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Machine learning-based prediction of cognitive outcomes in de
novo Parkinson’s disease
Joshua Harvey 1,7, Rick A. Reijnders 2,7, Rachel Cavill 3, Annelien Duits 2,4, Sebastian Köhler2, Lars Eijssen 2,5, Bart P. F. Rutten2,
Gemma Shireby1, Ali Torkamani6, Byron Creese 1, Albert F. G. Leentjens2, Katie Lunnon1 and Ehsan Pishva 1,2✉

Cognitive impairment is a debilitating symptom in Parkinson’s disease (PD). We aimed to establish an accurate multivariate
machine learning (ML) model to predict cognitive outcome in newly diagnosed PD cases from the Parkinson’s Progression Markers
Initiative (PPMI). Annual cognitive assessments over an 8-year time span were used to define two cognitive outcomes of (i)
cognitive impairment, and (ii) dementia conversion. Selected baseline variables were organized into three subsets of clinical,
biofluid and genetic/epigenetic measures and tested using four different ML algorithms. Irrespective of the ML algorithm used, the
models consisting of the clinical variables performed best and showed better prediction of cognitive impairment outcome over
dementia conversion. We observed a marginal improvement in the prediction performance when clinical, biofluid, and epigenetic/
genetic variables were all included in one model. Several cerebrospinal fluid measures and an epigenetic marker showed high
predictive weighting in multiple models when included alongside clinical variables.
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INTRODUCTION
Cognitive impairment and dementia are highly common and
debilitating non-motor symptoms in Parkinson’s Disease (PD).
Cognitive impairment in PD carries distinct diagnostic challenges,
a higher burden of care, worse functioning, and a lower quality of
life1. Cross-sectional population studies show that ~30% of cases
with PD have dementia, with 20–25% of patients presenting with
mild cognitive impairment (MCI)2 as early as diagnosis3. Long-
itudinal studies report an average of 50% of PD patients develop
dementia within 10 years4,5. Despite this high prevalence,
however, significant cognitive impairment in the early stage of
the disease is often underdiagnosed in most clinical settings6, in
part due to the complex and multi-domain nature of cognitive
dysfunction in PD7. Several demographic and clinical measures
have been shown to be predictive in PD-cognitive impairment,
including age, visual hallucinations, REM sleep disorder, and
severity of parkinsonism, in particular non-tremor symptoms1.
Moreover, considerable research interest has focused on identify-
ing objective biomarkers, including structural and functional
imaging, biofluid measures, and genetic risk8–10.
A major challenge for predicting cognitive outcome in PD is the

high levels of heterogeneity implicit within the condition, with
high interindividual variation in clinical presentation and progres-
sion11. A potential solution for addressing such challenges is
utilizing algorithms that combine multiple measures for
individual-level cognitive outcome prediction12–14. Employing
multivariate panels of data, however, comes with limitations
implicit in the complexity of multi-modal data. Compared to
classical statistical methodology, learning-based methods benefit
from being able to process high-dimensional and complex data,
finding both linear and nonlinear associations and extracting
meaningful variables of interest15,16. Therefore, a growing area of

research opts to utilize machine learning (ML) approaches both to
identify data-driven subtypes of disease17,18 and to predict disease
progression19–21 including future cognitive outcomes14,22.
In the present study, we assessed longitudinal records of

cognitive diagnoses in the Parkinson’s Progression Markers
Initiative (PPMI)23, a well-characterized cohort of early PD patients
and used multiple ML methods to predict cognitive outcome
using baseline variables. We assessed prediction of two outcome
measures over an 8-year time period: (i) development of cognitive
impairment (MCI or dementia) and (ii) development of dementia.
Variables were split into three subsets, including clinical measures,
biofluid (CSF, serum) assays and variables of genetic/epigenetic
markers in blood. These variables were tested separately and in
combination, to assess the performance of ML methods.
For prediction, we applied four different machine learning

algorithms (Random Forest [RF], ElasticNet, Support Vector
Machines [SVM] and Conditional inference forest [Cforest]) and
assessed the performance of each to determine if different
learning approaches show better overall predictive accuracy.
Applying multiple outcome measures, different subsets of
predicting variables and ML algorithms, we aimed to test which
showed the best overall predictive performance, establish power-
ful multivariate predictive models, and highlight important
predictive variables included in these models.

RESULTS
Prediction of cognitive outcomes
Using records of cognitive diagnosis over an 8-year time period
(Fig. 1), we subset two cognitive outcomes. The first outcome
tested development of overall cognitive impairment, including a
group showing solely normal or subjective cognitive decline (SCD)
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(n= 127) and another with development of MCI and Dementia
(n= 82). The second outcome tested dementia development;
comparing a dementia conversion group (n= 43) to a set of
combined normal, SCD and MCI cases (n= 166) (Fig. 1). Four ML
algorithms were used for prediction using baseline variables, with
each evaluated based on metrics of overall accuracy. Descriptive
statistical summaries of each cognitive outcome group tested are
shown in Table 1. Baseline variables were binned into individual
subsets of genetic/epigenetic (47 variables), biofluid (12 variables),
and clinical (64 variables) measures (Summarized in Supplemen-
tary Table 1) and tested individually and collectively. An overview
of individual ML algorithm accuracy for each variable subset and
outcome are summarized in Fig. 2 and Table 2.
Comparing both outcomes, prediction of cognitive impairment

