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Abstract: In this work, the impact of implementing Deep Reinforcement Learning (DRL) in predicting
the channel parameters for user devices in a Power Domain Non-Orthogonal Multiple Access system
(PD-NOMA) is investigated. In the channel prediction process, DRL based on deep Q networks
(DQN) algorithm will be developed and incorporated into the NOMA system so that this developed
DQN model can be employed to estimate the channel coefficients for each user device in NOMA
system. The developed DQN scheme will be structured as a simplified approach to efficiently predict
the channel parameters for each user in order to maximize the downlink sum rates for all users in the
system. In order to approximate the channel parameters for each user device, this proposed DQN
approach is first initialized using random channel statistics, and then the proposed DQN model
will be dynamically updated based on the interaction with the environment. The predicted channel
parameters will be utilized at the receiver side to recover the desired data. Furthermore, this work
inspects how the channel estimation process based on the simplified DQN algorithm and the power
allocation policy, can both be integrated for the purpose of multiuser detection in the examined
NOMA system. Simulation results, based on several performance metrics, have demonstrated that
the proposed simplified DQN algorithm can be a competitive algorithm for channel parameters
estimation when compared to different benchmark schemes for channel estimation processes such
as deep neural network (DNN) based long-short term memory (LSTM), RL based Q algorithm, and
channel estimation scheme based on minimum mean square error (MMSE) procedure.

Keywords: DRL; DQN; Q-learning; LSTM; NOMA

1. Introduction

It can be noticed that the high energy consumption by the connected terminals in the
current wireless networks can create an essential challenge in designing the upcoming 6G
wireless systems [1]. Therefore, it is important to consider this energy consumption issue
in future wireless communication networks, and at the same time, we need to maintain
the required quality of service (QoS) for devices or services in that networks. Basically,
NOMA system utilizes a superposition coding (SC) procedure that involves multiplexing
different signals related to different users before transmission, which can contribute to the
energy efficient transmission scheme. Moreover, NOMA system can also be designated
to ensure the desired quality of service (QoS) levels for all superimposed user devices.
Numerous research efforts have been dedicated to NOMA system in order to find an
efficient strategy for different challenging tasks such as power allocation, beamforming,
and channel assignment [2].

Recently, many authors have investigated different machine learning algorithms
and artificial intelligence tools to optimize the resource allocation problems in NOMA
system [3]. Furthermore, reinforcement learning (RL) based Q-learning algorithm and
deep reinforcement learning based Q network (DQN) have gained a remarkable interest
among authors in various fields. The Q-learning algorithm is a subclass of reinforcement
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learning that depends on Q-tables to store the optimal Q-values for each state-action pair
in order to maximize the future reward in the system. Alternatively, deep reinforcement
learning-based Q network (DQN) algorithm is mainly dependent on adopting hidden
layers that can effectively enhance network convergence and system performance.

1.1. Related Works

In the context of optimizing communication systems, several works have employed the
Q-learning algorithm to enhance the performance of wireless networks based on different
perspectives. The work in [4] applied the Q-learning algorithm to introduce a framework
for enabling mobile edge computing in NOMA system. In [5], authors suggested a dynamic
reinforcement learning scheme for power allocation in order to jointly maximize the sum
rate and the spectral efficiency in MIMO-NOMA system when smart jamming is considered.
The authors applied the Q-learning algorithm to allocate a certain power level to each user
terminal, to mitigate the jamming effects.

Basically, by incorporating deep learning into RL, deep reinforcement learning (DRL)
can address the challenges associated with Q-learning in terms of Q-table storage. Based
on that, the work in [6] introduced a deep Q-network (DQN) to model a multiuser NOMA
offloading problem, while the work in [7], proposed a power allocation technique based on
deep reinforcement learning in cache-assisted NOMA system. Furthermore, authors in [8]
introduced a DRL based actor-critic algorithm to handle the dynamic power allocation
policy. Likewise, DRL based actor-critic algorithm was also applied in [9] to attain the
optimal policy for user scheduling and resource allocation in HetNets. In [9], the authors
designed the actor network in order to decide the policy that can select a stochastic action
based on Gaussian distribution, while the critic network role is to evaluate the value
function and guides the actor network to discover or learn the optimal policy.

Deep reinforcement learning was also introduced in [10] to arrive at a sub-optimal
power allocation scheme for an uplink multicarrier NOMA cell. The work in [11], con-
sidered a joint channel assignment and power distribution procedure in NOMA system.
Authors in [11], derived a near-optimal power allocation scheme by considering two users
per channel, and the channel assignment was performed using deep reinforcement learning
algorithm to boost the overall sum rate while the minimum rate for each user device
is considered.

1.2. Research Gap and Significance

Several machine learning (ML) algorithms have been suggested to clearly address
diverse issues in wireless networks such as channel assignment, beamforming, and power
allocation. Also, several RL algorithms have been proposed to handle the channel esti-
mation task in wireless communication systems. However, most of the current research
that covers the channel prediction task in the NOMA system is mainly dependent on deep
neural networks (DNN) which include some sort of complexity in the network structure.
Hence, in this work, we aim to introduce a deep reinforcement learning scheme based on a
simplified DQN approach to reduce the complexity structure and at the same time enhance
the channel estimation process. Furthermore, to the best of the authors’ knowledge, there
is no study that explores the utilization of deep reinforcement learning (DRL) based deep
Q network (DQN) algorithm for estimating the channel parameters for user devices in the
NOMA system. In addition, and to the best of the authors’ knowledge, there is no study
that has investigated the performance of NOMA system when both the DQN algorithm
that used as channel estimator and the optimized power scheme are jointly implemented
for user detection in NOMA system.

It is worth mentioning that unlike classical deep learning algorithms, which mainly
depend on learning from a training data set, the proposed DQN algorithm is developed
based on the LSTM network to adapt to the variations in the channel and to dynamically
enhance the system performance based on the interaction with the environment.
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1.3. Contributions to Knowledge

In this work, the contributions can be summed up as shown:

• A simplified DQN structure is proposed to demonstrate how RL based DQN algorithm
is developed to predict the channel parameters for each user in the NOMA cell in
Rayleigh fading channels.

• Investigate the combination between the RL algorithm and the LSTM model, to
compose the simplified DQN structure in order to be utilized as a channel estimator.

• Validate the efficiency of the proposed DQN scheme, by establishing different bench-
mark schemes for comparison. Three different simulation environments are estab-
lished as follows: (1) Channel prediction scheme based on standard minimum mean
square error (MMSE) procedure [12]; (2) Standard DNN based on LSTM network
for channel prediction applied in [13], (3) The RL based Q-algorithm for channel
prediction applied in [14]. The simulation outcomes of these benchmark schemes were
compared with the results of our proposed DQN model, and the results emphasized
that reliability can be guaranteed by our developed DQN algorithm for predicting
channel parameters even when the number of users in NOMA cell is increased.

