
1 

STOCK MARKET INDICES AND INTEREST RATES 

IN THE US AND EUROPE:  

PERSISTENCE AND LONG-RUN LINKAGES 

Guglielmo Maria Caporale, Brunel University London, UK 

Luis A. Gil-Alana, University of Navarra, Pamplona, Spain 
and Universidad Francisco de Vitoria, Madrid, Spain 

Eduard Melnicenco, University of Navarra, Pamplona, Spain 

Revised, October 2023 

Structured Abstract 
Purpose:  We aim to analyse (i) the persistence of the S&P500 and DAX 30 stock indices as well as of 
the Fed’s Effective Federal Funds rate and of the ECB’s Marginal Lending Facility rate, and (ii) the long-
run linkages between stock prices and interest rates in the US and Europe respectively. 

Methodology: The methodology is based on the concepts of fractional integration and cointegration. 

Findings:   Using monthly data from January 1999 to December 2022, the results can be summarised as 
follows. All series examined are nonstationary: stock prices are found to be I(1) while interest rates display 
orders of integration substantially above 1, which implies a rejection of the hypothesis of mean reversion 
in all cases examined. 

Originality:   We use an appropriate econometric framework to obtain new, reliable empirical evidence. 
All four series are highly persistent, and mean reversion does not occur in any single case. Moreover, the 
fractional cointegration analysis suggests that stock prices and interest rates are not linked in the long run. 

Keywords: Stock market prices; interest rates; persistence; fractional integration; fractional 
cointegration 

JEL Classification: C22: C32: G15 

Corresponding author: Professor Guglielmo Maria Caporale, Department of Economics and Finance, 
Brunel University London, Uxbridge, UB8 3PH, UK. Email: Guglielmo-Maria.Caporale@brunel.ac.uk; 
https://orcid.org/0000-0002-0144-4135   

Luis A. Gil-Alana gratefully acknowledges financial support from the Grant PID2020-113691RB-I00 
funded by MCIN/AEI/ 10.13039/501100011033, and from an internal Project from the Universidad 
Francisco de Vitoria. 

Comments from the Editor and two anonymous reviewers are gratefully acknowledged. 

Copyright © 2024, Emerald Publishing Limited. This author accepted manuscript is deposited under a Creative Commons 
Attribution Non-commercial 4.0 International (CC BY-NC) licence (https://creativecommons.org/licenses/by-nc/4.0/). This means 
that anyone may distribute, adapt, and build upon the work for non-commercial purposes, subject to full attribution. If you wish to 
use this manuscript for commercial purposes, please contact permissions@emerald.com (see: https://
www.emeraldgrouppublishing.com/publish-with-us/author-policies/our-open-research-policies#green).



2 
 

 
 
1.  Introduction  

The degree of persistence of interest rates and stock prices is a very important issue for 

several reasons. Knowledge of the former is essential to assess the effectiveness of 

monetary policy in controlling inflation and the empirical relevance of alternative theories 

such as consumption-based asset pricing models and the Fisher effect. As for the latter, 

examining whether or not stock prices follow a random walk is a key test of market 

efficiency. Further, establishing whether or not these two variables are linked in the long 

run can shed light on the extent to which monetary policy can achieve financial stability. 

In light of the above, this paper aims to examine (i) the degree of persistence of 

some representative interest rate and stock price series for the US and Europe; (ii) the 

possible existence of long-run equilibrium linkages between these two variables in each 

case. More specifically, the two interest rate series used for the empirical analysis are the 

Fed’s Effective Federal Funds rate and the ECB’s Marginal Lending Facility rate; the 

stock indices are the S&P500 and the German DAX 30. The importance of the present 

study comes from using a fractional integration/cointegration approach. This is more 

general and flexible than the standard framework based on the I(0) versus I(1) (stationary 

versus non-stationary) dichotomy used in most previous papers. In particular, it allows 

for fractional values of the differencing parameter. Therefore it encompasses a much 

wider range of stochastic processes and of adjustment mechanisms towards the long-run 

equilibrium. This enables us to shed new light on the issues of interest, with important 

implications for both monetary authorities and investors. 

Of particular importance is the nature of the monetary policy transmission 

mechanism. This describes how changes to interest rates flow through to economic 

activity and inflation. It is a complicated process subject to considerable uncertainty 

concerning the timing and size of the effects of interest rate changes on the economy. It 
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will affect bank and money-market interest rates, expectations, asset prices, saving and 

investment decisions, and the supply of credit. Note that the Fed’s Effective Federal 

Funds rate is the interest rate charged to banks when they lend money to each other 

overnight (it is also known as the overnight rate). The ECB’s Marginal Lending Facility 

rate is instead the rate banks pay when they borrow from the ECB overnight (a collateral 

being required). Therefore in both cases an interest rate rise will decrease profitability by 

making debt more expensive and thus reducing the capital available for investment. In 

addition, it will make savings accounts and fixed income securities more attractive to 

investors, who will become less inclined to invest in equity. For both these reasons, one 

would expect a negative effect of higher interest rates on stock prices. However, the 

financial industry (banks, brokerages, mortgage companies, and insurance companies) 

benefits from an increase in interest rates by being able to charge more for lending. 

Therefore the total effect on stock prices of higher interest rates could be positive instead 

if the financial industry dominates. Interestingly, Bernanke and Kuttner (2005) concluded 

that the effects of unanticipated monetary policy actions on expected excess returns 

account for the largest part of the response of stock prices.  

Some previous work has already examined the linkages between interest rates and 

stock prices. For instance, a study by Huang et al. (2016) analysed the impact on US stock 

indices (S&P500, NASDAQ, etc.) of interest rates, exchange rates and oil prices. They 

used weekly data from January 3, 2003 to March 27, 2015. They reported that stock prices 

tend to go up when oil prices increase, due to the expected recovery in the economy, and 

down when real interest rates increase. Stock prices also decrease when the US dollar 

appreciates against other important currencies such as the euro or the Swiss franc. In 

another related study, Hu et al.  (2020) instead investigated the relationship between 

interest rates and stock market prices in China over the period from January 1996 to 
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December 2016. Surprisingly, they found that the Shanghai Composite Index is positively 

related to interest rates. Finally, Bats et al. (2020) studied how a negative interest rate 

period affects the price of bank stocks. They found that during such periods they face a 

disadvantage compared to general stocks. This is due to the fact that bank deposits are no 

longer attractive, and therefore investors move their money out. This has a negative 

impact on the balance sheet of the bank. 

