
Available on CMS information server CMS NOTE-2008/023

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note

14 February 2008

Comparison of Two-Dimensional Binned Data
Distributions Using the Energy Test

I.D. Reid, R.H.C. Lopes and P.R. Hobson
School of Engineering and Design,

Brunel University, Uxbridge UB8 3PH, UK

Abstract

For the purposes of monitoring HEP experiments, comparison is often made between regularly ac-
quired histograms of data and reference histograms which represent the ideal state of the equipment.
With the larger experiments now starting up, there is a need for automation of this task since the vol-
ume of comparisons would overwhelm human operators. However, the two-dimensional histogram
comparison tools currently available in ROOT have noticeable shortcomings. We present a new com-
parison test for 2D histograms, based on the Energy Test of Aslan and Zech, which provides more
decisive discrimination between histograms of data coming from different distributions.



1 Introduction
A traditional task when monitoring HEP experiments has been the comparison between regularly acquired his-
tograms of data and reference histograms which represent the baseline state of the equipment. Histograms are
typically used rather than the raw data points because of the compactness they afford, both in data storage and in
visual presentation. When a discrepancy is seen, it is flagged and the problem passed to an appropriate expert to
decide what action is to be taken. With the larger experiments now starting up, such as CMS, there is a need for
automation in the comparison task since the number of histograms would overwhelm human operators.

These types of comparison are called goodness-of-fit (GoF) tests, and can be subdivided into two broad types: the
determination of whether a given data sample is consistent with being generated from some specified distribution
is sometimes called a one-sample GoF test, while a two-sample GoF test considers the hypothesis that two data
samples are derived from the same distribution. In general, similar methods can be applied to both types of tests.
However, the problems are ill-posed – only the null hypothesis (that the distributions are the same) is well defined,
the alternative hypothesis (that the distributions do not match) is not fully specified. It is important, therefore, to
determine the most appropriate GoF method for any given problem.

Methods for comparing one-dimensional data are well known, one of the more widespread being the Kolmogorov-
Smirnov test [1]. This compares cumulative distribution functions (CDF) for the two sets of data and takes as a
statistic the maximum difference between them. Although this test is intended to be applied to discrete data, it is
feasible to apply it to histogrammed data as well, provided that the effects of the binning on the test are taken into
account. Applying this test in more than one dimension is problematic since it relies on an ordering of the data to
obtain the CDFs, but there are 2d-1 distinct ways of defining a CDF in a d-dimensional space [2]. Multidimensional
GoF tests are also ill-posed in that they lack metric invariance. That is, the choice of scale factor or, in the case of
histogrammed data, the number of bins can greatly affect the comparison result.

1.1 Currently available 2D tests for histogrammed data
The most-widely used data-handling and analysis package in HEP today is undoubtedly ROOT [3], which provides
two methods for comparing histograms, the Chi2Test (χ2) [4, 5] and the KolmogorovTest (KS) [6]. Details of the
ROOT χ2 test may be found in Appendix A. The ROOT KS test operates as described above, by finding the
maximum difference Dmax between the CDFs for the two histograms. The Kolmogorov distribution function [7]
is applied to the normalised maximum distance Dmax{(nA ∗ nB)/(nA + nB)}1/2, where nA, nB are the sums of
the histogram contents, to return the probability P of the null hypothesis (i.e., that the two histograms represent
selections from the same distribution). The returned value is calculated such that it will be uniformly distributed
between zero and one for compatible histograms, provided the data are not binned (or the number of bins is very
large compared with the number of events) [6]. In practice, binning 1D data into histograms skews the distribution
of P [6] and 2D histograms appear also to distort the distribution – as will be seen later – so that selecting an
acceptance criterion of, say, 5%, will in fact reject fewer than 5% of compatible histograms.

In an attempt to deal with the 2-dimensional ordering problem, the ROOT 2D-KS test generates two pairs of CDFs
by accumulating the binned data in the histograms being compared rasterwise, in column- and row-major fashion
respectively (i.e.,

∑

x

∑

y and
∑

y

∑

x). Thus two values of Dmax are calculated, and the Kolmogorov function is
evaluated for their average, normalised as above, to return the value of P . See Appendix B for details of the CDF
calculations.

To illustrate the ROOT tests in two dimensions, two sets of 100 000 (x, y) synthetic data points were generated us-
ing ROOT 1). Each set had a normal N(µ,σ2)=N(0,1) distribution in x and a Landau distribution [8] Landau(mpv,σ)
in y, where the most-probable value mpv was set to 2.0 and σ was 0.50 and 0.62 for the two data sets, respectively.
The data points are plotted as 50x50 histograms over (−3 ≤ x ≤ 3, 0 ≤ y ≤ 30) in Figure 1. Results of the
maximum distances Dmax and probability values P for ROOT 2D-KS comparisons of the two data sets at different
binnings are given in Table 1.

As 2D histograms are more finely binned, the order in which the binned data are accumulated approaches the order
of the discrete data in the most-slowly varying dimension (see Appendix B). Consequently the CDFs generated
by the ROOT 2D-KS test approach those of the discrete data ordered in one dimension along each coordinate

1) Unless otherwise noted, results in this work were obtained with programmes and libraries distributed with
CMSSW 1 2 3 [9] – ROOT V5.13/04e, Python 2.4.2, and GCC 3.2.3 – run under Scientific Linux CERN 3.0.8. on a
2.8 GHz Pentium D. Where ROOT 2D-χ2 test calculations involved outliers, ROOT V5.17/04 was used to avoid a bug in
the distributed version.
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Figure 1: The two sets of 100 000-point synthetic data generated to illustrate ROOT’s 2D comparison methods.
Both sets have a normal distribution N(0,1) in x and a Landau distribution Landau(2,σ) in y, with σ being 0.50
(left) and 0.62 (right), respectively. The distributions are plotted here at a binning of 50x50. The statistic boxes
show the number of points within the histogram limits and the distribution of outliers.

Histogram Size Dmax(y) Dmax(x) 2D-KS P 2D-χ2 P
10x10 0.012082 0.039516 0.0 0.0
20x20 0.007833 0.041776 0.0 0.0
25x25 0.007885 0.043550 0.0 0.0
50x50 0.006493 0.043829 0.0 0.0

100x100 0.005404 0.043568 0.0 0.0
200x200 0.005051 0.043428 0.0 1.0
500x500 0.004773 0.043287 0.0 1.0

1000x1000 0.004802 0.043367 0.0 1.0
RPy 1D KS 0.004640 0.044510

Table 1: The ROOT 2D comparison tests applied at different binnings to the two 100 000-sample data sets shown
in Figure 1. Shown are the maximum differences Dmax between the CDFs obtained from the two different or-
derings of the histogram bins, using a customised ROOT 2D-KS method. Discrete 1D KS test results, from the
statistics package RPy [10] applied to the y and x data separately, are included for comparison. Also given are the
probabilities P returned by the 2D-KS and 2D-χ2 tests. Outliers were ignored in all the histogram comparisons.

separately. Table 1 illustrates this by showing how the individual Dmax differences approach the 1D KS differences
computed with the statistics package RPy [10]. This separation of coordinates makes it possible to obtain a very
high value of P for significantly different distributions so long as their projections in each dimension are similar.
An extreme example of this is shown in Figure 2.

ROOT’s documentation [6] suggests that the KS test gives better results than its χ2 test, especially at low occu-
pancy. In practice, we have found the χ2 test to be sensitive to binning choices and counter-intuitive when applied
to 2D histograms. For example, Table 1 also gives the results of comparing the two synthetic data sets using the
ROOT 2D-χ2 test. While the ROOT 2D-KS test returns zero for P at all binnings, indicating that the two data sets
are probably from different parent distributions, the 2D-χ2 test gives zero P only for coarser binnings; at 200x200
and above it returns P=1.0, indicating compatability. This point is discussed in more detail in Appendix A.
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Figure 2: A ROOT 2D-KS comparison of two 2000-point histograms binned at 500x500. The test returns a high
probability (P=99.94%) that the both sets of data come from the same distribution. This is because they each have
the same projections onto the axes.

1.2 An alternative 2D test
We have recently demonstrated [11] efficient algorithms for a Kolmogorov-Smirnov test for discrete 2D data, as
described by Peacock [2] and modified by Fasano and Franceschini [12]. Both methods are improved by using
range-counting trees, and a linear speedup of the Peacock algorithms was obtained by parallel processing. Fasano
and Franceschini’s method is much faster than Peacock’s, but no efficient parallel-processing method was found
for it. Unfortunately, neither method is suitable for processing histogrammed data.