• Simulate the impact of integrating the simplified DQN structure for channel prediction
and the optimized power scheme derived in [13] for the purpose of multiuser detection
in the power domain NOMA system.

The remainder of this paper is structured as follows. Section 2 describes the system
model. The Deep Reinforcement Learning Framework is presented in Section 3. The
Channel Estimation Based DQN Algorithm is discussed in Section 4. DQN Operation and
framework are discussed in Section 5. DQN Dataset Generation is introduced in Section 6.
Section 7 discusses the DQN Policy and Algorithm. DQN state space, action space, and
reward are introduced in Section 8. Detailed DQN Procedure and workflow are listed in
Section 9. Complexity analysis is also discussed in Section 10. The simulation environment
is described in Section 11, and simulation results are presented in Section 12. Finally,
conclusions are given in Section 13.

2. System Model

In a NOMA cell, numerous user devices can be served via the same resource block (RB)
by employing the power domain (PD) in both uplink and downlink transmissions. In this
paper, we are considering a downlink NOMA cell, where the BS can serve distinct types of
users or devices at the same time via different fading channels. At the transmitter side, the
BS can assign a specific channel or subcarrier to every set of user devices, and the signals
of these devices can be multiplexed using unique power levels. At the receiver side, each
user device will receive the desired signal beside the undesirable signals related to other
devices in the same channel that will be considered either as interference or noise. The
undesirable received signals will be considered as noise if the power level of the desired
signal is high, otherwise, these additional signals will be regarded as interference. To
decode the desired signal, each user device will use the successive interference cancelation
(SIC) procedure. The SIC technique will first decode the signal with the highest power level
and then subtract that signal from the principal signal, and this process will continue until
the desired signal is decoded.

Typically, before applying the SIC procedure at the receiver side, the channel param-
eters for each user need to be available or estimated to perform the equalization process.
Also, to calculate the data rate or channel capacity for each user, we need to calculate the
signal to interference plus noise ratio (SINR), and SINR itself includes the channel gain |hi|2,
where hi represents the fading channel between the BS and user device i. In the NOMA
scenario, the data rate Ri for user device i can be expressed as follows:

Ri = log2

(
1 +

PTαiηi

∑i−1
j=1 PTαjηi + 1

)
(1)



Sensors 2023, 23, 9010 4 of 21

where αi is the power allocation factor for user device i, and ηi is the channel to noise ratio
(CNR) for user i and PT is the total power assigned by the BS. The channel to noise ratio ηi
for user i, can be expressed as follows:

ηi =
|hi|2

σ2
n

(2)

where |hi|2 is the channel gain for user device i, and σ2
n is the noise power. In this work,

we are considering a downlink NOMA system, and the total number of devices in the
cell is N. In the NOMA cell, all signals related to the N devices are combined, and the BS
will transmit this composed signal to all users in the cell. The composed signal X can be
represented as follows [15]:

X =
N

∑
i=1

√
PTαixi i = 1, 2, . . . ., N (3)

where xi is the desired signal for user device i. The composed transmitted signal X can
be received at the receiver side of each user terminal, with path loss and Additive White
Gaussian noise (AWGN), hence the received signal Y can be represented as

Y =
N

∑
i=1

√
PTαihixi + n i = 1, 2, . . . ., N (4)

where hi is the fading channel between BS and user device i and n denotes the AWGN
component. After receiving the composed signal and estimating the channel parameters,
the receiver at each user device will activate the SIC procedure to decode the desired signal.
In PD-NOMA, distinct power levels will be given to user terminals in the cell, and the
highest power level will be given to the user device with the lowest CNR, while the lowest
power level will be given to the user device with the highest CNR. Therefore, if user devices
have the following CNRs:

η1 > η2 > . . . . > ηN (5)

Then, these user devices will be assigned power levels as follows:

P1 < P2 < . . . . < PN (6)

The SINR for user device i can be represented as shown:

SINRi =
PTαiηi

∑i−1
j=1 PTαjηi + 1

i = 1, 2, . . . ., N (7)

The BS can allocate power Pi to any user terminal as shown in the following expres-
sion [15]:

Pi =

(
PT −

(
i−1

∑
j=1

PTαj

))
≥ Pth (8)

The expression in (8), can be interpreted as follows: for proper achievement for the
SIC process, the user device with low CNR must have a higher power level than the sum of
power levels for other devices that have high CNR.

Based on the aforementioned analysis, in what follows we will consider the scenario
for three users downlink PD-NOMA system, and we will provide some sort of mathematical
analysis for the achievable capacity for each user when both perfect SIC and imperfect SIC
are applied [16]. As indicated before, BS can send the superposition coded signal X which
can be expressed as

X =
√

Pt

(√
αnxn +

√
αmxm +

√
α f x f

)
(9)
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where αn, αm, and α f are the power factors allocated to the near user, middle user, and far
user, respectively. Likewise, xn, xm, and x f denote the desired symbols related to the near,
middle, and far users respectively. Hence, the signal received at far user can be represented
as follows:

y f = Xh f + n f (10)

where h f represent the fading channel among BS and the far user, while n f represents the
AWGN noise component at far user with zero mean and σ2 variance. The received signal
at far user can be expressed in details as follows:

y f =
√

Ptα f x f h f +
√

Pt(
√

αmxm +
√

αnxn)h f + n f (11)

The 1st term in (11) represents the desired signal for far user, but the 2nd term denotes
the interference term from the middle and near users. Far user is usually described by
poor channel condition and his particular signal x f can be assigned additional power by BS
compared to other users. Thus, according to the SIC scheme, far user can directly decode his
own signal x f from received signal y f . The possible rate for far user R f could be expressed
as follows:

R f = log2

(
1 +

η f Ptα f

η f Pt(αn + αm) + 1

)
(12)

Likewise, the attainable bit rate for the middle user Rm in the case of perfect SIC, can
be expressed as follows:

Rm = log2

(
1 +

ηm Ptαm

ηm Pt(αn) + 1

)
(13)

Typically, the user near the BS has a good channel condition; therefore, his signal xn is
usually assigned low power level. Therefore, at near user side when perfect SIC is applied,
firstly immediate decoding for far user signal x f is accomplished, then it is removed from
the composite signal. Next, the middle user signal xm is decoded and removed from the
remaining signal. Finally, the near user achieved rate Rn can be expressed as follows:

Rn = log2(1 + ηn Ptαn) (14)

In the case of imperfect SIC, the attainable bit rate for the middle user can be
expressed as:

Rm = log2

1 +
ηm Ptαm

ε ηm Pt

(
α f

)
+ ηm Pt(αn) + 1

 (15)

where ε ηm Pt

(
α f

)
represents the error residual term from far user signal decoding. Like-

wise, the attainable bit rate for the near user in case of imperfect SIC can be expressed as:

Rn = log2

1 +
ηn Ptαn

ε ηn Pt

(
α f

)
+ ε ηn Pt(αm) + 1

 (16)

where ε ηn Pt

(
α f

)
is the error residual term from far user signal decoding and ε ηn Pt(αm)

is the error residual term from middle user signal decoding.

