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Advanced synthetic data generators can simulate data samples that closely resemble sensitive 
personal datasets while significantly reducing the risk of individual identification. The use of these 
advanced generators holds enormous potential in the medical field, as it allows for the simulation 
and sharing of sensitive patient data. This enables the development and rigorous validation 
of novel AI technologies for accurate diagnosis and efficient disease management. Despite the 
availability of massive ground truth datasets (such as UK-NHS databases that contain millions of 
patient records), the risk of biases being carried over to data generators still exists. These biases 
may arise from the under-representation of specific patient cohorts due to cultural sensitivities 
within certain communities or standardised data collection procedures. Machine learning models 
can exhibit bias in various forms, including the under-representation of certain groups in the data. 
This can lead to missing data and inaccurate correlations and distributions, which may also be 
reflected in synthetic data. Our paper aims to improve synthetic data generators by introducing 
probabilistic approaches to first detect difficult-to-predict data samples in ground truth data and 
then boost them when applying the generator. In addition, we explore strategies to generate 
synthetic data that can reduce bias and, at the same time, improve the performance of predictive 
models.

1. Introduction

The use of synthetic data in healthcare is a promising solution to the challenges of developing AI systems while protecting patient 
privacy, which has been a significant concern under the General Data Protection Regulation [1]. Synthetic data generation is an 
effective technique that enables the capture of structure and distributions found in actual data sets, all while safeguarding patient 
privacy and mitigating the risks of individual identification. One way of achieving this is through the use of generative models built 
based on real data [2]. These models can either be hand-coded through expert knowledge or inferred from real data using models 
such as Bayesian networks (BNs) [3]. Once created, they can generate synthetic data by using sampling techniques. Despite using 
well-established techniques such as Bayesian networks for generating high-fidelity synthetic patient data [4], and despite access to 
huge datasets, biases may persist and be propagated through the data generation process. The presence of biases within data has 
become a significant issue in implementing AI techniques. Indeed, replicating and even amplifying human biases, particularly those 
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affecting protected groups, is a significant risk [5]. Algorithmic bias manifests in various ways, with varying degrees of impact on 
affected groups. For example, biases may arise in online recruitment tools [6], word association [7], and criminal justice decision-

making [8] among others [9]. Biased training data has caused machine learning models to make biased decisions, as pointed out in 
several studies ([10], [11]). This is because selecting data from a biased population sample leads to decisions that reflect the biases 
already present in our society. Focusing on the domain of healthcare and biomedical fields, a longstanding history of discrimination 
in medicine can be discovered [12] [13] [14]. Demographic healthcare inequalities persist worldwide, and the impact of medical 
biases on different patient groups is still an issue. In this scenario, AI represents an excellent opportunity to handle bias-related 
issues. However, there are several examples of how the lack of bias detection systems is an issue that most of the currently used 
biomedical AI technologies present. Gender and sex bias can have a significant impact on precision medicine [15], as well as 
bias can be a problem when applying machine learning approaches to outcome prediction in anticoagulant drug therapy [16]. As 
previously discussed, machine learning bias can manifest in various ways [17]. While entirely eradicating bias from our society 
may not be feasible, we can implement strategies to eliminate bias from our data and models. In this study, bias refers to the 
under-representation of specific patient groups, regardless of the cause. Synthetic data generated from biased data can lead to the 
under-representation of certain patient groups due to cultural sensitivities amongst some communities or standardised procedures 
in data collection. This may result in missing or incorrect correlations and distributions that reflect the biases present in the ground 
truth datasets. Datasets in medicine are often imbalanced, and the under-representation of specific patient groups reflects this bias. 
There are different approaches to address imbalances in data and mitigate bias. Some of these approaches are de-biasing methods, 
such as Reweighing [18] [19], Adversarial Debiasing [20], Reject option classification [21] [22], Equality of Opportunity [23] and 
Prejudice Remover Regularizer [21]. Other methods include the generation of synthetic data, including SMOTE [24] and variants 
such as Adaptive Synthetic Sampling (AdaSyn) [25]. The de-biasing methods aim to mitigate the bias in the training data to create 
an unbiased model when making decisions based on specific sensitive attributes. In contrast, SMOTE and AdaSyn re-balance the 
data considering the class variables. Although helpful in mitigating bias, these tools degrade learner performance as a side effect 
of improving fairness. Achieving fairness and high performance simultaneously is an ambitious goal defined as impossible in the 
past [26]. However, state-of-the-art bias mitigation algorithms, including Fair-SMOTE [27], addressed this challenge. Fair-SMOTE 
balances data based on class and sensitive attributes such that privileged and unprivileged groups have equal positive and negative 
examples. While it is beneficial when the protected attribute is binary, Fair-SMOTE has some limitations when it comes to achieving 
our specific purposes. Given that our goal is to identify different groups subject to bias, dividing the population into privileged and 
unprivileged a priori would cause a significant loss of information to identify specific cohorts of patients. However, since FAIR-SMOTE 
represents the state-of-the-art bias mitigation approaches, comparisons with its application are also proposed in this work with the 
necessary simplifications. This paper explores 𝐵𝑎𝑦𝑒𝑠𝐵𝑜𝑜𝑠𝑡, a technique that combines a Bayesian network synthetic data generator 
with a boosting approach. The primary objective of this method is to detect under-represented samples in a dataset and subsequently 
use the synthetic data to over-sample the under-represented groups, resulting in a better distribution of overall features. This work 
extends our preliminary research approach [28], published as a conference paper. Despite some common ground with the previous 
conference publication, the innovation introduced in this new framework relies on refinement, improvement and optimisation of the 
methodology, including changes and enhancements within the bias detection framework, by introducing a stratified sampling in the 
so-called uncertainty analysis, but also in the bias correction framework, by optimising the Bayesian network application. Moreover, 
a complete and extended evaluation has been carried out, investigating several diseases and several protected attributes which better 
refer to minority groups, including ethnicity. Nevertheless, a thorough comparison with the state-of-the-art approach, Fair-SMOTE, 
is proposed in this work. Our work differs from the existing techniques mentioned above since it aims to create synthetic data that is 
more representative of the entire population, thus enhancing the performance of predictive models. The rest of the paper is organised 
as follows. Section 2 provides a detailed methodology definition, introducing BayesBoost and explaining our simulation approach to 
simulate data biases. After presenting the data used for testing the method, empirical analysis is proposed. Section 3 offers the results 
obtained from the application of BayesBoost, and finally, the conclusion is described in section 4.

