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Abstract—Behavior sequences are generated by a series of
spatio-temporal interactions and have a high-dimensional non-
linear manifold structure. Therefore, it is difficult to learn 3D
behavior representations without relying on supervised signals.
To this end, self-supervised learning methods can be used
to explore the rich information contained in the data itself.
Context-context contrastive self-supervised methods construct the
manifold embedded in Euclidean space by learning the distance
relationship between data, and find the geometric distribution
of data. However, traditional Euclidean space is difficult to
express context joint features. In order to obtain an effective
global representation from the relationship between data under
unlabeled conditions, this paper adopts contrastive learning to
compare global feature, and proposes a self-supervised learning
method based on hyperbolic embedding to mine the nonlinear
relationship of behavior trajectories. This method adopts the
framework of discarding negative samples, which overcomes the
shortcomings of the paradigm based on positive and negative
samples that pull similar data away in the feature space. Mean-
while, the output of the network is embedded in a hyperbolic
space, and a multi-layer perceptron is added to convert the
entire module into a homotopic mapping by using the geometric
properties of operations in the hyperbolic space, so as to obtain
homotopy invariant knowledge. The proposed method combines
the geometric properties of hyperbolic manifolds and the equiv-
ariance of homotopy groups to promote better supervised signals
for the network, which improves the performance of unsupervised
learning.

Index Terms—spatio-temporal interaction, contrastive learn-
ing, Poincaré model, hyperbolic space, homotopic mapping.

I. INTRODUCTION

3D behavior recognition is a challenging task in the field

of computer vision, and many supervised methods have

achieved good results. With the development of depth cam-

eras, there are more and more large-scale datasets recording

skeleton-based behavior sequences. However, labeling behav-

ioral data requires sufficient prior knowledge, and manual

labeling is often a heavy task. Recently, it is found that in self-

supervised learning, the representation of data in the feature

space often has a certain distribution law [1–8]. Therefore, 
learning discriminative representations from unlabeled skele-

ton sequence data through contrastive self-supervised learning

is a possible solution.
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Self-supervised learning is essentially a statistical method to 
capture valuable latent information from training samples with 
unknown labels. A behavior sequence records the spatial three-

dimensional coordinate information corresponding to different 
times in the temporal domain, which can reflect the length 
of the movement time, the speed, the relative relationship 
between the spatial coordinates, the periodic change of the 
moving target, and the temporal context dependency. The 
data itself can provide more abundant knowledge than the 
label. Contrastive self-supervised learning have two learning 
methods: context-context self-supervision [1, 2, 9, 10], that 
uses a two-stream structure to fit two functions, where two 
function samples are mapped to two points in the feature 
space, and the distance is optimized through the contrast loss, 
so that similar samples are closer, and heterogeneous samples 
are far away; context-instance self-supervision [8, 11–14], 
where an auxiliary task is designed to generate transformed 
data from the original unlabeled data according to certain 
rules, and assign pseudo-labels as supervision signals. The 
network has certain prior knowledge and can be transferred to 
the target task to achieve better results. Self-supervision based 
on context-context comparison is a new method proposed 
in recent years. It finds a distribution that can effectively 
distinguish different types of data by directly comparing the 
representations between different samples, and only needs to 
enhance the data to allow the network to automatically extract 
immutability of data.

The context-context comparison method focuses on the 
comparison between global features of the data. It firstly maps 
the data into a unified feature space, and uses the loss function 
to optimize the distance between features to obtain an ideal 
distribution. The latent features of the data are automatically 
mined by neural networks. Most of the current works use Eu-

clidean space as a metric space [1, 2, 9, 10]. However, for some 
high-dimensional data, in the structured input, different vari-

ables are not independent of each other. Skeleton sequence has 
typical nonlinear characteristics. It records the macroscopic 
response of target behavior, and contains information in both 
temporal and spatial dimensions. There is a strong correlation 
between different variables. This nonlinear relationship makes 
the data located in a manifold of a high-dimensional space. 
Since the manifold where the data is located is often not a 
vector space and does not satisfy the Euclidean axioms, the 
representation based on the Euclidean space cannot accurately 
capture this relationship of the data, so mining the internal non-

Euclidean properties is of great significance to understand
Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. See: 
https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/tip.2023.3328230, IEEE Transactions on Image Processing
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1



the behavioral characteristics of the target [15–17]. Intuitively, 
behavior data has long dependencies on temporal domain. 
Our method in this paper conducts context-context contrastive 
self-supervision based on global representation of behavior 
sequences, and uses manifold as the representation space for 
global features of the data.

Hyperbolic manifold [18] is a Riemannian manifold with 
constant negative Gaussian curvature, it has the ability to effi-

ciently model hierarchical structures [16, 17]. In this manifold 
space, an important intrinsic property is exponential growth, 
so data with tree-like hierarchical structure can be embedded 
into this space naturally with very low distortion. For skeleton 
sequences with topological structures, different joints may 
have tree-like relationships in space, and different skeleton 
sequences may contain many similar poses. This overlapping 
information within the data makes the data have spatio-

temporal entailment relationship, which makes the relationship 
between features has a non-parallel hierarchical relationship, 
and hyperbolic manifolds can well mine such hierarchical 
relationships. To this end, we choose the hyperbolic space as 
the representation space, use the self-organizing ability of the 
hyperbolic space, organize the data in the hyperbolic space in 
a hierarchical structure according to the dependencies between 
the features, and guide the network with the idea of refined 
feature to perform comparative learning more efficiently.

In the comparative learning of behavior data, an encoder 
with spatio-temporal feature extraction ability can convert data 
with spatio-temporal interaction into trajectories in the feature 
space, and finally obtain the final representation through pool-

ing [19, 20]. For this, the concept of homotopy is introduced in 
this paper to analyze the homotopy relationship between 
different spatio-temporal data. In the feature space, trajectories 
with homotopy relationship can be converted to each other 
through continuous functions, so the homotopy relationship 
can reflect the similarity between different trajectories.

In the self-supervised learning framework based on the 
comparison of positive and negative samples, since label 
knowledge is not introduced, similar samples are used as 
negative samples that will affect the learning effect. The BYOL 
framework [10] overcomes this difficulty to a certain extent. 
The framework discards the encoding of negative sample 
stored in the storage dictionary, and directly uses the nonlinear 
mapping with batch normalization to allow the network to 
implicitly compare the data without negative samples, so as 
to effectively distinguish the data. However, this makes the 
framework lose the ability to compare the representations of 
different samples. To this end, our method not only focuses 
on the hyperbolic representation of the global features of the 
sample, but also considers how to obtain a more reasonable 
representation in the hyperbolic space according to the ho-

motopy relation. As an equivalence relation, the homotopy 
involves the knowledge of group theory. Equivalence relation 
can divide elements into multiple equivalence classes, and 
our method serves as a guide to express the global features 
of behavioral data in hyperbolic space, and their embedding 
points in hyperbolic space can be regarded as representations 
of equivalence classes so as to keep away from samples that 
do not have homotopy relations, and retain more homotopy

invariant properties. In addition, we study the equivalence

properties of homotopy trajectories and group combination

that further supports the proposed homotopy view through

theory.