outcome showed better predictive accuracy than dementia
conversion, reflected by higher area under the receiver operating
characteristic curve (AUC) and Matthews Correlation Coefficient
(MCC) metrics for all variable subsets. The one exception to this
was biofluid variables, which when evaluating solely on AUC,
appeared to show better prediction of dementia conversion than
cognitive impairment. However, reviewing the prediction of
dementia using biofluid variables shows poor overall prediction
of true dementia converters when investigating MCC (Cforest=
0.38, SVM= 0.32, ElasticNet= 0.55, RF= 0.25) and sensitivity
metrics (Table 2).
Overall, across both outcomes and variable sets, the best

prediction was achieved for the cognitive impairment outcome
using a combination of biological and clinical variables, reflected
by high value balance for AUC and MCC (Table 2). This
represented a marginal improvement over prediction of the
cognitive impairment outcome using the clinical variable
subset alone. Combining biological and clinical variable types
improved sensitivity over the clinical models, represented by a
higher number of true cognitive impairment predictions (Table 2).

The genetic/epigenetic variables alone showed minimal pre-
dictive accuracy irrespective of cognitive outcome and ML
algorithm tested, with near-random prediction, with AUC mea-
sures between 0.40 and 0.65 and MCC below 0.19 (Fig. 2, Table 2).

Predictive variables for cognitive impairment outcome
Given the best overall prediction was achieved using a combina-
tion of biological and clinical variables for the cognitive
impairment outcome, predicting development of both MCI and
dementia, we further investigated individual variable contribution
using Shapley values. Shapley values can be interpreted as the
additive relative importance of a particular variable to a model’s
prediction (Methods). Variables included by at least three ML
algorithms are shown in Fig. 3. Cognitive tests were heavily
represented in overlapping models, with Hopkins Verbal Learning
Test-Revised (HVLT-R) Immediate/Total Recall and Delayed Recall
scores, Symbol Digit Modalities (SDM) and Semantic Fluency Test
(SFT) being included in all four ML methods and Benton Judgment
of Line Orientation (BJLO), HVLT-R Discrimination Score, Montreal
Cognitive Assessment (MoCA), and SFT—Vegetable subscore
being included in at least three (Fig. 3a).
Noncognitive clinical measures included in multiple models

were age of symptom onset, State Trait Anxiety Inventory (STAI)
scores (total and state subscore) and the University of Pennsylva-
nia Smell Identification test (UPSIT) for olfactory impairment. In
these combined models, three biological variables showed
consistently high contribution across multiple models including
CSF Ratios of phospho-tau to amyloid-β (1–42) and total-tau to
amyloid-β (1–42), respectively, as well as blood DNA methylation
at cg13953978 (Fig. 3a). Differences in overlapping variables are
shown in Fig. 3b, highlighting the direction of effect for each
variable between cognitively intact and impaired groups.
Looking at correlation between top predictive variables

included across multiple models, we found that eight show
collinearity (Pearson’s Correlation > 0.7), including HVLT Immedi-
ate and Delayed Recall, Semantic Fluency Total Score and SFT—
Vegetable subscore, STAI total and state subscores and CSF Ratios
of phospho-tau to amyloid-β (1–42) and total-tau to amyloid-β
(1–42). By contrast eight variables: SDM, age of symptom onset,
BJLO, methylation at cg13953978, HVLT discrimination score, LNS,
MOCA, and UPSIT all show a higher degree of independence (all
Pearson’s Correlations < 0.6).
Genetic variables were conspicuous in their absence from

overlapping contributing variables, but were present in certain
models, for example, GBA nonsynonymous mutations were
included for both Cforest and ElasticNet. Summarized Shapley
value contribution across all tested algorithms are shown in
Supplementary Figs. 1–4. As a graphical representation of
prediction in our best performing model (Cforest), Supplementary
Fig. 5 displays a surrogated decision tree, built by aggregating the
best performing decision trees within the forest, containing a mix
of biological and clinical variables. It is worth noting that this
representation does not contain all variables included in the entire
decision forest.

The effect of cognitive tests in predictive accuracy
As we observed a large proportion of the top predictive variables
were cognitive tests (9 out of 16, Fig. 3a), we tested the sensitivity
of predictions made without the use of cognitive variables. As
Cforest models performed best on the clinical subset, we chose to
explore the sensitivity of predictions with and without cognitive
variables using this algorithm. Clinical variables were subset to
cognitive only and noncognitive variables as annotated in
Supplementary Table 1. As shown in Fig. 4, we found that
cognitive variables only (AUC= 0.90, MCC= 0.54) performed
better than noncognitive variables (AUC= 0.86, MCC= 0.46).
The combination of the two variable subsets into an overall
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Fig. 1 Flow diagram of case subsetting criteria. Samples retained
in each stage are shown as black lines between boxes, samples
excluded shown as dotted gray lines and boxes. Case numbers for
each selection stage are shown overlaid on each plot. Final subset
groups (Normal, SCD, MCI, and Dementia) are shown at the bottom
of the flow diagram. MDS Movement Disorder Society, MoCA
Montreal Cognitive Assessment, MCI Mild Cognitive Impairment,
SCD Subjective Cognitive Decline.
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clinical model showed a marginal increase in AUC (0.90–0.93) but
a larger increase in sensitivity reflected by increased MCC from
0.54 to 0.70.