2. Method

The approach we propose aims to identify data biases, correct them and improve classification accuracy. In this section, we define 
the developed methodology in detail. Firstly, we provide a comprehensive explanation of BayesBoost. We then describe the data bias 
simulation approach used to generate biased data to evaluate the effectiveness of our methodology. Next, we introduce the datasets 
on which we test our method. Finally, we describe the empirical analysis.

2.1. Methodology

BayesBoost BayesBoost can be broken down into two main sections. First, an uncertainty analysis is carried out for identifying data 
biases. In order to identify groups of under-represented data, the idea is to test a classifier, trained on a dataset, in predicting a binary 
target on a validation set extracted a priori from data. A disease target and a protected attribute are selected. The protected attribute is 
an attribute that divides the population into several groups within which we want to investigate under-representations. After choosing 
the protected attribute, a validation set is extracted through stratified random sampling based on that attribute’s levels. Extracting 
a validation set through stratified random sampling avoids obtaining results biased from the original data distribution. In order to 
detect under-represented data groups, we analyse the performance of a chosen classifier in predicting the target disease. Specifically, 
2

we define all the subjects where our classifier shows uncertainty in the prediction as difficult to classify. We determine uncertainty 
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through probabilities that fall within designated intervals, with probabilities ranging from 0.4 to 0.7 indicating uncertain binary 
classifications. We used an iterative approach and quartile-based analysis to determine p1 and p2, the uncertainty probabilities for 
our binary classification model. Our first probability, p1 = 0.4, represents the average probability of being classified as the negative 
class (0) within the 0.25-0.5 quartile range. The second probability, p2 = 0.7, represents the average probability of uncertainty for 
cases with a probability range between 0.5 and 0.75 for being classified as the positive class (1). This iterative process involved 
ten repeated classifications and the extraction of average values to ensure that these probabilities accurately reflect uncertainty 
levels in our dataset. The data classified with uncertainty within this interval forms a new dataset called DUnc. Although any binary 
classification model can potentially be used for uncertainty analysis, we experimented with a Naïve Bayes classifier due to its 
simplicity and probabilistic nature. Another important thing to note is that when performing the uncertainty analysis, it is essential 
to utilise appropriate metrics. Since we aim to improve the representativeness of data but also the effectiveness of predictive models, 
we use classification accuracy as the metric to extract under-represented groups.

The second section of this work concerns the application of a synthetic data generator to overcome the biases highlighted through 
the uncertainty analysis. Attributes are sorted based on differences between the distributions of the data we are investigating for 
bias, referred to DBias, and DUnc, framing the ordered set of variables named O. The idea is to generate a set of 𝑚 rows for each 
DUnc row, utilising a Bayesian network trained on DBias. The network incorporates evidence from DUnc, thus including subjects with 
under-represented characteristics in DBias to generate fresh data samples. The resulting synthetic dataset is merged with DBias to 
produce the ultimate dataset, 𝐵𝐵. In our approach, the number of rows to extract 𝑚 is an additional parameter that may need future 
optimisation. We attempted three different methods. The first method involves extracting 𝑚 data for each row of DUnc to create a 
dataset that is half the size of DBias. The second method involves extracting 𝑚 data to generate a dataset with dimensions equal to 
DBias. The third method involves extracting 𝑚 rows for each row of DUnc in such a way as to create a dataset with dimensions that 
are twice that of DBias. The complete details of this entire process are fully documented in Algorithm 1.

Algorithm 1 BayesBoost Pseudocode.