3. Deep Reinforcement Learning Framework

In this section, we will introduce the concept of deep reinforcement learning (DRL),
which is a special case of reinforcement learning procedure [17,18]. Reinforcement learning
is a fork of machine learning, where an agent interacts with the environment to carry
out the best sequences of actions that can maximize the expected future reward in an
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interactive environment. Generally, reinforcement learning can be classified as single-agent
or multi-agent based on the quantity of agents in the environment. In the scenario of a
single agent RL, the agent needs to recognize the entire states in the environment and the
decision-making task can be modeled as a Markov decision process (MDP) framework. In
this work, our proposed DQN structure assumes a single agent, and the best sequence of
actions that can be chosen by the agent will be generated based on the adopted deep neural
network (DNN).

The fundamental elements in the deep reinforcement learning (DRL) algorithm can be
listed as follows [14,18]:

1. Observations: the continuous measurements of the properties of the environment,
and all of the observed properties in the environment can be included in the state
space S.

2. States: the discret observation at time step t can be denoted as state st ∈ S.
3. Actions: an action at is one of the valid decisions that the agent can select at time step

t from the action space A.
4. Policy: a policy denoted by π(.), is the criteria that control how to select a certain

action at any given state while interacting with the environment.
5. Rewards: the immediate reward rt, is obtained after an agent carries out a specific

action at in a given state st, which leads to moving to a new state st+1.
6. State-action value function: denoted by Qπ(s, a), and represents the expected dis-

counted reward when the agent starts at a certain state st and selects a specific action
at based on the policy π.

In the DQN framework, when an agent selects an action at at a given time step t, the
agent’s state will change from the current state st to the subsequent state st+1 and as a result
of this transition, the agent will receive an immediate reward rt from the environment.
Based on that scenario, the network can generate an experience tuple e = (st, at, rt, st+1)
that can be stored in the experience replay buffer D. The primary target of the agent in
RL scheme is to maximize the long-term cumulative discounted reward Rγ

t , which can be
defined as follows [14,18]:

Rγ
t =

∞

∑
i=0

γirt+i (17)

where γ is the discount factor. To enhance the Rγ
t , an optimal policy π∗ is essential to map

the best actions to states. In other words, the optimal policy π∗ can significantly assist the
agent in deciding which action should be selected at any given state, to satisfy the optimal
long-term cumulative reward. Typically, the state action Q-value function is defined as the
expectation of the cumulative discounted reward Rγ

t . Overall, we can notice that based on
the current state st, the considered policy π, and the selected action at, the state-action Q
value function can be further expressed as follows [14,19]:

Qπ(st, at) = E
[
Rγ

t |st , at
]
= E

[
∞
∑

i=0
γirt+i|st , at

]
= E[rt + γQπ(st+1, at+1)|st , at]

(18)

where E[ .] denotes the expectation parameter. When the optimal policy π∗ is applied for
maximizing all states and action pairs, then the optimal Q-value function Qπ∗(st, at) that
follows the optimal policy π∗ can be expressed as follows:

Qπ∗(st, at) = E[rt + γQπ∗(st+1, at+1)|st , at] (19)

The expression in (19) is known as the Bellman equation. The benefit of the Bellman
equation is to represent the state-action Q-value function into two components: the instan-
taneous reward rt and the long-term discounted reward. However, the Bellman equation
is nonlinear, and hence, there is no closed form solution to it. As a result, an iterative
procedure such as the Q-learning algorithm has emerged to converge the Bellman equation
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to obtain the optimal Q-value function [18,19]. On the other hand, the computation of the
Q-learning algorithm may become more complex in multi-user environments that have
huge state and action spaces, and as a result, the size of the Q-table will be extremely large.
Hence, the regular solution to this limitation is to estimate the Q-values using a function
approximator, by adopting hidden layers, which is the core component in our developed
deep Q network.

The basic DQN architecture is shown in Figure 1, and it consists of three main phases:
The first phase represents the input layer that includes the current states of the environment.
The second stage includes the hidden layers that act as a function approximator. Mainly
in the hidden layers, the Rectified Linear Unit (ReLU) activation function is applied to
compute the hidden layer values. The primary gain of utilizing ReLU as an activation
function is the computational efficiency [20], which may lead to faster convergence. At
the end phase, the output layer is responsible for predicting the optimal state-action value
function, Qπ∗(s, a, Wt), where Wt is the updated weights of the hidden layers at time
instant t.
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4. Channel Estimation Based DQN Algorithm

In this section, the simplified DRL structure will be introduced, and Figure 2 illustrates
the architecture of the simplified DRL scheme that mainly relies on the DQN algorithm
and LSTM network to achieve the most appropriate performance. The DQN network
will be trained, and the weights of the hidden layers will be updated to approximate the
state-action value function Qπ(s, a). As indicated in the aforementioned discussion, each
experience tuple is described as et = (st, at, rt, st+1), and all experience tuples will be stored
in an experience replay buffer D = {e1 e2 e3 . . . et}, and these experience tuples can be
utilized to train the DQN using the gradient descent algorithm [21]. It is optimum for the
DQN algorithm to exploit all available experience tuples in each training iteration, but this
will be costly when the training set is huge. A more effective procedure is to update the
DQN weights in each iteration using an arbitrary subset from the replay buffer D, and
this subset is described as a mini batch. Based on the architecture of the proposed DQN
structure shown in Figure 2, it can be noticed that the loss function can be computed based
on the difference between the output of the target DNN and the output of the policy DNN.
Hence, the loss function can be defined as follows [18,19]:

L(W) = ∑
e∈D

(
rt + γ maxQπ∗

(
st+1, at+1, Ŵ

)
−Qπ∗(st, at, W)

)2 (20)
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where L(W) denotes the DQN loss function for a random mini batch sampled from the
replay buffer D at time slot t and Ŵ represents the nearly static weights in the target DNN
and these weights are mainly updated every T time steps. To minimize the loss function
L(W), the weights W of the policy DNN will be updated every t time step using a stochastic
gradient descent (SGD) algorithm applied on a batch of random samples selected from the
replay buffer D. Typically, the SGD algorithm can update the weights of the policy DNN
W in an iterative process with a learning rate of µ > 0 as follows [21]:

Wt+1 = Wt − µ ∇Lt(Wt) (21)
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5. Proposed DQN Operation and Phases

Phase 1: Initialization and generation of training data

1. Perform a few random actions with the environment to initialize the experience
replay data.
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2. Initialize the weights for the policy DNN and copy these weights to the Target DNN.
3. Starting with the first time step,

• Based on the initial interaction with the environment, random states can be
generated to be used as input for the policy DNN.