Note that causality could also run in the opposite direction, namely from stock 

prices to interest rates. For instance, Rigobon and Sack (2003) used an identification 

method based on heteroscedasticity. They reported that a 5 percent rise (fall) in the S&P 

500 index increased the likelihood of a 25 basis point tightening (easing) by the Fed by 

about a half. Bjørnland and Leitemo (2009) estimated a Vector AutoRegressive (VAR) 

model and found bidirectional causality between the S&P500 and the Federal Funds rate. 

As can be gathered from the above discussion of the existing literature, there exists 

already a body of work analysing the relationship between interest rates and stock prices. 

However, none of the studies mentioned above uses long-memory techniques to examine 

both the degree of persistence of the two variables of interest and the possible existence 

of long-run linkages between the two of them. This is the main contribution of the present 

paper, which obtains such information by applying fractional integration/cointegration 

methods, namely by using a very general framework which allows for a much wider range 

of dynamic processes than those previously used in the literature. To preview our results, 

we find that exogenous shocks have permanent effects on the series examined. Moreover, 

stock prices and interest rates do not appear to be linked in the long run. This has 

important implications for both policy makers and market participants. Specifically, it 

suggests that monetary authorities should resort to unconventional measures to ensure 
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financial stability, and that investors should rebalance their portfolios permanently in 

response to shocks affecting financial markets. 

The layout of the paper is the following: Section 2 describes the data; Section 3 

outlines the methodology; Section 4 discusses the empirical results; Section 5 summarises 

the main findings and offers some concluding remarks. 

 

2. Data  

The four series analysed are the Fed’s effective Federal Funds rate (FED), the European 

Central Bank’s Marginal Lending Facility rate (ECB), the Standard and Poor’s 500 

(S&P500) and the Deutscher Aktien Index 30 (DAX 30). The data are monthly closing 

prices and cover the period from January 1999 to December 2022, for a total of 288 

observations. The start date corresponds to the introduction of the euro for accounting 

purposes and digital transactions, and the end date reflects data availability at the time of 

the estimation. The source for the S&P500 and the DAX 30 is Yahoo finance; 

specifically, we use the adjusted closing price (the results are almost the same using the 

closing price instead). The interest rate series have been obtained from the FRED 

webpage. All series are displayed in Figure 1 below. 

 

 

 

 

 

 

 

 



6 
 

Figure 1: Time series plots 

FED ECB 

  

S&P500 DAX 30 

  
Note: FED stands for the Fed’s effective Federal Funds rate; ECB is the European Central Bank’s Marginal 
Lending Facility rate; S&P500 and DAX denote the Standard and Poor’s 500 and the Deutscher Aktien 
Index 30 respectively. The data are monthly closing prices and cover the period from January 1999 to 
December 2022. 

 

It is noteworthy that the ECB lowered interest rates to stimulate the economy 

much later than the Fed in the wake of both the DOTCOM and the Global Financial Crisis 

(GFC), and also kept them at a higher level compared to the Fed. Then, at the onset of the 

Covid-19 pandemic in 2020, unlike the Fed, it was not able to reduce rates since these 

had been very close to 0 from 2014. Most recently, in response to a surge in inflation, the 

Fed increased interest rates in March 2022 whilst the ECB did so in July 2022. At the end 
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of 2022, the ECB’s Marginal Lending Facility rate was 2.75% whilst the Fed’s Federal 

Funds Effective Rate was 4.33%. The lower panel plots show that both stock market 

indices exhibit volatility but have increased significantly since 1999 and peaked in 

December 2021, before starting to decrease and then to rebound.  

Table 1: Descriptive statistics  

 S&P 500 DAX 30 ECB rate FED rate 

No. of obs. 288.00 288.00 288.00 288.00 

Mean 1852.574 8155.108 2.197 1.783 

Std. Dev. 952.79 3444.35 1.802 1.946 

Minimum 735.09 2423.87 0.25 0.05 

25% 1190.17 5413.28 0.25 0.14 

50% 1414.17 7103.23 1.75 1.095 

75% 2248.44 11387.09 3.75 2.615 

Maximum 4766.18 15884.86 5.75 6.54 

ADF test 1.509* -0.686* -1.626* 0.06* 

P values 0.99 0.85 0.46 0.06 
*: Evidence of a unit root at the 95% level. 
 
 Table 1 reports some descriptive statistics for the series under examination.  

The number of observations is 288 in all cases. Regarding the stock indices, it is  

noteworthy that the DAX 30 has a higher mean and is more volatile than the S&P500.  

As for the interest rates, the ECB series has a higher mean but lower volatility than the 

FED one. Most importantly, all four series exhibit a unit root according to the ADF test 

results. 

 

3. Methodology 

For the empirical analysis we use fractional integration methods to model the series as 

I(d) processes, where d is the order of integration, which can be any real value, including 
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fractional ones, as proposed by Granger (1980, 1981), Granger and Joyeux (1980) and 

Hosking (1981). Such a process xt can be represented as follows: 

 (1 − 𝐿𝐿)𝑑𝑑𝑥𝑥𝑡𝑡  = 𝑢𝑢𝑡𝑡                𝑡𝑡 =   1, 2 , …,    (1) 

where L is the lag operator, ut is assumed to be stationary I(0) and d can be a fractional 

value (see Gil-Alana and Robinson, 1997 for an empirical application to the 14 

macroeconomic variables analysed in Nelson and Plosser, 1992). Note that the parameter 

d can be interpreted as a measure of persistence, since the polynomial on the left-hand 

side of (1) can be expressed in terms of its Binomial expansion, such that for all real d, 

     (1 − 𝐿𝐿)𝑑𝑑     =     ∑∞
𝑗𝑗=0 (𝑑𝑑 𝑗𝑗 )(−1)𝑗𝑗𝐿𝐿𝑗𝑗 = 1 − 𝑑𝑑𝑑𝑑 + 𝑑𝑑(𝑑𝑑−1)

2
𝐿𝐿2−. . .,  (2) 

and thus, if d is a fractional value, xt can be expressed in terms for all its past history, i.e.,  

𝑥𝑥𝑡𝑡    =    𝑑𝑑𝑥𝑥𝑡𝑡−1   +    𝑑𝑑(𝑑𝑑−1)
2

𝑥𝑥𝑡𝑡−2     −    …     +   𝑢𝑢𝑡𝑡.           (3) 

As already mentioned, the parameter d provides a measure of persistence, higher values 

of d corresponding to a higher degree of dependence between the observations.  

