer, M., Judalet, V., & Maaoui, C. (2020). Artificial intelligence for
vehicle behavior anticipation: Hybrid approach based on maneuver classification
and trajectory prediction. IEEE Access, 8, 56992–57002, Publisher: IEEE.

erndt, H., & Dietmayer, K. (2009). Driver intention inference with vehicle onboard
sensors. In 2009 IEEE international conference on vehicular electronics and safety (pp.
102–107). IEEE.

hattacharyya, A., Fritz, M., & Schiele, B. (2018). Long-term on-board prediction of
people in traffic scenes under uncertainty. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4194–4202).

havsar, P., Das, P., Paugh, M., Dey, K., & Chowdhury, M. (2017). Risk analysis
of autonomous vehicles in mixed traffic streams. Transportation Research Record,
2625(1), 51–61, Publisher: SAGE Publications Sage CA: Los Angeles, CA.

iparva, M., Fernández-Llorca, D., Izquierdo-Gonzalo, R., & Tsotsos, J. K. (2021). Video
action recognition for lane-change classification and prediction of surrounding
vehicles. arXiv preprint arXiv:2101.05043.

onnin, S., Weisswange, T. H., Kummert, F., & Schmüdderich, J. (2014). Pedestrian
crossing prediction using multiple context-based models. In 17th international IEEE
conference on intelligent transportation systems (pp. 378–385). IEEE.

ouhsain, S. A., Saadatnejad, S., & Alahi, A. (2020). Pedestrian intention prediction: A
multi-task perspective. arXiv preprint arXiv:2010.10270.

adena, P. R. G., Qian, Y., Wang, C., & Yang, M. (2022). Pedestrian graph+: A fast
pedestrian crossing prediction model based on graph convolutional networks. IEEE
Transactions on Intelligent Transportation Systems, Publisher: IEEE.

handra, R., Bhattacharya, U., Randhavane, T., Bera, A., & Manocha, D. (2019). Road-
Track: Realtime tracking of road agents in dense and heterogeneous environments.
arXiv, arXiv–1906.

handra, R., Randhavane, T., Bhattacharya, U., Bera, A., & Manocha, D. (2019).
Deeptagent: Realtime tracking of dense traffic agents using heterogeneous interaction:
Technical report, 2018. [Online]. Available: http://gamma.cs.unc.edu/HTI.

hen, L., Ding, Q., Zou, Q., Chen, Z., & Li, L. (2020). DenseLightNet: A light-weight
vehicle detection network for autonomous driving. IEEE Transactions on Industrial

Electronics, 67(12), 10600–10609, Publisher: IEEE.

http://refhub.elsevier.com/S0957-4174(23)02485-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb16
http://arxiv.org/abs/2101.05043
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb18
http://arxiv.org/abs/2010.10270
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb21
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb21
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb21
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb21
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb21
http://gamma.cs.unc.edu/HTI
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb23


Expert Systems With Applications 238 (2024) 121983L.G. Galvão and M.N. Huda

C

C

C

D

D

L

L

L

L

L

Chen, L., Ma, N., Wang, P., Li, J., Wang, P., Pang, G., & Shi, X. (2020). Survey of
pedestrian action recognition techniques for autonomous driving. Tsinghua Science
and Technology, 25(4), 458–470, Publisher: TUP.

Chen, T., Tian, R., & Ding, Z. (2021). Visual reasoning using graph convolutional
networks for predicting pedestrian crossing intention. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 3103–3109).

Chen, Y., Zhao, D., Lv, L., & Zhang, Q. (2018). Multi-task learning for dangerous object
detection in autonomous driving. Information Sciences, 432, 559–571, Publisher:
Elsevier.

hung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

OLONNA, M. (2018). Urbanisation worldwide. Knowledge for policy - European Com-
mission, URL: https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-
urbanisation/urbanisation-worldwide_en.

zech, P., Braun, M., Kreßel, U., & Yang, B. (2022). On-board pedestrian trajectory
prediction using behavioral features. arXiv preprint arXiv:2210.11999.

ai, S., Li, L., & Li, Z. (2019). Modeling vehicle interactions via modified LSTM models
for trajectory prediction. IEEE Access, 7, 38287–38296, Publisher: IEEE.

endorfer, P., Osep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., &
Leal-Taixé, L. (2021). Motchallenge: A benchmark for single-camera multiple target
tracking. International Journal of Computer Vision, 129, 845–881, Publisher: Springer.