• The policy DNN will predict the Q-values for all actions that can be decided in
the current state, and then those Q-values will be inspected to select or identify a
certain Q-value based on the most suitable action.

• Based on the selected and executed action, the experience replay will receive the
reward and move to the next state.

• The experience replay will store the results in the replay buffer.
• Each result will be considered as a sample training data, that can be later used as

training data.

Phase 2: Select a random batch for training

1. Select a batch of random samples from the replay buffer and use these samples as an
inputs for both the policy DNN and the target DNN.

2. From the random sample, use the current state as input to the policy DNN.
3. The policy DNN can predict the Q-values for all actions that can be performed in the

current state.
4. Based on the decided or selected action, the policy DNN will identify the predicted

Q-value.
5. The next state from the selected random sample will be used as input to the Target DNN.
6. The Target network will predict the Q-values for all actions that can be performed in

the next state, then the Target DNN will select the maximum of those Q-values.

Phase 3: Get the Target Q-value

1. The Target Q-value can be decided based on two components

• The immediate reward from the environment
• The max Q value that has been predicted by the target DNN in the next state

Phase 4: Compute the Loss function

1. Compute the loss function between the Target Q value and the predicted Q Value in
terms of mean squared error (MSE).

Phase 5: Back-propagate the Loss function

1. Back-propagate the loss in order to update the weights of the policy DNN using SGD.
2. At this stage, the weights of the Target DNN are not updated and remain fixed, and

this completes the processing for this time step.

Phase 6: Repeat for next time step

1. The process will be repeated for the next time step.

• The policy DNN weights have been updated but not the Target DNN.
• This allows the policy DNN to learn to predict more accurate Q-values, while the

weights for the target DNN remain fixed for a while.

2. After T time steps, copy the policy DNN weights to the Target DNN. This step will
enable the Target DNN get the updated weights so that it can also predict more
accurate target Q-values.

Long-short term memory (LSTM) network is a developed design from the recurrent
neural network (RNN), which can inspect long-term dependencies and has the ability to
remember previous information for future usage. The LSTM network has a chain structure
consisting of multiple LSTM cells and the proposed DQN structure shown in Figure 2 is
clearly adopting the LSTM network as the DNN hidden layers. The DNN based LSTM
in Figure 2 is mainly consists of four layers, and each layer contains several neurons,
and the weighted sum of each neuron will be the input to an activation function. In our
proposed DQN approach, the length of each training sequence is specified as L, which is
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the dimension of the input layer. In our scenario, we choose the input layer of the DNN to
include 128 neurons, and the input states to the input layer will be shifted to the subsequent
layer after updating the weight parameters [13,22].

As shown in Figure 2, we have applied one LSTM layer as the second layer in both the
policy DNN and the target DNN, and the LSTM layer itself includes 300 hidden cells. For
each hidden cell, the learnable weights are specified as follows: the input weights W, the
recurrent weights R, and the bias b.

The third layer in both the policy DNN and the target DNN is a fully connected layer
that processes the outputs of the LSTM layer, and it assembles all of the characteristics
and internal information gathered by the prior layers. The fully connected layer behaves
separately at each time step, and all neurons in a fully connected layer are connected to all
the neurons in the previous layer.

The last adopted layer in both the policy DNN and the target DNN is the regression
layer, which is responsible for computing the mean square error (MSE), improving the
cell status, and updating the cell weights. A regression layer can also predict the response
of the trained network. It is worth mentioning that normalizing the training data in the
LSTM network enables the stabilization and acceleration of the training process for neural
networks. It is shown in Figure 2, that in the simplified DQN structure, the input states
are established according to the size of the input layer, then these states will be passed
into both the policy DNN and the target DNN and the state action value functions will be
predicted at the output.

The design of a single LSTM cell is basically shown in Figure 3 [13,22]. Each LSTM
cell has three inputs and two output parameters. The hidden state ht−1 and the cell state
ct−1 are the shared parameters between inputs and outputs and the other parameter is the
current input. The LSTM cell also includes three sigmoid functions and two tanh functions
to regulate the flow of information. In the initialization stage, random hidden states will be
generated along with the input for the first LSTM cell. Then the current outputs that include
the current hidden state ht and current cell state ct and the new input xt will comprise the
three inputs to the next cell.
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6. DQN Dataset Generation

Typically, the DQN framework involves an agent, a deep neural network (DNN), and
the environment. The agent will interact with the environment via the DNN and decide
which action to take. In our proposed DQN framework, the BS will be considered as an
agent, and it will interact with the environment, which includes the user devices and fading
channels. At the start, the agent (BS) will start exploring the environment to collect the
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information or the states for each user device in the cell, such as power distribution, user
distance, channel model, and path loss [23,24].

Typically, at each time step t, and based on the current state st for each user device,
the agent can decide on a certain action at using the DNN to maximize the sum rates for all
users in the NOMA network. Accordingly, the agent (BS) will receive an instant reward
rt and move to the next state st+1 in the environment. By taking decisions on actions, the
agent (BS) can learn more about the environment to achieve an optimal channel prediction
policy πc. In our scenario, we aim that this optimal policy πc for predicting or estimating
the channel parameters for each user device can be learned and updated at each time
step t via the simplified DQN structure illustrated in Figure 2. Furthermore, the agent
(BS) can further enhance the policy πc by repeating the channel estimation process for
multiple episodes. Based on the proposed DQN architecture shown in Figure 2, it is clearly
noticed that the DNN based LSTM replaces the Q-table to estimate the Q-values for each
state–action pair in the environment, and this designed DNN can be considered as the
policy controller for the channel estimation procedure.