Another method for comparing distributions in more than one dimension is the Energy Test presented in recent
years by Aslan and Zech [13, 14, 15]. While this is again originally designed for discrete data, the authors pos-
tulated that speed gains may be obtained by applying it to histogrammed or clustered data sets [13]. We present
here an implementation of the Energy Test for histogrammed data within the ROOT framework, and provide some
evaluations of its performance.

2 The Energy Test
Consider two samples of data in a d-dimensional domain, A: X1,X2,X3,. . . ,Xn and B: Y1,Y2,Y3,. . . ,Ym whose
compatability with the hypothesis that they arise from the same distribution is to be to tested. If A is taken as a
system of positive charges, each 1/n, and B as a system of negative charges 1/m (i.e., normalised so that the total
charge over each system is one unit), then from electrostatics in the limit of n → ∞, m → ∞ the total potential
energy of the combined samples, computed for a 1/r potential, will be minimum if both charge samples have the
same distribution. The energy test generalises this scenario.

2.1 The test statistic
The test statistic Φnm consists of three terms, corresponding to the self-energies of the samples A and B (ΦA and
ΦB , respectively) and the interaction energy between the samples (ΦAB):

Φnm = ΦA + ΦB + ΦAB (1)

ΦA =
1

n2

n
∑

i=2

i−1
∑

j=1

R(|xi − xj |)

ΦB =
1

m2

m
∑

i=2

i−1
∑

j=1

R(|yi − yj |)
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ΦAB = − 1

nm

n
∑

i=1

m
∑

j=1

R(|xi − yj |)

where R is a continuous, monotonically-decreasing function of the Euclidian distance r between the charges. In
most analyses Aslan and Zech chose R(r) = − ln r rather than the electrostatic potential 1/r because it renders
the test scale-invarant (although this is strictly true only if the same scale is applied in all dimensions) and offers a
good rejection power against many alternatives to the null hypothesis. In practice, to avoid singularities, one must
use a cutoff such as R(r) = − ln(r + ε), where the value of cutoff parameter ε is not critical so long as it is of the
order of the mean distance between points at the densest region of the sample distributions.

It was shown [14] that the test statistic is positive and has a minimum when the two samples are from the same
distribution, in the limit of n → ∞, m → ∞, while another argument [13, 15] shows that when the samples have
the same number of points, Φnm has a minimum when the points are pairwise coincident. Note that by inspection
the calculation of Φnm is O(n2).

2.2 Implementing a 2D histogram version of the energy test
A version of the energy test for ROOT 2D histograms was implemented first in Python, and then as a compiled
ROOT macro for speed. Since the test is O(n2) and the number of bins in a ROOT histogram is (N+2)2 for NxN
binning, calculation time rapidly increases as the binning is made finer. The first implementation reported here
compares “square” (NxN ) histograms, but it can easily be generalised to NxM histograms.

The implementation is straightforward, but slightly complicated by the fact that histograms do not preserve posi-
tional information about the points within a given bin so they must all be assigned a single position, for example
the bin centre. This means that care has to be taken when r = 0, i.e., when bin (i,j) is being compared to bin
(i,j), either when computing ΦAB (different histograms) or when calculating ΦA and ΦB (same histogram; unlike
the discrete case, the self-energy between points in the same bin must be taken into account). In this case we
assume the original points are randomly distributed within the bin limits and take the average distance between
pairs of random points in a unit square as the effective cutoff ε. This value is <r> = 1

15 (2 +
√

2 + 5 sinh−1 1)
= 0.521 405 433. . . [16]. Distances for other bin combinations are calculated simply as the Euclidian distance
between bin centres (with no need for an ε cutoff), justified by the proximity of this value to the average distance
between random points in the two bins as determined by Monte Carlo simulations.

A minor modification to the calculation of the self-energy of the k points within a given bin is to weight by k2/2
rather than the rigorous k(k − 1)/2, as this ensures that comparisons between identical histograms return exactly
zero analytically. An added benefit is that any scaling factors applied across individual histograms will be cancelled
out rather than producing an offset that is dependent on the total histogram content (see Appendix C).

Aslan and Zech [14] suggest that the ranges of the data can be normalised, to equalise the relative scales of the x-
and y-coordinates. A similar normalisation is implemented here by taking the histogram limits to be zero and unity
(i.e., the distance between adjacent rows or columns is set to 1/N ), on the grounds that a well-designed histogram
will have limits chosen to adequately span anticipated data sets. In this implementation underflow and overflow
bins (with indices 0 and N+1, respectively, in ROOT notation) are included and placed at 1/N below or above the
histogram limits. A production version should make inclusion of these bins optional, as in the current ROOT 2D
tests.

In equations, our implementation of the three terms in the energy sum when comparing two NxN ROOT his-
tograms A and B with total contents n and m, respectively, is given by

ΦA =
1

n2

N+1
∑

i=0

N+1
∑

j=0

A(i, j)

(

i−1
∑

k=0

N+1
∑

l=0

A(k, l)R(i, j, k, l) +

j−1
∑

l=0

A(i, l)D(j, l) + 0.5A(i, j)D0

)

(2)

ΦB =
1

m2

N+1
∑

i=0

N+1
∑

j=0

B(i, j)

(

i−1
∑

k=0

N+1
∑

l=0

B(k, l)R(i, j, k, l) +

j−1
∑

l=0

B(i, l)D(j, l) + 0.5B(i, j)D0

)

ΦAB = − 1

nm

N+1
∑

i=0

N+1
∑

j=0

A(i, j)

N+1
∑

k=0

N+1
∑

l=0

B(k, l)R(i, j, k, l)

where D0 = − ln(<r>/N), R(i, j, k, l) = D0 when (i=k, j=l) or − 1
2 ln(((i − k)2 + (j − l)2)/N2) otherwise,

D(j, l) = R(i, j, i, l) = − ln(|j − l|/N), and A(i, j), B(i, j) are the contents of individual bins within the
histograms.
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As noted above, the number of computations rapidly increases with finer binning, so it is essential to reduce each
calculation to the absolute minimum. This has been done by eliminating as much as possible all “expensive”
operations in the calculations. Measures include:

• Allocating local arrays holding the histogram data to enable pointer indexing rather than the expensive
method GetCellContents() when retrieving bin counts.

• Constructing a local array to hold the potential function R(i, j, k, l) of distances between bin centres, as a
two-dimensional array indexed by (|i−k|,|j− l|). This avoids repeating the expensive ln and sqrt functions,
although in practice the sqrt used in calculating the Euclidian distance r can be folded into the ln calculation
as a factor of 0.5 in the accumulated sums.

• Skipping calculations involving empty bins.

In addition, to reduce potential numerical round-off errors due to the addition of numbers of greatly varying
magnitude, running sums are accumulated in the outer loops and updated with interior sums from the inner loops.

3 Performance
First evaluations of the energy test involved reconstructions of simulated muon tracks from Z0-decays in the
CMS Silicon Tracker. The data, obtained using the CMSSW software framework [9], are given as histograms in
Figure 3, showing the relationship between the reduced χ2 of the track fit and the track pseudorapidity η. The first
histogram gives results for perfect detector alignment while the second histogram was obtained after introducing
small displacements, representative of probable initial position errors [17], to the positions of individual detector
modules; these data sets are referred to hereafter as aligned and misaligned, respectively. The data are binned at
20x20 resolution; the blockiness is due to ROOT’s dithering each bin to fill its area proportionally to its contents.
It is noticeable that χ2 is generally higher in the second histogram around η =±1.5, where tracks pass through the
transition between cylindrical “barrel” detectors and circular “end caps” [9].