Deo, N., Rangesh, A., & Trivedi, M. M. (2018). How would surround vehicles move?
A unified framework for maneuver classification and motion prediction. IEEE
Transactions on Intelligent Vehicles, 3(2), 129–140, Publisher: IEEE.

Deo, N., & Trivedi, M. M. (2018a). Convolutional social pooling for vehicle trajectory
prediction. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops (pp. 1468–1476).

Deo, N., & Trivedi, M. M. (2018b). Multi-modal trajectory prediction of surrounding
vehicles with maneuver based LSTMS. In 2018 IEEE intelligent vehicles symposium
(pp. 1179–1184). IEEE.

Dueholm, J. V., Kristoffersen, M. S., Satzoda, R. K., Moeslund, T. B., & Trivedi, M. M.
(2016). Trajectories and maneuvers of surrounding vehicles with panoramic camera
arrays. IEEE Transactions on Intelligent Vehicles, 1(2), 203–214, Publisher: IEEE.

Durrant-Whyte, H. (2001). A critical review of the state-of-the-art in autonomous
land vehicle systems and technology. Albuquerque (NM) andLivermore (CA), USA:
SandiaNationalLaboratories, 41, 242.

Fang, Z., & López, A. M. (2018). Is the pedestrian going to cross? answering by 2D
pose estimation. In 2018 IEEE intelligent vehicles symposium (pp. 1271–1276). IEEE.

Fang, Z., Vázquez, D., & López, A. M. (2017). On-board detection of pedestrian
intentions. Sensors, 17(10), 2193, Publisher: MDPI.

Fernández-Llorca, D., Biparva, M., Izquierdo-Gonzalo, R., & Tsotsos, J. K. (2020). Two-
stream networks for lane-change prediction of surrounding vehicles. In 2020 IEEE
23rd international conference on intelligent transportation systems (pp. 1–6). IEEE.

Flohr, F. F., Kooij, J. F. K., Pool, E. A. P., & Gavrila, D. M. G. (2018). Context-based
path prediction for targets with switching dynamics.

Galvao, L. G., Abbod, M., Kalganova, T., Palade, V., & Huda, M. N. (2021). Pedestrian
and vehicle detection in autonomous vehicle perception systems—A review. Sensors,
21(21), 7267, Publisher: MDPI.

Gazzeh, S., & Douik, A. (2022). Deep learning for pedestrian behavior understanding.
In 2022 6th international conference on advanced technologies for signal and image
processing (pp. 1–5). IEEE.

Girma, A., Amsalu, S., Workineh, A., Khan, M., & Homaifar, A. (2020). Deep learning
with attention mechanism for predicting driver intention at intersection. In 2020
IEEE intelligent vehicles symposium (pp. 1183–1188). IEEE.

GOVUK, G. (2020). Reported road casualties Great Britain, annual report: 2020.
GOV.UK, URL: https://www.gov.uk/government/statistics/reported-road-
casualties-great-britain-annual-report-2020/reported-road-casualties-great-britain-
annual-report-2020.

GOVUK, G. (2021). Reported road casualties in Great Britain, provisional estimates:
year ending June 2021. GOV.UK, URL: https://www.gov.uk/government/statistics/
reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-
2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-
june-2021.

Gulzar, M., Muhammad, Y., & Muhammad, N. (2021). A survey on motion prediction of
pedestrians and vehicles for autonomous driving. IEEE Access, 9, 137957–137969,
Publisher: IEEE.

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., & Alahi, A. (2018). Social GAN: Socially
acceptable trajectories with generative adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 2255–2264).

Hasan, I., Setti, F., Tsesmelis, T., Del Bue, A., Galasso, F., & Cristani, M. (2018). Mx-
lstm: Mixing tracklets and vislets to jointly forecast trajectories and head poses.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
6067–6076).

He, J.-H., Chen, Y.-L., Chen, X.-Z., & Chiang, H.-H. (2021). Vehicle turning intention
prediction based on data-driven method with roadside radar and vision sensor. In
2021 IEEE international conference on consumer electronics-Taiwan (pp. 1–2). IEEE.

Hermes, C., Wohler, C., Schenk, K., & Kummert, F. (2009). Long-term vehicle motion
27

prediction. In 2009 IEEE intelligent vehicles symposium (pp. 652–657). IEEE.
Huang, H., Zeng, Z., Yao, D., Pei, X., & Zhang, Y. (2021). Spatial–temporal ConvLSTM
for vehicle driving intention prediction. Tsinghua Science and Technology, 27,
599–609.