Require: a dataset containing biases 𝐷Bias, a protected attribute 𝑎, binary class to predict 𝐶 , range probabilities 𝑝1 and 𝑝2

1: Extract a validation set 𝑉 from 𝐷
Bias

through stratified random sampling using levels of 𝑎 as strata

2: Learn a Bayesian network 𝑏 from 𝐷
Bias

and fit its parameters

3: Train a model on 𝐷
Bias

and test it on 𝑉 to predict values of 𝐶
4: Extract all the outcomes that the classifier gets with uncertainty. Let 𝑝 be the outcome probability, and consider as uncertain all the cases where 𝑝1 < 𝑝 < 𝑝2
5: Create the dataset 𝐷

Unc
containing all the data from 𝑉 corresponding to the uncertain outcomes.

6: for each factor variable do

7: Calculate the frequencies in 𝐷
Bias

and 𝐷
Unc

.

8: Compute the average absolute difference between these frequencies

9: end for

10: for each numerical variable do

11: Calculate the mean of the absolute differences between quartiles, medians, and means of 𝐷
Bias

and 𝐷
Unc

12: end for

13: Define an ordered set of variables 𝑂 by excluding the predicted variable and sorting the remaining variables based on the difference between the distributions of 
𝐷

Bias
and 𝐷

Unc

14: for each row 𝑈𝑖 in 𝐷
Unc

do

15: for each variable 𝑂𝑗 in 𝑂 do

16: Construct evidence using the value of the corresponding variable in 𝑈𝑖

17: end for

18: Use the constructed evidence to attempt to extract 𝑚 samples from 𝑏 by inferring the variable to be predicted

19: if 𝑚 rows are extracted then

20: Continue with the next row in 𝐷
Unc

21: else

22: Remove variables to use as evidence, starting with the last variable in 𝑂
23: If a variable 𝑜𝑖 is not used as evidence, copy its value from 𝑈𝑖 to the new dataset

24: end if

25: end for

26: return A new dataset 𝐵𝐵, resulting from the computed data added to 𝐷
Bias

Simulation of data bias Two experiments are proposed within this work. One experiment presents the application of BayesBoost 
directly on the ground truth data. However, first, a simulation experiment is proposed to test the efficacy of BayesBoost. Given a 
dataset, data bias is simulated by generating synthetic data containing biases. Applying our boosting method to a simulated data set 
is necessary to show its functioning and effectiveness. Knowing the biases (because we introduce them) allows seeing if the developed 
approach works. Bayesian networks (BNs) are used to simulate biased data, thanks to their intrinsic properties. BNs are probabilistic 
models representing a set of stochastic variables with their respective dependencies and conditional distributions. Hence, they enable 
the generation of random samples under particular evidence, enabling the creation of data with predetermined biases that can be 
useful in testing our approach. After learning a Bayesian network from the original data, the protected attribute to investigate is 
selected. New conditional probabilities are introduced for categorical variables within the Bayesian network from which the data 
will be extracted. Finally, the percentage of data to be under-represented is identified. For instance, if 30% is chosen, a data set 
containing 30% of subjects with the chosen characteristic will be generated. After selecting these parameters, the data is extracted 
from the Bayesian network using logic sampling [29]. Controlling the level of under-sampled cases when generating synthetic data 
3

can be achieved by using evidence to produce data with the exact degree of under-sampling required. In order to completely separate 
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the biased data from the original data, a Bayesian network is learned from the obtained dataset. A dataset of the desired size, which 
from now on we will refer to as DBias, is extracted from this network. In our simulation, DBias is the data set that represents the 
original data set on which to apply the method for identifying and correcting data biases.

2.2. Datasets

The developed approach is tested on synthetic datasets generated from anonymised real primary care data [30] from the Clinical 
Practice Research Datalink (CPRD). CPRD is a real-world research service supporting retrospective and prospective public health 
and clinical studies in the UK. It is jointly sponsored by the Medicines and Healthcare products Regulatory Agency and the National 
Institute for Health Research, as part of the Department of Health and Social Care [31]. First, the approach is applied to the CPRD 
Synthetic cardiovascular disease datasets (CVD) [32], a dataset focusing on cardiovascular disease risk factors. The dataset covers 
499,344 patients and 21 variables, including stroke or heart attack, smoking habits, region, age, chronic diseases, body mass index, 
systolic blood pressure and other cardiovascular disease risk factors. CVD is a mixed dataset because it contains both numeric and 
factor variables. Finally, the method is applied to the CPRD Covid-19 Synthetic datasets [33], which focuses on patients presenting 
to primary care with symptoms indicative of Covid-19 (confirmed/suspected Covid-19) and control patients with negative Covid-19 
test results. The dataset covers 779,546 patients and 47 variables, including age, age categories, gender, region, Covid-19 diagnosis 
and Covid-19 test results. Even though the datasets we mentioned are not real, they closely resemble real-world primary healthcare 
data in terms of key characteristics and patterns, as demonstrated by studies [4]. Due to their high fidelity, we opted to test our 
approach on these synthetic datasets to avoid any privacy concerns that were previously explained.

