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ABSTRACT 
The buckling of perforated plates considering the effect of shear deformation is analyzed with the 
boundary element method. The geometrical non-linearity (GNL) effect included rotation derivatives 
(curvatures) as well as the deflection derivatives. The importance of the shear deformation in the 
buckling of perforated plates appeared with the increase of the plate thickness and the effect of 
curvatures becomes greater in large hole diameter cases. 
Keywords:  perforated plate buckling, Mindlin plate, Reissner plate, full non-linearity in buckling, 
critical loading. 

1  INTRODUCTION 
Plated structures are widely used in engineering and the in-plane forces result from the 
structural equilibrium to the external loads. Buckling analyses are usually employed in the 
design of plate elements of those structures. The inclusion of the effect of shear deformation 
in the bending model improves the accuracy of stress computation around holes [1], the plate 
behavior representation under dynamic condition [2] and the assessment of the critical 
buckling load changes according to the plate thickness as shown in the literature. 
     The inclusion of the rotation derivatives (curvatures) in the geometrical non-linearity 
effect (GNL) beyond the deflection derivatives is discussed in several studies on buckling 
analyses of thick plates considering the effect of shear deformation. Most studies on thick 
plate buckling only employed the deflection derivatives in the GNL as usually done in the 
well-known buckling analysis using the classical bending model [3]. Sun [4] presented a 
consistent study on the importance of curvatures in the buckling analyses with the effect of 
shear deformation. Trefftz and Biot theories were considered in Sun [4] and the effect of 
curvatures in buckling analyses became significant in the range of intermediate wavelengths, 
which corresponds to problems when the shear deformation is pronounced. An extensive 
study carried out by Mizusawa [5] showed the effect of curvatures can be significant or not, 
according to the type of the boundary conditions. Results obtained with the boundary element 
method (BEM) for buckling analyses including the effect of shear deformation and only the 
deflection derivatives in the GNL [6] agreed to those in the literature for square and 
rectangular plates with the thickness to plate side ratio in the range from 0.001 to 0.2. 
Buckling analyses with BEM including the curvatures (rotation derivatives) as well as the 
deflection derivatives in the GNL [7] confirmed the importance of curvatures according to 
the type of boundary conditions as pointed out by Mizusawa [5]. 
     Levy et al. [8] studied the instability of reinforced perforated plates with a central hole 
under a uniform compression force. Brown and Yettram [9] studied how the value of the 
buckling parameter for different load combinations changes according to the hole diameter 
and the plate side ratio. Shakerley and Brown [10] studied plate buckling with eccentrically 
positioned holes. El-Sawy and Nazmy [11] used the finite element method to assess the 
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buckling parameter value for uniaxial loaded plates with different ratios between the hole 
diameter and the plate side. Jayashankarbabu and Karisiddappa [12] considered the buckling 
of perforated plates with the effect of shear deformation. 
     The studies on plate buckling in Soares and Palermo [6] and Palermo et al. [7] showed an 
efficient and light way to perform those analyses with the BEM. The eigenvalue analysis 
employing the inverse iteration with the Rayleigh quotient combined with the BEM solution, 
i.e., solution for values on the boundary followed by the solution for values in the domain, 
allowed a reduction in the order of the “matrices of the problem” and quick computation of 
required values in the domain as well as the final solution. Those features encouraged 
buckling analyses for other problems and the buckling of square and rectangular perforated 
plates were studied here with the effect of shear deformation with the GNL, including 
derivatives of deflections and rotations. An algebraic manipulation with the divergence 
theorem was done in the integral related to the GNL [7], which allowed to employ only the 
gradient of displacements in the non-linear analysis as well as to disregard the relation 
between derivatives of in-plane forces. Two integrals related to GNL resulted from this 
algebraic manipulation, with one computed in the domain and the other computed on the 
boundary, which is related to the natural conditions to perform the buckling analysis. The 
existence of holes required the plane stress problem solution at the beginning of the analysis 
to obtain the in-plane forces distribution in the domain. Quadratic shape functions 
approximated displacements (deflections and rotations), and tractions (distributed shears and 
moments) in the BEM whereas constant elements were used to discretize both integrals 
related to the GNL effect. The changes in the value of the buckling parameter according to 
the plate thickness and the hole diameter were compared to show the effect of the curvatures 
in the buckling analysis. 

