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A B S T R A C T   

As network neuroscience can capture the systemic impact of APOE variability at a neuroimaging level, this study 
investigated the network-based cognitive endophenotypes of ε4-carriers and non-carriers across the continuum 
between normal ageing and Alzheimer’s dementia (AD). We hypothesised that the impact of APOE-ε4 on 
cognitive functioning can be reliably captured by the measurement of graph-theory centrality. 

Cognitive networks were calculated in 8118 controls, 3482 MCI patients and 4573 AD patients, recruited in 
the National Alzheimer’s Coordinating Center (NACC) database. Nodal centrality was selected as the neuro-
functional readout of interest. ε4-carrier-vs.-non-carrier differences were tested in two independent NACC sub- 
cohorts assessed with either Version 1 or Version 2 of the Uniform Data Set neuropsychological battery. 

A significant APOE-dependent effect emerged from the analysis of the Logical-Memory nodes in MCI patients 
in both sub-cohorts. While non-carriers showed equal centrality in immediate and delayed recall, the latter was 
significantly less central among carriers (v1: bootstrapped confidence interval 0.107–0.667, p < 0.001; v2: 
bootstrapped confidence interval 0.018–0.432, p < 0.001). This indicates that, in carriers, delayed recall was, 
overall, significantly more weakly correlated with the other cognitive scores. These findings were replicated in 
the sub-groups of sole amnestic-MCI patients (n = 2971), were independent of differences in network commu-
nities, clinical severity or other demographic factors. No effects were found in the other two diagnostic groups. 

APOE-ε4 influences nodal properties of cognitive networks when patients are clinically classified as MCI. This 
highlights the importance of characterising the impact of risk factors on the wider cognitive network via 
network-neuroscience methodologies.   

1. Introduction 

A significant, yet intricate link appears to exist between variability in 
the expression of the Apolipoprotein E (APOE) genetic locus and sus-
ceptibility to neurofunctional changes in ageing and in Alzheimer’s 
disease (AD) neurodegeneration. This is particularly visible in relation 
to the polymorphism at the basis of the differences between ε3 and ε4 

alleles. 
Evidence from genome-wide studies and from a systematic review of 

the literature indicates that the ε4 isoform is significantly associated 
with increased likelihood of an AD diagnosis (Andrews et al., 2020; 
Hersi et al., 2017; Lambert et al., 2013). In addition, other genome-wide 
studies carried out in large cohorts of healthy adults highlight a link 
between ε4-related variability and performance levels in episodic 
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memory (Arpawong et al., 2017; Debette et al., 2015), but not general 
cognition (Trampush et al., 2017), processing speed and executive 
functioning (Ibrahim-Verbaas et al., 2016), or short-term memory 
(Papassotiropoulos et al., 2011). 

Studies focussing on the sole APOE locus and investigating cross- 
sectional or longitudinal differences between ε4 carriers and non- 
carriers have led to an inconsistent pattern of findings (O’Donoghue 
et al., 2018). Of the between-group cognitive differences described, 
episodic memory is the domain most frequently associated with lower 
performance among ε4 carriers. Meta-analyses indicate that the effect of 
ε4 among cognitively normal adults is linked to poorer performance in 
episodic memory, executive functioning, processing speed and general 
cognitive functioning, but not in other domains (Small et al., 2004; 
Wisdom et al., 2011). 

Although limited evidence does suggest lower performance levels in 
ε4 carriers, this area of research has only been investigated via analyses 
of single-test performance. As functional domains interact with each 
other to sustain overall cognitive functioning, cognitive profiles can be 
also described via levels of complexity that are based on network 
neuroscience and take into account the interplay across cognitive do-
mains (Ferguson, 2022). Network neuroscience has been fruitfully 
applied to the study of ε4-dependent neuroimaging profiles at the basis 
of cognition (Kuang et al., 2020; Li et al., 2020; Sanabria-Diaz et al., 
2021). The current study expands this area of research and the appli-
cation of these methods to characterise the differences in cognitive 
networks between ε4 carriers and non-carriers, relying on the principles 
of graph theory, i.e., the mathematical framework at the basis of recent 
network-science-informed investigations of cognitive abilities in pa-
tients with mild cognitive impairment (MCI) and AD dementia (Fergu-
son, 2021; Nevado et al., 2022; Tosi et al., 2020; Wright et al., 2021). We 
hypothesised that network-related differences in cognitive profiles exist 
between ε4 carriers and non-carriers across multiple diagnostic statuses 
associated with normal ageing and AD and that these, as inconsistently 
suggested by the literature, will be visible in the portions of the network 
responsible for episodic memory, executive functioning and processing 
speed, with differences in “centrality-based” expression of nodes be-
tween ε4 carriers and non-carriers. Centrality indices describe the 
importance of variables by quantifying how influential these are within 
the whole network (Bringmann et al., 2019; Rubinov and Sporns, 2010). 
In this study, we focussed on two metrics known as Expected Influence 
(EI) and Strength to characterise the APOE-dependent, network-in-
formed importance of individual cognitive test scores, in a way that is 
complementary to that offered by univariate statistical models. EI and 
Strength are two correlation-based indices that can be particularly 
informative to clinical profiles, as they can pinpoint those variables that 
show trends of “correlational isolation” (i.e., via overall weaker corre-
lations) from the rest of the cognitive profile. 