Stratification of PD- MCI from PD-dementia
Given that MCI represents an intermediate stage between normal
cognition and dementia, we next tested if ML methods could
accurately distinguish 43 PD-dementia from 39 PD-MCI, without
records of further progression to dementia with the same length
of follow-up time (Supplementary Fig. 9). Across variable subsets,
we observed best individual performance from clinical variables
with increased performance in combination with biological
variables. However, models lacked overall accuracy in their
predictions (AUC 0.69–0.75), in particular with lower MCC values
(0.177–0.470), reflecting a low specificity (0.4–0.6) of dementia
prediction. All these results together indicate that in this context,
the generated ML models lack accuracy to resolve dementia from
MCI over the timescale tested.

DISCUSSION
In the present study, we tested the prediction of two cognitive
outcome measures in newly diagnosed PD subjects within 8 years,
using multiple variable subsets and ML algorithms. The generated
models were assessed for metrics of prediction accuracy and the
importance of contributing variables. We found that combining
both biological and clinical variables produced best performing
models, with a marginal improvement in predictive performance
compared to models using clinical variables alone. We interpret
this as evidence of synergistic contribution of multivariate data
types, producing the most accurate predictions. Of variable
subsets, the most accurate and balanced prediction was achieved

when testing for cognitive impairment (MCI and dementia
combined) using clinical data, giving the highest AUC, MCC
metrics and balance of sensitivity and specificity. When evaluated
individually, nonclinical measures (biofluids and genetic/epige-
netic) showed poor predictive performance, regardless of out-
come tested and ML algorithm used.
Comparing outcomes, prediction of combined cognitive impair-

ment, merging cases developing either MCI or dementia,
consistently outperformed dementia conversion alone, which we
interpret as being driven by poor differentiation of MCI individuals
when predicting dementia conversion. Indeed, models tested to
stratify MCI from dementia cases performed poorly with low
specificity of predictions. MCI is a well-established risk factor for
future dementia development4, and previous studies show higher
dropout within PPMI is associated with worse cognitive perfor-
mance24. Given this, the overall progression profile of MCI and
dementia, as subsets within this study, might not differ
substantially, with MCI patients potentially converting to dementia
in unobserved events. This further supports the use of a combined
cognitive impairment group, with best prediction being observed
for this outcome.
Unsurprisingly a high number of contributing variables included

cognitive assessments, indicating that there was already a level of
cognitive changes present at baseline. This highlights a potential
limitation in the inclusion of these variables, as these cognitive
assessments are highly associated with the outcome of interest we
aimed to predict. However, these measures reflect an assessment
time 1–7 years before a clinically diagnosed conversion to either
MCI or dementia. Sensitivity analysis of the effect of cognitive
variables in prediction confirmed that cognitive variables had a
large contributory effect to predictions although increased
sensitivity was observed with the inclusion of noncognitive clinical

Table 1. Summary statistics of demographic and selected clinical measures.

Cognitive impairment Dementia conversion

Variable name Cognitively intact Cognitively impaired Non-dementia Dementia

Age at baseline 60.0 (9.14) 66.4 (8.68)*** 61.6 (9.58) 66.4 (8.03)

Sex (female/male) 45/82 18/66* 53/114 10/34

Years of education 15.9 (2.76) 15.6 (3.17) 16.0 (2.69) 15.0 (3.64)

Duration of disease since diagnosis (months) 6.21 (6.43) 7.47 (7.14) 6.90 (6.66) 6.01 (7.05)**

Age at PD diagnosis 59.5 (9.13) 65.8 (8.75)*** 61.0 (9.55) 65.9 (8.13)**

Hoehn & Yahr Stage (0/1/2/3) 0/67/59/1 0/33/51/0 0/82/84/1 0/18/26/0

MDS-UPDRS Part III Score (OFF) 18.8 (7.8) 22.7 (8.9)* 19.7 (8.23) 22.7 (8.92)**

Benton Judgement of Line Orientation Score 13.4 (1.64) 12.0 (2.47)** 13.1 (1.96) 11.8 (2.41)***

Geriatric Depression Scale Score 1.91 (2.23) 2.90 (2.45)** 2.22 (2.42) 2.61 (2.18)

HVLT immediate/total recall 26.7 (4.40) 20.9 (5.03)*** 25.3 (5.29) 20.8 (4.67)***

HVLT delayed recall 9.48 (1.90) 6.74 (2.83)*** 8.79 (2.53) 6.86 (2.69)***

HVLT delayed recognition 11.5 (0.789) 10.6 (1.510)*** 11.2 (1.170) 10.8 (1.360)**