The main contributions of this paper lie in three aspects:

• In order to fully exploit the non-parallel relationship of mo-

tion sequences with spatio-temporal interaction, we embed

the target sample as a separate entity in the hyperbolic space,

and use the Poincaré model to vectorized representation of

samples that enable the distance between samples to reflect

the similarity more accurately.

• We introduce the feature homotopy deformation module

and use the Mobius addition in the Poincaré model to

guide the network to construct a homotopy transformation.

This module combines the hyperbolic manifold and ho-

motopy transformation, infers the homotopy relationship of

the samples by using the similarity of the spatio-temporal

features in the temporal dimension, adaptively adjusts the

distance between the sample pairs and mines the homotopic

immutable knowledge among data.

• Experiments are conducted on three large human skeleton

sequence datasets, and the results show that the proposed

method outperforms the state-of-the-art methods on some

evaluation metrics of the dataset without explicitly clas-

sifying the samples with positive and negative samples

demonstrating its effectiveness.

II. RELATED WORK

Contrastive Self-Supervised Methods Based on Context-
Context

The context-context contrastive self-supervised method 
mainly studies the relationship between the global represen-

tations of different samples. The current mainstream methods 
mainly use different views of a sample as positive samples, 
other samples as negative samples, and make positive samples 
closer each other while far away from negative samples in the 
feature space through the loss function. This method naturally 
has the problem that the solution space is easy to collapse. 
Therefore, a solution is to obtain the positive and negative sam-

ples by two parameter-sharing encoders [21]. A key problem 
in these methods is that each round of backpropagation causes 
the parameters of the network to change. This causes that 
different batches of learned negative samples are obtained from 
networks with different parameters, affecting the consistency 
of the negative sample features. In order to solve this problem, 
He et al. [1] proposed the MoCo framework, which adopts the 
momentum update method. Instead of updating the parameters 
of negative sample encoder by gradient propagation, it uses a 
storage dictionary to save its encoded results as a negative 
samples. In this way, it iterates at a very low speed. Each 
new representation entered into the queue is the output of the 
encoder updated in the previous step, which is as consistent 
as possible with the old representation. Subsequently, Chen 
et al. [22] proposed the MoCo V2 framework, adding the 
same nonlinear multilayer perceptron to the representation of 
the encoder during training, and using cosine decay instead 
of step decay to further improve performance. However, the
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above methods simply treat different samples as different 
categories, and do not consider the correlation between them, 
which limits the performance. Pan et al. [23] used MoCo 
for unsupervised video representation to improve the temporal 
feature representation of MoCo from two perspectives. First, 
they introduced a generator to temporarily remove several 
frames from this sample. The discriminator is then learned to 
encode similar feature representations without regard to frame 
removal. Second, we use temporal decay to model the decay 
of keys in the memory queue when computing contrast loss.

For the representation learning based on positive and neg-

ative samples, it is difficult to obtain the optimal encoding of 
negative samples by using the momentum update method. Then 
siamese network is used for competitive learning, which can 
retain more information related to the data. Chen et al.[2] 
proposed the SimCLR framework, which uses the siamese 
network to encode the paired data obtained through data 
enhancement. To add more negative samples for calculation, 
SimCLR uses larger-scale batches to improve the effect of 
representation learning, but it also increases time and memory 
consumption. Subsequently, in order to solve this problem, 
the Facebook AI Research (FAIR) and the Institut National 
de Recherche en Informatique et en Automatique (INRIA) [3] 
launched a multi-view clustering exchange method. Instead 
of using a large number of negative samples, all kinds of 
samples are clustered, and then the clusters of each type 
are distinguished. However, in this method, artificially setting 
the clustering center lacks versatility. For different data, the 
optimal number of clusters are often different, and a large 
number of parameter adjustment experiments are required 
for different data. Therefore, there is still a huge room for 
improvement in self-supervised learning methods that discard 
positive and negative samples.

Grill [10] proposed a BYOL framework to guide the net-

work’s own potential. For the first time, they boldly aban-

doned the comparison between different data in the traditional 
method based on the dual-encoder structure, and improved 
the prediction result through the iteration of target network 
parameters. The framework proposes the concept of target 
network and online network, and updates the target encoder 
based on the momentum update method. Only by adding a 
nonlinear multi-layer perceptual layer, the encoding results 
are converted into features, and a batch normalization layer is 
added to the data. And they proved experimentally in [24] that 
batch normalization is not the key to BYOL success, not as 
providing implicit negative sample information. In the 
experiments when both encoder and Projector were without 
BN, SimCLR also failed, proving that BN is not providing an 
implicit negative sample, even if an explicit negative sample is 
given it is still not trained. Finally, it was agreed that the main 
role of BN is to improve the robustness of model training, 
resulting in no model collapse. The authors found that the BN 
in the encoder is crucial, and that the BN compensates for the 
effects of bad initialization. For this reason, the authors propose 
a new initialization method, which turns out to be much better 
than random, although not as good as the best results that can 
be achieved by BYOL. In conclusion, BN brings benefits only 
in terms of scaling parameters and

stabilizing the training process, which is very important for 
BYOL. Subsequently, Chen et al. [25] continued the idea of 
guiding self-potential and conducted research on the Siamese 
network, and found that stopping the gradient backpropagation 
was the key to avoid the collapse of the solution space. 
The proposed simple Siamese network also achieved good 
results, but not yet surpassing the framework of self-potential 
guidance. In the past, self-supervised learning methods learned 
video representations by video playback speed prediction, 
however, the learned models may tend to focus on motion 
patterns and it is not easy to obtain accurate speed labels for 
videos. Chen et al. [26] propose a new approach to perceive 
playback speed and use the relative speed between two video 
clips as labels. In this way, the speed is well perceived and 
better motion features are learned.

Recently, the self-supervised training paradigm of masking-

and-reconstruction has been successful in natural language 
processing and image understanding. Tong et al. [27] chose to 
use a sampling strategy with temporal interval for more 
efficient self-supervised pre-training of video and used a 
pipelined masking strategy with a very high mask ratio to 
obtain better video understanding network.