Izquierdo, R., Quintanar, A., Lorenzo, J., García-Daza, I., Parra, I., Fernández-Llorca, D.,
& Sotelo, M. A. (2021). Vehicle lane change prediction on highways using efficient
environment representation and deep learning. IEEE Access, 9, 119454–119465,
Publisher: IEEE.

Izquierdo, R., Quintanar, A., Parra, I., Fernández-Llorca, D., & Sotelo, M. A. (2019).
The prevention dataset: A novel benchmark for prediction of vehicles intentions.
In 2019 IEEE intelligent transportation systems conference (pp. 3114–3121). IEEE.

Karasev, V., Ayvaci, A., Heisele, B., & Soatto, S. (2016). Intent-aware long-term
prediction of pedestrian motion. In 2016 IEEE international conference on robotics
and automation (pp. 2543–2549). IEEE.

Kasper, D., Weidl, G., Dang, T., Breuel, G., Tamke, A., Wedel, A., & Rosenstiel, W.
(2012). Object-oriented Bayesian networks for detection of lane change maneuvers.
IEEE Intelligent Transportation Systems Magazine, 4(3), 19–31, Publisher: IEEE.

Keller, C. G., & Gavrila, D. M. (2013). Will the pedestrian cross? a study on
pedestrian path prediction. IEEE Transactions on Intelligent Transportation Systems,
15(2), 494–506, Publisher: IEEE.

Khosroshahi, A., Ohn-Bar, E., & Trivedi, M. M. (2016). Surround vehicles trajectory
analysis with recurrent neural networks. In 2016 IEEE 19th international conference
on intelligent transportation systems (pp. 2267–2272). IEEE.

Kim, B., Kang, C. M., Kim, J., Lee, S. H., Chung, C. C., & Choi, J. W. (2017).
Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent
neural network. In 2017 IEEE 20th international conference on intelligent transportation
systems (pp. 399–404). IEEE.

Kong, Y., & Fu, Y. (2018). Human action recognition and prediction: A survey. arXiv
preprint arXiv:1806.11230.

Kooij, J. F. P., Schneider, N., Flohr, F., & Gavrila, D. M. (2014). Context-based
pedestrian path prediction. In European conference on computer vision (pp. 618–633).
Springer.

Kotseruba, I., Rasouli, A., & Tsotsos, J. K. (2020). Do they want to cross? understanding
pedestrian intention for behavior prediction. In 2020 IEEE intelligent vehicles
symposium (pp. 1688–1693). IEEE.

Kotseruba, I., Rasouli, A., & Tsotsos, J. K. (2021). Benchmark for evaluating pedestrian
action prediction. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision (pp. 1258–1268).

Kuefler, A., Morton, J., Wheeler, T., & Kochenderfer, M. (2017). Imitating driver
behavior with generative adversarial networks. In 2017 IEEE intelligent vehicles
symposium (pp. 204–211). IEEE.

Kumar, P., Perrollaz, M., Lefevre, S., & Laugier, C. (2013). Learning-based approach for
online lane change intention prediction. In 2013 IEEE intelligent vehicles symposium
(pp. 797–802). IEEE.

Lee, N., Choi, W., Vernaza, P., Choy, C. B., Torr, P. H., & Chandraker, M. (2017). Desire:
Distant future prediction in dynamic scenes with interacting agents. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 336–345).

Lee, D., Kwon, Y. P., McMains, S., & Hedrick, J. K. (2017). Convolution neural network-
based lane change intention prediction of surrounding vehicles for ACC. In 2017
IEEE 20th international conference on intelligent transportation systems (pp. 1–6). IEEE.

Lefèvre, S., Vasquez, D., & Laugier, C. (2014). A survey on motion prediction and
risk assessment for intelligent vehicles. ROBOMECH Journal, 1(1), 1–14, Publisher:
SpringerOpen.

Leon, F., & Gavrilescu, M. (2019). A review of tracking, prediction and decision making
methods for autonomous driving. arXiv preprint arXiv:1909.07707.

Levy, J. I., Buonocore, J. J., & Von Stackelberg, K. (2010). Evaluation of the public
health impacts of traffic congestion: A health risk assessment. Environmental Health,
9(1), 1–12, Publisher: Springer.