2  BOUNDARY INTEGRAL EQUATIONS 
Isotropic plates were considered with the constitutive equations written next. 
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where u is the plate rotation in direction α, u3 is the plate deflection, D is the flexural rigidity, 
h is the plate thickness,  is Poisson’s ratio, δαβ is the Kronecker delta. The Latin indices take 
on values {1, 2 and 3} and Greek indices take on values {1, 2}. The shear parameter is equal 
to 5/6 and 2/12 for the Reissner and the Mindlin models, respectively, and it is the difference 
introduced in the analysis according to the model adopted.  
     The general form of the displacement boundary integral equations (DBIEs) with an 
additional domain integral containing the GNL effect is written next with Weeën’s notation: 
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in which Cij is an element of the matrix C related to the boundary at the source point, which 
becomes the identity matrix when a smooth boundary is considered, Uij represents the 
rotation (j = 1, 2) or the deflection (j = 3) due to a unit couple (i = 1, 2) or a unit point force 
(I = 3), respectively, Tij represents the moment (j = 1, 2) or the shear (j = 3) due to a unit 
couple (i = 1, 2) or a unit point force (i = 3), respectively. 
     The domain integral related to the GNL is converted into two integrals with the divergence 
theorem [7], with one computed on the boundary and the other in the domain. The gradient 
of displacements (rotations and deflection) becomes only necessary in the analysis, instead 
of second derivatives and no relation is required in the derivatives of in-plane forces. The 
final DBIE is given by: 
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     The boundary integral in eqn (4) can be related to the natural conditions, which can be 
obtained with the calculus of variations [7]. The natural conditions introduce requirements 
on the boundary portion with not prescribed displacements where the variations on 
displacements are not null (u i ≠ 0). The natural conditions are given by: 
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     The tractions in eqns (5) and (6) are the boundary conditions introduced in eqn (4) when 
rotations and/or deflections are unknown in a part of the boundary edge. The boundary 
integral along the boundary portion with not prescribed displacements containing the natural 
conditions has the opposite signal of the boundary integral related to GNL in eqn (4) and it 
was considered in the numerical implementation. 
     The BIE for gradient of displacements is used in conjunction with eqn (4) in the buckling 
analysis. The BIE for the gradient of displacements at an internal point is next written in 
terms of differentiation of the field point coordinates and using the tangential differential 
operator [7], [13]: 
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     The solution of the generalized plane stress problem is required to obtain the in-plane 
force distribution on the domain of perforated plates at the beginning of the buckling 
analyses. The BIEs for plane stress problems are given by: 
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where vβ and pβ are the in-plane displacements and tractions in direction β of the plane stress 
problem, respectively. Vαβ and Pαβ represent the displacement and traction in direction β due 
to a unit force in direction α, respectively. 
     The BIE for stresses at internal points, eqn (9), was written in terms of differentiation of 
the field point coordinates, the Hooke tensor for isotropic media (Sα) and using the 
tangential differential operator D. The transversal modulus (G) in the Hooke tensor was 
multiplied by the plate thickness to use Nα in eqns (4) and (7). 

3  THE NUMERICAL IMPLEMENTATION 
The numerical implementation is the same used in Soares and Palermo [6] and Palermo et al. 
[7], with quadratic shape functions for isoparametric boundary elements. The nodes are 
always placed at ends in case of continuous or discontinuous elements. The collocation points 
were placed at nodes in case of continuous elements or shifted inside the element at positions 
0.67, in the range (–1, 1), respectively to the end where the discontinuity exists. Singularity 
subtraction [14] and the transformation of variable technique [15] were employed for the 
Cauchy and the weak type of singularity, respectively, when integrations were performed on 
elements containing the collocation points. The standard Gauss–Legendre scheme was 
employed for integrations of elements (or side of the cell) not containing the collocation 
points. The GNL effect was introduced using integrations on constant rectangular cells in the 
domain [6], [7]. The derivatives of the displacements (deflection and rotation) at the center 
of the cell were assumed constant on each cell, which allowed the use of the divergence 
theorem to convert the domain integral into equivalent boundary integrals performed on sides 
of the cell. This strategy allowed to compute the GNL effect using integrations on sides of 
cells inside the domain in all problems. Additional integrations were performed on sides of 
cells along the plate edge only when the natural conditions required, i.e.: 

(a) When the displacements are prescribed on the whole boundary (a clamped plate on all 
sides), no integrations related to the GNL effect were computed on sides of cells along 
the plate edges. No natural condition was required. 
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(b) When the displacements are not prescribed on the boundary portion of the plate (free 
edge), integrations related to the GNL were computed on sides of cells along the free 
edge. 