Self-Supervised Representation Learning Based on Skeleton 
Sequences

Compared to video sequences, human skeleton-based se-

quences increase the difficulty of self-supervised feature ex-

traction due to the spatial topology. Though existing su-

pervised learning methods [28–32] have been proposed and 
achieved satisfing results, considering the cost of labeled 
data the research on self-supervised methods became more 
and more significant. Su et al [4]. proposed a representation 
learning method based on prediction and clustering, which 
encodes and decodes the sequence with the GRU network. 
It encodes temporal features, and uses kNN clustering method 
to cluster the features obtained during the encoding process. 
Context-context contrastive self-supervised learning is a new 
method proposed in recent years applied to 3D skeletons. 
Some works use self-supervised frameworks to learn 3D 
skeleton sequences with spatio-temporal structure, and achieve 
good results. Rao et al. [19] used a self-supervised learning 
framework for human-based spatio-temporal interaction data 
for the first time. The method was based on a momentum 
contrastive learning framework, adopted a long short-term 
memory network as an encoder, and used data augmentation 
based on human skeletal motion data. These include rotation, 
shearing, inversion, Gaussian noise, Gaussian blur, joint mask, 
and channel mask. Experiments show that different data en-

hancements have a significant impact on performance. Li et 
al. [20] proposed a multi-view 3D behavior self-supervised 
learning method based on the MoCo V2 framework. The key 
idea is to use the complementary information of skeleton 
data under different views (joint, bone, motion) to obtain 
better self-supervision signal. In addition, the spatio-temporal 
graph convolution is adopted as the encoder, which greatly 
improves the spatio-temporal feature extraction ability of 3D 
skeleton data. The above methods have achieved competitive
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results with supervised learning on human behavior datasets, 
reflecting the superiority of graph convolution in processing 
3D skeleton sequences with spatial structure. The drawback 
of their momentum-contrastive learning framework is that it 
needs a queue to store a large number of coding results as 
negative samples, which is very unfavorable for narrowing 
the distance between similar samples. Therefore, we adopt the 
method based on contrastive learning, discarding the positive 
and negative samples, starting from the own characteristics of 
the data, encoding the representation that retains more spatio-

temporal information, and improving the self-supervised learn-

ing effect of high-dimensional spatio-temporal interactive data. 
Yang et al. [6] represented the skeletal action sequences as 3D 
skeleton clouds and colored each point in the clouds according 
to the spatio-temporal order in the unlabeled skeletal 
sequences, using colored skeletal point clouds to effectively 
learn spatio-temporal features from the artificial color labels of 
skeletal joints. Kim et al. [33] devised a global and local at-

tention mechanism in which global body movements and local 
joint movements attend to each other. A pre-training strategy 
for multi-zone posture displacement prediction is proposed to 
allow the model to estimate whole-body and joint movements 
at different time intervals and scales to learn global and local 
attention at different time scales. Guo et al. [34] introduced an 
extreme enhancement mechanism and an energy-based 
attention-guided descent module (EADM) to obtain a richer 
data enhancement strategy, further extended the positive sam-

ple with double-distribution divergence minimization loss and 
nearest neighbor mining, and finally obtained a high-quality 
action representation. Zhang et al. [35] designed a progressive 
growth augmentation strategy to generate multiple ordered 
positive pairs to achieve consistency in learning representa-

tions from different perspectives, and enhanced hierarchical 
consistency by directed clustering operations in the feature 
space to make the representation of the strongly augmented 
view closer to that in the weakly augmented view. Yang et al. 
[36] designed a two-steam pretraining network that utilizes

both fine-grained and coarse-grained coloring to learn multi-

scale spatio-temporal features. And the designed autoencoder

framework is pre-trained to learn information representation

through a masked skeleton cloud redrawing task.

However, the above work is limited to characterizing the 
data on the Euclidean space, ignoring the gestalt correlation 
and repetition exhibited by the action data.

Homotopic Feature Extraction Method

Some existing works [37, 38] have studied algorithms based 
on homotopic learning. The goal of these methods is to extract 
effective features that remain invariant to uncorrelated 
continuous deformations through homotopic transformation. 
The homotopy relationship provides a certain theoretical ex-

planation for the relationship between trajectories, and the 
concept of homotopy equivalence has been applied to robot 
motion planning [39]. Since motion sequences are also high-

dimensional spatio-temporal interaction data, it is natural to 
consider them as homotopic curves in the feature space, and 
the goal of self-supervised learning is to find a point as

TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions

Bθ input data of the online network
Bξ input data of the target network
fθ the encoder of the online network
fξ the encoder of the target network
H(·, ·) the homotopy function
xθ encoded representation after spatial pooling
xξ target representation after spatial pooling
yθ encoded representation after global pooling
yξ target representation after global pooling
sim(·, ·) similarity of two feature
mean(·) average
gθ(·) projection function of online network
gξ(·) projection function of target network
g′ξ(·) projection function of homotopy deformation

zθ projection result of online network
zξ projection result of target network
z′ξ homotopic projection result

p similarity between target and online representation
p′ similarity between homotopy and online representation

zhξ hyperbolic embedding result of target network

L contrast loss of target and online representation
L′ contrast loss of homotopy and online representation

its equivalence class. The loss function is crucial for self-

supervised contrastive learning, and homotopy analysis also 
plays a role in the definition of the loss function. Shit et 
al. [40] proposed a new topology-preserving loss function, 
that was achieved in the tubular structure segmentation task 
with excellent results. Therefore, homotopy analysis helps to 
define better measures of feature similarity. In addition, in 
the similarity calculation of contrastive learning, it is often 
necessary to firstly standardize the coding representation, so 
that it is in a high-dimensional unit sphere, and then calculate 
the similarity. The encoding representation and similarity can 
be used as the direction vector and norm, which are just 
embedded in the Poincaré model of the hyperbolic manifold.

III. PROPOSED METHOD

This session firstly describes the theoretical basis, namely 
the hierarchical relational feature representation based on the 
Poincaré model, and then describes and explains the added 
innovative modules, namely, homotopy projection learning 
based on hyperbolic embeddings, and groups invariance anal-

ysis based on homotopy equivalence, and finally describes 
the entire network, that is, a high-dimensional motion trajec-

tory self-supervised network based on homotopy equivalence 
classes. The overall framework of our network is shown in 
Fig.1. For a given skeleton sequence, a pair of input data 
Bθ, Bξ ∈ RC×V ×T is obtained through data enhancement, 
where C, V, and T represent the number of channels, joints and 
frames of the sample respectively. The human joint sequence is 
treated as a spatio-temporal graph, and a spatio-temporal graph 
convolutional network is used to fuse features in each frame. 
For the temporal dimension, ordinary convolutions are used to 
fuse adjacent frames. Table I shows the notations and 
corresponding definitions.
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Fig. 1. The framework of self-supervised behavior recognition network based on homotopy hyperbolic embedding. The model uses a siamese structure with 
ST-GCN as backbone network. Augmented samples are fed into the prediction network (top) and the target network (bottom) to obtain two representations, 
which are output to the same feature space for prediction after a projection transformation. The prediction network updates the parameters by back-propagation, 
while the target network is updated by momentum. In the target network, we additionally introduce a network to homotopy the original representation. The 
homotopy deformation is based on hyperbolic embedding. Using the normalized output of the spatio-temporal features as directions, we compute similarities 
on a frame-by-frame basis for the sequence representations, taking the average as the parametric, and embedding the output features into hyperbolic space.