Li, Y., Wang, H., Dang, L. M., Nguyen, T. N., Han, D., Lee, A., Jang, I., &
Moon, H. (2020). A deep learning-based hybrid framework for object detection
and recognition in autonomous driving. IEEE Access, 8, 194228–194239, Publisher:
IEEE.

i, J., Yang, F., Tomizuka, M., & Choi, C. (2020). Evolvegraph: Multi-agent trajectory
prediction with dynamic relational reasoning. In Proceedings of the neural information
processing systems.

i, X., Ying, X., & Chuah, M. C. (2019a). Grip++: Enhanced graph-based interaction-
aware trajectory prediction for autonomous driving. arXiv preprint arXiv:1907.
07792.

i, X., Ying, X., & Chuah, M. C. (2019b). Grip: Graph-based interaction-aware trajectory
prediction. In 2019 IEEE intelligent transportation systems conference (pp. 3960–3966).
IEEE.

ian, J., Yu, F., Li, L., & Zhou, Y. (2022). Early intention prediction of pedestrians
using contextual attention-based LSTM. Multimedia Tools and Applications, 1–17,
Publisher: Springer.

im, Y.-C., Lee, M., Lee, C.-H., Kwon, S., & Lee, J.-h. (2010). Improvement of stereo
vision-based position and velocity estimation and tracking using a stripe-based
disparity estimation and inverse perspective map-based extended Kalman filter.

Optics and Lasers in Engineering, 48(9), 859–868, Publisher: Elsevier.

http://refhub.elsevier.com/S0957-4174(23)02485-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb26
http://arxiv.org/abs/1412.3555
https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-urbanisation/urbanisation-worldwide_en
https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-urbanisation/urbanisation-worldwide_en
https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-urbanisation/urbanisation-worldwide_en
http://arxiv.org/abs/2210.11999
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb43
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2020/reported-road-casualties-great-britain-annual-report-2020
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2020/reported-road-casualties-great-britain-annual-report-2020
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2020/reported-road-casualties-great-britain-annual-report-2020
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2020/reported-road-casualties-great-britain-annual-report-2020
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2020/reported-road-casualties-great-britain-annual-report-2020
https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021
https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021
https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021
https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021
https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021
https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021
https://www.gov.uk/government/statistics/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021/reported-road-casualties-in-great-britain-provisional-estimates-year-ending-june-2021
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb58
http://arxiv.org/abs/1806.11230
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb67
http://arxiv.org/abs/1909.07707
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb71
http://arxiv.org/abs/1907.07792
http://arxiv.org/abs/1907.07792
http://arxiv.org/abs/1907.07792
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb75


Expert Systems With Applications 238 (2024) 121983L.G. Galvão and M.N. Huda

L

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., &
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer
vision–ECCV 2014: 13th European conference, Zurich, Switzerland, September 6-12,
2014, proceedings, Part V 13 (pp. 740–755). Springer.

Liu, B., Adeli, E., Cao, Z., Lee, K.-H., Shenoi, A., Gaidon, A., & Niebles, J. C. (2020).
Spatiotemporal relationship reasoning for pedestrian intent prediction. IEEE Robotics
and Automation Letters, 5(2), 3485–3492, Publisher: IEEE.

iu, J., Wang, H., Peng, L., Cao, Z., Yang, D., & Li, J. (2022). PNNUAD: Perception
neural networks uncertainty aware decision-making for autonomous vehicle. IEEE
Transactions on Intelligent Transportation Systems, 23(12), 24355–24368, Publisher:
IEEE.

Luan, Z., Huang, Y., Zhao, W., Zou, S., & Xu, C. (2022). A comprehensive lateral
motion prediction method of surrounding vehicles integrating driver intention pre-
diction and vehicle behavior recognition. Proceedings of the Institution of Mechanical
Engineers, Part D (Journal of Automobile Engineering), Article 09544070221078636,
Publisher: SAGE Publications Sage UK: London, England.

Ma, J., & Rong, W. (2022). Pedestrian crossing intention prediction method based on
multi-feature fusion. World Electric Vehicle Journal, 13(8), 158, Publisher: MDPI.

Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., & Manocha, D. (2019). Trafficpredict:
Trajectory prediction for heterogeneous traffic-agents. In Proceedings of the AAAI
conference on artificial intelligence, vol. 33 (pp. 6120–6127). Issue: 01.

Mangalam, K., Girase, H., Agarwal, S., Lee, K.-H., Adeli, E., Malik, J., & Gaidon, A.
(2020). It is not the journey but the destination: Endpoint conditioned trajectory
prediction. In European conference on computer vision (pp. 759–776). Springer.

Manh, H., & Alaghband, G. (2018). Scene-LSTM: A model for human trajectory
prediction. arXiv preprint arXiv:1808.04018.

Messaoud, K., Yahiaoui, I., Verroust-Blondet, A., & Nashashibi, F. (2019). Non-local
social pooling for vehicle trajectory prediction. In 2019 IEEE intelligent vehicles
symposium (pp. 975–980). IEEE.