HVLT false alarms 0.976 (1.02) 1.520 (1.38)** 1.050 (1.12) 1.730 (1.39)**

HVLT discrimination recognition 10.40 (1.59) 8.69 (2.84)*** 10.00 (2.1) 8.59 (2.81)***

HVLT retention 0.913 (0.132) 0.786 (0.278)** 0.881 (0.192) 0.789 (0.267)**

Letter Number Sequencing Score 11.20 (2.56) 9.04 (2.59)*** 10.80 (2.68) 8.80 (2.66)***

Semantic Fluency Total Score 51.9 (10.60) 41.3 (9.12)*** 49.6 (11.10) 40.3 (8.96)***

STAI Total Score 61.6 (15.5) 70.2 (18.1) ** 63.7 (16.1) 70.0 (19.7)**

Symbol Digit Modalities Score 44.6 (7.43) 34.2 (9.64)*** 42.7 (8.49) 31.8 (9.63)***

MOCA Score (adjusted for education) 27.9 (1.74) 26.0 (2.82)*** 27.3 (2.23) 26.4 (2.93)**

For each outcome, summary values of mean (standard deviation) for continuous measurements or proportions for categorical variables. Significance values
reported as the results of a Mann–Whitney U test for continuous and a Chi-2 test for categorical variables (*P < 0.5, **P < 1.0 E-3, ***P < 1.0 E-5).
PD Parkinson’s disease, MDS-UPDRS Movement Disorder Society Unified Parkinson’s Disease Rating Scale, HVLT Hopkins Verbal Learning Test, STAI State Trait
Anxiety Inventory.
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variables. Top contributing noncognitive variables included age at
onset of PD, anxiety, and olfactory impairment. Older age of PD
onset, which we observe within the cognitive decline group, is a
well-established and validated risk factor for PD-cognitive
decline4. Olfactory impairment has been increasingly associated
with cognitive impairment in PD25–28. Although anxiety is less
associated as a predictive variable for cognition within PD29, it has
been associated as a predictor of worse cognitive prognosis in
general population studies30.
Within combined models utilizing both biological and clinical

variables, ratios of CSF protein measures of total-tau, phospho-tau
and amyloid-β (1–42), had a high contributory effect across
multiple ML algorithms. Additionally, one measure of blood DNA
methylation, cg13953978, was included in multiple combined
models. This locus has been previously associated with multiple
neurodegenerative diseases and, of note, we observe the same
direction of effect between cognitively impaired and preserved
individuals in this study and previously reported findings31.
Several studies have aimed at creating an accurate model to

predict cognitive outcome in PD using the PPMI cohort13,22,32.
Compared to previous studies, in the current study, we have
included a larger range of biological variables including polygenic
scores for multiple related traits and epigenetic measures. We
used MDS criteria for defining cognitive performance at each
follow-up as a substitute for the commonly used MoCA.
Additionally, we included a long follow-up period and excluded
reverters from the modeling.
To improve the accuracy and generalizability of our models

compared to other models reported previously, we employed a
multi-objective model optimization procedure using three criteria
(AUC, MCC, and number of variables). Although AUC is commonly
used for model interpretation, it is insensitive to class imbalance.
Therefore, to prevent inaccurate prediction assessment, we
included MCC, as this metric can evaluate accuracy while
considering class balance. This, along with recursive feature
elimination (RFE)33,34 and k-fold cross-validation, further avoided
the risk of overfitting and addressed the high number of variables
included in this dataset. We applied multiple ML algorithms, to

cover a range of different learning strategies, standardly applying
RFE and multi-objective optimization for each.
A potential limitation of this study is the curatorial nature in

which cognitive groups were subset and the relatively small
sample size available. We justify the methods for cognitive group
subsetting as we aimed to represent individuals with clinically
relevant diagnoses confirmed by multiple observations over time.
However, due to data missingness and attrition within PPMI, there
are a number of de novo cases enrolled at baseline which were
not tested within our models.
A potential caveat of this study is its broader applicability to

samples outside of PPMI. Replication efforts in additional cohorts
are hampered by the unique nature of PPMI as a cohort, both in
how thoroughly assessed these individuals are, the early de novo
stage at which they were enrolled and the longitudinal observa-
tions present, in particular in the MDS-cognitive diagnosis
measure used as an outcome here. To our knowledge, a viable
cohort covering these domains is not available at current.
PPMI’s de novo stage has important implications for the

broader applicability when comparing to prediction models of
cognitive progression in later disease stages. In Phongpreecha
et al.’s 2020 study14, using cases from the Pacific Udall Centre
(PUC) Cohort, they tested multitask models for prediction of future
yearly incidence of MCI and dementia diagnosis. They report
highest accuracy for prediction of dementia and retained normal
cognition, with lowest accuracy for MCI prediction, largely
consistent with our findings in the PPMI cohort. Furthermore,
they highlight cognitive measures as the most important variables
in their model in line with our findings following RFE. However,
they report higher AUC measures for their dementia conversion
predictions than we observed here. This may be attributable to
the different distributions of the disease stage of the PUC PD
patients compared to the newly diagnosed PPMI patients.
Salmanpour and colleagues35 have employed machine learning