2. Material and methods 

2.1. Participant datasets 

To test the hypothesis of APOE-dependent differences in cognitive 
networks, baseline datasets of the National Alzheimer’s Coordinating 
Center (NACC) database were scrutinised (https://naccdata.org/). 
NACC is a US-based clinical research enterprise coordinated by the 
National Institute of Aging (NIA) and the NIA Alzheimer’s Disease 
Research Centers (ADRC) program. The NACC Uniform Data Set (UDS) 
includes “prospective, standardized, and longitudinal clinical evaluation” on 
thousands of participants recruited across multiple ADRCs (Morris et al., 
2006). As of September 2021, this number was equal to 44,359, from 41 
ADRCs. 

Eligibility criteria (Fig. 1) were defined to shortlist a sub-database 
appropriate for addressing the study hypothesis. Datasets with no 
APOE information and ε2 carriers were discarded, as the ε2 isoform is 
associated with neurovascular mechanisms different from those of the ε4 

allele (Lumsden et al., 2020). The remaining 29,718 participants were 
classified according to the cognitive instrumentation used for clinical 
diagnostic procedures. Participants were assessed with one out of three 
versions of the standardised NACC UDS cognitive battery. While very 
little discrepancies exist between Version-1 (v1) and Version-2 (v2) 
(Weintraub et al., 2009), Version-3 includes a number of 
non-proprietary tests that are distinct from those of v1 and v2 (Stasenko 
et al., 2019), and administered via multiple routes (i.e., in-person, 
telephone and video-conference). As a consequence, only participants 
assessed with v1 and v2 were analysed in this study (n = 23,009). 

Retained datasets were considered for inclusion if the primary 
aetiological diagnosis was one of AD or of normal control (i.e., no 
neurological diagnosis of concern). To maximise clinical translatability, 
clinical, rather than biological criteria were used to classify study par-
ticipants. This is because in many countries, including the UK (Dunne 
et al., 2021), the majority of diagnostic settings do not routinely 
implement biological criteria to identify individuals with AD patho-
physiology. In the case of MCI patients, relying on a non-biological 
routine can be helpful when screening for the presence of cognitive 
impairment (Frisoni and Coleman, 2011). 