2.3. Experimental design

The experiments that are carried-out can be divided into two subgroups: simulation and direct application. When conducting a 
simulation experiment (where we artificially create under representations to test our approach), an additional step for generating 
synthetic data containing biases is proposed. Our study uses the above-described datasets, and for each dataset, several targets and 
protected attributes are investigated. Regarding the CVD synthetic dataset, stroke and heart attacks, atrial fibrillation and type two 
diabetes are considered disease targets, whilst ethnicity, region and gender are investigated as biases.

Considering the Covid-19 synthetic dataset, the Covid-19 diagnosis is the target while gender, age categories and region are 
considered protected attributes. For every experiment, we split the datasets (train - 70%, test – 30%) and select the target and 
protected attribute we want to investigate. A dataset containing forced biases is generated using a synthetic data generator when 
conducting a simulation experiment. Otherwise, 70% of original data are carried on as data containing biases. Remember that the 
simulation experiment was initially necessary to assess our approach’s efficacy, but in real work, we should follow the path of the 
experiment where we don’t need simulation of biases. The dataset is then split again into a train and validation set. The validation set 
is extracted via stratified random sampling using the protected attribute’s levels as strata. After building a probabilistic model on the 
train data, we test the classifier in predicting the binary target on the validation set. BayesBoost is applied to detect under-represented 
groups.

First, the uncertainty analysis is carried out to identify the under-represented groups. Second, the synthetic data generator is 
applied to boost the uncertain cases. For each attempt, the results of BayesBoost are three synthetic datasets: BB50, BB100 and BB200, 
depending on the degree of oversampling used in the BayesBoost Algorithm. BB50 results from the extraction of 𝑚 data to boost the 
original data with an extra 50% of the size of DBias. BB100 results from the extraction of m data to boost the dataset by 100%. BB200 is 
the outcome when extracting m data to boost the dataset by 200%. In order to assess the efficacy of our approach, when conducting 
both types of experiments, we generate synthetic datasets by applying SMOTE and Adaptive Synthetic Sampling (AdaSyn) to the 
dataset in which biases have been deliberately introduced. Then, we compare the two outcomes to those obtained by BayesBoost. 
Moreover, when conducting the direct application experiment, BayesBoost is compared to the start of art approach Fair-SMOTE using 
the following assumptions:

• when investigating 𝑔𝑒𝑛𝑑𝑒𝑟 as a protected attribute, males are considered privileged

• when investigating 𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 as a protected attribute, “White or not stated” and “Other ethnic groups” are considered privileged. 
The remaining eight groups are considered unprivileged

• when investigating 𝑟𝑒𝑔𝑖𝑜𝑛 as a protected attribute, “London” and “South Central” are considered privileged. The remaining eight 
groups are considered unprivileged

Dividing data into privileged and unprivileged may limit acquiring data that accurately represents the entire population. This process 
results in losing all non-binary protected-attribute information for each group, making it challenging to identify specific patient 
cohorts. Despite the potential limitations, the resulting synthetic data sets are compared in predicting a binary variable by training 
a Naive Bayes classifier and testing the models on the same independent test set. We report the mean of ten runs and confidence 
intervals from applying the t-test. Fig. 1 shows the block diagram for one repeat of our experiment.

3. Results

This section proposes the results obtained from the application of BayesBoost. We choose to show results that better helps to 
4

answer three essential research questions. More results are available at Appendix A.
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Fig. 1. Block diagram of BayesBoost.

3.1. Simulation experiments

BayesBoost: identification of data bias The first research question is: can BayesBoost highlight data bias? To answer this question, we 
can consider Fig. 2, which shows the results obtained from a simulation experiment conducted on the CVD dataset where “ethnicity” 
is the protected attribute and stroke and heart attacks are the target disease. In Fig. 2, green bars represent the spread distribution of 
ethnicity in the ground truth data, whilst yellow bars represent the uncertainty analysis outcomes. Red bars represent the distribution 
of ethnicity in the simulated data where we purposely reduce “White or not stated” and “Other ethnic group” whilst increasing the 
others. When analysing simulation experiment results, yellow bars must be compared to the red ones, which represent data containing 
bias. The idea is that if the yellow bar is higher than the red bar, it highlights that we need more cases of these groups. As we can see 
in Fig. 2, BayesBoost manages to identify the under-representation we introduced, as we can see from the yellow bars that tell us that 
we need more “White or not stated” and “Other ethnic group”. Also, yellow bars tell us that we don’t need more Indian, Pakistani, 
Bangladeshi, Other Asian, the Black Caribbean, Black African and Chinese.

BayesBoost: data bias correction The second research question is: can BayesBoost correct data bias? In order to answer this question, 
we can refer to the same results we used to answer the previous research question. In Fig. 2, blue bars represent the distribution 
of ethnicity in the datasets resulting from the application of the boosting approach. Therefore, they represent the dataset corrected 
for bias. Comparing blue bars to red ones in Fig. 2 shows that our approach is working. For example, if we consider the “White or 
not stated” group, the red bar represents the simulation, and the yellow bar tells us that we need more subjects belonging to this 
category. The blue bar shows an increase of the subjects belonging to this category, as can be seen by comparing the red and blue 
5

bars.
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Fig. 2. Ethnicity distribution obtained by simulation experiment on CVD data.