3.1 Discrete vs binned comparisons
A Kolmogorov-Smirnov comparison of the two discrete data sets using Fasano and Franceschini’s range-counting
tree method [11] took 3 minutes 11 seconds on our 2.8 GHz Pentium D, returning a KS distance Dmax of 0.004251;
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Figure 3: Data used for performance calculations. a) Reduced χ2 of the fit vs pseudorapidity η for muon tracks
reconstructed within the CMS Silicon Tracker with ideal geometry. b) Reconstruction of the same event data after
the introduction of small perturbations to the positions of Tracker detectors, of the order expected when the CMS
experiment first starts operation.
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Binning ΦA ΦB ΦAB Φnm CPU Time ROOT 2D-KS ROOT 2D-χ2

(Real Time) P Dmax(η) Time P Time
Discrete 0.721723 0.709668 -1.429906 0.001485 793 m 27 s

(531 m 12 s)
5x5 0.636990 0.622299 -1.259104 0.000184 <10 ms 0 0.005162 <10 ms 0 <10 ms

10x10 0.692381 0.677274 -1.369297 0.000358 <10 ms 0 0.010779 <10 ms 0 <10 ms
20x20 0.704278 0.690849 -1.394033 0.001094 <10 ms 0 0.012959 <10 ms 0 <10 ms
50x50 0.719045 0.706722 -1.424479 0.001288 0.02 s 0 0.006867 <10 ms 0 <10 ms

100x100 0.721143 0.709015 -1.428725 0.001433 0.29 s 0 0.004902 <10 ms 0 <10 ms
200x200 0.721699 0.709646 -1.429860 0.001484 3.67 s 0 0.003615 0.01 s 0 0.02 s
500x500 0.721881 0.709852 -1.430234 0.001499 131.33 s 0 0.002817 0.08 s 0 0.14 s

Table 2: Comparisons between the aligned and misaligned track data of Figure 3 using the discrete energy test and
the histogrammed energy test on ROOT histograms binned at various levels. Probabilities P from the ROOT 2D-
KS and 2D-χ2 tests are also shown. The discrete calculations were performed in parallelised Fortran on a 2.2 GHz
dual-core Athlon64 (SPECfp2000=1466), the ROOT calculations on a 2.8 GHz Pentium D (SPECfp2000=1664).

since this method runs as O(nlogn) and the similar Peacock method takes O(n2logn), no attempt was made at a
years-long Peacock comparison. In contrast, a discrete energy test carried out on a comparable Athlon64 dual-core
2.2 GHz processor running 64-bit Scientific Linux CERN 4, using Intel Fortran with parallelisation options2), took
793 minutes 27 seconds CPU time, in 531 minutes 12 seconds of real time.

The C++ comparison code for histogrammed data was loaded into ROOT as a compiled and optimised library 3)

(loading as an interpreted macro produced runtimes ∼150 times slower) and comparisons were made between the
two histogrammed data sets at different binning levels. The results are summarised and compared with the discrete
result in Table 2. When run as a standalone C++ programme using the ROOT libraries, the histogrammed tests ran
5-10% faster with the use of the -funroll-loops compiler flag 4) but gave identical results. It is seen that at
binnings of 100x100 and above, the histogrammed comparisons gave results quite close to that of the discrete test.

However, the histogram comparisons ran much faster than the discrete test, by a large margin. Some of the speed
increase is due to the smaller problem size (e.g., 1024 = 1.08e8 for the 100x100 histogram case compared with
630093x664544 = 4.18e11 for the the discrete case), but for the 500x500 comparison the problem size is only a
factor of 7 smaller (5024 = 6.35e10) while the runtime is smaller by a factor of 360. This reduction can be mainly
attributed to the lookup table for the inter-bin distance function R(r). The discrete comparison needed to make
some 8.4e11 evaluations of ln((x1 − x2)

2 + (y1 − y2)
2 + ε), a variation on the cutoff scheme which allows sqrt

calculations to be eliminated, while the histogrammed comparison made just 125 750 similar calculations to build
the 502x502 lookup table. A further reduction in time was afforded by the skipping of empty bins where possible.

Table 2 also shows results obtained by comparing the histograms using the ROOT 2D-KS and 2D-χ2 tests. In all
cases a zero result was returned, and the running times were almost instantaneous. Note that the ROOT 2D-KS
debug option only provides one Kolmogorov-Smirnov distance Dmax, from the column-major accumulation, so
the results may not be directly comparable to that obtained with Fasano and Franceschini’s method.

3.2 Region of validity
To explore the limitations of binning and sample size, comparisons were made between samples drawn randomly
without replacement from the two sets of track data, with sample sizes between 5 000 and 600 000 tracks, and
binning ranging from 5x5 to 500x500. Twenty comparisons were made for each set of conditions and the average
results and r.m.s. residuals are summarised in Table 3. For binnings of 50x50 and above and for sample sizes above
20 000 the results are consistently close to the 1.5e-3 obtained with the full data sets. Note that for the 600 000-
point samples the spread in the results is small, because without replacement the samples comprise almost the full
parent distributions so there is little variation between samples. This could have been avoided by sampling with
replacement, but for consistency without-replacement sampling has been used throughout this study.

2) ifort -O3 -parallel -ipo0
3) .L twoDenergy.C++O
4) g++ -O3 -funroll-loops ‘root-config --cflags‘ ‘root-config --libs‘ twoDenergy.cpp\
GetFullEnergy.cpp
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Sample Size
Binning 5 000 10 000 20 000 40 000 80 000 150 000 300 000 600 000

5x5 3.296e-4 2.427e-4 2.465e-4 1.872e-4 1.937e-4 1.864e-4 1.891e-4 1.848e-4
±2.86e-5 ±4.30e-5 ±6.89e-5 ±1.29e-5 ±3.23e-5 ±8.35e-6 ±2.27e-5 ±6.04e-7

10x10 6.885e-4 5.296e-4 4.346e-4 3.890e-4 3.676e-4 3.681e-4 3.627e-4 3.570e-4
±1.04e-4 ±2.09e-5 ±8.10e-5 ±1.35e-5 ±3.35e-5 ±3.96e-5 ±9.22e-6 ±1.03e-6

20x20 1.529e-3 1.323e-3 1.197e-3 1.145e-3 1.116e-3 1.109e-3 1.096e-3 1.093e-3
±3.39e-4 ±2.33e-4 ±5.70e-5 ±2.97e-5 ±4.50e-5 ±8.25e-6 ±4.11e-5 ±2.38e-6

50x50 1.856e-3 1.647e-3 1.423e-3 1.375e-3 1.314e-3 1.298e-3 1.299e-3 1.287e-3
±1.81e-4 ±2.78e-5 ±8.99e-6 ±6.38e-5 ±3.76e-5 ±1.51e-6 ±3.20e-6 ±3.76e-6

100x100 2.135e-3 1.784e-3 1.599e-3 1.522e-3 1.475e-3 1.446e-3 1.429e-3 1.431e-3
±1.75e-4 ±1.61e-4 ±1.39e-4 ±2.75e-5 ±6.13e-5 ±1.36e-5 ±1.37e-5 ±4.15e-7

200x200 2.358e-3 1.973e-3 1.695e-3 1.621e-3 1.539e-3 1.510e-3 1.489e-3 1.485e-3
±4.04e-4 ±2.34e-4 ±2.98e-5 ±1.90e-4 ±2.90e-5 ±3.97e-5 ±2.13e-5 ±5.44e-6

500x500 2.671e-3 1.940e-3 1.814e-3 1.607e-3 1.565e-3 1.512e-3 1.513e-3 1.501e-3
±1.51e-4 ±8.82e-5 ±6.74e-5 ±1.52e-4 ±2.74e-6 ±5.93e-6 ±2.00e-5 ±1.14e-6

Table 3: The average energy metric and r.m.s. residuals obtained for a series of comparisons between samples
drawn randomly without replacement from the two sets of track data, at varying histogram binning and sample
size. Twenty pairs of samples were compared at each point.
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Figure 4: The distribution of results of the histogrammed energy test, comparing 50 000 sets of 100 000 randomly
distributed points on the unit square to a constant distribution at 100x100 binning. The 95% confidence level is
3.017e-5.

3.3 Testing the power
The power of a comparison test is its ability to discriminate against non-conforming data, i.e., the fraction of non-
compatible data which is rejected based on a selection criterion. In order to determine the power, the confidence
level for accepting a test result must first be established. A common criterion is the 95th percentile – the value of
a test beyond which only 5% of valid comparisons will lie.

As a reference for several tests a constant distribution (i.e., no statistical fluctuation) in a 100x100 histogram across
the unit square was used. 50 000 tests were performed against this reference using samples of 100 000 points
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randomly and uniformly distributed across the square. The resulting test statistic distribution is shown in Figure 4.
Aslan and Zech [15, 18] found that the form of their test distribution is well described by a generalised extreme
value distribution [19] but because they were unable to calculate the parameters of the distribution from first
principles, and because of the high speed of modern computers, they recommended determining the distribution
by Monte Carlo methods. We also found that a generalised extreme value distribution fits well to the data in
Figure 4 (see Appendix D) but have used the experimental distribution rather than a fit to it to determine percentile
values. The reference distribution gives the 95% confidence level at 3.017e-05, as shown in the Figure. The
result distribution scales inversely with the total number of points per sample (Fig. 5), since common factors can
be removed in Equation 2 so that A(i, j)=1, and the distribution of B(i, j) approaches N(M ,M )/M = N(1,1/M ),
where M is the average bin content, as M increases.

3.3.1 The Cook-Johnson distribution

The power of the histogrammed energy test to determine deviations from the constant distribution was tested using
various levels of the Cook-Johnson distribution, one of the tests used by Aslan and Zech for their discrete energy
test [14]. The Cook-Johnson distribution is the multivariate uniform distribution given by

(X1, . . . , Xd) = ((1 +
E1

S
)−a, . . . , (1 +

Ed

S
)−a) (3)

where E1, . . . , Ed are independent and identically distributed exponential random variables, S is an independent
gamma(a) random variable and a> 0 is a parameter [20]. For a → ∞ this approaches a uniform distribution
within the d-dimensional hypercube; as a → 0 the distribution becomes correlated, X1 = . . . = Xd (see Figure 6
for examples of the 2D Cook-Johnson distribution).