in the prediction of cognitive outcomes in PPMI. Our studies differ
however in the cognitive outcome tested, with the use of MDS-
criteria cognitive diagnosis conversion here and using MoCA at
year 4. We also explored a larger range of biological measures and
restricted predictor input solely to baseline, while Salmanpour
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incorporated measures at year 1 in the models. Differences in
methodology and outcome measure make direct study compar-
ison difficult; however, despite the variability in methodology
some interesting consistencies between the two studies are
evident, in particular in the finding of baseline state-trait anxiety
as a predictive measure.
A previous study by Liu et al.13 developed a multivariate

predictor of global cognitive impairment in a large multi-cohort
analysis. The predictive score reported high performance, with
high positive predictive (0.87) and negative predictive value (0.92)
utilizing solely age at onset, MMSE, education, motor exam score,
gender, depression, and GBA mutational status. This predictive
model benefits from generalizability, both as a result of the high
number of samples used to validate it and in the low variable
number required to achieve prediction. However, the multi-center
design of the study introduces a high level of heterogeneity, both
in the disease stage included and the outcome measure used to
define cognitive impairment36, something which is highly
consistent within our study here. Furthermore, due to the range
of variables included in PPMI, we were able to explore a broader
range of biological and clinical predictors in our present study.
Our findings of DNA methylation at cg13953978 as a predictive

variable requires further replication to ensure it is not the result of
an unknown cryptic stratification in this cohort. Previous associa-
tion of this loci with neurodegenerative disease across multiple
cohorts do however support it as a potential biomarker.
Expanding the number of genetic and epigenetic variables
included in future studies to a genome-wide level in cohorts

Fig. 3 Variable importance in predicting cognitive impairment outcome. Variables included across three or more ML models for prediction
of the cognitive impairment outcome using combined clinical and biological variables. a A heatmap of global Shapley importance. Darker
blue reflects higher Shapley value and more important variables in the model. Variables not included in a particular model are shown in gray.
b Dual violin and box plots of raw values of each variable between groups. Average global Shapley value importance for each variable is
shown in brackets next to each variable name. Boxes represent median, Q1 and Q3 of the interquartile range (IQR) and whiskers display 1.5×
IQR below and above Q1 and Q3, respectively. HVLT Hopkins Verbal Learning Test, MOCA Montreal Cognitive Assessment, CSF cerebrospinal
fluid, STAI State-Trait Anxiety Inventory, UPSIT University of Pennsylvania Smell Identification Test, SFT semantic fluency test, ML machine
learning.
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Fig. 4 Sensitivity analysis of cognitive variables. ROC showing
prediction of the cognitive impairment outcome using Cforest
applied on clinical subsets. Noncognitive variables: dotted line,
cognitive variables: dashed line, all clinical variables: solid line.
Summary of AUC and MCC metrics for each subset shown in plot
text. AUC area under the curve, MCC Matthews Correlation
Coefficient, Cforest Conditional Inference Random Forest, ROC
receiver operating characteristic.
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designed around cognitive decline prediction is also essential to
truly uncover potential predictive efficacy. However, due to the
challenge of including the high number of variables implicit in
multi-omics data24,37–39, we found this to be outside of the scope
of the current study.
Although not explored in this study, incorporation of neuroima-

ging measures in cognitive predictive models represent an
important additional data modality for future work. A number of
studies have highlighted structural underpinning to PD-MCI and
dementia40,41 and in this present study we highlight four cognitive
tests, consistently incorporated across multiple ML algorithms.
Taking these measures of perturbed cognitive domains as
indicative of structural changes in the brain, we can interpret
executive dysfunction, as measured by the semantic fluency score
being evidence of associated frontal lobe atrophy41. Some studies
have associated verbal memory, as we see measured by the HVLT,
with differences in the inferior frontal gyrus42 and in the context of
PD with functional changes associated in the anterior cingulate
and orbitofrontal cortex43. Our finding of the attentional test
assessed by SDM having predictive contribution supports studies
relating attentional effects to striatal dopamine in dopamine
active transporter (DAT) imaging44 and to microstructure changes
in the anterior cingulate and frontal cortex using diffusion tensor
imaging (DTI)45.
In summary, after evaluating multiple predictive variable types

and outcomes, we established a model that accurately predicted
cognitive impairment and preserved normal cognition over a
follow-up 8-year time span. This prediction was largely driven by
clinical measures of both known risk factors and more novel
measures, but also variably included biological variables. This work
supports evidence of anxiety and olfactory impairment as
potential predictors of cognition in PD and highlights epigenetic
measures of DNA methylation as biological predictive variables
requiring further investigation.