A. Behavior sequence self-supervised learning network

In order to make the distribution of samples in the projec-

tion space contain more temporal information, we design a

self-supervised learning network based on high-dimensional

motion sequence of homotopy equivalent classes, as shown in

Fig.1.

The goal of the self-supervised network is to find a mapping

function without relying on the real labels of the data, and

use this function to map different high-dimensional motion

sequences into a certain feature space. The obtained space

points can represent the base points of different homotopy

equivalence classes, so as to improve the performance of

downstream classification tasks.

We use a contrastive learning framework to learn the map-

ping function, which consists of two sub-networks, an online

network that updates parameters through back propagation,

and a target network that discards gradients. After the gradient

is updated, the parameters of the target network are updated

with the new parameters through momentum. ST-GCN[30]

is used as the backbone network, in which fθ is used for

the encoder branch, fξ is used for the target branch. For the

obtained output, the base point of the homotopy equivalent

class is obtained by calculating the average value. These two

points in the feature space are transformed to the same space

by projection layers (MLP) gθ(·), gξ(·). The online network is

connected to a multilayer perceptron qθ(·) to make the output

approximate the target network, and MSE loss is used to learn

the network:

Lθ,ξ =

∥∥∥∥∥∥
qθ (zθ)

‖qθ (zθ)‖2
− z′ξ∥∥∥z′ξ∥∥∥

2

∥∥∥∥∥∥
2

2

= 2− 2 ·
〈
qθ (zθ) , z

′
ξ

〉
‖qθ (zθ)‖2 ·

∥∥∥z′ξ∥∥∥
2

(1)

In order to force the model to learn deeper information, we 
introduced high-dimensional spatio-temporal sequence ho-

mology relations, explored the retention of different sequence 
homology relations in the learning process of manifold repre-

sentation by spatio-temporal interaction data, and proposed a 
hyperbolic manifold embedding method based on homology 
mapping to achieve the extraction of homology invariant 
features of spatio-temporal sequences. After the output of the 
encoder is averagely pooled, the temporal dimension 
information is lost. In order to utilize the similar information 
of each frame of two outputs, we use a multi-layer perceptron 
and a average function g′ξ(·) to learn the homotopy trans-

formation, and project the features to the Poincaré model 
using the temporal similarity of the two representations as a 
norm. The high-dimensional motion sequence is not linear in 
space, and the base points obtained by the average calculation 
cannot accurately represent the equivalent class. The Mobius 
summation of the Poincaré model is used to represent the 
representative point of the sequence in the hyperbolic space:

zhξ =
λ · gξ (yξ)
‖gξ (yξ)‖2

⊕ λ′ · gθ ◦ g′ξ (yξ)∥∥∥gθ ◦ g′ξ (yξ)∥∥∥
2

(2)
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θ

Among them, λ and λ′ are the similarity between the 
homotopy and the encoding end, respectively. We use the 
projection layer of the target network to project the output 
of the encoder to obtain yh, and use MSE to calculate the

loss [10]:

L′
θ,ξ = 2− 2 ·

〈
zhθ , z

h
ξ

〉
∥∥zhθ ∥∥2 · ∥∥zhθ ∥∥2 (3)

Adding Lθ,ξ (the MSE loss in Euclidean space) to L′
θ,ξ (the 

MSE loss in hyperbolic space), the final loss function is defined 
as:

L � Lθ,ξ + L̃θ,ξ + λ(L′
θ,ξ + L̃′

θ,ξ)
(4)

where λ controls the loss proportion of the hyperbolic mani-

fold and L̃ represents the symmetric form of the loss function, 
i.e., the cross predicts the output at the other end. In the model

prediction stage, only fθ on the encoder side is reserved for

representation learning.

B. Hierarchical relation feature representation of Poincaré
model

Hyperbolic manifold is a Riemannian manifold with con-

stant negative Gaussian curvature, and five isometric models 
are given in literature [18]. We choose the Poincaré model as 
the isometric model and embed each sample as an instance in 
this space. Without loss of generality, a space with a curvature 
of -1 is choosed, and the n-dimensional Poincaré sphere model 
is used as the feature space.

The two enhanced skeleton sequences are encoded into 
high-dimensional feature vectors zθ, zξ ∈ Rn. In order to 
calculate a direction vector r and a norm λ, the feature vector 
is firstly unitized:

z̄θ =
zθ

‖zθ‖2
, z̄ξ =

zξ
‖zξ‖2

(5)

After obtaining the unit vector, we define z̄ξ as the norm,

calculate its similarity in the form of inner product. At this

time, the sphere center distance of the feature in the Poincaré

model reflects the similarity of the two output vectors, and the

embedding method is as follows:{
λ = 〈z̄θ, z̄ξ〉
r = z̄ξ

(6)

where λ ∈ [0, 1] , the parametric Poincaré space embedding

is defined as x = λr in the n-dimensional unit sphere Dn.

It can be seen from the parameterization method that if

the output is more similar to the output of the other encoder,

its norm is closer to 1. In self-supervised learning, we hope

that the network pays more attention to the samples that are

difficult to approach, and the similarity of the samples is

determined by the direction vector. Therefore, it is possible

to correct the direction of the feature vector of the samples

that are easy to zoom in, so as to zoom in on the samples

that have the same semantics, but are far apart. Defining ⊕
as the Möbius summation on the Poincaré model [15], letting

η, ξ ∈ Dn, then the summation operation is defined as:

η ⊕ ξ =

(
1 + 2〈η, ξ〉+ ‖ξ‖2) η +

(
1− ‖η‖2) ξ

1 + 2〈η, ξ〉+ ‖η‖2‖ξ‖2 (7)

It can be seen from this definition that the operation does

not satisfy the commutative law. Since the Poincaré model is

a conformal model with conformal properties, the proposed

method calculates the similarity after uniting it, so its norm

can be ignored. In this formula, the two coefficients are

respectively 1 + 2〈η, ξ〉 + ‖ξ‖2 and 1 − ‖η‖2. Therefore, if

the norm of η and ξ is closer to 1, the degree of similarity is

higher, the summation result is closer to η, on the contrary,

it is closer to ξ. Using this property, in contrastive learning,

the similarity between the vectorized output of one enhanced

sample and that of another sample is calculated, and its value

is used as norm of the feature in the embedding space. In

equation 3, η is the vector that is expected to be close, and ξ
is the vector that is expected to be far away, the result η ⊕ ξ
can adaptively adjust the original direction.