Figure 7 shows the distribution of results from the histogrammed energy test and the ROOT 2D-KS and 2D-χ2 tests
for 1000 comparisons of 100 000 random points from a 2D Cook-Johnson distribution to a constant distribution,
for 100x100 histograms and values of a ranging from 0.6 to 200.

The power of the energy test and the ROOT 2D-KS and 2D-χ2 tests for comparing the various Cook-Johnson
distributions against the constant reference are given in Table 4. The selection criteria are the 95% confidence level
established in Section 3.3 with a uniform distribution for the energy test, and a 5% acceptance level for the ROOT
2D-KS and 2D-χ2 tests, as shown in Figure 7. From the Table and the Figure it is evident that the histogrammed
energy test has a much higher power than the ROOT 2D tests, rejecting Cook-Johnson distributions up to a = 50,
whereas the ROOT tests only reject distributions with a≤ 2. It is noticeable that the Cook-Johnson distributions
with a≥ 10 result in quite similar probability distributions in the ROOT 2D-KS comparisons, producing identical
powers for these tests. Indeed these would all have similar powers whatever the acceptance criterion. The ROOT
2D-χ2 test, on the other hand, shows an abrupt changeover between rejection, for a≤ 2, and acceptance, for a≥ 5.

Cook-Johnson Energy Test ROOT 2D-KS ROOT 2D-χ2

parameter a power power power
0.6 1.0 1.0 1.0
0.8 1.0 1.0 1.0
1 1.0 1.0 1.0
2 1.0 0.37 1.0
5 1.0 0.0 0.0

10 1.0 0.0 0.0
20 1.0 0.0 0.0
50 0.819 0.0 0.0
100 0.186 0.0 0.0
200 0.076 0.0 0.0

Table 4: The discrimination power of the histogrammed energy test and the ROOT 2D tests comparing 2D Cook-
Johnson distributions to a constant reference, from the distributions and selection criteria shown in Figure 7.

3.3.2 Gaussian contamination

As a test of sensitivity to contamination, similar comparisons were made between a constant reference distribution
and 1000 samples of a uniform distribution where n% (n = 0,1,. . .,5,10,15) of the 100 000 points in each sample
were replaced by points from a rotationally-symmetric N(0,1) (Gaussian) distribution 5). The extent of the 100x100

5) That is, (r, φ) in polar coordinates, where r is from a N(0,1) distribution and φ uniformly distributed in (0, 2π).
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Figure 5: The distribution of results of the histogrammed energy test, comparing 1000 sets of 100x100 histograms
with bins filled from a Poisson distribution, with averages from 1 to 1e7 per bin, to a constant distribution (the
same value in each bin). The result distributions, including the 95% confidence level CL95, scale inversely with
the average bin value. The distribution with average = 10 corresponds to the 100 000-point comparisons of Figure 4.
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Figure 6: The two-dimensional Cook-Johnson distribution, for parameter a=0.6, 1, 2, 5, 10, 20, 50, 100, and 200,
plotted as 100x100 histograms. Each histogram contains 1e7 points (i.e., an average of 1000 points per bin). Note
the change in the z range of the distribution as a becomes smaller.

histograms was increased to [-3,3] in each dimension to ensure a very small proportion (∼0.13%) of outliers from
the tails of the Gaussian; because of the normalisation in the energy test, the same confidence level as in Section 3.3
is expected for 100 000-point uniform distributions. The histogrammed energy tests considered outliers by default,
so the ROOT 2D-KS and 2D-χ2 tests also included them.

Figure 8 shows the distributions of the results from all tests, including the selection criteria as above, and Ta-
ble 5 gives the discrimination power of the two tests. As expected, the observed power of the energy test for 0%
contamination is consistent with the selection of the 95% confidence level. The chosen confidence level almost
completely rejects the distributions with 1% contamination and totally rejects distributions with higher contami-
nation. However, the ROOT 2D-KS test only shows high discrimination power at 2% contamination and above,
while the ROOT 2D-χ2 test does not reject any contaminated distributions below an impurity level of 15%.

3.3.3 Displacement sensitivity

The sensitivity of the tests to a shift in the position of a histogrammed sample was investigated by comparing
1000 pairs of 100 000-point rotationally-symmetric N(0,1) distributions as defined in Section 3.3.2, in 100x100
histograms with a range of [-3,3] in each dimension, while the second distribution was shifted away from (0,0) in
x-increments of 0.003 (1/20th of a bin width). Outliers were considered in all the comparisons.