METHODS
Participants and cognitive assessment
All data used in this study was obtained from the PPMI18 database
(https://ida.loni.usc.edu/). Participating PPMI sites all received
approval from an ethical standards committee before study
initiation and written informed consent was obtained for all
individuals participating in the study. The study was registered at
clinicaltrials.gov (NCT01141023). Participants were selected from
the de novo PD cohort, defined by a diagnosis of the disease
within 2 years and unmedicated for motor symptoms at baseline
(n= 423). Subjects underwent yearly cognitive diagnosis in
accordance with Movement Disorders Society (MDS) recom-
mended criteria for dementia and MCI as previously reported19–21.
In brief, a confirmed MCI diagnosis was based on an impaired
performance on at least two test scores >1–2 standard deviations
below a standardized mean46. Dementia diagnosis alongside
clinical annotation required impaired performance in at least two
cognitive domains coinciding with significant functional impair-
ment resulting from cognitive state47.
Records of cognitive diagnoses from baseline to year 8 were

sourced from PPMI following their routine application of the
above criteria to create three groups of PD patients with distinct
cognitive outcomes as follows (Fig. 1 and Supplementary Fig. 6):

PD-Dementia. Cases showing any diagnosis of dementia over an
8-year time span were annotated as the dementia conversion
cases, excluding one individual that reverted to normal cognition
after an annotation of dementia (n= 43).

PD-MCI. Cases with any record of MCI without any annotation of
future dementia diagnosis (n= 39) were annotated as PD-MCI

conversion cases. This group excludes a set of 14 cases that
reverted to normal cognition following MCI annotation.

Cognitively intact (CI). To avoid any effect of attrition and
cognitive decline in unobserved events, cases defined as
cognitively intact required a minimum of five records of normal
or subjective cognitive decline (SCD) during recorded visits up to
year 8 (n= 127). This excluded 175 cases showing missing values
or indeterminate diagnoses.
Subsequently, we used these groups to define two separate

binary outcomes for machine learning-based prediction as follows:

Cognitive impairment outcome. Defining conversion to cognitive
impairment within an 8-year time span. This compared the CI
group (n= 127) to an impaired group, created by combining the
PD-Dementia and PD-MCI groups (n= 82).

Dementia conversion outcome. Defining conversion to dementia
within an 8-year time span. This compared the PD-Dementia
group (n= 43) to a non-dementia conversion group created by
combining PD-MCI and CI groups (n= 166).

Epigenomic and genomic profiling
Genotyping and polygenic scores calculation. Whole blood DNA
genotyping was previously performed on the NeuroX SNP array by
PPMI investigators using published methods48. Raw data from 423
individuals covering 267,607 variants was quality control (QC)
assessed following published recommendations49. In brief, data was
excluded on the following criteria: (1) variants and individuals with
missingness >0.1, (2) individuals with discordant reported sex and
inferred sex (X chromosome homozygosity F-value >0.8 for males,
<0.2 for females), (3) variants with minor allele frequency <0.01 or
>0.05, (4) variants deviating from Hardy Weinberg Equilibrium <1e-
3, (5) individuals with heterozygosity rate ±3 standard deviations,
(6) individuals with evidence of cryptic relatedness (pi hat >0.2).
Following initial QC, autosomal data was extracted, plink files were
converted to vcf format and uploaded to the Michigan Imputation
Server. Imputation was conducted using Eagle2 to phase haplo-
types and Minimac4 using the 1000 Genomes reference panel
(phase 3, version 5). An R2 filter score for imputation quality was set
at 0.3. Following imputation, data was downloaded, converted to
plink format and quality assessed following the previous criteria.
Finally, genetic principal components were generated along with
reference data from the 1000 Genomes Project and non-European
cases removed based on qualitative assessment of clustering of the
first two principal components. Five hundred eighty-two cases
passed QC (total variants post-imputation n= 2,287,446).
Polygenic risk scores (PRS) were calculated using summary

statistics from recent genome-wide association studies (GWAS) for
Alzheimer’s disease (AD)50, PD51, education attainment (EA)52,
schizophrenia (SCZ)53, major depressive disorders (MDD)54 and
coronary artery disease (CAD)55. For AD, the effect of the APOE
region was excluded by removing the region
chr19:45,116,911–chr19:46,318,605. For PD, the effect of the GBA
region was excluded by removing the region chr1:154,600,000 -
chr1:156,600,000. PRSice-2 software56 was used for polygenic risk
score calculation, which automates clumping and p-value thresh-
olding to generate a “best-fit PRS” for a target phenotype of
interest. Briefly, clumping was performed to retain the most
significant GWAS variants in a linkage disequilibrium (LD) block
(250 kb window, r2 threshold= 0.1). The PRS model is tested over
an increasing set of p-value threshold (5e-08 to 1), with the optimal
threshold set which generates a score explaining the maximum
phenotypic variance in the target phenotype of interest. Phenotype
was coded as a binary factor of 0 (Control) and 1 (PD) for this
analysis, with the first eight genetic principal components used as
covariates57.
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DNA methylation data processing. Whole blood genome-wide
methylation in the PPMI cohort at baseline was profiled on
Illumina EPIC Array as previously reported58. These included
individual previously associated methylated loci as well as
epigenetic age prediction variables. Raw IDAT files were
downloaded from the PPMI database (https://ida.loni.usc.edu/)
in April 2020 and processed using the R package wateRmelon59.
For epigenetic age prediction and age acceleration analysis non-
normalized beta values were uploaded to the web-based tool
https://dnamage.genetics.ucla.edu, selecting the “normalize
data” and advanced analysis” options. For inclusion of specific
epigenetic loci, data was quality controlled and normalized
following established pipelines59. Briefly, samples with low
signal intensities or bisulphite conversion rate, mismatched
reported and imputed sex or cryptic relatedness were excluded.
P-filtering was applied using the ‘pfilter’ function in the
wateRmelon package, excluding samples with >1% of probes
with a detection P-value > 0.05 and probes with >1% of samples
with detection P-value > 0.05. Beta values for each probe were
quantile normalized using the ‘dasen’ function.