Table 1

Results obtain by simulation experiments. DBias is obtained through generation of synthetic data containing bias.

Data Protected Target Dataset CI low Classification CI up AUC AUC

Attribute Accuracy ROC P-R

CVD Ethnicity Stroke D 0.79 0.792 0.793 0.85 0.32

DBias 0.596 0.597 0.598 0.78 0.25

BB50 0.751 0.753 0.754 0.8 0.28

BB100 0.752 0.753 0.754 0.8 0.29

BB200 0.758 0.754 0.756 0.8 0.28

SMOTE 0.714 0.715 0.716 0.81 0.29

AdaSyn 0.68 0.69 0.692 0.8 0.28

CVD Ethnicity Atrial Fibrillation D 0.892 0.893 0.894 0.87 0.16

DBias 0.69 0.7 0.71 0.76 0.15

BB50 0.831 0.83 0.84 0.87 0.16

BB100 0.842 0.843 0.845 0.87 0.16

BB200 0.855 0.856 0.857 0.87 0.16

SMOTE 0.742 0.745 0.748 0.87 0.16

AdaSyn 0.74 0.742 0.745 0.87 0.16

CVD Ethnicity Type 2 Diabetes D 0.81 0.82 0.823 0.84 0.25

DBias 0.7 0.71 0.724 0.8 0.21

BB50 0.791 0.793 0.796 0.82 0.22

BB100 0.796 0.797 0.798 0.82 0.23

BB200 0.797 0.798 0.8 0.83 0.23

SMOTE 0.701 0.705 0.71 0.82 0.22

AdaSyn 0.692 0.694 0.698 0.81 0.23

BayesBoost: classification accuracy improvement The third research question is: can BayesBoost improve classification accuracy? Our 
approach aims not only to generate synthetic data where biases have been reduced but also to obtain better predictive models for 
desired diseases. Table 1 summarised the classification accuracy and respective confidence intervals for the simulation experiment. 
Also, AUC values calculated for the ROC and precision-recall curves are proposed. We chose to use the AUC as a metric since it 
represents a valid measure of classification performance [34]. The results contained in Table 1 allow us to be sure that the method 
works. The classification accuracy obtained by testing the DBias dataset decreases significantly, which means that the synthetic gen-

eration of bias data has been successful. Furthermore, we can see how the application of BayesBoost leads to increasing classification 
performance. AUC values computed for ROC and Precision-Recall curves are comparable among BayesBoost, Smote and AdaSyn.

3.2. Real data experiments

BayesBoost: identification of data bias To answer this question, we can consider Fig. 3, which shows the results obtained from a direct 
application experiment conducted on the CVD dataset where “ethnicity” is the protected attribute and stroke and heart attacks are 
the target disease. In Fig. 3, green bars represent the spread distribution of ethnicity in the ground truth data, whilst yellow bars 
represent the uncertainty analysis outcomes. When analysing the direct application experiment, yellow bars must be compared to 
6

the green ones, which represent data containing bias. The idea is that if the yellow bar is higher than the green bar, it highlights 
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Fig. 3. Ethnicity distribution obtained by direct application experiment on CVD data.

that we need more cases of these groups. Results showed in Fig. 3 highlight that we need more Indian, Pakistani, Bangladeshi, Other 
Asian, Black Caribbean and Black African if we want to obtain a fairer dataset and a better model to predict stroke and heart attacks. 
Also, “White or not stated” and “Other ethnic group” groups don’t need to be increased. It means that the original data already 
contains enough of them for our purpose. Data distributions resulting from additional conducted real data experiments can be found 
in Appendix A. Fig. 4 in the appendix reports ethnicity distribution when investigating racial biases in predicting atrial fibrillation, 
while Fig. 5 displays the same for predicting type 2 diabetes. Figs. 6, 7 and 8 refer to investigating regional biases in predicting 
stroke and heart attacks, type 2 diabetes, and atrial fibrillation, respectively. Whereas Figs. 9, 10, and 11 delve into the gender biases 
in predicting stroke and heart attacks, type 2 diabetes, and atrial fibrillation, respectively. Additionally, Fig. 12 outlines the regional 
distribution obtained while investigating biases in Covid-19 data. Fig. 13 presents the distribution of age categories when examining 
age biases in predicting Covid-19 diagnosis.

BayesBoost: data bias correction The second research question is: can BayesBoost correct data bias? In order to answer this question, 
we can refer to the same results we used to answer the previous research question. In Fig. 3, blue bars represent the distribution of 
ethnicity in the datasets resulting from the application of the boosting approach. Therefore, they represent the dataset corrected for 
bias. Comparing blue bars to green ones in Fig. 3 show that our approach is working. For example, if we consider the “Indian” group, 
the green bar represents the ground truth data, and the yellow bar tells us that we need more subjects belonging to this category. 
Blue bars increase the number of subjects belonging to this category, as seen by comparing the green and blue bars.