11



a=200 Energy
Mean   2.321e-05
RMS    4.571e-06

Φ
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

B
in

 C
ou

nt

0

5

10

15

20

25

30

35

40

a=200 Energy
Mean   2.321e-05
RMS    4.571e-06

a=0.6 Energy
Mean   0.03215
RMS    0.0002509

a=0.6 Energy
Mean   0.03215
RMS    0.0002509

a=0.8 Energy
Mean   0.02298
RMS    0.0002332

a=0.8 Energy
Mean   0.02298
RMS    0.0002332

a=1 Energy
Mean   0.01724
RMS    0.0002014

a=1 Energy
Mean   0.01724
RMS    0.0002014

a=2 Energy
Mean   0.006178
RMS    0.0001278

a=2 Energy
Mean   0.006178
RMS    0.0001278

a=5 Energy
Mean   0.001289
RMS    6.016e-05

a=5 Energy
Mean   0.001289
RMS    6.016e-05

a=10 Energy
Mean   0.0003675
RMS    3.136e-05

a=10 Energy
Mean   0.0003675
RMS    3.136e-05

a=20 Energy
Mean   0.0001128
RMS    1.59e-05

a=20 Energy
Mean   0.0001128
RMS    1.59e-05

a=50 Energy
Mean   3.707e-05
RMS    7.613e-06

a=50 Energy
Mean   3.707e-05
RMS    7.613e-06

a=100 Energy
Mean   2.603e-05
RMS    4.972e-06

a=100 Energy
Mean   2.603e-05
RMS    4.972e-06

Cook-Johnson compared to constant distribution - 2D Energy

a=200 Energy
Mean   2.318e-05
RMS    4.695e-06

Φ
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-310×

B
in

 C
ou

nt

0

50

100

150

200

250

300

350

400

a=200 Energy
Mean   2.318e-05
RMS    4.695e-06

a=20 Energy
Mean   0.0001128
RMS    1.595e-05

a=20 Energy
Mean   0.0001128
RMS    1.595e-05

a=50 Energy
Mean   3.701e-05
RMS    7.693e-06

a=50 Energy
Mean   3.701e-05
RMS    7.693e-06

a=100 Energy
Mean   2.601e-05
RMS    5.101e-06

a=100 Energy
Mean   2.601e-05
RMS    5.101e-06

Cook-Johnson compared to constant distribution - 2D Energy
2χa=0.6 2D-

Mean        0
RMS         0

P
0 0.2 0.4 0.6 0.8 1

B
in

 C
ou

nt

0

200

400

600

800

1000
2χa=0.6 2D-

Mean        0
RMS         0

2χa=0.8 2D-
Mean        0
RMS         0

2χa=0.8 2D-
Mean        0
RMS         0

2χa=1 2D-
Mean        0
RMS         0

2χa=1 2D-
Mean        0
RMS         0

2χa=2 2D-
Mean   1.04e-06
RMS    1.246e-05

2χa=2 2D-
Mean   1.04e-06
RMS    1.246e-05

2χa=5 2D-
Mean        1
RMS         0

2χa=5 2D-
Mean        1
RMS         0

2χa=10 2D-
Mean        1
RMS         0

2χa=10 2D-
Mean        1
RMS         0

2χa=20 2D-
Mean        1
RMS         0

2χa=20 2D-
Mean        1
RMS         0

2χa=50 2D-
Mean        1
RMS         0

2χa=50 2D-
Mean        1
RMS         0

2χa=100 2D-
Mean        1
RMS         0

2χa=100 2D-
Mean        1
RMS         0

2χa=200 2D-
Mean        1
RMS         0

2χa=200 2D-
Mean        1
RMS         0

2χCook-Johnson compared to constant distribution - ROOT 2D-

a=0.6 2D-KS
Mean   0.0005379
RMS    0.0002866

P
0 0.2 0.4 0.6 0.8 1

B
in

 C
ou

nt

1

10

210

310 a=0.6 2D-KS
Mean   0.0005379
RMS    0.0002866

a=0.8 2D-KS
Mean   0.001187
RMS    0.0005734

a=0.8 2D-KS
Mean   0.001187
RMS    0.0005734

Cook-Johnson compared to constant distribution - ROOT 2D-KS
a=1 2D-KS

Mean   0.002556
RMS    0.001055

a=1 2D-KS
Mean   0.002556
RMS    0.001055

a=2 2D-KS
Mean   0.05743
RMS    0.01601

a=2 2D-KS
Mean   0.05743
RMS    0.01601

a=5 2D-KS
Mean   0.6484
RMS    0.1283

a=5 2D-KS
Mean   0.6484
RMS    0.1283

a=10 2D-KS
Mean   0.7974
RMS    0.1735

a=10 2D-KS
Mean   0.7974
RMS    0.1735

a=20 2D-KS
Mean   0.8172
RMS    0.1683

a=20 2D-KS
Mean   0.8172
RMS    0.1683

a=50 2D-KS
Mean   0.8105
RMS    0.1729

a=50 2D-KS
Mean   0.8105
RMS    0.1729

a=100 2D-KS
Mean   0.8166
RMS    0.1697

a=100 2D-KS
Mean   0.8166
RMS    0.1697

a=200 2D-KS
Mean   0.8186
RMS    0.1698

a=200 2D-KS
Mean   0.8186
RMS    0.1698

Figure 7: The distribution of results from comparisons of 1000 sets of 100 000 random points from 2D Cook-
Johnson distributions (a=0.6, 0.8, 1, 2, 5, 10, 20, 50, 100, and 200) to a constant distribution, at 100x100 binning,
for the histogrammed energy test (top, expanded middle left) and the ROOT 2D-χ2 and 2D-KS tests tests (middle
right and bottom). The vertical dashed lines give the 95% confidence level (at 3.017e-5) for the energy test and the
5% acceptance criteria for the KS and χ2 tests.
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Figure 8: Distributions of results from comparisons of 1000 sets of 100 000 points from uniform distributions in
-3<x, y<3 with contamination from a rotationally-symmetric N(0,1) distribution at levels of 0, 1, 2, 3, 4, 5, 10,
and 15 percent to a constant distribution, at 100x100 binning, for the histogrammed energy test (top, expanded
middle left) and the ROOT 2D–χ2 and 2D-KS tests (middle right, bottom). The vertical dashed lines give the 95%
confidence level (at 3.017e-5) for the energy test and the 5% acceptance criteria for the KS and χ2 tests.
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Figure 9: Results from comparisons of 1000 pairs of 100x100 histograms of 100 000 random points from rotation-
ally symmetric N(0,1) distributions as a function of relative displacement δx: energy test (top); ROOT 2D-KS test
(middle); and ROOT 2D-χ2 test (bottom). Vertical dashed lines give the CL95 for δx=0 (4.78e-5) for the energy
test and the 5% acceptance criteria for the ROOT tests.
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Gaussian Energy Test ROOT 2D-KS ROOT 2D-χ2

contamination power power power
0% 0.049 0.0 0.0
1% 0.996 0.024 0.0
2% 1.0 0.867 0.0
3% 1.0 1.0 0.0
4% 1.0 1.0 0.0
5% 1.0 1.0 0.0

10% 1.0 1.0 0.0
15% 1.0 1.0 0.079

Table 5: The discrimination power of the histogrammed energy test and the ROOT 2D-KS and 2D-χ2 tests for
comparisons of increasing levels of a N(0,1) distribution contamination in a uniform distribution in -3<x, y<3
against a constant reference (see text), calculated from the result distributions and the selection criteria shown in
Figure 8.

Centroid Energy Test ROOT 2D-KS ROOT 2D-χ2

separation power power power
0.000 0.05 0.01 0.0
0.003 0.364 0.246 0.0
0.006 0.960 0.902 0.0
0.009 1.0 1.0 0.0
0.012 1.0 1.0 0.0
0.015 1.0 1.0 0.0
0.018 1.0 1.0 0.0
0.021 1.0 1.0 0.0
0.024 1.0 1.0 0.0
0.027 1.0 1.0 0.001
0.030 1.0 1.0 0.008

Table 6: The discrimination power of the histogrammed energy test and the ROOT 2D-KS and 2D-χ2 tests com-
paring increasingly separated N(0,1) distributions over -3<x, y<3 (see text), calculated from the distributions and
selection criteria shown in Figure 9.

For the histogrammed energy test the confidence level was taken as the 95th percentile of the δx=0 comparison
(i.e., comparison between samples from the same distribution); acceptance criteria for the ROOT 2D-KS and 2D-
χ2 tests were 5%. Distributions of the results are shown in Figure 9 and calculated powers in Table 6. The energy
and ROOT 2D-KS tests show similar performance, both having high rejections at δx=0.006 (1/10th of a bin width)
and above. The ROOT 2D-χ2 test, however, shows essentially no rejection across the range of separations studied.

3.3.4 Shape sensitivity

To investigate the sensitivity of the tests to changes in the shapes of distributions, 1000 105-point rotationally-
symmetric N(0,1) distributions as in Section 3.3.3 were each compared to another N(0,σ2) distribution where σ
took values from 0.95 to 1.05. Outliers were considered in both the energy tests and the ROOT tests.

The confidence level for the histogrammed energy test was set at the 95th percentile of the σ=1 comparison, a value
of 4.96e-5. This level should match that used in Section 3.3.3 (4.78e-5) as the comparisons were made between
samples from the N(0,1) distribution in each case; the discrepancy gives an indication of the repeatability of the
statistic distribution. The acceptance criteria for the ROOT 2D-KS and 2D-χ2 tests were 5%. The distributions of
the results are shown in Figure 10 and the calculated powers in Table 7. Here the histogrammed energy test again
performs slightly better than the ROOT 2D-KS test, providing high discrimination power for |1−σ|≥0.02 while
the KS test only shows high power at |1−σ|≥0.03. The ROOT 2D-χ2 test again showed poor rejection power as
it returned the result P=1.0 for all comparisons. Further trials showed that this test would only start rejecting the
N(0,σ2) distributions when |1−σ| exceeded approximately 0.15.
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Figure 10: Distributions of results from comparisons of 1000 pairs of sets of 100 000 random points from N(0,1)
and N(0,σ2) distributions as a function of σ, at 100x100 binning, for the histogrammed energy test (top) and the
ROOT 2D-KS test (bottom). The vertical dashed lines give the 95% confidence level derived from the σ=1.0
distribution (4.96e-5) for the energy test and the 5% acceptance criterion for the KS test. The distributions of
results from the ROOT 2D-χ2 test are not shown as it returned unity for all comparisons within this range of σ.
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Distribution Energy Test ROOT 2D-KS ROOT 2D-χ2

σ power power power
0.95 1.0 1.0 0.0
0.96 1.0 1.0 0.0
0.97 1.0 0.95 0.0
0.98 0.988 0.425 0.0
0.99 0.456 0.05 0.0
1.0 0.05 0.009 0.0

1.01 0.418 0.048 0.0
1.02 0.987 0.391 0.0
1.03 1.0 0.932 0.0
1.04 1.0 0.999 0.0
1.05 1.0 1.0 0.0

Table 7: The discrimination power of the histogrammed energy test and the ROOT 2D-KS and 2D-χ2 tests for
comparisons of N(0,1) and N(0,σ2) distributions (see text), calculated from the distributions and selection criteria
shown in Figure 10.

4 Results with CMS Reconstructed Simulated Track Data
The simulated data introduced in Section 3 were further investigated to ascertain how the histogrammed energy
test might perform in real data-monitoring situations.

4.1 Detection of contaminated data
Guided by the region of validity in the result matrix of Table 3, 80 000-sample 100x100 histograms were used to
test the limit of detection of contamination in the data due to a change in detector alignment during the course of
an experiment. The sample size ensures that each data point has at most one chance in eight of being selected
in a given histogram, while the binning is a compromise between retaining fine structure and limiting calculation
times. Reference samples consisted of selections drawn from the aligned data set while test samples were made
up of n% drawn from the misaligned data with the balance drawn from the aligned data; all selections for a given
comparison were made without replacement. Comparisons were made using the histogrammed energy test and the
ROOT 2D-KS and 2D-χ2 tests between the reference and test samples, repeated 10 000 times for each value of n.

The distributions of results obtained from the three tests are shown in Figure 11. The power of the tests is given
in Table 8, using the 95th percentile of the non-contaminated sample tests (7.39e-5) for the detection criterion
for the energy tests, and the 5% acceptance level for the KS and χ2 tests. Here the 2D-KS test has slightly better
performance than the histogrammed energy test for samples with 15% contamination, but both tests perform almost
ideally at 20% contamination. The 2D-χ2 test failed to reject any samples until contamination exceeded 30%.