Minguez, R. Q., Alonso, I. P., Fernandez-Llorca, D., & Sotelo, M. A. (2018). Pedestrian
path, pose, and intention prediction through gaussian process dynamical models
and pedestrian activity recognition. IEEE Transactions on Intelligent Transportation
Systems, 20(5), 1803–1814, Publisher: IEEE.

Mo, X., Huang, Z., Xing, Y., & Lv, C. (2022). Multi-agent trajectory prediction
with heterogeneous edge-enhanced graph attention network. IEEE Transactions on
Intelligent Transportation Systems, Publisher: IEEE.

Mohamed, A., Qian, K., Elhoseiny, M., & Claudel, C. (2020). Social-STGCNN: A
social spatio-temporal graph convolutional neural network for human trajectory
prediction. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 14424–14432).

Mozaffari, S., Al-Jarrah, O. Y., Dianati, M., Jennings, P., & Mouzakitis, A. (2020). Deep
learning-based vehicle behavior prediction for autonomous driving applications: A
review. IEEE Transactions on Intelligent Transportation Systems, Publisher: IEEE.

Naik, A. Y., Bighashdel, A., Jancura, P., & Dubbelman, G. (2022). Scene spatio-temporal
graph convolutional network for pedestrian intention estimation. In 2022 IEEE
intelligent vehicles symposium (pp. 874–881). IEEE.

Neogi, S., Hoy, M., Chaoqun, W., & Dauwels, J. (2017). Context based pedestrian
intention prediction using factored latent dynamic conditional random fields. In
2017 IEEE symposium series on computational intelligence (pp. 1–8). IEEE.

Park, S. H., Kim, B., Kang, C. M., Chung, C. C., & Choi, J. W. (2018). Sequence-to-
sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture.
In 2018 IEEE intelligent vehicles symposium (pp. 1672–1678). IEEE.

Pendleton, S. D., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y. H., Rus, D., &
Ang, M. H. (2017). Perception, planning, control, and coordination for autonomous
vehicles. Machines, 5(1), 6, Publisher: Multidisciplinary Digital Publishing Institute.

Petrović, D., Mijailović, R., & Pešić, D. (2020). Traffic accidents with autonomous
vehicles: Type of collisions, manoeuvres and errors of conventional vehicles’ drivers.
Transportation Research Procedia, 45, 161–168, Publisher: Elsevier.

Piccoli, F., Balakrishnan, R., Perez, M. J., Sachdeo, M., Nunez, C., Tang, M., An-
dreasson, K., Bjurek, K., Raj, R. D., & Davidsson, E. (2020). Fussi-net: Fusion of
spatio-temporal skeletons for intention prediction network. In 2020 54th asilomar
conference on signals, systems, and computers (pp. 68–72). IEEE.

Quan, R., Zhu, L., Wu, Y., & Yang, Y. (2021). Holistic LSTM for pedestrian trajectory
prediction. IEEE Transactions on Image Processing, 30, 3229–3239, Publisher: IEEE.

Ragesh, N. K., & Rajesh, R. (2019). Pedestrian detection in automotive safety:
understanding state-of-the-art. IEEE Access, 7, 47864–47890, Publisher: IEEE.

Raimundo, V., & Favio, M. (2021). Driver intention prediction at roundabouts. In 2021
XIX workshop on information processing and control (pp. 1–5). IEEE.

Rasouli, A., Kotseruba, I., Kunic, T., & Tsotsos, J. K. (2019). Pie: A large-scale
dataset and models for pedestrian intention estimation and trajectory prediction.
In Proceedings of the IEEE/CVF international conference on computer vision (pp.
6262–6271).

Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2020). Pedestrian action anticipation using
contextual feature fusion in stacked rnns. arXiv preprint arXiv:2005.06582.

Razali, H., Mordan, T., & Alahi, A. (2021). Pedestrian intention prediction: A convo-
lutional bottom-up multi-task approach. Transportation Research Part C: Emerging
28

Technologies, 130, Article 103259, Publisher: Elsevier.
Rehder, E., Wirth, F., Lauer, M., & Stiller, C. (2018). Pedestrian prediction by planning
using deep neural networks. In 2018 IEEE international conference on robotics and
automation (pp. 1–5). IEEE.

Ridel, D., Rehder, E., Lauer, M., Stiller, C., & Wolf, D. (2018). A literature review on
the prediction of pedestrian behavior in urban scenarios. In 2018 21st international
conference on intelligent transportation systems (pp. 3105–3112). IEEE.

Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M., Gavrila, D. M., & Arras, K.
O. (2020). Human motion trajectory prediction: A survey. International Journal of
Robotics Research, 39(8), 895–935, Publisher: Sage Publications Sage UK: London,
England.

Ruijters, E., & Stoelinga, M. (2015). Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review, 15, 29–62, Publisher:
Elsevier.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., & Bernstein, M. (2015). Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115, 211–252,
Publisher: Springer.

Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., & Savarese, S.
(2019). Sophie: An attentive gan for predicting paths compliant to social and
physical constraints. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (pp. 1349–1358).

Schneider, N., & Gavrila, D. M. (2013). Pedestrian path prediction with recursive
Bayesian filters: A comparative study. In German conference on pattern recognition
(pp. 174–183). Springer.

Schwall, M., Daniel, T., Victor, T., Favaro, F., & Hohnhold, H. (2020). Waymo public
road safety performance data. arXiv preprint arXiv:2011.00038.

Sharma, N., Dhiman, C., & Indu, S. (2022). Pedestrian intention prediction for
autonomous vehicles: A comprehensive survey. Neurocomputing, Publisher: Elsevier.

Shirazi, M. S., & Morris, B. T. (2016). Looking at intersections: A survey of intersection
monitoring, behavior and safety analysis of recent studies. IEEE Transactions on
Intelligent Transportation Systems, 18(1), 4–24, Publisher: IEEE.

Shobha, B. S., & Deepu, R. (2018). A review on video based vehicle detection,
recognition and tracking. In 2018 3rd international conference on computational
systems and information technology for sustainable solutions (pp. 183–186). IEEE.

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous
mobile robots. MIT Press.

SIMulation, G. (2007). US highway 101 dataset.
Sivaraman, S., & Trivedi, M. M. (2013). Looking at vehicles on the road: A survey of

vision-based vehicle detection, tracking, and behavior analysis. IEEE Transactions
on Intelligent Transportation Systems, 14(4), 1773–1795, Publisher: IEEE.

Su, S., Muelling, K., Dolan, J., Palanisamy, P., & Mudalige, P. (2018). Learning vehicle
surrounding-aware lane-changing behavior from observed trajectories. In 2018 IEEE
intelligent vehicles symposium (pp. 1412–1417). IEEE.

Sun, J., Jiang, Q., & Lu, C. (2020). Recursive social behavior graph for trajectory
prediction. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 660–669).

Vemula, A., Muelling, K., & Oh, J. (2018). Social attention: Modeling attention in
human crowds. In 2018 IEEE international conference on robotics and automation
(pp. 4601–4607). IEEE.

Vitas, D., Tomic, M., & Burul, M. (2020). Traffic light detection in autonomous driving
systems. IEEE Consumer Electronics Magazine, 9(4), 90–96, Publisher: IEEE.

Wang, C., Wang, Y., Xu, M., & Crandall, D. J. (2022). Stepwise goal-driven networks
for trajectory prediction. IEEE Robotics and Automation Letters, 7(2), 2716–2723,
Publisher: IEEE.

Waymo, W. (2020). Waymo safety report. Waymo, URL: https://waymo.com/safety/.
WHO, W. H. O. (2018). Global status report on road safety 2018: Summary: Technical

report, World Health Organization.
Xin, L., Wang, P., Chan, C.-Y., Chen, J., Li, S. E., & Cheng, B. (2018). Intention-

aware long horizon trajectory prediction of surrounding vehicles using dual LSTM
networks. In 2018 21st international conference on intelligent transportation systems
(pp. 1441–1446). IEEE.

Xing, L., & Amari, S. V. (2008). Fault tree analysis. In Handbook of performability
engineering (pp. 595–620). Publisher: Springer.

Xing, Y., Lv, C., Huaji, W., Wang, H., & Cao, D. (2017). Recognizing driver braking
intention with vehicle data using unsupervised learning methods: Technical report, SAE
Technical Paper.

Xu, Y., Piao, Z., & Gao, S. (2018). Encoding crowd interaction with deep neural network
for pedestrian trajectory prediction. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 5275–5284).

Xue, H., Huynh, D. Q., & Reynolds, M. (2018). SS-LSTM: A hierarchical LSTM model
for pedestrian trajectory prediction. In 2018 IEEE winter conference on applications
of computer vision (pp. 1186–1194). IEEE.

Xue, H., Huynh, D. Q., & Reynolds, M. (2020). A location-velocity-temporal attention
LSTM model for pedestrian trajectory prediction. IEEE Access, 8, 44576–44589,
Publisher: IEEE.