The estimated model is the following: 

 𝑦𝑦𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽𝛽𝛽 + 𝑥𝑥𝑡𝑡 ,       𝑡𝑡 =    1, 2, …,        (4) 

where α is a constant, β is the slope coefficient, and 𝑥𝑥𝑡𝑡   is the error that follows the process 

given by equation (1). Combining equations (1) and (2) one obtains the following 

framework: 

                   ,...,2,1,)1(, ==−++= tuxLxty tt
d

tt βα   (5) 

to be estimated from the observed data. In particular, the parameter d is estimated under 

three different assumptions for the errors: White Noise, Bloomfield-type and Seasonal 

MA(1) errors. In the first case no time dependence structure is imposed; in the second the 

adopted (non-parametric) specification is used to approximate ARMA structures; in the 
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third, given the monthly nature of the data, a seasonal MA(1) process is assumed which 

can be represented as:  

     𝑢𝑢𝑡𝑡   =  𝜌𝜌𝑢𝑢𝑡𝑡−12  +   𝜀𝜀𝑡𝑡 ,         𝑡𝑡  =   1, 2, ….      (6) 

where 𝜌𝜌  is a (seasonal) AR parameter and 𝜀𝜀𝑡𝑡  is NID(0, σ2). In each of those three cases, 

three model specifications are estimated:  

i)  without either a constant or a trend, i.e., imposing α = β = 0 in equation (5). 

ii)  with a constant but without a trend, i.e., with β = 0 a priori in equation (5). 

iii) with a constant and a (linear) time trend  

Note that if there exists a linear combination of two (fractionally integrated) 

variables that displays an order of integration smaller than that of the individual series 

these are said to be (fractionally) cointegrated. Specifically, we follow the two-step 

approach originally developed by Engle and Granger (1982), testing first 

i) If x1t (stock prices) and x2t (interest rates) are both integrated of a given 

order, say d, and then 

ii) Regressing each stock price series on the corresponding interest rate series, 

𝑥𝑥1𝑡𝑡   =  𝛿𝛿   +     𝛾𝛾 𝑥𝑥2𝑡𝑡  +   𝜀𝜀𝑡𝑡 ,            𝑡𝑡  =   1, 2, ….      

  and testing if the estimated residuals are integrated of a smaller order, i.e., 

d – b, with b > 0, which would imply cointegration (see Engle and Granger, 1987, and 

more recently Cheung and Lai, 1993, and Gil-Alana, 2003) of a certain degree. 

  

4.  Empirical Results 

As reported earlier, the four series are non-stationary according to the ADF test (other 

unit root tests such as Phillips and Perron, 1988, and  Elliot et al., 1996, produce 

essentially the same results, but these are not reported to save space). However, it is well 

known that these tests have very low power against fractional alternatives (see Diebold 
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and Rudebusch, 1991; Hassler and Wolters, 1993; Lee and Schmidt, 1996). This 

motivates the fractional integration approach we adopt to estimate the differencing 

parameter d using the three previously mentioned specifications for the error term: white 

noise (Table 1), Bloomfield-type errors (Table 2) and seasonal AR (Table 3). Each table 

reports the estimated values of d (and the corresponding 95% confidence intervals) for 

the three cases of no deterministic terms (2nd column), a constant only (3rd column), and 

both a constant and a linear trend (last column) in the regression model. The coefficients 

in bold are those from the specification selected on the basis of the statistical significance 

of the regressors. 

Table 2 shows that for the DAX 30 the estimated value of d is 0.96 with a 

confidence interval of (0.88, 1.06), whilst the corresponding value for the S&P500 is 0.94 

with a confidence interval of (0.88 and 1.01). For the logged series the corresponding 

estimates are 1.02 and 1.01 respectively, and the confidence intervals still contain 1. 

Therefore the null of d = 1 cannot be rejected, which represents evidence in favour of the 

Efficient Market Hypothesis (EMH). For the ECB rate the estimated value of d is 1.45 

with a confidence interval of (1.36, 1.57), and for the Fed rate it is 1.56 with a confidence 

interval of (1.48, 1.66), and thus the null of d = 1 is decisively rejected for both interest 

rate series.  

 

Table 2: Estimates of d. White noise errors 

Series No deterministic 
terms 

An intercept An intercept and a 
linear time trend 

i)    Stock market prices 

DAX 30 0.96   (0.88,   1.05) 0.96   (0.88,   1.06) 0.96   (0.88,   1.06) 

S&P500 0.91   (0.85,   0.98) 0.94   (0.88,   1.01) 0.93   (0.87,   1.00) 

Log DAX 30 0.98   (0.91,   1.08) 1.02   (0.94,   1.12) 1.02   (0.94,   1.12) 

Log S&P500 0.98   (0.91,   1.07) 1.01   (0.94,   1.10) 1.01   (0.94,   1.14) 
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ii)    Interest rates 

ECB 1.27   (1.19,   1.38) 1.45   (1.36,   1.57) 1.45   (1.36,   1.59) 

FED 1.25   (1.18,   1.33) 1.56   (1.48,   1.66) 1.56   (1.48,   1.66) 
 Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms  
(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4).  
The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series. 

 

Under the assumption of Bloomfield-type errors (Table 3) the estimated value of 

of d is 0.88 with a confidence interval of (0.77, 1.05) for the DAX 30, and 1.03 with a 

confidence interval of (0.94, 1.17) for the S&P500. Both of them are higher than in the 

previous case but are still within the I(1) interval. The corresponding estimates for the 

logged series are 0.97 with a confidence interval of (0.84, 1.13) for the DAX 30, and a 1 

with a confidence interval of (0.89, 1.14) for the S&P500. Those for the ECB and Fed 

rates are 1.23 and 1.45 with corresponding confidence intervals of (1.06, 1.40) and (1.31, 

1.60) respectively. These values are lower than in previous case, but still above the unit 

root. 

 

Table 3: Estimates of d. Bloomfield errors 

Series No deterministic 
terms 

An intercept An intercept and a 
linear time trend 

i)     Stock market prices 

DAX 30 0.96   (0.83,   1.20) 0.88   (0.77,   1.05) 0.89   (0.77,   1.05) 

S&P500 1.05   (0.93,   1.22) 1.03   (0.94,   1.17) 1.03   (0.94,   1.17) 

Log DAX 30 0.97   (0.86,   1.14) 0.97   (0.84,   1.13) 0.97   (0.83,   1.13) 

Log S&P500 0.98   (0.85,   1.15) 1.00   (0.89,   1.14) 1.00   (0.89,   1.15) 

ii)     Interest rates 

ECB 1.17   (1.07,   1.37) 1.23   (1.06,   1.40) 1.23   (1.06,   1.40) 

FED 1.35   (1.22,   1.52) 1.45   (1.31,   1.60) 1.45   (1.31,   1.60) 
Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms  
(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4).  
The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series. 
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As can be seen, the estimates under the assumption of MA(1) errors (Table 4) are 

almost the same as those in the case of white noise errors. This again supports the I(1) 

specification for stock prices but rejects it in favour of higher values of d for the interest 

rates. Similar results were obtained when using other parametric (Sowell, 1992) or 

semiparametric (Shimotsu and Phillips, 2001) methods, all of them supporting the I(1) 

specification in all cases examined. 