C. Homotopic projection learning based on hyperbolic
em-bedding

1) The basic concept of homotopic projection: In real-

world scenarios, samples exhibiting high similarity are often 
indicative of belonging to the same underlying category. 
However, due to the absence of explicit category labels as 
supervised signals, the network will pull the distance between 
samples belonging to the same category. Consequently, this can 
pose challenges in effectively clustering samples of the same 
category within the representation space solely based on their 
category attributes, leading to potential performance 
degradation in unsupervised learning tasks. In contrast, homo-

geneous deformation is a continuous deformation that does not 
destroy the topology of the data, and if the network can mine 
invariants from homogeneous deformation, it can find the prior 
knowledge which is provided by the data itself. In this regard, 
this paper investigates the ability to obtain a good 
representation through the self-improvement capability of the 
network without using negative samples, and to make the 
output representations available as representative elements for 
homotopy classification of the data, using the ability of the 
network to fit continuous functions, transforming the feature 
sequences into the same space using homotopy map-ping, and 
finally embedding them in hyperbolic space. Since the features 
are transformed into the same space, different representations 
have isoren relations, thus forming different equivalence 
classes. Using this property can make the network adaptively 
establish the association between different repre-sentations to 
obtain a better approximation of the sequence isoren class of 
representative elements, thus achieving the purpose of 
improving the unsupervised learning performance. In order to 
choose robust features with obvious distinguishing 
significance, that is, features are easy to extract, invariant 
to relative deformation, and are insensitive to noise, we use 
the homotopy trajectory curve to find the homotopy invariant 
features of the sample. For the skeleton sequence dataset, each 
serialized sample is composed of different poses. These poses
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are described by coordinate positions, which are often in a low-

dimensional submanifold of a high-dimensional space, and the 
entire sample can be regarded as a discrete curve in manifold 
space.

Firstly, the definition of homotopy is given here. X and Y 
are assumed two topological spaces, f and g are continuous 
mappings of X to Y . If there is a continuous mapping 
H :  X × I → Y such that ∀x ∈ X , H(x, 0) = f(x), 
H(x, 1) = g(x), then H is called to be a homotopic mapping 
that transforms f into g, where I = [0, 1]. The skeleton 
sequence data is described as a time series composed of three-

dimensional coordinates of joints, where each frame describes 
an action pose, and the constraint relationship between the 
coordinates makes the vector representation of each frame of 
high-dimensional data in a manifold of a high-dimensional 
space, so each sample can be approximately treated as a 
discrete curve in a manifold space. The input of the network 
is two trajectory curves, which are assumed to be continuous 
functions of the manifold space defined on the temporal 
dimension, which are projected as points in the manifold space 
by the encoder fθ, fξ, and then projected to the same space 
using the projection function gθ, gξ. Among them, gξ and 
fξ use momentum to update parameters. gξ approximately 
converts nonlinear gθ into multiple linear problems. Therefore, 
the function fitted by the projected multilayer perceptron 
(MLP) at the target side is very dependent on the encoder 
side. We study the method of overcoming this dependency to 
approximate the high-order approximation of the projection 
function through homotopy analysis, so that the network can 
learn homotopy invariant features and improve the accuracy 
of the solution. The proposed method intends to construct a 
function Hy(x; p), and use the multilayer perceptron to learn 
this function.

If p ∈ Dn is the hyperbolic embedded variable, where 
‖p‖ ∈  [0, 1), construct the real function Hy(x; p) to be the 
homotopy function of the hyperbolic space [41], and the 
homotopy function is the relationship between the hyperbolic 
space and the projection function

Hy(x; p) � ‖p‖gθ + (1− ‖p‖)gξ (8)

When ‖p‖ = 0, Hy(x; 0) = gξ, and lim‖p‖→1 Hy(x; p) =
gθ. When ‖p‖ changes from 0 to 1, the function Hy(x; p) 
changes continuously from gξ to gθ. This continuous change is 
called homotopy, which is represented as Hy(x; p) : gθ ∼ gξ, 
that is, the solution of function gθ and function gξ is homotopy.

2) Constructing homotopic functions based on hyperbolic
embedding of behavior sequences: In order to extract more 
temporal information of the homotopy data, the output repre-

sentation of the target end is input into the homotopy module 
proposed here, as shown in Fig.1. This module embeds the tar-

get end output into the hyperbolic space based on the similarity 
of the pose of each frame. In this process, a homotopy defor-

mation of the target side multilayer perceptron is constructed. 
The input data of these two networks Bθ, Bξ ∈ RC×V ×T are 
spatially pooled to obtain xθ, xξ ∈ RC×T , and the global 
pooling is performed to obtain yθ, yξ ∈ RC , then the feature

representations are L2 unitized in the channel dimension to 
obtain ȳθ, ȳξ and x̄θ, X θ.

In this paper, we use a multi-layer perceptron h(·) that has 
the same structure as gξ and learn parameters through gradient 
propagation. We perform the same transformation on each 
frame of output xξ to obtain output x′

ξ, and perform L2 uniti-
zation to get x̄′

ξ. At this time, the target end has two unitized 
output representations compared to the representations of the 
encoding end. The similarity is calculated [2] and averaged, and 
two results p and p′ are obtained:{

p = sim (x̄θ, x̄ξ) = mean
(
x̄T
θ · x̄ξ

)
p′ = sim

(
x̄θ, x̄

′
ξ

)
= mean

(
x̄T
θ · x̄′

ξ

)
(9)

Similarly, the symmetrical forms p̃ and p̃′ can be obtained

by exchanging the input enhanced samples. Here, the multi-

layer perceptron h is regarded as a function that converts the

target representation to the encoding representation, and the

projection layer after the two networks is exchanged at the

same time. We average x′
ξ in the time dimension to obtain y′ξ,

use gθ(·) to project and unitize y′ξ to obtain the final output z̄′ξ,

and use the similarity to embed the output into the hyperbolic

space. The similarity p′ is the comparison result between the

changed target end representation and the encoding end, where

it can be taken as the norm, and multiplied by �z′ξ to obtain

the embedding of the hyperbolic space:

s′ = p′z̄′ξ (10)

At the same time, taking the comparison result p outputted

by the original target end and the encoding end as the norm,

and the normalization of the original projection result as the

direction vector, we get:

s = pz̄ξ (11)

Finally, as shown in the lower right corner of Fig.1, the 
embeddings of the two Poincaré models are summed through 
a Möbius to obtain the final hyperbolic embedding:

zhξ = s′ ⊕ s (12)

Similarly, when another enhanced sample is input to this

end, its symmetric form z̃hξ can be obtained. At this time, the

original input of the other end becomes the current input, and

the two hyperbolic embedding norms are symmetric forms of

p̃ and p̃′.
From the definition of the summation symbol, it can be

concluded that if the homotopy result is highly similar to the

other end, that is, p → 1, p′ → 1, the output direction is closer

to s′, and the target representation is inputted into the multi-

layer perceptron h and averaged, the process is regarded as a

function g′ξ, the homotopy module approximates the composite

form gθ ◦ g′ξ(·) of the function and the end-to-end projection

function of the encoding. Otherwise, the output result is close

to Sh
θ . At this time, the homotopy module is equivalent to an

identity transformation, and the projection function remains

unchanged, thus the whole homotopy module is the homotopy

function between gθ ◦ g′ξ(·) and gξ.
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D. Group invariance analysis based on homotopy equivalent
class

The purpose of homotopic mapping is to find homotopy

invariant features of samples. This invariance often enables

homotopy transformations to have good properties of groups,

which can be automatically learned by the network through

gradient propagation. Since the proposed network architecture

adds an additional multi-layer perceptron qθ(·) to predict

the projection result of the target end after the projection

transformation at the encoding end, it also plays the role

of dispersing the sample points, so that the data is more

evenly distributed on the surface of the unit sphere. For the

representation obtained by the encoding end, qθ(·) is also used,

then the transformation from the encoder representation to

the final output prediction is a composite form of qθ ◦ gθ.