(c) In the case of the hard or the soft boundary condition, when the deflection is prescribed 
and the rotation in the normal direction or both rotations is/are not prescribed, 
integrations related to the curvature in the GNL effect corresponding to the rotation 
released were computed on sides of cells along the plate. 

     The in-plane stress distribution according to in-plane boundary conditions of the 
perforated plates was obtained at the beginning of the problem with eqns (8) and (9). The 
values obtained for in-plane stresses at the center of cells are used in the discretized form of 
eqns (4) and (6). The eigenvalue analysis [6, 7. 16] used the basic inverse iteration and the 
Rayleigh quotient. The iteration procedure continued until the absolute difference between 
values of successive eigenvalues was less than 10–8. 

4  NUMERICAL EXAMPLES 
The Young modulus (E) was 206.9 GPa, the Poisson ratio () was 0.3. The Mindlin model 
was employed. The buckling parameter k is a non-dimensional value related to the critical 
load of the plate (Ncr), the length of the plate side (a) and the flexural rigidity (D), which is 
obtained according to following expression: 

𝑘 ൌ
௔మே೎ೝ
గమ஽

. 

     Three cases shown in Fig. 1 were studied: (a) Square plate with a hole at the center,  
(b) Rectangular plate with a hole near one of the ends, and (c) Rectangular plate with a hole 
near the center. The plates were uniformly compressed with free longitudinal edges for in-
plane boundary conditions. The plates were simply supported for the buckling problem and  
 

 
(a) (b)

 
(c)

Figure 1:    Studied plates. (a) Square plate; (b) Rectangular plate (b = 2a); and (c) 
Rectangular plate (b = 4a). 
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the hard restraint condition (twist moments restrained) used in all external sides. The free 
edge condition was used along the boundary of the hole. 
     The adopted meshes are presented in Table 1 and the results obtained are plotted in Figs 
2 to 4, whereas the correspond buckling values are presented in Tables 2 to 4. Results 
obtained in Soares and Palermo [6] for the square and the rectangular plate (b = 2a) without 
holes were included only for comparison purpose. 

Table 1:  Number of adopted boundary elements and domain cells. 

Case Square plate 
Rectangular plate 

(b = 2a) 
Rectangular plate  

(b = 4a) 

d/a BE Cells BE Cells BE Cells 

0 128 256 192 512   

0.1 192 448 272 848 432 1648 

0.2 208 460 288 860 448 1660 

0.3 224 464 304 864 464 1664 

0.4 240 460 320 860 480 1660 

0.5 256 448 336 848 496 1648 

0.6 272 428 352 828 512 1628 

0.7 288 400 368 800 528 1600 
 
 

 

Figure 2:  Results for the square plate. 
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Figure 3:  Results for the rectangular plate (b = 2a). 

 

Figure 4:  Results for the long rectangular plate (b = 4a). 
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Table 2:  Values obtained for the square plate. 

d/a 
h/a 

0.001 0.001C 0.01 0.01C 0.1 0.1C 0.2 0.2C 

0 4.0128 4.0127 4.0105 4.0088 3.7952 3.6638 3.2643 2.9587 

0.1 3.8437 3.8428 3.8442 3.8427 3.6471 3.5186 3.1559 2.8498 

0.2 3.5165 3.5143 3.5166 3.5152 3.3481 3.2261 2.9152 2.6134 

0.3 3.2269 3.2239 3.2260 3.2248 3.0706 2.9558 2.6545 2.3670 

0.4 3.0269 3.0236 3.0244 3.0232 2.8578 2.7475 2.4601 2.1209 

0.5 2.8959 2.8925 2.8904 2.8892 2.6829 2.5726 1.8840 1.6679 

0.6 2.8008 2.7975 2.7900 2.7888 2.5005 2.3838 1.2738 0.9161 

0.7 2.7165 2.7136 2.6972 2.6959 2.2929 2.1116 0.7799 0.5252 

Table 3:  Values obtained for the rectangular plate (b = 2a). 