Yang, J., Sun, X., Wang, R. G., & Xue, L. X. (2022). PTPGC: Pedestrian trajectory
prediction by graph attention network with ConvLSTM. Robotics and Autonomous

Systems, 148, Article 103931, Publisher: Elsevier.

http://refhub.elsevier.com/S0957-4174(23)02485-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb82
http://arxiv.org/abs/1808.04018
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb86
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb86
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb86
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb86
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb86
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb87
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb87
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb87
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb87
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb87
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb87
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb87
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb88
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb88
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb88
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb88
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb88
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb89
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb89
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb89
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb89
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb89
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb90
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb90
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb90
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb90
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb90
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb91
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb91
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb91
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb91
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb91
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb92
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb92
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb92
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb92
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb92
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb93
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb93
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb93
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb93
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb93
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb94
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb94
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb94
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb94
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb94
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb94
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb94
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb95
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb95
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb95
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb96
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb96
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb96
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb97
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb97
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb97
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb98
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb98
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb98
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb98
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb98
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb98
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb98
http://arxiv.org/abs/2005.06582
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb100
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb100
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb100
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb100
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb100
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb101
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb101
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb101
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb101
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb101
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb102
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb102
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb102
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb102
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb102
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb103
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb103
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb103
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb103
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb103
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb103
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb103
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb104
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb104
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb104
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb104
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb104
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb105
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb105
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb105
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb105
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb105
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb105
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb105
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb106
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb106
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb106
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb106
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb106
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb106
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb106
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb107
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb107
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb107
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb107
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb107
http://arxiv.org/abs/2011.00038
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb109
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb109
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb109
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb110
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb110
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb110
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb110
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb110
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb111
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb111
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb111
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb111
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb111
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb112
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb112
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb112
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb113
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb114
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb114
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb114
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb114
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb114
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb115
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb115
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb115
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb115
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb115
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb116
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb116
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb116
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb116
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb116
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb117
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb117
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb117
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb117
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb117
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb118
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb118
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb118
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb119
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb119
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb119
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb119
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb119
https://waymo.com/safety/
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb121
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb121
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb121
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb122
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb122
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb122
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb122
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb122
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb122
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb122
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb123
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb123
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb123
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb124
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb124
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb124
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb124
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb124
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb125
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb125
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb125
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb125
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb125
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb126
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb126
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb126
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb126
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb126
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb127
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb127
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb127
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb127
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb127
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb128
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb128
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb128
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb128
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb128


Expert Systems With Applications 238 (2024) 121983L.G. Galvão and M.N. Huda

Y

Y

Y

Y

Z

Z

Z

Z

Z

Z

Z

Z

Z

Yang, B., Zhan, W., Wang, P., Chan, C., Cai, Y., & Wang, N. (2021). Crossing or
not? Context-based recognition of pedestrian crossing intention in the urban envi-
ronment. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5338–5349,
Publisher: IEEE.

ang, D., Zhang, H., Yurtsever, E., Redmill, K. A., & Ozguner, U. (2022). Predicting
pedestrian crossing intention with feature fusion and spatio-temporal attention.
IEEE Transactions on Intelligent Vehicles, 7(2), 221–230, Publisher: IEEE.

ao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., & Du, X. (2021a). Bitrap:
Bi-directional pedestrian trajectory prediction with multi-modal goal estimation.
IEEE Robotics and Automation Letters, 6(2), 1463–1470, Publisher: IEEE.

ao, Y., Atkins, E., Roberson, M. J., Vasudevan, R., & Du, X. (2021b). Coupling
intent and action for pedestrian crossing behavior prediction. arXiv preprint arXiv:
2105.04133.

oon, S., & Kum, D. (2016). The multilayer perceptron approach to lateral motion
prediction of surrounding vehicles for autonomous vehicles. In 2016 IEEE intelligent
vehicles symposium (pp. 1307–1312). IEEE.

eng, Z. (2022). High efficiency pedestrian crossing prediction. arXiv preprint arXiv:
2204.01862.

hang, J. (2021). Deep understanding Tesla FSD Part 1: HydraNet. Medium,
URL: https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-
hydranet-1b46106d57.

hang, S., Abdel-Aty, M., Wu, Y., & Zheng, O. (2021). Pedestrian crossing intention
prediction at red-light using pose estimation. IEEE Transactions on Intelligent
Transportation Systems, 23(3), 2331–2339, Publisher: IEEE.

hang, X., Angeloudis, P., & Demiris, Y. (2022). ST CrossingPose: A spatial-temporal
graph convolutional network for skeleton-based pedestrian crossing intention
prediction. IEEE Transactions on Intelligent Transportation Systems, Publisher: IEEE.
29
Zhang, X., Cheng, L., Li, B., & Hu, H.-M. (2018). Too far to see? Not really!—Pedestrian
detection with scale-aware localization policy. IEEE Transactions on Image Processing,
27(8), 3703–3715, Publisher: IEEE.