 

Table 4: Estimates of d. Seasonal MA(1) errors 

Series No deterministic 
terms 

An intercept An intercept and a 
linear time trend 

i)      Stock market prices 

DAX 30 0.96   (0.88,   1.05) 0.96   (0.88,   1.05) 0.95   (0.88,   1.05) 

S&P500 0.91   (0.86,   0.99) 0.93   (0.88,   1.01) 0.93   (0.87,   1.00) 

Log DAX 30 0.98   (0.90,   1.08) 1.02   (0.94,   1.12) 1.02   (0.94,   1.12) 

Log S&P500 0.98   (0.90,   1.08) 1.01   (0.94,   1.10) 1.01   (0.94,   1.10) 

ii)     Interest rates 

ECB 1.27   (1.19,   1.38) 1.45   (1.36,   1.57) 1.45   (1.36,   1.59) 

FED 1.25   (1.18,   1.33) 1.56   (1.48,   1.66) 1.56   (1.48,   1.66) 
Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms  
(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4).  
The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series. 
 

The next step is to check for the existence of a long-run relationship between the 

S&P500 and the Fed rate, as well as between the DAX 30 and the ECB rate. For this 

purpose we use the cointegration approach of Engle and Granger (1987). Table 5 displays 

the OLS estimates of α and β for these two regressions. Both intercepts are positive, whilst 

both slope coefficients are negative, and all of them are statistically significant.  
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Table 5: Estimates of the coefficients in the regression model 

Regression model Intercept (t-value) Regr. Coefficient (t-value) 

S&P500   /   FED 3.2575   (212.67) -0.0209   (-3.59) 

DAX 30   /   ECB 4.0340   (316.99) -0.0741   (-16.54) 
Note: Estimates of the intercept and the slope (with their corresponding t-values) in the OLS regression 
of stock market prices on interest rates. 

 

Table 6: Estimates of d for the regression errors 

Series No deterministic 
terms 

An intercept An intercept and a 
linear time trend 

i)    White noise errors 

S&P500   /   FED 1.08   (1.01,   1.17) 1.08   (1.01,   1.16) 1.08   (1.01,   1.16) 

DAX 30   /   ECB 1.12   (1.04,   1.23) 1.13   (1.05,   1.22) 1.13   (1.05,   1.22) 

ii)    Bloomfield (autocorrelated) errors 

S&P500   /   FED 1.07   (0.95,   1.20) 1.09   (0.98,   1.24) 1.09   (0.98,   1.24) 

DAX 30   /   ECB 1.13   (0.96,   1.29) 1.13   (0.98,   1.33) 1.13   (0.98,   1.33) 
Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms  
(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4).  
The values in parenthesis are the 95% confidence band. In bold, the selected specification for each series. 
 

Table 6 reports the estimates d based on the errors in the above regression models.  

For cointegration to hold it is necessary that d = 0. Again three model specifications are 

used (with α = β = 0, β = 0, α and β different from 0 respectively). The intercept and the 

time trend coefficients are found to be statistically insignificant and the estimates of d are 

above 1 in all four cases. When assuming white noise errors the estimates of d are 

significantly higher than 1. Under the assumption of autocorrelation the unit root null 

hypothesis cannot be rejected. The hypothesis of mean reversion (d < 1) is rejected in all 

four cases, thus no evidence of cointegration has been found so far. 

Since the residuals are clearly nonstationary, least squares and generalized least 

squares estimates will be inconsistent (see Robinson and Hidalgo, 1997). Robinson 

(1994) proposed a semi-parametric NBFDLS estimator which uses OLS on a degenerated 



14 
 

band of frequencies around the origin. An improved version of the test for the stationary 

case is given in Christensen and Nielsen (2006). 

 In the two-variable case, the NBFDLS estimator proposed in Robinson (1994) is 

given by: 

( ) ( )
1 1 1 1

1

1 1

1 1ˆ Re Re
m m

y y j y y j
j j

I I
m m

β λ λ
−

= =

    = ×     
∑ ∑

    (5) 

which is asymptotically distributed as: 
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where 𝑔𝑔𝑦𝑦1 and 𝑔𝑔𝑒𝑒 are the elements of a 𝐺𝐺 diagonal 2 × 2 matrix. From (6), normality is 

ensured as long as 𝑑𝑑 + 𝑑𝑑𝑒𝑒 < 0.5 (Christensen and Nielsen, 2006).  Note that this 

estimator crucially depends on the value of the bandwidth parameter m.  

 

Table 7: Estimates of d in the regression errors 

Series No deterministic 
terms 

An intercept An intercept and a 
linear time trend 

S&P500   /   FED 

i)    White noise errors 

m  =  0.5 0.99   (0.91,   1.08) 1.05   (0.99,   1.13) 1.05   (0.99,   1.14) 

m  =  0.6 0.97   (0.90,   1.06) 0.95   (0.89,   1.05) 0.95   (0.88,   1.05) 

m  =  0.7 0.99   (0.91,   1.08) 1.05   (0.98,   1.13) 1.05   (0.98,   1.13) 

ii)    Bloomfield (autocorrelated) errors 

m  =  0.5 1.00   (0.86,   1.17) 1.08   (0.96,   1.22) 1.09   (0.96,   1.23) 

m  =  0.6 1.00   (0.86,   1.14) 1.08   (0.96,   1.11) 1.09   (0.97,   1.11) 

m  =  0.7 1.00   (0.86,   1.17) 1.09   (0.97,   1.22) 1.09   (0.97,   1.23) 

DAX 30   /   ECB 

i)    White noise errors 
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m  =  0.5 1.00   (0.93,   1.10) 1.13   (1.05,   1.22) 1.13   (1.05,   1.22) 

m  =  0.6 0.96   (0.89,   1.06) 1.04   (0.96,   1.14) 1.04   (0.96,   1.14) 

m  =  0.7 1.00   (0.93,   1.10) 1.13   (1.05,   1.22) 1.13   (1.05,   1.22) 

ii)    Bloomfield (autocorrelated) errors 

m  =  0.5 0.99   (0.87,   1.15) 1.13   (0.98,   1.33) 1.13   (0.98,   1.32) 

m  =  0.6 0.95   (0.84,   1.13) 0.96   (0.84,   1.12) 0.97   (0.83,   1.12) 

m  =  0.7 0.99   (0.87,   1.16) 1.13   (0.98,   1.33) 1.13   (0.98,   1.33) 
Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms  
(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4).  
The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series. 
 