d/a 
h/a 

0.001 0.001C 0.05 0.05C 0.1 0.1C 0.15 0.15C 

0 4.0127 4.0126 3.9561 3.9466 3.7952 3.7638 3.5543 3.5435 

0.1 3.9275 3.9269 3.8746 3.8320 3.7205 3.5756 3.4889 3.2335 

0.2 3.7394 3.7371 3.6895 3.6475 3.5457 3.4018 3.3261 3.0695 

0.3 3.5724 3.5673 3.5176 3.4761 3.3723 3.2295 3.1465 2.8924 

0.4 3.4850 3.4754 3.4074 3.3653 3.2342 3.0903 2.9664 2.7164 

0.5 3.4227 3.4032 3.3001 3.2563 3.0713 2.9259 2.7415 2.5011 

0.6 3.2653 3.2602 3.1079 3.0636 2.8350 2.6936 2.4658 2.2411 

0.7 2.9668 2.9453 2.8149 2.7492 2.5315 2.4002 2.0420 1.9230 

Table 4:  Values obtained for the rectangular plate (b = 4a). 

d/a 
h/a 

0.01 0.01C 0.05 0.05C 0.1 0.1C 0.15 0.15C 0.2 0.2C 

0.1 3.9704 3.9686 3.9172 3.8725 3.7598 3.6089 3.5235 3.2628 3.2397 2.8808 

0.2 3.8859 3.8842 3.8348 3.7895 3.6825 3.5282 3.4515 3.1776 3.1646 2.7979 

0.3 3.8367 3.8351 3.7851 3.7386 3.6318 3.4725 3.3957 3.1113 3.0851 2.7089 

0.4 3.8824 3.8807 3.8257 3.7774 3.6606 3.4940 3.3984 3.0974 2.9907 2.6165 

0.5 4.0047 3.9981 3.9380 3.8883 3.7584 3.5836 3.4438 3.1079 2.6438 2.4455 

0.6 4.0910 4.0890 4.0308 3.9824 3.8532 3.6839 3.4515 3.0493 2.1720 2.0904 

0.7 4.1138 4.1118 4.0538 4.0062 3.8769 3.7153 2.9475 2.7729 1.6934 1.2169 
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     All analyses considered six values for the thickness to plate side ratio: 0.001, 0.01, 0.05, 
0.1, 0.15 and 0.2. The results obtained with deflection and rotation derivatives in the GNL 
were presented for each thickness with letter C included (Complete), whereas results obtained 
with only deflections derivatives in the GNL were presented without the letter C. The results 
obtained with thickness to plate side ratios 0.001, 0.01, 0.1 and 0.2 were plotted in Fig. 2 
whereas those for ratios 0.001, 0.05, 0.1 and 0.15 were plotted in Fig. 3. This was done in 
different figures for a clearer visualization. Results obtained with ratio 0.001 were not 
included in Table 4 but they are plotted in Fig. 4. 
     The effect of the thickness increase and the curvatures were significant for h/a equal or 
greater than 0.1 in the square plate (Fig. 2). The reduction in the buckling parameter has a 
significant decrease with the increase of the diameter. 
     The effect of the thickness increase and the curvatures was significant for h/a equal or 
greater than 0.05 for the rectangular plate in Fig. 3. The reduction in the buckling parameter 
has a significant decrease with the increase of the diameter. 
     The effect of the thickness increase and the curvatures were significant for h/a equal to 
0.2 for the long rectangular plate in Fig. 4. The reduction in the buckling parameter was not 
significant with the increase of the diameter for ratios until 0.10 and the reduction became 
significant when the effect of curvatures was included. 

5  CONCLUSIONS 
Results obtained for buckling analyses of perforated plates with the BEM has shown the 
importance of considering curvatures in the GNL effect. According to values plotted in Fig. 
4, the plate buckling behavior can be incorrectly represented without the inclusion of the 
curvatures in the GNL effect. The use of the divergence theorem in the GNL effect results in 
disregard of a relation between stress derivatives and the GNL, and worked with the gradient 
of displacements. This formulation simplified some features in BEM formulations for 
buckling analyses employing second derivatives of displacements and requiring a relation 
between stress derivatives. The present formulation considering the tangential differential 
operator in the BIEs for the gradient of displacements or in the BIE for stresses carried to 
employ only Cauchy type singularities. Furthermore, the buckling formulation using BEM 
can be considered a light computational formulation due to the reduction of the order of the 
matrices related to the problem, which benefits the computational time for the solution. 
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