Medical exclusion criteria were thus defined. Firstly, datasets were 
discarded if associated with a primary diagnosis of neurological/ 
neurodegenerative conditions (other than AD) causing cognitive 
impairment, (i.e., Lewy-body disease, frontotemporal-motor neurone 
disease continuum, a history of stroke, probable or possible vascular 
dementia and normal-pressure hydrocephalus); secondly, retained pa-
tients were excluded if presenting with other, more uncommon neuro-
degenerative conditions (e.g., cortico-basal degeneration, progressive 
supranuclear palsy, Huntington’s disease, multiple system atrophy) or 
with rapidly-evolving forms of dementia or conditions of traumatic, 
psychiatric or other medical nature (e.g., prion disease infection, trau-
matic brain injury, central-nervous-system neoplasms, bipolar disorder, 
schizophrenia). Thirdly, patients were excluded if presenting with a 
systemic illness, a substance/alcohol abuse or other medically-relevant 
disorders that may compromise daily-life independence, or if treated 
with medications known to alter normal cognitive functioning. The 
application of this set of criteria resulted in 19,439 datasets. These were 
divided into the three main cognitive diagnoses: normal controls (n =
8685), MCI patients (n = 3794) and patients with AD dementia (n =
6256). The diagnosis of MCI was based on Petersen’s criteria (Petersen 
and Morris, 2005), while the diagnosis of dementia was based on the 
DSM-IV or other clinical criteria, as routinely implemented in each in-
dividual ADRC. For the purposes of this study, participants diagnosed as 
“cognitively impaired/no MCI” (n = 704) were not further considered. 
The resulting database was finally inspected to quantify missing data 
(Supplementary Table S1). Only participants with a complete cognitive 
profile or with a single missing score were retained (n = 18,168). Ninety 
percent (i.e., 3153 out of the 3482 participants with a diagnosis of MCI 
completed at least one follow-up visit as part of the NACC initiative, at 
an average temporal distance of approximately 15 months. Although no 
longitudinal data was analysed in this study, follow-up diagnoses of 
these participants were reviewed for descriptive purposes. A total of 590 
participants (equal to 16.94% of the cohort) received a clinical diagnosis 
of dementia at this follow up, and in 97.5% of cases the aetiology 
identified as the primary cause for cognitive impairment was a neuro-
degenerative condition: Alzheimer’s disease (i.e., according to the 
NINCDS/ADRDA criteria): n = 540; Lewy Body disease: n = 14; fron-
totemporal dementia (behavioural variant): n = 7; frontotemporal de-
mentia (primary progressive aphasia variants): n = 7; vascular dementia 
(i.e., according to the NINDS/AIREN criteria): n = 7; corticobasal 
degeneration: n = 2. For the remaining 13 MCI participants, the primary 
diagnostic contributors to dementia at follow up were other, 
non-neurological medical conditions. 

APOE genotypes (reported in Table 1), were operationalised to 
address the study hypothesis: participants with an ε4ε3 or ε4ε4 genotype 
were grouped in a single category (i.e., “ε4 carriers”), while participants 
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Fig. 1. Flowchart illustrating the process of participant selection and all significant medical exclusion criteria. Participants retained by the selection process at each step are 
framed by the dotted line. 
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with an ε3ε3 genotype were selected as the group of “ε4 non-carriers”. 
This analysis used data from 34 ADRCs, for NACC UDS visits conducted 
between June 2005 and June 2015. All procedures were carried out in 
compliance with the Code of Ethics of the World Medical Association 
(Declaration of Helsinki). Written informed consent was obtained from 
all participants. 

2.2. Cognitive profiles 

Nine test scores were used to construct diagnosis-dependent and 
genotype-dependent cognitive networks. These are listed and described 
(including their abbreviated labels) in box 1. To safeguard the principle 
whereby higher scores indicate better performance, TRAILA and TRAILB 
scores were multiplied by − 1. Furthermore, the sub-scores obtained in 
the two CATFL categories (“animals” and “vegetables”) were averaged 

to obtain a single score for this test. 

2.3. Definition of cognitive networks 

Published methodological principles were applied to construct a 
popular network-based model of cognitive functioning known as pair-
wise Markov random field - also called Gaussian graphical model when the 
variables of interest show multivariate normal distribution (Epskamp 
et al., 2018). Each network was based on nine nodes (i.e., corresponding 
to the 9 cognitive scores) and 36 edges (representing conditional 
dependence) defined by the statistical pairwise association across all 
pairs of nodes. 

The R open-source software environment (https://www.r-project.or 
g) and the qgraph package were used to explore and analyse all study 
data (Epskamp et al., 2012). Partial correlation coefficients were 

Table 1 
Main demographic characteristics and neuropsychological profiles of the cohort sub-groups.   

Controls MCI Patients AD Dementia Patients 

ε4 non-carriers ε4 carriers p ε4 non- 
carriers 

ε4 carriers p ε4 non- 
carriers 

ε4 carriers p 

n = 5418 n = 2700 n = 1851 n = 1631 n = 1816 n = 2757 

Demographic Variables 
Age (years) 71.56 (10.68) 68.73 (10.39) <0.001 74.81 (9.47) 72.33 (8.13) <0.001 75.53 

(10.43) 
73.45 (8.98) <0.001 

Education (years) 15.73 (3.02) 15.65 (2.97) 0.237 14.86 (3.57) 15.35 (3.19) <0.001 14.26 (3.69) 14.57 (3.40) 0.005 
MMSE 28.93 (1.37) 28.87 (1.48) 0.138 27.23 (2.42) 26.95 (2.47) <0.001 22.19 (4.51) 21.96 (4.42) 0.088 
Gender (F/M) 3561/1857 1764/936 0.726 930/921 823/808 0.898 965/851 1540/1217 0.071 
Handedness (L/R/AMB/ 