Baseline data
Baseline data for all 423 PD cases were sourced from PPMI and
processed into four sets of variables (Supplementary Table 1):
Clinical variables: These included demographic variables (sex, age
of onset, years in education, duration of disease, family history of
PD), motor symptoms (MDS-UPDRS Part 2 and 3 total scores,
rigidity score, tremor dominant / postural gait instability disorder
classification, Hoehn and Yahr [H&Y] scale, Modified Schwab &
England Activity Daily Life [ADL] Score), psychiatric symptoms
(MDS-UPDRS Part 1 subscores, Geriatric Depression Scale [GDS],
Questionnaire for Impulsive-Compulsive Disorders, State Trait
Anxiety Test), autonomic symptoms (SCOPA-autonomic sub-
scores), sleep disorder (Epworth Sleepiness Scale Score [ESS],
Categorical REM Sleep Behavior Disorder Questionnaire subscore,
MDS-UPDRS Part 1 subscores) and olfactory symptoms measured
by University of Pennsylvania Smell Identification Test (UPSIT).
Assessments of cognition (Semantic Fluency Test [SFT], Symbol
Digit Modalities [SDM], MDS-UPDRS Part 1 subscores, Montreal
Cognitive Assessment [MoCA], Hopkins Verbal Learning Test-
Revised [HVLT-R] subscores, Benton Judgment of Line Orientation
[BJLO]) were also included.

Biofluid variables. CSF measures for amyloid-β (1–42), phospho-
tau181, total-tau, and α-synuclein were included, after removing
cases showing high levels of CSF hemoglobin (>200 ng/mL) as
previously described60,61. Ratios of each measure were also
included as independent predictive variables. Total serum uric
acid was also included as previously described62.

Genetic and epigenetic variables. Genetic variables included
individual APOE genotype, MAPT haplotype and the SNPs
rs1241121663, rs35618164, and rs391010565. GBA mutation status
was included as a binary factor for the presence of any
nonsynonymous coding mutations present within the GBA region.
PRS for PD (GBA region excluded), AD (APOE region excluded), EA,
SCZ, MDD, and CAD where also included.
After stringent quality control and normalization of the whole-

genome DNA methylation data measured in baseline blood, 21
loci were selected based on previously reported differentially
methylated positions associated with cognitive decline in PD66 or
across neurodegenerative disease31. Epigenetic age acceleration
measures from the GrimAge clock67, BloodAndSkin clock68 and
the modified Hannum clock which included measures of both
intrinsic epigenetic age acceleration (IEAA) and extrinsic epige-
netic age acceleration (EEAA, incorporating intrinsic measures as

well as blood cell proportions)69 were included as additional
epigenetic variables.

Combined biological and clinical variables. This variable set
collated all previously listed variables across the clinical, biofluid
and epigenetic/genetic subsets into one combined total set.
Summary lists of measures used for predictive modeling are

shown in Supplementary Table 1 and descriptive statistics in Table
1. All measures highlighted in this summary table were carried
forward for multivariate modeling.

Data processing
Imputation. Each baseline variable was evaluated for the
proportion of missing observations and missing values imputed
using available data for the selected variable. For ordinal and
categorical variables, the mode value was chosen for imputation,
for continuous variables the median value was selected. Median/
mode value imputation was chosen based on simulation analysis,
showing better accuracy compared to k-nearest neighbors (KNN),
Multivariate Imputation via Chained Equations (MICE) and
Hotdeck algorithms (Supplementary Fig. 10). The full dataset
was assessed on missing values, generating a value representing
the missing value fraction per variable (Supplementary Table 1).
Samples containing any missing value were removed to produce a
dataset with complete observations for all available variables, now
called the reference dataset. Missing values were induced in the
reference dataset at random, according to the proportion of
missing values per variable to generate a ‘test’ dataset. The
imputation methods ‘Median/mode’, ‘knn’70, ‘hotdeck’71, and
‘mice’72 were used to impute the missing values in the test
dataset. Root mean square error (RMSE) was used to determine
the error between the test and reference dataset, then summed
for all variables to get an overall performance error score. This
process was repeated 100 times, randomizing different values per
loop to be flagged as missing, to assess the stability of the
imputation. The total RMSE error (mean+ sd) was displayed per
variable subset to indicate which methods perform best per
variable type. Additionally, the proportion of missing values was
compared to the average RMSE per variable.
The total error per variable subset showed the same pattern

between variable subsets (Supplementary Fig. 9). The median/
mode imputation showed least average error, followed by knn,
hotdeck, and mice. Evaluating the proportion of missing values
compared to the average RMSE, higher proportion of missing
values contributes to a higher average RMSE. Median/mode
imputation was chosen to apply to the actual data, as it showed
the best performance in minimizing average imputation error.