 

Table 7 reports the results based on this estimator, again for the three cases of no 

regressors, an intercept only, and an intercept as well as a time trend, for three different 

bandwidth parameters, m = 0.5, 0.6 and 0.7.1  In all cases the estimates are again very 

close to 1 and the unit root null hypothesis cannot be rejected, which again provides 

evidence against (fractional) cointegration. 

In the cointegration analysis it is implicitly assumed that all variables are 

stochastic. In what follows we depart from this assumption by imposing exogeneity of 

the interest rates. Therefore we estimate the following regressions with lagged rates:  

𝑆𝑆&𝑃𝑃 500𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐼𝐼𝐼𝐼𝑡𝑡−𝑘𝑘 + 𝑥𝑥𝑡𝑡   (7) 

     𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝐼𝐼𝐼𝐼𝑡𝑡−𝑘𝑘 + 𝑥𝑥𝑡𝑡,    (8) 

where k is the lag index, and xt is assumed again to be an I(d) process as in equation (1).  

 

Table 8: Estimates in a regression of SP500(t) on FED(t-k) 

K d (95% band) a (t-value) b (t-value) 

k  =  1 1.00   (0.88,   1.14) 7.117   (157.79) 0.0006   (0.60) 

k  =  2 1.02   (0.90,   1.15) 7.159   (161.04) 0.0038   (0.38) 

k  =  3 1.01   (0.90,   1.18) 7.200   (160.37) 0.0043   (0.42) 

k  =  4 1.01   (0.90,   1.16) 7.173   (163.10) 0.0070   (0.60) 
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k  =  5 1.01   (0.90,   1.14) 7.225   (165.08) 0.0007   (0.70) 

k  =  6 1.00   (0.90,   1.17) 7.192   (165.44) 0.0006   (0.68) 

k  =  7 0.93   (0.89,   1.15) 7.186   (166.27) 0.0068   (0.70) 

k  =  8 0.99   (0.88,   1.15) 7.157   (165.58) 0.0168   (0.70) 

k  =  9 0.99   (0.89,   1.16) 7.217   (166.68) 0.0068   (0.70) 

k  =  10 0.99   (0.90,   1.17) 7.733   (161.14) 0.0064   (0.66) 

k  =  11 1.00   (0.89,   1.18) 7.292   (170.71) 0.0061   (0.63) 

k  =  12 0.99   (0.90   1.17) 7.242   (170.24) 0.0062   (0.64) 
Note: The values in column 2 are the estimated values of the differencing parameter (and the  corresponding  
95% confidence bands) in the model given by Eq. (7) where xt is I(d). Columns 3 and 4 report the estimates 
of 
 the intercept and the slope with their corresponding t-values. 

 

Table 8 reports the estimated values of d, α and β for the regression of S&P500 

on the Fed rate. The estimates of d are very close for all values of k, and the confidence 

intervals contain 1, therefore the hypothesis d = 1 cannot be rejected. Note that the 

estimates of α, but not those of β, are statistically significant. 

 

Table 9: Estimates in a regression of DAX 30(t) on ECB(t-k) 

K d (95% band) a (t-value) b (t-value) 

k  =  1 0.96   (0.85,   1.14) 8.492   (137.77) 0.0095   (0.70) 

k  =  2 0.99   (0.85,   1.17) 8.491   (140.23) 0.0055   (0.40) 

k  =  3 0.99   (0.84,   1.15) 8.490   (141.06) 0.0077   (0.56) 

k  =  4 0.97   (0.84,   1.15) 8.535   (142.09) 0.0087   (0.64) 

k  =  5 0.97   (0.84,   1.14) 8.590   (143.44) 0.0097   (0.72) 

k  =  6 0.96   (0.83,   1.16) 8.540   (142.98) 0.0098   (0.73) 

k  =  7 0.95   (0.84,   1.13) 8.373   (144.48) 0.0100   (0.75) 

k  =  8 0.96   (0.83,   1.14) 8.552   (143.80) 0.0100   (0.73) 

k  =  9 0.95   (0.83,   1.14) 8.624   (145.47) 0.0098   (0.74) 

k  =  10 0.95   (0.85,   1.13) 8.686   (145.44) 0.0098   (0.62) 

k  =  11 0.96   (0.86,   1.14) 8.846   (150.91) 0.0083   (0.55) 

k  =  12 0.96   (0.85,   1.14) 8.832   (150.52) 0.0072   (0.55) 
Note: The values in column 2 are the estimated values of the differencing parameter (and the corresponding  
95% confidence bands) in the model given by Eq. (7) where xt is I(d). Columns 3 and 4 report the estimates 
of the intercept and the slope with their corresponding t-values. 
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Table 9 reports the corresponding results for the regression of the DAX 30 index 

on the ECB rate. The estimates of d are slightly below 1 but once more the unit root null 

hypothesis cannot be rejected. Similarly to the previous case, only the intercepts are 

statistically significant.  

 

5. Conclusions  

This paper has used fractional integration/cointegration methods to analyse (i) the 

persistence of the S&P500 and DAX 30 stock indices as well as of the Fed’s Effective 

Federal Funds rate and the ECB’s Marginal Lending Facility rate, and (ii) the long-run 

linkages between stock prices and interest rates in both the US and Europe. The data are 

monthly and the sample period goes from January 1999 to December 2022. 

The results can be summarised as follows. From a statistical point of view, we 

find that all series examined are nonstationary. Stock prices are found to be I(1) while 

interest rates display orders of integration substantially above 1. Therefore all four series 

are highly persistent, and mean reversion does not occur in any case. Moreover, the 

fractional cointegration analysis suggests that stock prices and interest rates are not linked 

in the long run. Regarding the economic interpretation of our findings, it would appear 

that shocks to both stock prices and interest rates have permanent effects. This suggests 

the need for active policies to counteract them. However, our empirical evidence indicates 

that conventional monetary policy does not affect stock markets in the long run. 