4.2 Early detection of flawed data
Further experiments were performed to determine when a sample of flawed data was large enough for a comparison
to clearly detect it as being different from the reference. The whole aligned data set was taken as the reference
histogram, at 100x100 binning, and compared to 10 000 randomly-drawn histograms of varying sample size from

Contamination Energy Test ROOT 2D-KS ROOT 2D-χ2

(%) power power power
0 0.05 0.0102 0.0
5 0.07 0.0614 0.0

10 0.178 0.4038 0.0
15 0.5948 0.8992 0.0
20 0.9864 0.9981 0.0
25 1.0 1.0 0.0
30 1.0 1.0 0.0
35 1.0 1.0 0.0043

Table 8: The discrimination power of the histogrammed energy test and the ROOT 2D-KS and 2D-χ2 tests for
comparisons of aligned data histograms to histograms with n% contamination of misaligned data, calculated from
the distributions and selection criteria shown in Figure 11.
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Figure 11: The distribution of histogrammed energy test (top) and ROOT 2D-KS (middle) and 2D-χ2 test (bot-
tom) results from comparisons between 10 000 pairs of 100x100 histograms of 80 000 points each selected ran-
domly from the aligned data, where the second histogram is contaminated with n% of its points selected from
the misaligned data. The vertical dashed lines give the 95% confidence level calculated from the uncontaminated
distribution (7.39e-5) for the energy tests and the 5% acceptance criterion for the ROOT 2D tests.
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Figure 12: Variation in the histogrammed energy test results with sample size when compared to a large reference
sample. The “misaligned” results compare 10 000 samples drawn from data obtained using misaligned detectors
to the full data set from aligned detectors; the “aligned” results compare 10 000 samples drawn from one half of
the aligned data set to all the other half. Shown are the average and r.m.s. deviation of the resultant distributions,
as well as the 5th and 95th percentiles.

Sample Energy Test ROOT 2D-KS Energy Test ROOT 2D-KS
Size aligned CL95 aligned power misaligned power misaligned power
500 0.006008 0.0129 0.2194 0.5509

1 000 0.003027 0.0103 0.6531 0.9501
2 000 0.001519 0.0124 0.9996 1.0
3 000 0.001021 0.0112 1.0 1.0
4 000 0.000780 0.0143 1.0 1.0
5 000 0.000636 0.0156 1.0 1.0
8 000 0.000407 0.0159 1.0 1.0

10 000 0.000328 0.0185 1.0 1.0

Table 9: The discrimination power of the histogrammed energy test and the ROOT 2D-KS test for comparisons of
reference aligned data histograms to 10 000 histograms of smaller sample sizes, both aligned and misaligned (see
text), calculated from the distributions and selection criteria shown in Figures 13 and 14.

the misaligned data set. As a control, similar experiments used half the aligned data set as reference, compared to
histograms drawn randomly from the other half. All sampling was done without replacement.

Results from the three tests are shown in Figures 12–14 and summarised in Table 9. The 95th percentile confidence
limits for the histogrammed energy test were determined from the comparisons of aligned data samples to aligned
reference data, then used to determine the power of the tests with misaligned samples as shown in Table 9. For
the KS and χ2 tests, the 5% acceptance level determined the power. In this case, the ROOT 2D-KS test proved
slightly superior to the histogrammed energy test, rejecting 95% of the 1000-sample histograms of misaligned
data, where the energy test only rejected 65%. However, both tests performed well on 2000-sample histograms of
misaligned data, rejecting 100% and 99.96% of the histograms, respectively. In contrast, the ROOT 2D-χ2 test,
whilst rejecting all the misaligned samples with a statistic of 0.0, also rejected aligned samples for samples with
fewer than 50 000 points. The third column of Table 9 shows that at the 5% acceptance level the ROOT 2D-KS
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Figure 13: Distributions of the histogrammed energy test results with sample size when compared to a large
reference sample. The “misaligned” results are from 10 000 comparisons of different-sized selections from tracks
reconstructed using misaligned detectors to the full data set of tracks reconstructed with aligned detectors; the
“aligned” results are from comparisons of half the aligned data set to 10 000 samples drawn from the other half. The
dashed vertical lines show the 95th percentiles of the aligned distributions, used as confidence levels to determine
the discrimination power of the energy test as a function of sample size (see Table 9).
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Figure 14: Distributions of the ROOT 2D-KS and 2D-χ2 test results with sample size when compared to a large
reference sample. The “misaligned” 2D-KS test results (top) are from 10 000 comparisons of different-sized selec-
tions from tracks reconstructed using misaligned detectors to the full data set of tracks reconstructed with aligned
detectors. Results from samples larger than 3000 points are not shown, nor are the 2D-χ2 test distributions, as
these all returned a value of zero. The “aligned” results (lower plots) are from comparisons of half the aligned data
set to 10 000 samples drawn from the other half. The dashed vertical lines show the 5% acceptance level.
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test rejected only ∼1% of histograms of aligned data for small sample sizes, reinforcing the observation made
in Section 1.1. The distortion of the probability distribution away from a uniform distribution when comparing
identical 2D histograms with the ROOT 2D-KS test is also clearly illustrated in Figure 14.

5 Implementation details
Given that the histogrammed energy test has been shown to be a worthwhile addition to the methods for comparing
2D histograms, work can now proceed on providing a release version to the community. Modifications to the
current implementation for general use are, for the most part, small and easily added:

• More extensive and robust error-handling. In particular, the tests used to check the suitability of the input
histogrammes to the ROOT 2D-KS test can be adopted for the histogrammed energy test. [Implemented]

• Removal of the restriction that both axes of the histograms have the same binning. This will require the
extension of the square line picking result [16] to rectangular regions.

• Allowing the inclusion of overflows and/or underflows to be specified by an option. [Implemented]

• Allowing the inclusion of the artificial offset (Appendix C) to be controlled by an options flag. Since the shift
can be precisely calculated outside the loops which accumulate the energy sums, it can be accommodated
with negligible penalty. [Implemented]

• Where the test is incorporated into a histogram class (as with the two ROOT tests) rather than used as a
standalone test, further efficiencies can be gained by being able to store private copies of such data as the
array of the inter-bin potential function R(r). The self-potential sum ΦA also needs only be calculated
once, saving approximately one-quarter of the time for subsequent calculations when one histogram is used
as a reference for many comparisons with other data. In this case the class must have a robust method of
invalidating the local data whenever a change is made to the histogram data, and also when the test method
is applied with changed options.

6 Conclusions
We have presented our investigations into a new test for comparing two-dimensional histograms, based upon the
Energy Test of Aslan and Zech.

Compared with the two existing ROOT tests for 2D histograms, the histogrammed energy test proves far superior
to the ROOT Chi2Test and outperformed the ROOT KolmogorovTest in our comparisons of synthetic data sets,
but performed slighly below it on tests with reconstructed track data. It is more consistent than the ROOT 2D-KS,
returning similar statistics across a range of histogram parameters, whereas the ROOT test can return quite different
results depending on how the data are binned.

The main reason for this ranking in performance seems to be that the histogrammed energy test is a global test,
with comparisons between every pair of bins in the histograms entering into the result, while the ROOT 2D-KS is
a regional test more influenced by neighborhood variations as the CDFs are built up. The ROOT χ2 test for its part
is strictly a localised test with each bin in the histogram only being compared to its counterpart.

The disadvantage of the histogrammed energy test is that it takes longer to perform, especially at the highest
binnings, but for moderately-sized histograms the penalty is slight, particularly when the time taken to construct
the histograms is also considered.

While far-ranging, our investigation has been by no means exhaustive and we encourage members of the commu-
nity to evaluate the new test on data sets of interest to them.
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Appendix A The ROOT 2D Chi2Test
One obvious finding of the comparisons carried out in this study is that the ROOT 2D-χ2 method is unsuitable for
the type of comparisons being considered. There are a number of reasons for this, the most important being the
influence of regions of low density in the histograms. The sum which is accumulated to give the χ2 statistic when
comparing two histograms is [5]

1

nm

r
∑

i=1

(mni − nmi)
2

ni + mi
(4)

where the contents of the ith bin (of r) are given as ni and mi respectively for the two histograms, and n and m
are the respective sums of the events in the histograms. The number of degrees of freedom ν is taken as one less
than the number of histogram bins (i.e., r-1). ν is reduced by one for every bin which has zero content in either
of the histograms being compared, while the summation term for that bin is ignored. The probability which is
then returned is the function TMath::Prob(χ2, ν) [21] which changes very rapidly between 1.0 and 0.0 in the
vicinity of ν; e.g., for ν = 9999 (100x100 histograms) the function is 0.95 at χ2 = 9769.0 (χ2/ν = 0.977) and 0.05
at χ2 = 10232.7 (χ2/ν = 1.023).