Stratification. Due to an imbalance in the size of selected
outcome groups, stratified sampling was used to account for
potential training imbalance and testing bias73 using the
‘stratified’ function from the splitshapestack R package (version
1.4.8). Sampling considered the proportion of outcome groups,
the proportion of MCI and dementia cases as well as sex and
categorical age (1: <56 years, 2: 56–65 years, 3: >65 years). A
60/40 train/test split was chosen to increase samples in the test
set to give an improved evaluation of the final resulting
models.

Data transformation. The baseline data contains three types of
variables: categorical, ordinal, and continuous. To ensure each
variable had a similar influence during the ML process, Z-score
normalization was performed using the base R function ‘scale’ on
the continuous variables based on averages of the training set74,75.
The parameters ‘center’ and ‘scale’ were stored per variable and
used to rescale the training and testing data accordingly.
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Machine learning
Training and selected algorithms. The R package caret (version
6.0.90) was used to establish the machine learning workflow and
tune the hyperparameters76. We used four different classifiers
from three machine learning families. The selected algorithms
include functions for RF (‘rf’) and conditional inference forest
(‘cforest’) from the RF family, SVM with linear Kernels (‘svmLinear’)
from the support vector machine family and ElasticNet (‘glmnet’)
from the generalized linear model family of classifiers. RF and
Cforest are information-based learning algorithms, and their
behavior is determined by concepts from information theory77.
RF algorithms are based on a majority vote of a collection of
different decision trees. Cforest differs from RF as it does not select
variables based on maximization of an information measure but
based on a permutation test for significance78. SVM and ElasticNet
are error-based learning algorithms, and their behavior is
explained by minimizing total error during training77. SVM
algorithms are based on generating the best possible separation
between classes of interest in a hyperdimensional plane.
ElasticNet is a generalized linear model with L1 and L2
regularization, able to shrink or drop coefficients to achieve a
better model fit.

Tuning. To avoid overfitting during training, 10 repeated 10-fold
cross-validation was used. During the training process, hyper-
tuning was enabled with a maximum of 100 tunes to promote
model accuracy. To prevent optimistically inflated results due to
imbalanced datasets, we used MCC alongside AUC to evaluate
model accuracy75,79.

Variable selection and model generalization. Recursive feature
elimination (RFE) was applied as the variable selection algorithm.
In brief, RFE iterates through generations of models using a
decreasing training set, eliminating the worst contributing
variable of each iteration80. The first model was trained using all
available variables, with the resulting evaluation metrics being
extracted and stored. Variable importance was recursively
calculated for the generated model using the ‘varImp’ function
in caret. The least contributing variable was flagged to be
removed in the next iteration. The updated training data was
used to train a new model, and the process was repeated until one
variable remained. This resulted in numerous models with
decreasing number of variables.

Optimal model selection. To reduce generalization error, a multi-
objective optimization procedure was applied by utilizing MCC,
AUC and the number of variables from each model in each
iteration81. MCC and AUC were chosen as MCC is calculated on
binary classes while AUC is calculated by class probability,
allowing model selection to benefit from the properties of MCC
and the resolution of AUC. This ensures model generalization with
higher accuracy. Moving averages of these metrics (window= 5)
were calculated and the rank was determined (Supplementary
Figs. 7 and 8). Calculating the mean rank of the moving averages
allows a comparable scale to the variable number per each ith
model. From this we calculated an optimal model score by adding
together the number of variables to the average rank, as shown in
Eq. (1). This results in an optimization curve highlighting the best
performing model with the lowest number of variables. The model
with the lowest score was selected as the optimal model, as this
model indicates the highest accuracy, balanced prediction, and
least number of variables.

Optimalmodel scorei ¼

number of variablesi þ rankðMAðMCCiÞÞþrankðMAðAUCiÞÞ
2

(1)

Testing. The optimal model was used for class prediction on the
test dataset, yielding several evaluation metrics (AUC, MCC,
Accuracy, Sensitivity, Specificity) as well as other evaluation
elements (such as confusion matrices, Receiver Operator Char-
acteristics (ROC)-AUC curves, and individual variable difference
plots).

Variable importance calculation. Shapley values were used to
assess the importance of variables included in models following
RFE. Shapley values are a concept in cooperative game theory but
are interpreted in the context of ML to determine a variables
contribution to prediction. Shapley values were calculated for the
interpretation of individual variables included in best performing
models. Using the package iml (version 0.10.1), a predictor object
was generated, containing the model of interest and the test
dataset. This predictor object was used in the calculation of the
Shapley values per sample, with 10,000 Monte-Carlo-Simulations.
The resulting absolute Shapley values were averaged over all
samples, yielding global Shapley contribution per variable82.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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