Therefore, as shown by the global financial crisis of 2007-8, it might be necessary for 

monetary authorities to adopt unconventional measures such as quantitative easing to 

achieve their objectives such as financial stability. Further, investors should respond to 

shocks by making permanent adjustment to their portfolios since their effects will not die 

away. 
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Future work should extend the analysis in two ways. First, a multivariate model 

including other relevant variables such as inflation, money supply, exchange rates etc. 

should be estimated to shed further light on the linkages between interest rates and stock 

prices. Second, expectations and announcement effects should be incorporated into the 

model. It is well known that stock prices can react to anticipated interest rate changes or 

monetary announcements even before these take place.  Because investors have already 

discounted those changes, the observed correction at the time of their implementation will 

then be smaller, and so will be the estimated impact. Therefore, not allowing for 

expectations and announcement effects could result in underestimating the strength of the 

linkages between monetary policy and stock markets. 
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Endnotes 

1. These are values usually employed in the literature. 
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	1.  Introduction 
	The degree of persistence of interest rates and stock prices is a very important issue for several reasons. Knowledge of the former is essential to assess the effectiveness of monetary policy in controlling inflation and the empirical relevance of alternative theories such as consumption-based asset pricing models and the Fisher effect. As for the latter, examining whether or not stock prices follow a random walk is a key test of market efficiency. Further, establishing whether or not these two variables are linked in the long run can shed light on the extent to which monetary policy can achieve financial stability.
	In light of the above, this paper aims to examine (i) the degree of persistence of some representative interest rate and stock price series for the US and Europe; (ii) the possible existence of long-run equilibrium linkages between these two variables in each case. More specifically, the two interest rate series used for the empirical analysis are the Fed’s Effective Federal Funds rate and the ECB’s Marginal Lending Facility rate; the stock indices are the S&P500 and the German DAX 30. The importance of the present study comes from using a fractional integration/cointegration approach. This is more general and flexible than the standard framework based on the I(0) versus I(1) (stationary versus non-stationary) dichotomy used in most previous papers. In particular, it allows for fractional values of the differencing parameter. Therefore it encompasses a much wider range of stochastic processes and of adjustment mechanisms towards the long-run equilibrium. This enables us to shed new light on the issues of interest, with important implications for both monetary authorities and investors.
	Of particular importance is the nature of the monetary policy transmission mechanism. This describes how changes to interest rates flow through to economic activity and inflation. It is a complicated process subject to considerable uncertainty concerning the timing and size of the effects of interest rate changes on the economy. It will affect bank and money-market interest rates, expectations, asset prices, saving and investment decisions, and the supply of credit. Note that the Fed’s Effective Federal Funds rate is the interest rate charged to banks when they lend money to each other overnight (it is also known as the overnight rate). The ECB’s Marginal Lending Facility rate is instead the rate banks pay when they borrow from the ECB overnight (a collateral being required). Therefore in both cases an interest rate rise will decrease profitability by making debt more expensive and thus reducing the capital available for investment. In addition, it will make savings accounts and fixed income securities more attractive to investors, who will become less inclined to invest in equity. For both these reasons, one would expect a negative effect of higher interest rates on stock prices. However, the financial industry (banks, brokerages, mortgage companies, and insurance companies) benefits from an increase in interest rates by being able to charge more for lending. Therefore the total effect on stock prices of higher interest rates could be positive instead if the financial industry dominates. Interestingly, Bernanke and Kuttner (2005) concluded that the effects of unanticipated monetary policy actions on expected excess returns account for the largest part of the response of stock prices. 
	Some previous work has already examined the linkages between interest rates and stock prices. For instance, a study by Huang et al. (2016) analysed the impact on US stock indices (S&P500, NASDAQ, etc.) of interest rates, exchange rates and oil prices. They used weekly data from January 3, 2003 to March 27, 2015. They reported that stock prices tend to go up when oil prices increase, due to the expected recovery in the economy, and down when real interest rates increase. Stock prices also decrease when the US dollar appreciates against other important currencies such as the euro or the Swiss franc. In another related study, Hu et al.  (2020) instead investigated the relationship between interest rates and stock market prices in China over the period from January 1996 to December 2016. Surprisingly, they found that the Shanghai Composite Index is positively related to interest rates. Finally, Bats et al. (2020) studied how a negative interest rate period affects the price of bank stocks. They found that during such periods they face a disadvantage compared to general stocks. This is due to the fact that bank deposits are no longer attractive, and therefore investors move their money out. This has a negative impact on the balance sheet of the bank.
	Note that causality could also run in the opposite direction, namely from stock prices to interest rates. For instance, Rigobon and Sack (2003) used an identification method based on heteroscedasticity. They reported that a 5 percent rise (fall) in the S&P 500 index increased the likelihood of a 25 basis point tightening (easing) by the Fed by about a half. Bjørnland and Leitemo (2009) estimated a Vector AutoRegressive (VAR) model and found bidirectional causality between the S&P500 and the Federal Funds rate. As can be gathered from the above discussion of the existing literature, there exists already a body of work analysing the relationship between interest rates and stock prices. However, none of the studies mentioned above uses long-memory techniques to examine both the degree of persistence of the two variables of interest and the possible existence of long-run linkages between the two of them. This is the main contribution of the present paper, which obtains such information by applying fractional integration/cointegration methods, namely by using a very general framework which allows for a much wider range of dynamic processes than those previously used in the literature. To preview our results, we find that exogenous shocks have permanent effects on the series examined. Moreover, stock prices and interest rates do not appear to be linked in the long run. This has important implications for both policy makers and market participants. Specifically, it suggests that monetary authorities should resort to unconventional measures to ensure financial stability, and that investors should rebalance their portfolios permanently in response to shocks affecting financial markets.
	The layout of the paper is the following: Section 2 describes the data; Section 3 outlines the methodology; Section 4 discusses the empirical results; Section 5 summarises the main findings and offers some concluding remarks.
	2. Data 