For the loss function, the comparison with the original target

projection is retained, that is, the solution:

arg max
qθ,gθ,yθ

cos 〈gξ (yξ) , qθ ◦ gθ (yθ)〉 (13)

Based on the loss function of hyperbolic homotopy, the

required solution is as follows:

argmax
yθ,s

cos 〈gξ (yθ) , s′ ⊕ s〉 (14)

where the direction vector of s′ is from gθ ◦ h (yξ) and the

norm is from p′ = cos
〈
xθ, x

′
ξ

〉
, while the direction vector

of s is from yξ and the norm is from p = cos 〈xθ, xξ〉. At

this time, if the two projection functions are very similar, the

representations at both ends need to be in similar spaces. It

can be known from the property of Möbius summation that

the above formula is equivalent to

argmax
gθ,yθ

cos
〈
gθ (yθ) , gθ ◦ g′ξ (yξ)

〉
(15)

At this time, if a function g′ξ can be found, and the

transformation of each frame of the target representation can

transform yξ into an approximation of yξ, then p and p′ are

both large values, so the network will automatically learn a

homotopic map. If the representation similarity of both ends

is very low, then solve:

argmax
yθ

cos 〈gξ (yθ) , gξ (yξ)〉 (16)

That is, the network will automatically learn a yθ that is 
close to yξ, which is equivalent to undergoing an identity 
transformation.

We define the inverse of the trajectory α : I → X(I = 
[0, 1]) as ᾱ and specify it as ᾱ(t) =  α(1 − t). For two paths α 
and β on X , if  α(1) = β(0) is satisfied, the product αβ of 
them is stipulated as [41]:

αβ(t) = α(2t), 0 ≤ t ≤ 1

2
, αβ(t) = β(2t− 1),

1

2
≤ t ≤ 1

(17)

Therefore, for a closed loop passing through the base point,

the loop that can be reduced to the base point is regarded as the

unit element. Since the homotopy relation is an equivalence

relation, it is obvious that the equivalence classes of closed

loops passing through the base point form a group under the

defined product.

For the spatio-temporal trajectory in the feature space,

selecting a point in the space as the representative element,

and the equivalence classes of all closed loops passing through

the base point under the homotopy relation constitute a group

structure.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

In order to verify the effectiveness of the proposed method,

experiments are carried out on three large-scale human-based

3D skeleton datasets, namely NTU RGB+D 60 dataset, NTU

RGB+D 120 dataset and PKU-MMD dataset, that are three

largest datasets in the field of behavior recognition, on which

it is more convincing to compare experimental results.

NTU RGB+D 60 [42]: This dataset is currently one of the

largest 3D behavior recognition datasets, containing RGB+D

videos and skeleton data for human action recognition. The

data was captured from 40 human subjects by 3 Microsoft

Kinect V2 cameras. There are 56880 samples with 4 million

frames in 60 categories, and the maximum number of frames in

all samples is 300. Each body skeleton records 25 joints. The

original benchmark provides two evaluation methods, namely

Cross-Subject (Xsub) and Cross-View (Xview) evaluation. In

Xsub evaluation, the training set contains 40,320 videos from

20 subjects, and the remaining 16,560 videos are used for

testing. In Xview evaluation, 37920 videos captured from No.

2 and No. 3 cameras were used for training, and the remaining

18,960 videos from No. 1 camera were used for testing. We

follow these two benchmarks and report of Top-1 accuracy.

NTU RGB+D 120: This dataset is an extended version based

on NTU RGB+D 60, adding 57,367 skeleton sequences in

additional 60 action categories, totaling 113,945 samples,

120 action category categories, captured from 106 different

subjects and 32 different cameras. Two evaluation criteria

are used: Cross-subject (Xsub) and Cross-setting (Xset). In

Xsub protocol, 63,026 samples from half of the participating

subjects were used for training, while the remaining 50,919

samples were used for testing. In Xset evaluation, 54,468

samples taken from half of the camera devices are used for

training and the remaining 59,477 samples are used for testing.

PKU-MMD [43]: This dataset is a large-scale multimodal

3D human behavior recognition dataset, which covers a wide

range of complex human activity categories and has been

manually annotated with labels. The dataset collected 1,076

long video sequences with 51 action categories, completed by

66 participating subjects under different perspectives of three

Kinect V2 cameras, containing 21,545 behavior instances and

a total of 5.4 million frames. The label of each long sequence

marks the behavior category of each action instance, the start

frame, end frame and label confidence of the action. The 51

behavior categories collected in this dataset can be divided

into two types: 41 single-person behaviors and 10 two-person

interaction behaviors. We choose the skeleton data of this

dataset, and each frame consists of the 3D coordinates of
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TABLE II
ABLATION EXPERIMENT RESULTS OF DIFFERENT COMPONENTS

Method Params
linear evaluation fine-tune evaluation

NTU-60 PKU-MMD NTU-60 PKU-MMD
Xsub Xview part I part II Xsub Xview part I part II

Baseline 2.01M 75.9 77.9 80.4 40.6 82.2 89.0 87.0 52.8
With Homotopy 2.04M 77.0 78.8 85.1 48.1 83.8 90.6 90.5 54.9
Proposed 2.14M 78.9 82.3 88.5 51.7 84.9 91.5 92.6 56.7

(a) NTU-60 Xsub

(b) PKU-MMD part I

Fig. 2. The t-SNE visualization of embeddings of ablation experiments.

the 25 main body joints of the behavior participant. In the 
behavior recognition task, this dataset provides data of two 
different parts, among which part II introduces more skeleton 
noise, which brings more challenges.

B. Experimental Setup

The proposed method is implemented through the PyTorch

deep learning framework. For data preprocessing, this paper

follows the approach adopted in SkeletonCLR [20], no new

data augmentation method is used, and the batch size is set to

128 during training.

The entire network framework adopts ST-GCN as the en-

coder. In order to ensure the fairness of the comparison, the

conditions in the experiment are consistent, and the network

structure and parameters of the encoder are consistent with the

SkeletonCLR, in which the number of GCN layers is 5. For the

problem of inconsistent frame numbers of action sequences,

linear interpolation is used to unify all sample sequences into

50 frames. Stochastic Gradient Descent with momentum 0.9

and weight decay 0.0001 were used on network optimization.