The reason for skipping bins with zero contents is obviously to avoid division by zero when both ni and mi are
zero. However, when only one of the two bins is zero, the contents of the other one are still significant and should
be included, so the algorithm has two competing effects in this case – the unnecessary reduction of ν and the
reduction of the accumulating χ2 sum. For (say) mi = 0, the missing term in the accumulation is mni/n or, when
n∼m, approximately ni. On the assumption that this is the appropriate term to include in the summation then,
since ni ≥ 1, the true value of χ2/ν will be changed to (χ2 − p − δ)/(ν − p), where p is the number of skipped
bins and δ ≥ 0.

It is a simple matter to include these terms in the summation, by changing the coding of the Chi2Test algorithm
so that a logical OR (||) in the C++ code which decides when to skip a bin and decrement ν [22] is replaced by a
logical AND (&&).

if (bin1 == 0 && bin2 == 0) {
--ndf; //no data means one degree of freedom less

} else {...}

When this is done, the results of the 2D-χ2 test fall more into line with expectations. Table 10 shows the results of
comparing the data sets given in Figure 2, with the addition of two identical points in each set to prevent ν being
decremented to -1, at various binnings using the ROOT 2D-KS test, the ROOT 2D-χ2 test, the modified ROOT
2D-χ2 test, and the histogrammed energy test. The results of the ROOT 2D-KS test follow expectations; as the
binning becomes finer and the two CDFs approach those for each coordinate separately, the reported probability
increases to unity. For the ROOT 2D-χ2 test, only the two bins containing the identical points are retained, all
others being discarded because they are empty in one or other of the histograms. Because the remaining bins have
identical contents, the accumulated sum is zero, and because all but two of the bins are discarded, ν is reduced to
1; therefore the probability function returns unity. For the modified 2D-χ2 test, ν is only reduced to the number
of bins which are non-zero in either histogram, less 1, while the accumulated sum becomes

∑

i |ni − mi| (see
above) or 4000 in this case. Only at finer binnings, where the probability that each bin contains at most one data
point approaches unity, does ν begin to approach χ2 and the modified test return a significant probability. The
histogrammed energy test, on the other hand, returns an almost-constant result over the whole range of binning.

Table 11 compares the ROOT 2D-χ2 results from Table 1 with those obtained from the modified test. The values
of ν for the modified tests are significantly higher than the original test, and the accumulated sums even more so.
Consequently the modified test returns a zero probability for all the comparisons, except at a binning of 1000x1000,
where the increase in ν as the number of populated bins increases leads to a probability of 2.6% being returned.

In fairness, the ROOT documentation [4] and Gagunashvili [5] warn about using the χ2 test for histograms with low
occupation values. A recommendation attributed to Lewontin and Felsenstein [23] is that all expectations should be
equal to or greater than unity for both histograms, although it is pointed out that this limit can be relaxed to 0.5 [5].
For the cases which have been considered, this criterion should have been met for the Cook-Johnson distributions
of Section 3.3.1 and the Gaussian-contaminated uniform distributions of Section 3.3.2, so the performance of the
ROOT 2D-χ2 test in these comparisons cannot be attributed to mis-application (nor to the apparent shortcoming
discussed above). However, it should be noted that when using a χ2 test it is often recommended to use bins
of equal probability rather than bins of equal size, as this tends to yield more power against general alternatives.
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Histogram ROOT 2D-KS ROOT 2D-χ2 Modified 2D-χ2 Energy
Size P ν χ2 P ν χ2 P Test

20x20 0.0 1 0.0 1.0 157 4000 0.0 0.7329
25x25 0.0 1 0.0 1.0 229 4000 0.0 0.7507
50x50 0.0 1 0.0 1.0 633 4000 0.0 0.7680

100x100 0.0231 1 0.0 1.0 1509 4000 0.0 0.7782
200x200 0.5602 1 0.0 1.0 2833 4000 0.0 0.7824
500x500 0.9977 1 0.0 1.0 3745 4000 0.0019 0.7835

1000x1000 1.0 1 0.0 1.0 3941 4000 0.2518 0.7841

Table 10: Comparisons of the two mirror-image data sets of Figure 2, with the addition points at (0.0,0.0) and
(0.99,0.99) in each set, at different binning levels for the two ROOT 2D comparison tests, the modified ROOT χ2

test, and the histogrammed energy test.

Histogram ROOT 2D-χ2 Modified 2D-χ2

Size ν χ2 P ν χ2 P
10x10 97 537.373 0.0 98 539.380 0.0
20x20 363 1596.58 0.0 382 1627.60 0.0
25x25 550 2253.85 0.0 1768 3271.09 0.0
50x50 1768 3271.09 0.0 2138 4045.38 0.0

100x100 4426 5226.93 0.0 6763 8920.67 0.0
200x200 9681 8422.96 1.0 17910 19828.7 0.0
500x500 22774 14954.6 1.0 53554 55243.4 0.0

1000x1000 28820 10549.8 1.0 104854 105746 0.025982

Table 11: Comparisons of the original and modified ROOT 2D-χ2 test for the data shown in Figure 1.

Unfortunately ROOT does not implement adaptive binning, but we have already performed explorative studies on
an adaptive approach to the energy test by using clustering of the discrete input points rather than histogramming.

A further check on the modified 2D-χ2 test was made by obtaining the distributions of the probabilities from a large
number of tests comparing two samples from the same 2D distribution. The expectation is that the result distribu-
tion should be uniform between zero and unity. Samples drawn from a uniform distribution on the unit square were
placed into 100x100 histograms. 10 000 comparisons were made with both 2D-χ2 methods for samples of 500,
1000, 2000, 5000, 10 000, 20 000, 40 000, 60 000, 80 000, and 100 000 points (average bin populations of 0.05 to
10). The result distributions are shown in Figure 15. As expected, the ROOT 2D-χ2 test only produced a uniform
distribution at the highest occupancies, while the modified 2D-χ2 test gave a uniform spread at lower occupancies,
from about 2 per cell. Below that, however, its distributions are noticeably peaked around 0.5, suggesting that the
modification may not be the ultimate solution to the problem of low populations in 2D-χ2 tests.

Another minor problem with the ROOT χ2 test can be seen in the statistic distributions in Figures 8, 9, 14, and 15
where gaps appear in the probability distributions around 0.5. This was traced to the TMath::Gamma(ν/2,χ2/2)
function [24] used by TMath::Prob. Gamma(a,x) calls two separate implementations, a series expansion for
x < a+1 and a continued fraction method otherwise. A shortcoming in the series expansion leads to it diverging
from the true function value near the crossover point and thus a step change in the Prob function close to 0.5.

We understand that both these problems with Chi2Test will be addressed in future releases of ROOT 6), including
consideration of the proper term to include in the χ2 sum when only one bin is zero.

Appendix B The Generation of CDFs by the ROOT 2D-KS Test
As discussed in Section 1.1, the ROOT 2D-KS test generates two CDFs for both of the histograms being compared
by accumulating the histogrammed data bins rasterwise, in column- and row-major fashion respectively. This
process is illustrated for various binnings of the first data set of Section 1.1 in Figure 16. As the binning becomes
finer, the excursions in the CDFs become smaller and the curves approach the CDF for the discrete data, ordered
in the appropriate dimension. This is the reason why the comparison of the two distributions in Figure 2 returns
an incorrect probability, as the comparison essentially ignores the connectivity of the data, registering only its
distribution in each dimension (see also Table 10).

6) https://savannah.cern.ch/bugs/?32884 and L. Moneta, private communication.