7. DQN Policy

The period of time in which the agent interacts with the environment via the proposed
DQN scheme is termed an episode, and every episode has a total duration of T time steps.
At each episode, the main aim is to estimate the channel parameters for each user in order
to maximize the sum rates for all users in the NOMA cell. In our simplified DQN approach,
the dimension of the input layer for the DNN based LSTM is set equal to the available
states in state space S for each user, and correspondingly the dimension of the output
layer is equal to the number of possible actions in the action space A for each user. As
indicated in Figure 2, The LSTM layer, and the fully connected layer are both comprising
the hidden layers part of the proposed DQN model, and this may provide a reasonable
balance between the network performance and computational complexity. Typically, the
Q learning procedure is considered an off-policy algorithm, which means that without
applying any greedy policy, the Q algorithm can iteratively estimate the best action for
maximizing the future reward. In our developed DQN algorithm, we decide to apply a
near-greedy action selection policy, that has two approaches as shown in Figure 4 [25]:
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The first approach is the exploration, where the agent discovers and carries out
random actions at a time step t. The second approach is the exploitation, where the agent
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can decide on an action to maximize the state-action value function Qπ(st, at, Wt) based on
the previous experience and the current network weights.

In our proposed near-greedy action selection policy, the agent has an exploration
rate of ε and an exploitation rate of (1− ε) where 0 < ε < 1, and ε is considered a
hyperparameter that can control the trade-off between exploitation and exploration during
the training process. Hence, based on that designated action selection policy, the agent (BS)
can select an explicit action at at a given state st at every time step t and correspondingly,
the agent can receive a positive or negative reward and move to a new state st+1.

8. DQN State Space, Action Space, and Reward

Initially, the distance between each user device and the BS and channel path loss needs
to be specified in the dataset to facilitate the random generation of the channel coefficients
for every user in the examined NOMA system [13,14,22]. In addition, pilot symbols will be
created, transmitted, and identified at both the BS and at the receiver side of each device to
also assist in the initial channel parameters estimation process. As well, the power factor
for each device in the NOMA cell needs to be initially assigned in the dataset. To set up
the Q values, the channel parameters for every user device in the cell can be initialized
either using the random generation of the channel parameters based on the path loss and
the distance or using the pilot symbols. In our simplified DQN algorithm, we initialize
the channel parameters based on both schemes, the random generation and pilot symbols.
Throughout the DQN algorithm iterations, the Q-values will be predicted according to the
DQN algorithm procedure.

As previously mentioned, in our channel estimation procedure, we need to efficiently
predict the channel parameters for each user device in the examined NOMA cell to facilitate
the maximization of the sum rates for all users in the considered NOMA system at each
time step t. Hence, the state space S can be created to include the following states:

(a) The current power factor αi for each user in the NOMA cell,
(b) The current user distance di that represents the distance between BS (agent) and the

user device i.
(c) The present channel path loss ϕ.

Accordingly, the resultant state space S for N users NOMA system can be represented
as [13,14,25]

S = {α1 α2 α3 . . . αN d1 d2 d3 . . . dN , ϕ } (22)

For each user, all the actions that can be chosen by the agent (BS) can be selected from
action space A. In our scanario, the possible actions in the action space A can be introduced
as follows:

(a) Change the distance of the user device within a limited range of 5 m.
(b) Increase or decrease the power distribution factor αi by a certain step size of 0.05.

The reward function also plays an principal role in the DQN algorithm, and there are
many ways to assign the rewards based on the selected action. In our developed DQN
scenario, we decided to calculate the rate for each user in the NOMA system using (1),
to reflect the immediate reward r returned from the environment to the agent (BS) after
choosing a certain action at at state st. Hence, based on the selected action, if the calculated
data rate is higher than a specified threshold Rth, this will reflect a positive reward for the
agent, while a lower data rate will reflect a negative reward. Based on the aforementioned
discussion, Algorithm 1 can summarize the algorithm steps for estimating the channel
parameters for each user in the NOMA cell, based on our simplified DQN structure.
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Algorithm 1 Proposed DQN Algorithm for channel parameters estimation

1. Initialize policy DNN and target DNN networks with random weights (W, Ŵ).
2. Initialize experience replay memory (ERM).
3. Randomly generate the exploration rate ε.
4. for each episode do
5. for each step do
6. for each user device do based on ε, and based on the current state si,

Select the channel parameters and add to action space ai
7. end for
8. Observe the immediate rewards ri and move to the next state st+1.
9. Insert (si, ai, ri, st+1) in experience replay memory (ERM).
10. Create a mini batch with random sample of tuple (si, ai, ri, st+1) from ERM.
11. for each tuple in mini batch do
12. Predict the Q-values using policy DNN.
13. Approximate Q∗ values using target DNN.
14. Calculate the loss between Q∗ values generated from Target DNN and Q values generated

from Policy DNN.
15. Update the weights W of the policy DNN using SGD.
16. end for
17. end for
18. Ŵ ← W after a certain number of T steps.
19. end for

9. Detailed DQN Procedure and Workflow

In this section, we can list the detailed workflow for the developed DQN algorithm
that is responsible for estimating the channel parameters for each user in the examined
NOMA system:

• Initialize the weights for both the policy DNN and the target DNN.
• Initialize the ERM with a typical size of 10,000 (it can be 106).
• Initialize the ε parameter for near-greedy action selection policy with a large value of

ε = 0.999 (start by exploration then decay).
• Initialize data records (tuples).

(a) Generate a random channel coefficients based on the fading model parameters
with size = 120).

(b) Based on the pilot symbols, approximate the channel coefficients with size = 8).
(c) For each user, both the randomly generated channel parameters and the coef-

ficients generated based on the pilot symbols will be combined and used as
initial channel parameters.

• Assign initial distance, initial power factor, and path loss, and prepare the state space
S for each user.

• Select a random state st from the sate space and used it as an input for policy DNN.
• The policy DNN will select a random action and correpondigly select a random

Q-value, and based on this step, the policy DNN can predict the channel coefficients.
• Calculate the rate, and based on the calculated rate the reward can be assigned.
• Go to the next state st+1
• Compose a tuple e1 = (st, at, r, st+1)
• Store a tuple e1 in ERM.
• Generate experience tuples = 1000, and store these tuples in ERM.
• Select a random batch of the tuples from ERM with batch size 32 tuples.
• Number of episodes = 20, and number of steps = 104

• For each tuple in the random batch do the following:

(a) From the policy DNN, select the Q-values (channel coefficients) randomly.
(b) From the Target DNN select the Q-values based on the greedy policy
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(c) Assign the Reward.
(d) Calculate the Loss function as follows: (Target Q-value (Reward + Qmax value)

− policy Q-value).
(e) Update the weights of the policy DNN based on the SGD.