The model was trained for 400 epochs with a learning rate of

0.1, and no learning rate decay strategy was used during the

learning process.

Linear Evaluation The model is validated by linear eval-

uation on an behavior recognition task. Specifically, a linear

classifier (a fully connected layer followed by a softmax layer)

is trained, supervised by a fixed encoder, and the final Top-1

classification accuracy is compared.

TABLE III
ABLATION EXPERIMENT RESULTS OF λ IN LOSS FUNCTION

λ
NTU-60 PKU-MMD

Xsub Xview part I part II
0.05 78.2 81.8 87.8 51.2
0.1 78.9 82.3 88.5 51.7
0.2 78.0 82.9 89.0 48.8

Semi-Supervised Evaluation We pre-train the encoder with 
all the data, then fine-tune the entire model with five protocols 
of the randomly selected labeled data.

Fine-tune Evaluation We append a linear classifier to the 
trained encoder, then train the entire model and compare it to 
supervised methods.

C. Ablation Study

In this section, we verifies the effectiveness of different

components in our proposed method through ablation exper-

iments. In order to evaluate the hyperbolic space embedding 
module and the homotopy deformation module respectively, 
the following experiments are carried out for comparison: 
directly using the contrastive learning framework without 
additional modules (Baseline), adding the method of homotopy 
deformation (With Homotopy), and our proposed method 
combining homotopy deformation and hyperbolic embedding. 
The results under linear evaluation protocol and fine-tune 
protocol are shown in Table II.

It can be seen from the experimental results that the direct 
use of the BYOL framework without additional modules has 
a higher accuracy. When the homotopy deformation module 
is added, the effect of Xsub and Xview based on linear 
evaluation protocol is improved by 1.1% and 0.9% respec-

tively, indicating that the homotopy relationship is closely 
related to the similarity of global features of the samples. 
The samples with homotopy relationship can be brought closer 
together in space, that can better gather similar samples and 
improve the classification effect. The method of combining 
homotopy deformation and hyperbolic embedding proposed 
in this paper embeds the global representation of samples into 
hyperbolic space for analysis on the basis of homotopy, which 
further improves the classification effect. The improvement is 
1.9% and 3.5%, indicating that the representation of behavior 
sequence data satisfies the hypothesis of hyperbolic manifold in 
the feature space to a certain extent, that is, there is a certain 
hierarchical relationship, that is suitable for modeling with 
hyperbolic space to mine data. The hierarchical structure of the 
system can better improve its classification effect. Fig.2 shows 
the distribution of embeddings on NTU-60 xsub and PKU-

MMD part I using the t-SNE algorithm [44]. It
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Fig. 3. Confusion matrix on NTU-60 under xsub setting.

Fig. 4. Confusion matrix on PKU-MMD part I under xsub setting.

can be seen from the visualization results that the skeleton 
representations learned by the homotopy deformation and 
combining homotopy deformation and hyperbolic embedding 
have certain distinguishability in the feature space.

At the same time, we conduct ablation experiments with 
different proportions of hyperbolic loss in the loss function, as 
shown in Table III. It can be clearly seen from the experimental 
results that different values of λ have a certain impact on the 
accuracy. Here, this paper chooses the ratio of λ = 0.1 to carry 
out subsequent experiments.

D. Comparison with Existing Methods

In this section, the proposed method is experimentally

compared to related existing methods to evaluate its effective-

ness. The evaluation method follows three protocols: linear

evaluation protocol, semi-supervised protocol, and fine-tune

protocol.

1) Comparison of results on linear evaluation: In order to

evaluate whether the learned representations contain sufficient

discriminative information, this section compares them on

linear classification tasks with the results shown in Table IV.
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TABLE IV
COMPARING THE PERFORMANCE WITH THE CURRENT METHOD UNDER

THE TWO VALIDATION BENCHMARKS ON NTU 60 DATASET

Methods Year
Accuracy(%)

Xsub Xview
LongT GAN[5] 2018 39.1 48.1
MS2L[45] 2020 52.6 -
P&C[4] 2020 50.7 76.3
SeBiReNet[7] 2020 - 79.7
AS-CAL[19] 2021 58.5 64.8
SkeletonCLR[20] 2021 68.3 76.4
CrosSCLR[20] 2021 72.9 79.9
‘TS’ Colorization[6] 2021 71.6 79.9
GL-Transformer[33] 2022 76.3 83.8
AimCLR[34] 2022 74.3 79.7
HiCLR[35] 2023 77.6 82.0
Proposed - 78.9 82.3

TABLE V
COMPARING THE PERFORMANCE WITH THE CURRENT METHOD UNDER

THE TWO VALIDATION BENCHMARKS ON NTU 120 DATASET

Methods Year
Accuracy(%)
Xsub Xset

P&C[4] 2020 42.7 41.7
AS-CAL[19] 2021 48.6 49.2
SkeletonCLR[20] 2021 56.8 55.9
ISC[46] 2021 67.9 67.1
GL-Transformer[33] 2022 66 68.7
AimCLR[34] 2022 63.4 63.4
Proposed - 68.4 67.3

Under the two verification benchmarks, the proposed method 
achieves the best performance under the Xsub proto-col. 
Compared to HiCLR, the proposed method improves the 
accuracy by 1.3%. In HiCLR, the authors use gradual growing 
data enhancement methods to provide more information to the 
network, that is, a multi-view method is used for the skeleton 
data in different views to provide the network with richer 
supervision signals. The complementarity of information im-

proves the network performance, while our proposed method 
does not add additional enhanced samples, and adopts the 
BYOL framework that discards the comparison of positive and 
negative samples. We show confusion matrix on NTU-60 in 
Fig.3. It can be seen that recognition mistakes are concentrated 
in action such as clapping, reading, writing, using a mobile 
phone and using a keyboard, which contains subtle movements 
with little body variation, and our proposed method achieves 
good accuracy in the remaining categories.

Fig.5 shows the comparison of the linear evaluation among 
the models trained with different epochs. It can be seen that the 
proposed method can achieve high accuracy when the number 
of rounds is small, and it has always maintained leading results 
under different rounds.