BayesBoost: classification accuracy improvement The third research question is: can BayesBoost improve classification accuracy? Our 
approach aims not only to generate synthetic data where biases have been reduced but also to obtain better predictive models for 
desired diseases. Tables 2 and 3 contain three performance metrics for every experiment. Prediction performance is measured in terms 
of classification accuracy, AUC values calculated for the ROC and precision-recall curves. In Tables 2 and 3 the performances obtained 
with BayesBoost, SMOTE and Adasyn and F-SMOTE are compared. As we can see, BayesBoost always increases classification accuracy 
while also maintaining reasonable confidence intervals. When applying SMOTE, AdaSyn and F-SMOTE classification accuracy drops. 
Moreover, SMOTE and AdaSyn solve the class imbalanced issue but do not mitigate bias related to protected attributes. F-SMOTE, 
which aims to mitigate bias while increasing classification accuracy, unlikely SMOTE and AdaSyn, shows a lower classification 
accuracy than that obtained by the application of BayesBoost. However, when applying F-Smote, AUC computed for the precision-

recall curve increases. That’s because F-Smote, mitigating bias while rebalancing the classification problem, increases the Recall with 
the side effect of decreasing classification accuracy and AUC calculated for the ROC curve. Moreover, to apply F-SMOTE, we had 
to make assumptions and simplifications, as explained in section 2.3. Consequently, all non-binary protected-attributes information 
about each group is lost as all data is divided into privileged and unprivileged. Furthermore, considering the final distributions 
of the data, we have seen how the application of BayesBoost leads to rebalancing data by both increasing and decreasing data 
groups. F-SMOTE instead leads to having the same number of cases within each group (privileged and class 0, privileged and 
class 1, unprivileged and class 0, non-privileged and class 1). Obtaining such a distribution of data may not be representative of 
reality. BayesBoost aims to mitigate the data bias by generating synthetic data that are more representative of the ground truth data 
population while improving performance. As we have seen from Figs. 2 and 3, BayesBoost does not lead to having the same number 
of cases in each level but rebalances the data to have a faithful representation of reality, which can involve a decrease in the original 
7

cases.
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Table 2

Results obtain by direct application experiment. DBias represent the original data that we supposed to contain bias.

Data Protected Target Dataset CI low Classification CI up AUC AUC

Attribute Accuracy ROC P-R

CVD Ethnicity Stroke DBias 0.793 0.795 0.796 0.741 0.37

BB50 0.824 0.826 0.827 0.746 0.37

BB100 0.827 0.829 0.83 0.74 0.37

BB200 0.828 0.83 0.831 0.73 0.36

SMOTE 0.715 0.717 0.718 0.73 0.37

AdaSyn 0.687 0.688 0.69 0.73 0.37

F-SMOTE - 0.65 - 0.63 0.4

CVD Ethnicity Atrial Fibrillation DBias 0.887 0.888 0.889 0.8 0.19

BB50 0.927 0.928 0.929 0.81 0.18

BB100 0.934 0.935 0.936 0.81 0.18

BB200 0.94 0.941 0.942 0.79 0.18

SMOTE 0.744 0.746 0.748 0.79 0.18

AdaSyn 0.741 0.742 0.744 0.79 0.18

F-SMOTE - 0.71 - 0.7 0.4

CVD Ethnicity Type 2 Diabetes DBias 0.821 0.823 0.824 0.712 0.306

BB50 0.838 0.84 0.841 0.714 0.323

BB100 0.843 0.844 0.846 0.711 0.331

BB200 0.845 0.846 0.847 0.711 0.341

SMOTE 0.742 0.744 0.745 0.74 0.384

AdaSyn 0.707 0.709 0.711 0.73 0.366

F-SMOTE - 0.66 - 0.59 0.38

CVD Region Stroke DBias 0.793 0.795 0.796 0.745 0.367

BB50 0.817 0.818 0.819 0.741 0.372

BB100 0.823 0.824 0.826 0.739 0.369

BB200 0.829 0.83 0.831 0.731 0.36

SMOTE 0.714 0.715 0.716 0.739 0.369

AdaSyn 0.688 0.69 0.692 0.74 0.371

F-SMOTE - 0.66 - 0.63 0.44

CVD Region Atrial Fibrillation DBias 0.889 0.889 0.89 0.807 0.187

BB50 0.92 0.922 0.923 0.807 0.194

BB100 0.930 0.931 0.932 0.802 0.19

BB200 0.941 0.942 0.944 0.802 0.186

SMOTE 0.747 0.749 0.751 0.802 0.187

AdaSyn 0.746 0.747 0.749 0.797 0.184

F-SMOTE - 0.79 - 0.72 0.42

CVD Region Type 2 Diabetes DBias 0.822 0.823 0.824 0.712 0.308

BB50 0.836 0.837 0.838 0.7 0.307

BB100 0.838 0.84 0.842 0.697 0.316

BB200 0.842 0.844 0.845 0.7 0.333

SMOTE 0.739 0.74 0.742 0.732 0.374

AdaSyn 0.702 0.703 0.705 0.724 359

F-SMOTE - 0.67 - 0.62 0.41

3.3. Extending beyond accuracy to other metrics

Although the initial focus of BayesBoost was on predictive accuracy, the approach has the potential to facilitate other metrics. To 
explore this potential, we conducted some initial experiments to assess how well the method generalizes to other metrics, particularly 
fairness metrics like Equalized Odds and Demographic Parity. Our observations indicated that changing the criteria for selecting 
uncertain cases led to improvements in relevant statistics (see Tables 4 and 5) but did not always guarantee an improvement in 
underlying fairness metrics across the board. This was likely due to the interactive nature of these metrics, with some showing 
promise while others required fine-tuning during resampling.