• Every T = 102 steps, copy the weights of the policy DNN to the Target DNN.
• Activation functions used in LSTM layers are (sigmoid and tanh), while activation

functions used at the output layer are (linear or Relu).
• SGD optimizer is utilized for weight updates.

10. Complexity Analysis

It is important to quantify the computational complexity of the proposed algorithm.
Overall, deep learning algorithms are mainly dependent on hyperparameters, hence,
applying analytical methods to guarantee the convergence of the proposed DQN algorithm
usually has some sort of difficulty. Hence, it is a common challenge in literature to prove
the optimality and convergence of the algorithm in an analytical way [26–28]. Alternatively,
in this section we can focus on showing the amount of work per iteration in the developed
DQN algorithm. For the NOMA system with N users and K base stations, the computational
complexity of the proposed DQN algorithm can be introduced as follows: it is known
that the size of the state space is denoted by S and the size of the action space is denoted
by A and both have a significant role in the complexity of the deep Q-learning algorithm.
Following [14,29], the computational complexity of the Q-learning algorithm with the
greedy policy is estimated to be O(S× A×M) for each iteration, where S is the number
of states, A is the number of actions, and M is the number of steps per episode. In our
proposed DQN scenario, it can be shown that the size of the state space is K + N, and the
size of the action space is 2(K + N). Therefore, the amount of the work per iteration can be
described as follows O

((
2K2 +×4NK + 2N2)×M

)
. According to [12], the corresponding

computational complexity for the traditional channel estimation method based on MMSE
procedure can achieve a relatively low complexity O

(
N2.37) [12,30] but at the cost of

performance degradation. Based on the aforementioned analysis, it can be shown that the
developed DQN algorithm has some sort of complexity but at the cost of performance
improvement as will be verified in the simulations results.

11. Simulation Parameters and Environment

Discussion for the simulation parameters and settings is described in this section. The
simulated downlink NOMA system includes three distinct user devices and one BS. The
BS is equipped with a single antenna and each user device in the cell is also equipped with
a single antenna. In the simulated NOMA environment, the modulated signal related to
each user in the downlink transmission will be superimposed and transmitted by the BS
to each user device via independent Rayleigh fading channels, and the path loss is set to
3.5. At the receiver side, we assume that a perfect SIC procedure is applied and AWGN is
considered and the noise power density is set to N0 = −174 dBm/Hz.

MATLAB simulation tool is employed to realize the following: (1) inspect, characterize,
and evaluate the performance of the proposed deep reinforcement learning based DQN
algorithm which developed to be utilized as a channel estimator in the examined NOMA
system, (2) Diverse performance metrics will be measured to evaluate the efficiency of
the proposed DQN algorithm when being utilized in the channel estimation process.
Simulations are accomplished with 104 iterations, and limited pilot symbols are generated
and recognized at the BS and each user device to assist in the estimation process. The main
simulation parameters can be summarized as shown in Table 1.
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Table 1. Summary of Simulation Parameters.

Parameter Value

Simulation Tool MATLAB

Modulation type QPSK

Number of Users 3, [2–20]

System Bandwidth B 1000 kHz

Fading distribution Rayleigh

Path loss ϕ 3.5

Number of Iterations 104

Noise PSD N0 −174 dBm/Hz

Learning Rate α 0.01

Discount factor γ 0.9

Batch size 32

Initial exploration rate ε 0.999

Optimizer SGD

Rth 2 b/s

The simulation figures are created based on the assumption that the channel param-
eters for each user will be estimated based on the simplified DQN algorithm. Therefore,
in order to examine the impact of utilizing the proposed DQN approach, the channel esti-
mation technique based on standard minimum mean square error (MMSE) procedure [12]
is also simulated for the sake of comparison. As indicated in Section 9, initially both the
randomly generated channel parameters and the channel coefficients generated based on
the pilot symbols will be combined and used in the simulation environment, to model the
Rayleigh fading channel. In our developed DQN algorithm, at the end of each training
episode, the predicted Q(s, a) values generated from the policy DNN will be employed as
an approximated channel coefficients for each user device to recover the desired signal.
Different power factors are initially assigned for every user device according to the current
distance from the BS and the present channel condition. Power factors αn, αm, and α f
are assigned for near, middle, and far users, respectively. In a fixed power allocation
setup, we initially assign α f = 0.65, αm = 0.3, and αn = 0.05. In the simulation files,
the transmission distance for every user device with respect to BS is initially defined as
follows: d f = 1000 m, dm = 500 m, and dn = 100 m. User data and pilot symbols are
modulated using the Quadrature phase shift keying (QPSK) modulation format and the
applied transmitted power range is set to vary from 0 to 30 dBm for many reasons, firstly, to
match with the benchmark environments that simulated from the literature, secondly, most
of the simulation environments are applying this classical range, and thirdly, on average,
the performance metric behavior can be certainly predictable after 30 dBm power level.

12. Simulation Results and Analysis

Simulation results that describe the comparison between the proposed DRL based
DQN algorithm and the MMSE procedure when both being utilized to estimate the channel
parameters for each device are shown in Figure 5 in terms of BER versus power. The
estimated channel parameters using both procedures will be employed for the signal recov-
ery for each user and the simulated results are generated where a fixed power allocation
scheme is considered. It is clearly noticed that when the developed DQN algorithm is
applied for predicting the channel parameters, each user device in the examined NOMA
cell shows the ability to provide a visible enhancement in lowering the BER compared
to the MMSE technique. As an example, at a particular transmitted power of 20 dBm,
the realized BER value for far user device using the MMSE procedure is 10−1, while the
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achieved BER in the case of DQN is 10−2. Similarly, the improvment in the BER for middle
and near user devices is obviously observed when the simplified DQN algorithm is applied
compared to the MMSE procedure.

Sensors 2023, 23, x FOR PEER REVIEW  16  of  22 
 

 

12. Simulation Results and Analysis 

Simulation results that describe the comparison between the proposed DRL based 

DQN algorithm and the MMSE procedure when both being utilized to estimate the chan-

nel parameters for each device are shown in Figure 5 in terms of BER versus power. The 

estimated channel parameters using both procedures will be employed for the signal re-

covery for each user and the simulated results are generated where a fixed power alloca-

tion scheme is considered. It is clearly noticed that when the developed DQN algorithm 

is applied for predicting the channel parameters, each user device in the examined NOMA 

cell shows the ability to provide a visible enhancement in lowering the BER compared to 

the MMSE  technique. As an example, at a particular transmitted power of 20 dBm, the 

realized  BER  value  for  far  user  device  using  the MMSE  procedure  is  10−1, while  the 

achieved BER in the case of DQN is 10−2. Similarly, the improvment in the BER for middle 

and near user devices is obviously observed when the simplified DQN algorithm is ap-

plied compared to the MMSE procedure. 