The proposed method is further compared on NTU 120, 
a larger-scale dataset of more classes, and the results are 
shown in Table V. The proposed method outperforms most 
of the methods, ranking second on both Xsub protocol and 
Xview protocol. Compared to the best method ISC on Xsub 
protocol, the proposed method is only 0.3% behind and 
hava an advantages under the Xview protocol. Similarly, the 
situation is opposite to the previous one compared to GL-

TransFormer. These prove that the method is also competitive

TABLE VI
COMPARING THE PERFORMANCE WITH THE CURRENT METHOD UNDER

THE TWO VALIDATION BENCHMARKS ON PKU-MMD DATASET

Methods Year
Accuracy(%)

Part I Part II
ST-GCN(supervised)[30] 2018 84.1 48.2
VA-LSTM(supervised)[47] 2019 84.1 50.0
LongT GAN[5] 2018 67.7 26.0
MS2L[45] 2020 64.9 27.6
3s-CrosSCLR[20] 2021 84.9 21.2
ISC[46] 2021 80.9 36.0
AimCLR[34] 2022 83.4 -
Proposed - 88.5 51.7

TABLE VII
SEMI-SUPERVISED RESULTS ON PKU-MMD DATASET

Methods Year
1% 10%

Part I Part II Part I Part II
LongT GAN[5] 2018 35.8 12.4 69.5 25.7
MS2L[45] 2020 36.4 13.0 33.1 -
ISC[46] 2021 37.7 - 72.1 -
Proposed - 55.4 24.8 83.5 37.8
3s-CrosSCLR[20] 2021 49.7 10.2 82.9 28.6
3s-AimCLR[34] 2022 57.5 15.1 86.1 33.4
3s-Proposed - 64.5 26.7 86.9 39.0

on multi-category large-scale datasets.

The comparison results on the dataset PKU-MMD are shown 
in Table VI. There are two different parts in this dataset. Part II 
is more challenging because of the view changes introduced by 
more skeleton noise. On Part I, our proposed method 
outperforms other unsupervised methods and outperforms some 
supervised methods, in which the network ST-GCN is used as 
the encoder of the proposed method, which proves the excellent 
representation learning ability. It can be seen from the table that 
the effect of the method 3s-CrosSCLR drops sharply in part II, 
while the proposed method can achieve good results in both 
parts, which proves that the proposed method has a strong 
ability to deal with skeleton noise, the extracted features are 
more robust. We plot the confusion matrix results for the PKU-

MMD Part I in Fig.4. It can be seen from the figure, the most 
easily confused categories are mainly actions with small 
movements, such as brushing teeth and tear up papers. For 
actions with more obvious amplitudes, our proposed method 
achieves satisfing results. At the same time, 3s-CrosSCLR uses 
data from different views of the skeleton, namely joint data, 
bone data and motion data, while the proposed method only 
uses joint data and achieves higher accuracy, which further 
reflects the superiority.

2) Comparison on semi-supervised evaluation: In order to

evaluate the classification effect of the proposed method where 
only a small number of labels are input for training, 
experiments were carried out on PKU-MMD and NTU-60 
datasets with different labeled data. The results are shown in 
Table VII and Table VIII respectively.

Through experiments, it can be seen that the proposed 
method achieves high performance under the two protocols 
of PKU-MMD. Our method achieves state-of-the-art results 
on both single-stream and three-stream. And compared to 3s-

AimCLR, our method of single stream also surpasses 9.7%

and 4.4% on part II. It’s not too far behind on the single
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TABLE VIII
SEMI-SUPERVISED RESULTS ON NTU-60 DATASET

Methods Year
1% 5% 10% 20% 40%

Xsub Xview Xsub Xview Xsub Xview Xsub Xview Xsub Xview
2018 35.2 - - - 62.0 - - - - -
2020 33.1 - - - 65.2 - - - - -
2021 35.7 38.1 59.6 65.7 65.9 72.5 70.8 78.2 - -
2021 42.9 46.3 60.1 63.9 66.1 73.3 72.0 77.9 75.9 82.7
2022 - - 64.5 68.5 68.6 74.9 - - - -

LongT GAN[5] 
MS2L[45]
ISC[46]
‘TS’ Colorization[6] 
GL-Transformer[33] 
Proposed - 59.9 56.5 70.0 71.7 72.7 75.5 75.0 78.5 77.0 80.6
3s-CrosSCLR[20] 2021 51.1 50.0 - - 74.4 77.8 - - - -
3s-Colorization[6] 2021 48.3 52.5 65.8 70.3 71.7 78.9 76.4 82.7 79.8 86.8
3s-AimCLR[34] 2022 54.8 54.3 - - 78.2 81.6 - - - -
3s-HiCLR[35] 2023 58.5 58.3 - - 79.6 84 - - - -
3s-Proposed - 65.7 58.4 74.6 75.0 75.9 77.5 78.9 81.3 79.5 82.8

Fig. 5. Comparison of linear evaluation results of models obtained from 
different rounds of training.

stream of part I either. That means the proposed method also 
has great advantages compared to methods that do not utilize 
multi-view data.

Under the five protocols of NTU 60, the proposed method 
has achieved good results using only joint data, outperforming 
almost the previous methods. This method has a certain 
improvement compared to ‘TS’ Colorization under almost 
every protocol. At the same time, our method also achieves 
competitive results when using data from different views of the 
skeleton. The method achieves the best results on 1% and 5% 
labels of Xsub protocol, respectively. Compared to the 3s-

Colorization, the proposed method lags behind by only 0.3%on 
40% label of Xsub protocol, and has advantages on the other 
labels.

3) Comparison on fine-tune evaluation: For fair compar-

ison, the spatio-temporal graph convolution used in the pro-

posed method has the same network structure and parameters as 
the existing method, and on large datasets NTU 60 and NTU 
120, the fine-tune results of the proposed network outperform 
the baseline methods ST-GCN and method CrosCLR, as shown 
in Fig.6.

The results show that the proposed method achieves the 
highest accuracy under different validation benchmarks of 
NTU 60 and NTU 120, where ”FT” indicates that the model is 
obtained by fine-tuning, and the baseline method is the encoder 
used in the experiment does not perform self-supervised 
learning and directly connects with full connections

Fig. 6. Comparison of the results of the three models on fine-tune evaluation.

for classification. It can be seen that the proposed model has a

significant improvement compared to the baseline model, and

certain improvement compared to SkeletonCLR in different

datasets.

V. CONCLUSION

This paper proposes a self-supervised learning method

based on hyperbolic homotopy embedding, which adopts

contrastive learning framework to learn different equivalent

classes from spatio-temporal sequences through homotopic

mapping, and maps the extracted high dimensional spatio-

temporal interaction features to hyperbolic space through

homotopy functions. In order to prevent similar samples from

being pushed far in the feature space, the proposed method

adopts a self-supervision framework that discards negative

samples, and uses the potential of the network to guide itself

to automatically obtain better supervision signals. At the same

time, hyperbolic embedding can capture the contextual cor-

relation of high-dimensional spatio-temporal sequences. The

proposed method uses the Poincaré model to quantify the

global features, and uses the similarity between the two stream

output features of the contrast network as the embedding

norm, and leverages the Poincaré model to represent the global

feature vectorization. Homotopic mapping is used to represent

the relationship of equivalent classes between data, so that

the mapping satisfies the property of group invariance. The

proposed method combines the geometric properties of hyper-
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bolic manifolds and the equivariance of homotopy groups to

promote better supervised signals for the network and improve

the performance of unsupervised learning.
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