	The four series analysed are the Fed’s effective Federal Funds rate (FED), the European Central Bank’s Marginal Lending Facility rate (ECB), the Standard and Poor’s 500 (S&P500) and the Deutscher Aktien Index 30 (DAX 30). The data are monthly closing prices and cover the period from January 1999 to December 2022, for a total of 288 observations. The start date corresponds to the introduction of the euro for accounting purposes and digital transactions, and the end date reflects data availability at the time of the estimation. The source for the S&P500 and the DAX 30 is Yahoo finance; specifically, we use the adjusted closing price (the results are almost the same using the closing price instead). The interest rate series have been obtained from the FRED webpage. All series are displayed in Figure 1 below.
	Figure 1: Time series plots
	Note: FED stands for the Fed’s effective Federal Funds rate; ECB is the European Central Bank’s Marginal Lending Facility rate; S&P500 and DAX denote the Standard and Poor’s 500 and the Deutscher Aktien Index 30 respectively. The data are monthly closing prices and cover the period from January 1999 to December 2022.
	It is noteworthy that the ECB lowered interest rates to stimulate the economy much later than the Fed in the wake of both the DOTCOM and the Global Financial Crisis (GFC), and also kept them at a higher level compared to the Fed. Then, at the onset of the Covid-19 pandemic in 2020, unlike the Fed, it was not able to reduce rates since these had been very close to 0 from 2014. Most recently, in response to a surge in inflation, the Fed increased interest rates in March 2022 whilst the ECB did so in July 2022. At the end of 2022, the ECB’s Marginal Lending Facility rate was 2.75% whilst the Fed’s Federal Funds Effective Rate was 4.33%. The lower panel plots show that both stock market indices exhibit volatility but have increased significantly since 1999 and peaked in December 2021, before starting to decrease and then to rebound. 
	Table 1: Descriptive statistics 
	*: Evidence of a unit root at the 95% level.
	 Table 1 reports some descriptive statistics for the series under examination. 
	The number of observations is 288 in all cases. Regarding the stock indices, it is 
	noteworthy that the DAX 30 has a higher mean and is more volatile than the S&P500. 
	As for the interest rates, the ECB series has a higher mean but lower volatility than the FED one. Most importantly, all four series exhibit a unit root according to the ADF test results.
	3. Methodology
	For the empirical analysis we use fractional integration methods to model the series as I(d) processes, where d is the order of integration, which can be any real value, including fractional ones, as proposed by Granger (1980, 1981), Granger and Joyeux (1980) and Hosking (1981). Such a process xt can be represented as follows:
	 1−𝐿𝑑𝑥𝑡 = 𝑢𝑡               𝑡 =  1, 2 , …,    (1)
	where L is the lag operator, ut is assumed to be stationary I(0) and d can be a fractional value (see Gil-Alana and Robinson, 1997 for an empirical application to the 14 macroeconomic variables analysed in Nelson and Plosser, 1992). Note that the parameter d can be interpreted as a measure of persistence, since the polynomial on the left-hand side of (1) can be expressed in terms of its Binomial expansion, such that for all real d,
	     (1−𝐿)𝑑    =    𝑗=0∞𝑑 𝑗 (−1)𝑗𝐿𝑗=1−𝑑𝐿+𝑑(𝑑−1)2𝐿2−...,  (2)
	and thus, if d is a fractional value, xt can be expressed in terms for all its past history, i.e., 
	𝑥𝑡   =   𝑑𝑥𝑡−1  +   𝑑𝑑−12𝑥𝑡−2    −   …     +   𝑢𝑡.           (3)
	As already mentioned, the parameter d provides a measure of persistence, higher values of d corresponding to a higher degree of dependence between the observations. 
	The estimated model is the following:
	 𝑦𝑡=𝛼+ 𝛽𝑡+𝑥𝑡,       𝑡 =   1,  2, …,        (4)
	where α is a constant, β is the slope coefficient, and 𝑥𝑡   is the error that follows the process given by equation (1). Combining equations (1) and (2) one obtains the following framework:
	                     (5)
	to be estimated from the observed data. In particular, the parameter d is estimated under three different assumptions for the errors: White Noise, Bloomfield-type and Seasonal MA(1) errors. In the first case no time dependence structure is imposed; in the second the adopted (non-parametric) specification is used to approximate ARMA structures; in the third, given the monthly nature of the data, a seasonal MA(1) process is assumed which can be represented as: 
	     𝑢𝑡   = 𝜌𝑢𝑡−12 +   𝜀𝑡 ,           𝑡  =  1,  2,  ….      (6)
	where 𝜌  is a (seasonal) AR parameter and 𝜀𝑡  is NID(0, σ2). In each of those three cases, three model specifications are estimated: 
	i)  without either a constant or a trend, i.e., imposing α = β = 0 in equation (5).
	ii)  with a constant but without a trend, i.e., with β = 0 a priori in equation (5).
	iii) with a constant and a (linear) time trend 
	Note that if there exists a linear combination of two (fractionally integrated) variables that displays an order of integration smaller than that of the individual series these are said to be (fractionally) cointegrated. Specifically, we follow the two-step approach originally developed by Engle and Granger (1982), testing first
	i) If x1t (stock prices) and x2t (interest rates) are both integrated of a given order, say d, and then
	ii) Regressing each stock price series on the corresponding interest rate series,
	𝑥1𝑡   = 𝛿   +    𝛾 𝑥2𝑡 +   𝜀𝑡 ,              𝑡  =  1,  2,  ….     
	  and testing if the estimated residuals are integrated of a smaller order, i.e., d – b, with b > 0, which would imply cointegration (see Engle and Granger, 1987, and more recently Cheung and Lai, 1993, and Gil-Alana, 2003) of a certain degree.
	4.  Empirical Results
	As reported earlier, the four series are non-stationary according to the ADF test (other unit root tests such as Phillips and Perron, 1988, and  Elliot et al., 1996, produce essentially the same results, but these are not reported to save space). However, it is well known that these tests have very low power against fractional alternatives (see Diebold and Rudebusch, 1991; Hassler and Wolters, 1993; Lee and Schmidt, 1996). This motivates the fractional integration approach we adopt to estimate the differencing parameter d using the three previously mentioned specifications for the error term: white noise (Table 1), Bloomfield-type errors (Table 2) and seasonal AR (Table 3). Each table reports the estimated values of d (and the corresponding 95% confidence intervals) for the three cases of no deterministic terms (2nd column), a constant only (3rd column), and both a constant and a linear trend (last column) in the regression model. The coefficients in bold are those from the specification selected on the basis of the statistical significance of the regressors.
	Table 2 shows that for the DAX 30 the estimated value of d is 0.96 with a confidence interval of (0.88, 1.06), whilst the corresponding value for the S&P500 is 0.94 with a confidence interval of (0.88 and 1.01). For the logged series the corresponding estimates are 1.02 and 1.01 respectively, and the confidence intervals still contain 1. Therefore the null of d = 1 cannot be rejected, which represents evidence in favour of the Efficient Market Hypothesis (EMH). For the ECB rate the estimated value of d is 1.45 with a confidence interval of (1.36, 1.57), and for the Fed rate it is 1.56 with a confidence interval of (1.48, 1.66), and thus the null of d = 1 is decisively rejected for both interest rate series. 
	Table 2: Estimates of d. White noise errors
	 Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms 
	(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4). 
	The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series.
	Under the assumption of Bloomfield-type errors (Table 3) the estimated value of of d is 0.88 with a confidence interval of (0.77, 1.05) for the DAX 30, and 1.03 with a confidence interval of (0.94, 1.17) for the S&P500. Both of them are higher than in the previous case but are still within the I(1) interval. The corresponding estimates for the logged series are 0.97 with a confidence interval of (0.84, 1.13) for the DAX 30, and a 1 with a confidence interval of (0.89, 1.14) for the S&P500. Those for the ECB and Fed rates are 1.23 and 1.45 with corresponding confidence intervals of (1.06, 1.40) and (1.31, 1.60) respectively. These values are lower than in previous case, but still above the unit root.