 

Figure 5. BER vs. power (DQN—MMSE). 

In terms of the outage probability against applied power, Figure 6 illustrates the sim-

ulation results for the inspected user devices in NOMA cell when both the simplified DQN 

algorithm and the standard MMSE  technique are  implemented separately as a channel 

estimators. Similar to BER results, all user devices simulation outcomes indicate about 10 

dBm enhancement  in  the power saving when  the proposed DQN algorithm  is applied 

compared to the MMSE technique. The reduction in the power transmitted also supports 

the improvement achived in minimizing the outage probability when the DQN algorithm 

is adopted. These visible improvements verify the advantage of usage the simplified DQN 

scheme as a channel estimator compared to the traditional MMSE procedure. 

Figure 5. BER vs. power (DQN—MMSE).

In terms of the outage probability against applied power, Figure 6 illustrates the
simulation results for the inspected user devices in NOMA cell when both the simplified
DQN algorithm and the standard MMSE technique are implemented separately as a channel
estimators. Similar to BER results, all user devices simulation outcomes indicate about
10 dBm enhancement in the power saving when the proposed DQN algorithm is applied
compared to the MMSE technique. The reduction in the power transmitted also supports
the improvement achived in minimizing the outage probability when the DQN algorithm
is adopted. These visible improvements verify the advantage of usage the simplified DQN
scheme as a channel estimator compared to the traditional MMSE procedure.

Figure 6. Outage Probability vs. power (DQN—MMSE).
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Figure 7 presents the simulation results for the attainable capacity for each user in
the examined NOMA system when both the simplified DQN algorithm and the standard
MMSE channel estimation procedures are applied separately. The achieved rate for the near
device shows significant enhancement by about 20 bit/s/Hz compared to far and middle
users’ rates. The dominance of the near user in terms of the possible rate may be justified
by the stable channel condition for the near user compared to other users in NOMA system.
Moreover, the results indicate that the proposed DQN algorithm still can deliver a stable bit
rate compared to the MMSE technique for far and middle users’ scenarios, and this slight
improvment can be justified by the interference factor and inadequate link conditions for
far and middle users.
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In Figure 8, three distinct channel prediction schemes are investigated here as a bench-
mark comparison: (1) standard minimum mean square error (MMSE) procedure for channel
estimation [12]; (2) DL based LSTM network for channel prediction applied in [13]; and
RL based Q algorithm for channel estimation applied in [14]. Figure 8 displays the simu-
lation outcomes for the sum rate for all user devices in the examined NOMA cell versus
the applied power. It is apparent that the developed DRL based DQN algorithm shows
superiority over the standard MMSE procedure approximately by more than 20 bit/s/Hz.
Furthermore, the simplified DQN algorithm shows an improvement over the DL based
LSTM procedure presented in [13] by nearly 10 bit/s/Hz. For the third benchmark applied
in [14], the simplified DQN procedure shows a performance enhancement by 8 bit/s/Hz,
approximately compared to the RL based Q algorithm. These findings support that this sim-
plified DQN algorithm can be a strong candidate technique compared to other procedures
when it is being utilized as a channel estimator.

Simulation results for the sum rate performance metric against different numbers
of users in the examined NOMA cell are also illustrated in Figure 9, where the reference
power is assigned to be 1 dBm. Similar to the simulation environment in Figure 8, three
distinct channel prediction schemes are also investigated here as a benchmark comparison:
(1) channel estimation based on standard minimum mean square error (MMSE) proce-
dure [12]; (2) DL based LSTM structure for channel prediction applied in [13]; and RL
based Q algorithm for channel estimation applied in [14]. As revealed from the results in
Figure 9, it is clearly noticed that our simplified DQN algorithm can realize a substantially
greater sum rate with respect to the MMSE procedure, by at least 4 bit/s/Hz when the
cell capacity is initialized with 2 users. It can also be noticed that as the number of user
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devices in the cell keeps increasing, the developed DQN algorithm still shows dominance
in accomplishing higher sum rates compared to the DL based LSTM scheme by 2 bit/s/Hz
approximately. Similarly, the hidden layers feature in the simplified DQN scheme play a
sufficient role in providing a noticeable enhancement in the sum rates compared to the
Q-learning algorithm while the number of user devices in the NOMA cell is increasing.
Generally, these findings reveal that dependability can be ensured by our simplified DQN
algorithm even when the user devices in the cell increase. Furthermore, it is worth saying
that while increasing the user devices in the cell, the interference will also grow up, thus
the performance and the sum rate could be affected.
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Simulation results in terms of BER against the applied power are also shown in
Figure 10, where both the proposed DQN approach and the RL based Q algorithm [14]
are utilized as different approaches for channel parameters estimation. Moreover, the
optimized power coefficients derived in [13] for the examined NOMA cell are also applied
in this simulation environment. Simulation outcomes indicate that all user devices in the
cell can provide a perceivable enhancement in the performance when the simplified DQN
algorithm is applied as a channel estimator compared to the case when the Q learning
algorithm is implemented when the optimized power scheme is considered. Based on
the simulation results, it can be clearly noticed that the developed DQN algorithm for
channel estimation and the optimized power scheme can both provide an imprvment in
the power saving by more than 5 dBm compared to the case when Rl based Q algorithm
and optimized power scheme are both applied.
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13. Conclusions

In this paper, the impact of utilizing a simplified deep reinforcement learning based
DQN algorithm to specifically estimate the channel parameters for each user device in
the NOMA system is discussed. In the proposed algorithm, the DQN model is initialized
based on generating a random channel parameters then the weights of the simplified DQN
model are updated based on the interaction between the agent and the environment in
order to maximize the received downlink sum rates and at the same time minimize the
loss function. The reliability of the developed DQN structure to estimate the channel
parameters is examined by comparing the performance of the proposed DQN algorithm
with a diverse benchmark schemes. A selective benchmark schemes were simulated, such
as MMSE procedure for channel estimation, DNN based LSTM for channel estimation,
and RL based Q algorithm for channel estimation. Simulation outcomes have proven
that the simplified DQN algorithm can provide a noticeable enhancement in terms of the
system performance compared to the simulated benchmark schemes. Furthermore, various
performance metrics have been examined, and the simulation results also verified the
superiority of the simplified DQN structure even when the cell capacity is increased.
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Abbreviations
The following abbreviations are used in this manuscript:

AWGN Additive White Gaussian Noise
BER bit error rate
BS Base Station
CSI Channel state information
DL Deep Learning
DNN Deep Neural Network
FPA Fixed Power Allocation
OPS Optimized Power structure
LSTM Long Short-Term Memory
DQN Deep Q networks
ML Machine Learning
MSE Mean Square Error
MMSE Minimum Mean Square Error
MUD Multiuser detection
PD-NOMA Power Domain Non-Orthogonal Multiple Access
QoS Quality of Service
SIC Successive interference cancellation
RL Reinforcement Learning
DRL Deep Reinforcement Learning

References
1. Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi,

K.A.; Hashim, F. 6G wireless communications networks: A comprehensive survey. IEEE Access 2021, 9, 148191–148243. [CrossRef]
2. Almekhlafi, M.; Arfaoui, M.A.; Assi, C.; Ghrayeb, A. Joint Resource and Power Allocation for URLLC-eMBB Traffics Multiplexing

in 6G Wireless Networks. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC,
Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

3. Du, J.; Jiang, C.; Wang, J.; Ren, Y.; Debbah, M. Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced
Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service. IEEE Veh. Technol. Mag. 2020, 15, 122–134. [CrossRef]

4. Yang, Z.; Liu, Y.; Chen, Y.; Al-Dhahir, N. Cache-aided NOMA mobile edge computing: A reinforcement learning approach. IEEE
Trans. Wirel. Commun. 2020, 19, 6899–6915. [CrossRef]

5. Xiao, L.; Li, Y.; Dai, C.; Dai, H.; Poor, H.V. Reinforcement learning-based NOMA power allocation in the presence of smart
jamming. IEEE Trans. Veh. Technol. 2018, 67, 3377–3389. [CrossRef]

6. Yang, P.; Li, L.; Liang, W.; Zhang, H.; Ding, Z. Latency optimization for multi-user NOMA-MEC offloading using reinforcement
learning. In Proceedings of the 28th Wireless and Optical Communications Conference (WOCC), Beijing, China, 9–10 May 2019;
pp. 1–5. [CrossRef]

7. Doan, K.N.; Vaezi, M.; Shin, W.; Poor, H.V.; Shin, H.; Quek, T.Q.S. Power allocation in cache-aided NOMA systems: Optimization
and deep reinforcement learning approaches. IEEE Trans. Commun. 2020, 68, 630–644. [CrossRef]

8. Zhang, S.; Li, L.; Yin, J.; Liang, W.; Li, X.; Chen, W.; Han, Z. A dynamic power allocation scheme in power-domain NOMA using
actor-critic reinforcement learning. In Proceedings of the IEEE/CIC International Conference on Communications in China
(ICCC), Beijing, China, 16–18 August 2018; pp. 719–723.

9. Gaballa, M.; Abbod, M.; Alnasur, S. Hybrid Deep Learning for Channel Estimation and Power Allocation for MISO-NOMA
System. In Proceedings of the 2022 IEEE Future Networks World Forum (FNWF), Montreal, QC, Canada, 10–14 October 2022;
pp. 361–366. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3124812
https://doi.org/10.1109/ICC42927.2021.9500443
https://doi.org/10.1109/MVT.2020.3019650
https://doi.org/10.1109/TWC.2020.3006922
https://doi.org/10.1109/TVT.2017.2782726
https://doi.org/10.1109/WOCC.2019.8770605
https://doi.org/10.1109/TCOMM.2019.2947418
https://doi.org/10.1109/FNWF55208.2022.00070


Sensors 2023, 23, 9010 21 of 21

10. Giang, H.T.H.; Hoan, T.N.K.; Thanh, P.D.; Koo, I. Hybrid NOMA/OMA-based dynamic power allocation scheme using deep
reinforcement learning in 5G networks. Appl. Sci. 2020, 10, 4236. [CrossRef]

11. He, C.; Hu, Y.; Chen, Y.; Zeng, B. Joint power allocation and channel assignment for NOMA with deep reinforcement learning.
IEEE J. Sel. Areas Commun. 2019, 37, 2200–2210. [CrossRef]

12. Neumann, D.; Wiese, T.; Utschick, W. Learning the MMSE Channel Estimator. IEEE Trans. Signal Process. 2018, 66, 2905–2917.
[CrossRef]

13. Gaballa, M.; Abbod, M.; Aldallal, A. Investigating the Combination of Deep Learning for Channel Estimation and Power
Optimization in a Non-Orthogonal Multiple Access System. Sensors 2022, 22, 3666. [CrossRef] [PubMed]

14. Gaballa, M.; Abbod, M.; Aldallal, A. A Study on the Impact of Integrating Reinforcement Learning for Channel Prediction and
Power Allocation Scheme in MISO-NOMA System. Sensors 2023, 23, 1383. [CrossRef]

15. Rezvani, S.; Jorswieck, E.A.; Joda, R.; Yanikomeroglu, H. Optimal Power Allocation in Downlink Multicarrier NOMA Systems:
Theory and Fast Algorithms. IEEE J. Sel. Areas Commun. 2022, 40, 1162–1189. [CrossRef]

16. Ding, Z.; Schober, R.; Poor, H.V. Unveiling the Importance of SIC in NOMA Systems—Part 1: State of the Art and Recent Findings.
IEEE Commun. Lett. 2020, 24, 2373–2377. [CrossRef]

17. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]

18. Cao, Y.; Zhang, G.; Li, G.; Zhang, J. A Deep Q-Network Based-Resource Allocation Scheme for Massive MIMO-NOMA. IEEE
Commun. Lett. 2021, 25, 1544–1548. [CrossRef]

19. Chu, M.; Liu, A.; Jiang, C.; Lau, V.K.N.; Yang, T. Wireless Channel Prediction for Multi-user Physical Layer with Deep Reinforce-
ment Learning. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland,
19–22 June 2022.

20. Parhi, R.; Nowak, R.D. The Role of Neural Network Activation Functions. IEEE Signal Process. Lett. 2020, 27, 1779–1783. [CrossRef]
21. Tian, Y.; Zhang, Y.; Zhang, H. Recent Advances in Stochastic Gradient Descent in Deep Learning. Mathematics 2023, 11, 682.

[CrossRef]
22. Gaballa, M.; Abbod, M.; Aldallal, A. Deep Learning and Power Allocation Analysis in NOMA System. In Proceedings of the 2022

Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 196–201.
[CrossRef]

23. Ling, J.; Xia, J.; Zhu, F.; Gao, C.; Lai, S.; Balasubramanian, V. DQN-based resource allocation for NOMA-MEC-aided multi-source
data stream. EURASIP J. Adv. Signal Process. 2023, 2023, 44. [CrossRef]

24. Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surv.
Tuts. 2018, 20, 2294–2323. [CrossRef]
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