Unknown) 
406/4869/ 
126/17 

218/2405/70/ 
7 

0.653 132/1677/ 
39/3 

135/1456/ 
33/7 

0.279 132/1647/ 
32/5 

187/2523/41/ 
6 

0.772 

Neuropsychological Variables 
DIGIF 8.57 (2.03) 8.59 (2.06) 0.807 7.73 (2.07) 8.06 (2.05) <0.001 6.90 (2.21) 7.07 (2.14) 0.008 
DIGIB 6.84 (2.21) 6.80 (2.27) 0.414 5.82 (2.01) 5.94 (2.11) 0.091 4.52 (1.96) 4.66 (1.93) 0.015 
TRAILA (seconds) 34.20 (15.62) 33.31 (15.86) 0.017 44.51 

(23.12) 
41.87 
(19.91) 

<0.001 70.20 
(39.90) 

67.25 (39.40) 0.014 

TRAILB (seconds) 89.81 (49.66) 88.43 (50.48) 0.245 138.46 
(77.86) 

132.73 
(73.48) 

0.028 214.45 
(87.22) 

210.60 (87.79) 0.194 

DSST 47.81 (12.69) 48.76 (12.75) 0.002 37.33 
(12.02) 

38.74 
(11.84) 

<0.001 24.99 
(13.47) 

25.89 (13.88) 0.032 

CATFL (average) 17.56 (4.31) 17.71 (4.36) 0.144 13.52 (3.84) 13.69 (3.87) 0.209 8.97 (4.12) 9.52 (3.98) <0.001 
LMTI 13.65 (3.83) 13.32 (3.89) <0.001 9.34 (4.16) 8.51 (4.18) <0.001 4.61 (3.75) 4.12 (3.38) <0.001 
LMTD 12.37 (4.12) 12.03 (4.16) <0.001 7.25 (4.61) 5.89 (4.66) <0.001 2.45 (3.38) 1.74 (2.82) <0.001 
BNT 27.14 (3.21) 27.21 (3.17) 0.383 24.42 (4.74) 25.08 (4.44) <0.001 19.70 (6.96) 20.62 (6.78) <0.001 
n v1 v2 v1 v2  v1 v2 v1 v2  v1 v2 v1 v2  

2574 2844 1162 1538  991 860 787 844  860 956 1266 1491  

AD: Alzheimer’s disease; AMB: Ambidextrous; BNT: Boston Naming Test; CATFL: Category Fluency Test; DIGITB: Digit Span Test – Backward; DIGITF: Digit Span Test – 
Forward; DSST: WAIS-R Digit Symbol Substitution Test; F: Female; L: Left; LMTD: Logical Memory Test - Delayed Recall; LMTI: Logical Memory Test - Immediate 
Recall; M: Male; MCI: Mild Cognitive Impairment; MMSE: Mini Mental State Examination; R: Right; TRAILA: Trail Making Test – Part A; TRAILB: Trail Making Test – 
Part B; For DIGITF and DIGITB, the number of correct trials (rather than test scores) was used as part of the procedure. TRAILA and TRAILB are unconverted (i.e., not 
multiplied by − 1) in this table. 

Box 1 
Neuropsychological test measures used in this study  

Test Name Acronym Target Cognitive Domain 

Digit Span Test – Forward DIGITF Verbal short-term memory 
Digit Span Test – Backward DIGITB Working memory 
Trail Making Test – Part A TRAILA Visuospatial search 
Trail Making Test – Part B TRAILB Set-shifting abilities 
WAIS-R Digit Symbol Substitution Test DSST Attention and processing speed 
Category Fluency Test CATFL Semantic memory 
Logical Memory Test - Immediate Recall LMTI Verbal episodic memory 
Logical Memory Test - Delayed Recall LMTD Verbal episodic memory 
Boston Naming Test BNT Lexical-semantic abilities    
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calculated to define the raw statistical strength of each edge. As the 
majority of group-level test score distributions was skewed, nonpara-
metric rank-based partial correlation coefficients (Spearman’s rho) were 
computed, as this type of method makes no assumption on the under-
lying data distribution. Each correlational model was partialised for the 
remaining nodes and all edges represented weighted undirected 
associations. 