4. Conclusion

Detecting underrepresented groups of patients is a valuable approach, particularly when it comes to generating synthetic data. 
BayesBoost is an effective technique that can help detect and address biases within data, leading to improved learning outcomes. 
This method can prove to be essential for synthetic dataset services like the one used at the Clinical Practice Research Datalink in 
the UK. Using synthetic data instead of real patient data for complex statistical analyses, machine learning, and artificial intelligence 
(AI) research applications offers several advantages. Among them is the ability to detect and mitigate biases in the ground truth 
datasets, preventing synthetic data from being affected by structurally missing data or incorrect correlations and distributions found 
8

in the biased ground truth datasets. Various conventional techniques, including SMOTE and AdaSyn, enhance model performance 
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Table 3

Results obtain by direct application experiment. DBias represent the original data that we supposed to contain bias.

Data Protected Target Dataset CI low Classification CI up AUC AUC

Attribute Accuracy ROC P-R

CVD Gender Stroke DBias 0.793 0.795 0.796 0.741 0.367

BB50 0.817 0.818 0.819 0.74 0.371

BB100 0.823 0.824 0.826 0.736 0.371

BB200 0.829 0.83 0.831 0.734 0.367

SMOTE 0.714 0.715 0.716 0.738 0.376

AdaSyn 0.688 0.69 0.692 0.738 0.372

F-SMOTE - 0.63 - 0.64 0.45

CVD Gender Atrial Fibrillation DBias 0.889 0.889 0.89 0.807 0.186

BB50 0.92 0.922 0.92 0.801 0.185

BB100 0.930 0.931 0.932 0.8 0.184

BB200 0.941 0.942 0.944 0.792 0.175

SMOTE 0.747 0.749 0.751 0.796 0.178

AdaSyn 0.746 0.747 0.749 0.798 0.184

F-SMOTE - 0.78 - 0.72 0.42

CVD Gender Type 2 Diabetes DBias 0.822 0.82 0.823 0.71 0.299

BB50 0.836 0.84 0.841 0.703 0.308

BB100 0.838 0.84 0.842 0.703 0.317

BB200 0.842 0.844 0.845 0.703 0.327

SMOTE 0.739 0.74 0.742 0.729 0.365

AdaSyn 0.702 0.703 0.705 0.723 0.353

F-SMOTE - 0.6 - 0.51 0.35

Covid-19 Age Categories Covid Diagnosis DBias 0.916 0.917 0.919 0.831 0.218

BB50 921 0.922 0.923 0.831 0.214

BB100 0.926 0.928 0.929 0.827 0.212

BB200 0.932 0.933 0.934 0.827 0.213

SMOTE 0.705 0.706 0.707 0.819 0.207

AdaSyn 0.719 0.721 0.722 0.828 0.22

F-SMOTE - 0.6 - 0.6 0.38

Covid-19 Region Covid Diagnosis DBias 0.918 0.919 0.92 0.831 0.214

BB50 0.918 0.92 0.921 0.825 0.209

BB100 0.926 0.928 0.929 0.826 0.214

BB200 0.932 0.933 0.934 0.824 0.215

SMOTE 0.712 0.714 0.717 0.819 0.215

AdaSyn 0.733 0.735 0.737 0.828 0.221

F-SMOTE - 0.66 - 0.58 0.35

Covid-19 Gender Covid Diagnosis DBias 0.918 0.919 0.92 0.834 0.221

BB50 0.918 0.92 0.922 0.832 0.219

BB100 0.926 0.928 0.929 0.834 0.224

BB200 0.932 0.933 0.934 0.834 0.224

SMOTE 0.712 0.714 0.717 0.824 0.218

AdaSyn 0.733 0.735 0.737 0.831 0.22

F-SMOTE - 0.69 - 0.58 0.34

Table 4

Performance metrics with equalised odds as a metric for uncertainty analysis in CVD Data 
with Ethnicity as the protected attribute and stroke as the target disease.

Metric DBias BB50 BB100 BB200

Accuracy 0.905 0.882 0.832 0.731

Accuracy 95% CI 0.904, 0.907 0.881, 0.882 0.83, 0.833 0.729, 0.732

Precision 0.372 0.312 0.254 0.202

Precision 95% CI 0.365, 0.379 0.309, 0.315 0.251, 0.256 0.2, 0.204

Recall 0.302 0.409 0.584 0.823

Recall 95% CI 0.296, 0.308 0.404, 0.414 0.578, 0.59 0.819, 0.827

F1-Score 0.333 0.354 0.354 0.324

F1-Score 95% CI 0.327, 0.339 0.35, 0.358 0.351, 0.356 0.322, 0.327
9
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Table 5

Performance metrics with demographic parity as a metric for uncertainty analysis in CVD 
Data with Ethnicity as the protected attribute and stroke as the target disease.