	Table 3: Estimates of d. Bloomfield errors
	Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms 
	(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4). 
	The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series.
	As can be seen, the estimates under the assumption of MA(1) errors (Table 4) are almost the same as those in the case of white noise errors. This again supports the I(1) specification for stock prices but rejects it in favour of higher values of d for the interest rates. Similar results were obtained when using other parametric (Sowell, 1992) or semiparametric (Shimotsu and Phillips, 2001) methods, all of them supporting the I(1) specification in all cases examined.
	Table 4: Estimates of d. Seasonal MA(1) errors
	Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms 
	(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4). 
	The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series.
	The next step is to check for the existence of a long-run relationship between the S&P500 and the Fed rate, as well as between the DAX 30 and the ECB rate. For this purpose we use the cointegration approach of Engle and Granger (1987). Table 5 displays the OLS estimates of α and β for these two regressions. Both intercepts are positive, whilst both slope coefficients are negative, and all of them are statistically significant. 
	Table 5: Estimates of the coefficients in the regression model
	Note: Estimates of the intercept and the slope (with their corresponding t-values) in the OLS regression of stock market prices on interest rates.
	Table 6: Estimates of d for the regression errors
	Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms 
	(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4). 
	The values in parenthesis are the 95% confidence band. In bold, the selected specification for each series.
	Table 6 reports the estimates d based on the errors in the above regression models.  For cointegration to hold it is necessary that d = 0. Again three model specifications are used (with α = β = 0, β = 0, α and β different from 0 respectively). The intercept and the time trend coefficients are found to be statistically insignificant and the estimates of d are above 1 in all four cases. When assuming white noise errors the estimates of d are significantly higher than 1. Under the assumption of autocorrelation the unit root null hypothesis cannot be rejected. The hypothesis of mean reversion (d < 1) is rejected in all four cases, thus no evidence of cointegration has been found so far.
	Since the residuals are clearly nonstationary, least squares and generalized least squares estimates will be inconsistent (see Robinson and Hidalgo, 1997). Robinson (1994) proposed a semi-parametric NBFDLS estimator which uses OLS on a degenerated band of frequencies around the origin. An improved version of the test for the stationary case is given in Christensen and Nielsen (2006).
	 In the two-variable case, the NBFDLS estimator proposed in Robinson (1994) is given by:
	    (5)
	which is asymptotically distributed as:
	          ,      (6)
	where 𝑔𝑦1 and 𝑔𝑒 are the elements of a 𝐺 diagonal 2×2 matrix. From (6), normality is ensured as long as 𝑑+𝑑𝑒<0.5 (Christensen and Nielsen, 2006).  Note that this estimator crucially depends on the value of the bandwidth parameter m. 
	Table 7: Estimates of d in the regression errors
	Note: We report the estimates of the differencing parameter for the three cases of i) no deterministic terms 
	(in column 2); with an intercept (column 3) and with an intercept and a linear time trend  (column 4). 
	The values in parenthesis are the 95% confidence bands. In bold, the selected specification for each series.
	Table 7 reports the results based on this estimator, again for the three cases of no regressors, an intercept only, and an intercept as well as a time trend, for three different bandwidth parameters, m = 0.5, 0.6 and 0.7.1  In all cases the estimates are again very close to 1 and the unit root null hypothesis cannot be rejected, which again provides evidence against (fractional) cointegration.
	In the cointegration analysis it is implicitly assumed that all variables are stochastic. In what follows we depart from this assumption by imposing exogeneity of the interest rates. Therefore we estimate the following regressions with lagged rates: 
	𝑆&𝑃 500𝑡=𝛼+𝛽𝐼𝑅𝑡−𝑘+𝑥𝑡   (7)
	     𝐷𝐴𝑋𝑡=𝛼+𝛽𝐼𝑅𝑡−𝑘+𝑥𝑡,    (8)
	where k is the lag index, and xt is assumed again to be an I(d) process as in equation (1). 
	Table 8: Estimates in a regression of SP500(t) on FED(t-k)
	Note: The values in column 2 are the estimated values of the differencing parameter (and the  corresponding 
	95% confidence bands) in the model given by Eq. (7) where xt is I(d). Columns 3 and 4 report the estimates of
	 the intercept and the slope with their corresponding t-values.
	Table 8 reports the estimated values of d, α and β for the regression of S&P500 on the Fed rate. The estimates of d are very close for all values of k, and the confidence intervals contain 1, therefore the hypothesis d = 1 cannot be rejected. Note that the estimates of α, but not those of β, are statistically significant.
	Table 9: Estimates in a regression of DAX 30(t) on ECB(t-k)
	Note: The values in column 2 are the estimated values of the differencing parameter (and the corresponding 
	95% confidence bands) in the model given by Eq. (7) where xt is I(d). Columns 3 and 4 report the estimates of the intercept and the slope with their corresponding t-values.
	Table 9 reports the corresponding results for the regression of the DAX 30 index on the ECB rate. The estimates of d are slightly below 1 but once more the unit root null hypothesis cannot be rejected. Similarly to the previous case, only the intercepts are statistically significant. 
	5. Conclusions 
	This paper has used fractional integration/cointegration methods to analyse (i) the persistence of the S&P500 and DAX 30 stock indices as well as of the Fed’s Effective Federal Funds rate and the ECB’s Marginal Lending Facility rate, and (ii) the long-run linkages between stock prices and interest rates in both the US and Europe. The data are monthly and the sample period goes from January 1999 to December 2022.
	The results can be summarised as follows. From a statistical point of view, we find that all series examined are nonstationary. Stock prices are found to be I(1) while interest rates display orders of integration substantially above 1. Therefore all four series are highly persistent, and mean reversion does not occur in any case. Moreover, the fractional cointegration analysis suggests that stock prices and interest rates are not linked in the long run. Regarding the economic interpretation of our findings, it would appear that shocks to both stock prices and interest rates have permanent effects. This suggests the need for active policies to counteract them. However, our empirical evidence indicates that conventional monetary policy does not affect stock markets in the long run. Therefore, as shown by the global financial crisis of 2007-8, it might be necessary for monetary authorities to adopt unconventional measures such as quantitative easing to achieve their objectives such as financial stability. Further, investors should respond to shocks by making permanent adjustment to their portfolios since their effects will not die away.
	Future work should extend the analysis in two ways. First, a multivariate model including other relevant variables such as inflation, money supply, exchange rates etc. should be estimated to shed further light on the linkages between interest rates and stock prices. Second, expectations and announcement effects should be incorporated into the model. It is well known that stock prices can react to anticipated interest rate changes or monetary announcements even before these take place.  Because investors have already discounted those changes, the observed correction at the time of their implementation will then be smaller, and so will be the estimated impact. Therefore, not allowing for expectations and announcement effects could result in underestimating the strength of the linkages between monetary policy and stock markets.
	Endnotes
	1. These are values usually employed in the literature.
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