24



ROOT 50
Mean        1
RMS    6.341e-06

P
0 0.2 0.4 0.6 0.8 1

B
in

 C
ou

nt

10

210

310

410 ROOT 50
Mean        1
RMS    6.341e-06

ROOT 100
Mean        1
RMS         0

ROOT 100
Mean        1
RMS         0

ROOT 200
Mean        1
RMS         0

ROOT 200
Mean        1
RMS         0

ROOT 500
Mean        1
RMS         0

ROOT 500
Mean        1
RMS         0

ROOT 1000
Mean        1
RMS         0

ROOT 1000
Mean        1
RMS         0

ROOT 2000
Mean        1
RMS         0

ROOT 2000
Mean        1
RMS         0

ROOT 4000
Mean        1
RMS    8.946e-08

ROOT 4000
Mean        1
RMS    8.946e-08

ROOT 6000
Mean    0.906
RMS    0.1384

ROOT 6000
Mean    0.906
RMS    0.1384

ROOT 8000
Mean   0.6075
RMS    0.2782

ROOT 8000
Mean   0.6075
RMS    0.2782

ROOT 10000
Mean   0.5265
RMS    0.2903

ROOT 10000
Mean   0.5265
RMS    0.2903

 Test Distribution. Uniform vs. Uniform. 100x1002χROOT 2D-

Mod 500
Mean   0.4861
RMS    0.06219

P
0 0.2 0.4 0.6 0.8 1

B
in

 C
ou

nt

0

100

200

300

400

500

600

700

800 Mod 500
Mean   0.4861
RMS    0.06219

Mod 1000
Mean   0.4897
RMS    0.08726

Mod 1000
Mean   0.4897
RMS    0.08726

Mod 2000
Mean   0.4965
RMS    0.1204

Mod 2000
Mean   0.4965
RMS    0.1204

Mod 5000
Mean    0.506
RMS     0.178

Mod 5000
Mean    0.506
RMS     0.178

Mod 10000
Mean    0.513
RMS    0.2285

Mod 10000
Mean    0.513
RMS    0.2285

Mod 20000
Mean   0.5172
RMS    0.2629

Mod 20000
Mean   0.5172
RMS    0.2629

Mod 40000
Mean   0.5141
RMS    0.2806

Mod 40000
Mean   0.5141
RMS    0.2806

Mod 60000
Mean   0.5138
RMS    0.2891

Mod 60000
Mean   0.5138
RMS    0.2891

Mod 80000
Mean   0.5116
RMS    0.2892

Mod 80000
Mean   0.5116
RMS    0.2892

Mod 100000
Mean   0.5095
RMS    0.2909

Mod 100000
Mean   0.5095
RMS    0.2909

 Test Distribution. Uniform vs. Uniform. 100x1002χModified 2D-

Figure 15: Results from comparisons of 10 000 pairs of 100x100 histograms of random points from uniform
distributions in the unit square as a function of the size of the samples for the standard ROOT 2D-χ2 test (left) and
the modified test (right). Sample sizes were 500, 1000, 2000, 5000, 10 000, 20 000, 40 000, 60 000, 80 000, and
100 000 points.

25



x
-3 -2 -1 0 1 2 3

C
D

F

0

0.2

0.4

0.6

0.8

1

10x10
20x20
25x25

50x50
100x100

200x200
Discrete

ROOT 2D-KS CDFs accumulated varying y fastest

y
0 5 10 15 20 25 30

C
D

F

0

0.2

0.4

0.6

0.8

1

10x10
20x20
25x25

50x50
100x100

200x200
Discrete

ROOT 2D-KS CDFs accumulated varying x fastest

Figure 16: The CDFs calculated by ROOT’s 2D-KS test for a 100 000-point data set from Figure 1, excluding
outliers, at several binnings: top, column-major ordering; bottom, row-major ordering. The CDFs for the discrete
data ordered along the two dimensions are also given.
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Figure 17: The two pairs of CDFs obtained by ROOT’s 2D-KS test while comparing the two 100 000-point data
sets, excluding outliers, binned at 50x50 (Figure 1): left, column-major ordering; right, row-major ordering. The
maximum distances Dmax between each pair are averaged and this distance used to calculate the probability P of
the comparison. A customised version of the ROOT method was used in order to obtain data not normally reported.

Two Kolmogorov-Smirnov distances Dmax are then calculated from the maximum distance between the ap-
propriate CDFs from each histogram (see Figure 17). The average of these distances is then normalised by
{(nA ∗ nB)/(nA + nB)}1/2, where nA, nB are the sums of the histogram contents, and the probability P is
obtained by evaluating the Kolmogorov distribution function [7] at that value.

Appendix C Calculation of the Self-Energy ΦA and ΦB

As mentioned in Section 2.2, the implementation of the energy test used here makes a small variation from mathe-
matical rigour in calculating the self-energies ΦA and ΦB in order that comparisons of identical histograms should
return zero (within the limits of numerical calculation). The term for the interactions between the nk points in the
kth histogram bin are weighted as n2

k/2 rather than the actual number of interactions nk(nk − 1)/2, in order to
cancel with the corresponding term in ΦAB which is weighted as nkmk → n2

k when the histograms are identi-
cal. This means that ΦA,B are increased by −(nk/2)ln(0.5214/N ) for every bin so that the total energy sum is
increased by -0.5(1/n + 1/m)ln(0.5214/N ) where n,m are the total number of points in each NxN histogram.

For example when n,m = 100 000 and N = 100, this amounts to 5.26e-5 which is similar to the 95% confidence
levels established for comparisons of samples of that size from the same distributions (Sections 3.3.3 and 3.3.4),
implying that the unshifted distributions will lie around zero and below. Since the shift in Φnm depends only on
n, m, and N (which must be the same for both histograms), this should not present any great problem so long as
n and m do not vary enough to significantly affect the factor (1/n + 1/m) during any given set of comparisons.

The only comparison reported here which may be affected by changing offsets is the early-detection tests of
Section 4.2, mainly because the size of the reference data set was different between the tests with misaligned
samples (n = 630 093) and those with aligned samples (n = 315 046). In practice, however, the 1/m term dominates
the offset (m =500. . .100 000) and in fact the smaller offset for the larger reference histogram slightly reduces the
separation of the misaligned results from the aligned results. The results from Section 4.2 were recalculated without
the artificial offset and are given in Table 12. The power of the histogrammed energy test without offset shows a
very slight improvement in this case because of the separation effect noted above.
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Sample Aligned Misaligned With Offset Without Offset
Size offset offset Aligned CL95 Power Aligned CL95 Power
500 0.0052647 0.0052606 0.006008 0.2194 0.000744 0.2203

1 000 0.0026365 0.0026324 0.003027 0.6531 0.000390 0.6557
2 000 0.0013224 0.0013183 0.001519 0.9996 0.000196 0.9996
3 000 0.0008844 0.0008802 0.001021 1.0 0.000137 1.0
4 000 0.0006654 0.0006612 0.000780 1.0 0.000114 1.0
5 000 0.0005340 0.0005299 0.000636 1.0 0.000102 1.0

Table 12: The effect of removing the artificial offset from the histogrammed energy test. The results of Section 4.2
are compared to those obtained when the offset is removed.

Appendix D The Distribution of Energy Test Results
An important foundation-stone of statistics is the central limit theorem which states that, for a set of random
independent and identically distributed variables {X1,X2,X3,. . . ,Xn}, the distribution of the arithmetic mean
∑

n Xi/n will be Gaussian as n → ∞ whatever the distribution of X . A similar theorem states that the distribution
of the maximum value of the set, max({X1,X2,X3,. . . ,Xn}), will tend to the distribution known as the generalised
extreme value (GEV) distribution [19, 25]. This distribution is given by

f(x) =
1
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}

(5)

for (1 + ξ x−µ
σ ) > 0, where µ is a location parameter, σ > 0 is a scale parameter, and ξ is a shape parameter.

Aslan and Zech found that the distributions of their energy test results closely followed such a form independently
of the choice of the distance function R(r), but did not find a means of generating the parameters from first
principles [15, 18]. Because of the high speed of modern computers, it was recommended that distributions be
determined empirically, with the possibility of reducing the number of samples needed by determining the GEV
distribution parameters from a fit or from the first three moments of the distribution.
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Figure 18: The distribution of results of the histogrammed energy test, comparing 50 000 sets of 100 000 randomly
distributed points on the unit square to a constant distribution at 100x100 binning. The distribution is fitted to a
GEV distribution (Equation 5) using ROOT. Also shown are the 5th and 95th percentiles as given by the fit.
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To test whether the distribution of results from the histogrammed energy test also followed a GEV distribution,
the reference distribution generated in Section 3.3 (Figure 4) was fitted to the GEV form using ROOT. The results
are given in Figure 18 together with the 5% and 95% levels of the fitted distribution. A factor N0 was included in
the fit to normalise the integral of the distribution. This was known in advance from the number of samples and
the histogram bin width to be 8.333e-3; the fitted value is 8.297±0.037e-5. It can be seen from the Figure that the
GEV distribution does fit all portions of the histogram quite well, although the ROOT statistics are do not fully
support this observation. It would appear from the value of 202 given for the degrees of freedom that the statistical
analysis discounts bins with zero content. From the restriction given with Equation 5 it can be seen that the fit is
valid for Φ > µ − σ/ξ, or Φ > - 6.17e-5. The Figure also shows the 5th and 95th percentiles calculated from the
fit. These differ by just one bin-width from those derived directly from the histogram in Section 3.3.

From this it can be seen that, while the result distribution does appear to closely follow a GEV distribution, there
is no immediate advantage to using this fact in deriving the levels of confidence in discriminatory tests.
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