Metric DBias BB50 BB100 BB200

Accuracy 0.904 0.882 0.853 0.728

Accuracy 95% CI 0.903, 0.905 0.881, 0.883 0.851, 0.854 0.727, 0.731

Precision 0.388 0.326 0.284 0.209

Precision 95% CI 0.381, 0.395 0.319, 0.333 0.28, 0.288 0.205, 0.213

Recall 0.298 0.407 0.519 0.83

Recall 95% CI 0.289, 0.307 0.399, 0.415 0.512, 0.526 0.827, 0.833

F1-Score 0.337 0.361 0.368 0.332

F1-Score 95% CI 0.329, 0.345 0.354, 0.368 0.365, 0.371 0.326, 0.338

by balancing classes. However, these methods can compromise fairness by equalising two classes through random sampling without 
considering the attributes. Fair-SMOTE deals with SMOTE and AdaSyn limits by balancing data based on class and sensitive attributes 
such that privileged and unprivileged groups have equal positive and negative examples in the data. While very useful for mitigating 
bias, as a side effect of improving fairness, this method produces data results that are not representative of real data distribution. 
BayesBoost has been shown to produce data that resemble the original data distribution, as observed in simulation experiment results 
by comparing ground truth data with BayesBoost results. The results obtained through the application of SMOTE, AdaSyn and Fair-

SMOTE showed us comparable performance values, both for the results obtained on the CVD and Covid-19 data. The reported results 
show how the datasets resulting from the application of BayesBoost lead to better accuracy values than those obtained with SMOTE, 
AdaSyn and Fair-SMOTE. Additionally, preliminary experiments suggest that BayesBoost has the potential to improve other metrics 
beyond classification accuracy.

Based on the above, we offer three conclusions:

1. BayesBoost shows an excellent ability to identify under-represented groups within data given a sensitive attribute and a target 
disease

2. BayesBoost is able to handle this type of data bias by generating new synthetic data that do not deviate from the real data 
distribution

3. Additionally, BayesBoost improves learning performances

5. Further works

Although BayesBoost shows potential in detecting and correcting data biases in primary healthcare data, it has limitations. Bayes-

Boost can tackle only one discrete sensitive attribute at a time, which may pose a challenge in scenarios with numerous sensitive 
attributes. Additionally, BayesBoost is best suited for categorical sensitive attributes and may be less beneficial for continuous or 
mixed-type data. This necessitates additional preprocessing steps for feature engineering when sensitive attributes are not categor-

ical. Moreover, BayesBoost is primarily designed for binary disease classification, a choice made to enhance its effectiveness in 
correcting biases and improving predictive models for specific diseases. However, this specialization restricts its suitability for multi-

label classification problems or situations that do not involve diseases. Furthermore, it is essential to recognize that BayesBoost’s 
performance may be influenced by dataset-specific factors, computational resources, and domain-specific assumptions. Therefore, as 
we explore the potential to extend BayesBoost to handle non-discrete variables and assess biases in datasets with different structures, 
such as time series data, these limitations should be carefully considered and methodologically addressed. Future works will include 
further adaptation to broaden the scope of BayesBoost’s applicability, allowing it to address biases associated with multiple sensitive 
attributes, data types, and multi-label classification challenges in primary healthcare data. The paper briefly introduced fairness met-

rics as an area for potential exploration for the generalisability of uncertainty analysis. In light of our findings, we plan to conduct 
further research to better understand the interactions between fairness metrics within our framework. Additionally, future efforts 
are directed towards optimizing parameters, such as p1 and p2, to enhance their generalisability and performance across diverse 
datasets.
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Appendix A. Additional results

Fig. 4. Ethnicity distribution obtained by direct application experiment on CVD data when predicting atrial fibrillation.
11

Fig. 5. Ethnicity distribution obtained by direct application experiment on CVD data when predicting type 2 diabetes.

https://cprd.com/data
https://github.com/barbaraDraghi/BayesBoost
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Fig. 6. Region distribution obtained by direct application experiment on CVD data when predicting stroke.

Fig. 7. Region distribution obtained by direct application experiment on CVD data when predicting atrial fibrillation.
12

Fig. 8. Region distribution obtained by direct application experiment on CVD data when predicting type 3 diabetes.
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Fig. 9. Gender distribution obtained by direct application experiment on CVD data when predicting stroke.

Fig. 10. Gender distribution obtained by direct application experiment on CVD data when predicting atrial fibrillation.
13

Fig. 11. Gender distribution obtained by direct application experiment on CVD data when predicting type 2 diabetes.
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Fig. 12. Region distribution obtained by direct application experiment on Covid-19 data when predicting Covid-19 diagnosis.

Fig. 13. Age categories distribution obtained by direct application experiment on Covid-19 data when predicting Covid-19 diagnosis. Age category “1” represents 
patients under 20, and age category “2” patients aged between 20 and 44. Age category 3 corresponds to patients aged 45 to 69, and “4” is assigned to patients over 
70.
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