Zhang, H., & Fu, R. (2020). A hybrid approach for turning intention prediction based
on time series forecasting and deep learning. Sensors, 20(17), 4887, Publisher:
Multidisciplinary Digital Publishing Institute.

Zhang, P., Ouyang, W., Zhang, P., Xue, J., & Zheng, N. (2019). Sr-LSTM: State
refinement for lstm towards pedestrian trajectory prediction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (pp. 12085–12094).

Zhang, T., Song, W., Fu, M., Yang, Y., & Wang, M. (2021). Vehicle motion prediction at
intersections based on the turning intention and prior trajectories model. IEEE/CAA
Journal of Automatica Sinica, 8(10), 1657–1666, Publisher: IEEE.

hang, K., Zhao, L., Dong, C., Wu, L., & Zheng, L. (2022). AI-TP: Attention-based
interaction-aware trajectory prediction for autonomous driving. IEEE Transactions
on Intelligent Vehicles, Publisher: IEEE.

hao, T., Xu, Y., Monfort, M., Choi, W., Baker, C., Zhao, Y., Wang, Y., & Wu, Y.
N. (2019). Multi-agent tensor fusion for contextual trajectory prediction. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp.
12126–12134).

hou, W., Berrio, J. S., De Alvis, C., Shan, M., Worrall, S., Ward, J., & Nebot, E. (2020).
Developing and testing robust autonomy: The university of sydney campus data set.
IEEE Intelligent Transportation Systems Magazine, 12(4), 23–40, Publisher: IEEE.

hu, Y., Qian, D., Ren, D., & Xia, H. (2019). Starnet: Pedestrian trajectory prediction
using deep neural network in star topology. In 2019 IEEE/RSJ international
conference on intelligent robots and systems (pp. 8075–8080). IEEE.

yner, A., Worrall, S., & Nebot, E. M. (2019). ACFR five roundabouts dataset:
Naturalistic driving at unsignalized intersections. IEEE Intelligent Transportation
Systems Magazine, 11(4), 8–18, Publisher: IEEE.

http://refhub.elsevier.com/S0957-4174(23)02485-5/sb129
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb129
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb129
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb129
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb129
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb129
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb129
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb130
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb130
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb130
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb130
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb130
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb131
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb131
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb131
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb131
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb131
http://arxiv.org/abs/2105.04133
http://arxiv.org/abs/2105.04133
http://arxiv.org/abs/2105.04133
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb133
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb133
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb133
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb133
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb133
http://arxiv.org/abs/2204.01862
http://arxiv.org/abs/2204.01862
http://arxiv.org/abs/2204.01862
https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57
https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57
https://saneryee-studio.medium.com/deep-understanding-tesla-fsd-part-1-hydranet-1b46106d57
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb136
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb136
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb136
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb136
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb136
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb137
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb137
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb137
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb137
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb137
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb138
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb138
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb138
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb138
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb138
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb139
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb139
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb139
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb139
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb139
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb140
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb140
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb140
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb140
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb140
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb141
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb141
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb141
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb141
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb141
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb142
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb142
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb142
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb142
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb142
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb143
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb143
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb143
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb143
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb143
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb143
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb143
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb144
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb144
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb144
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb144
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb144
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb145
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb145
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb145
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb145
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb145
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb146
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb146
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb146
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb146
http://refhub.elsevier.com/S0957-4174(23)02485-5/sb146

	Pedestrian and vehicle behaviour prediction in autonomous vehicle system — A review
	Introduction
	Behaviour Prediction General Problem Formulation
	Vehicle Behaviour Prediction
	Trajectory Prediction
	Intention Recognition and Prediction

	Pedestrian Behaviour Prediction
	Trajectory Prediction
	Intention Recognition and Prediction

	Heterogeneous Road Agents
	Discussion
	General Framework for a Behaviour Prediction System
	Risk Assessment for Behaviour Prediction System
	Risk identification
	Risk Analysis
	Risk Control

	Behaviour Prediction System Challenges
	Behaviour Prediction System Requirements
	Behaviour Prediction System Further Work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