The Least Absolute Shrinkage and Selection Operator (LASSO) regu-
larisation technique was then applied. LASSO minimises the number of 
edges that account for the structure of data covariance via a “tuning 
parameter” (known as λ) that minimises the Extended Bayesian Infor-
mation Criterion (EBIC) by imposing a penalty that reduces the strength 
of all correlation coefficients (with some becoming exactly zero), and 
thus controlling the degree of sparsity (Tibshirani, 1996). EBIC is, in 
turn, defined by a hyperparameter (known as γ) typically ranging be-
tween 0 and 0.5, with 0.5 indicating that more parsimonious (i.e., 
sparser) models are preferred. Simulation studies indicated that a γ = 0.5 
conferred an optimal balance of sensitivity and specificity across di-
agnoses (Supplementary Figs. S1–S3). 

2.4. Calculation of centrality metrics 

Although multiple nodal and global metrics have been proposed in 
neuroscience research (Rubinov and Sporns, 2010), centrality is of 
particular interest as it quantifies how influential a node is within the 
entire network. This is important as it can help clinicians understand to 
what extent a single cognitive deficit can influence the entire clinical 
profile. EI (or “one-step Expected Influence”) is a centrality metric con-
sisting of the arithmetical sum of all standardised correlation co-
efficients (distinguishing between positive and negative values) between 
the target node and its immediate neighbourhood, i.e., the nodes linked 
to it with an edge surviving the sparsity-regularisation procedure 
(Robinaugh et al., 2016). A second form of EI, known as “two-step EI” 
also incorporates information about EI of a node’s neighbours. In this 
study, however, we relied on one-step EI only, to capture and focus on 
“direct” aspects of nodes’ centrality. While EI is a simple “summa-
tion-based” metric, Strength (or Strength Centrality) is a slightly more 
elaborate index that results from the arithmetical sum of the absolute 
values of all standardised correlation coefficients, thus not distinguish-
ing between positive and negative values (Bringmann et al., 2019). 

2.5. Data analysis 

Group-level cognitive networks were finalised for each diagnostic 
and genotype-dependent level. First, a Network Invariance Test was run to 
test for the effect of genotype on the overall invariant network structure 
of the three diagnostic sub-cohorts (van Borkulo et al., 2022). This is a 
permutation-based test that compares metrics calculated on unpermuted 
data with the distribution of permuted metrics (with n = 1000 itera-
tions). Second, a Global Strength Invariance Test was run to assess 
APOE-dependent differences in levels of Global Strength, i.e., the 
weighted absolute sum of all network edges (van Borkulo et al., 2022). 
Both these tests were run to assess the effect of genotype on global 
network metrics. 

Third, as the Network Invariance Test is a “generic procedure in which 
any relevant statistic that can be captured in a single value could be imple-
mented” (van Borkulo et al., 2022), the same principles were applied to 
address nodal centrality values. Specifically, as our experimental hy-
pothesis proposed that ε4 carriers would show differences in centrality in 
correspondence with episodic memory, executive functioning, and 
processing speed, a priori “ε4 carriers-vs.-ε4 non-carriers” between-group 
comparisons were defined for the following nodes: DSST, DIGITB, 
TRAILB, LMTI, and LMTD. 

Although v1 and v2 of the NACC cognitive assessment only show 
minimal procedural differences, the two sub-cohorts were analysed 
separately, for a total of 12 networks (i.e., 3 diagnoses × 2 genotype 

levels × 2 versions). This gave us the opportunity to test the hypothesis 
in two independent sub-cohorts. As estimated models are inevitably 
subjected to sampling variation and estimated edges might not always 
coincide with the edges of the true model (Burger et al., 2023), repli-
cation of findings minimises the odds of imprecise centrality estimates. 

3. Results 

3.1. Overall network centrality structure 

Findings are hereby reported following published guidelines (Burger 
et al., 2023). A sub-cohort-level characterisation of demographic indices 
and neuropsychological test scores is described in Table 1. The 12 
cognitive networks are illustrated in Fig. 2. Most edges were supportive 
of a positive correlation, and the strongest conditional dependencies 
were consistently found in correspondence of pairs of tests that are 
methodologically similar (i.e., DIGITF-DIGITB; TRAILA-TRAILB, 
LMTI-LMTD) or known to be sustained by a shared set of skills (e.g., 
CATFL-BNT). All coefficients of simple correlation, coefficients of partial 
correlation and edge weights are reported in Supplementary 
Tables S2–S4. The process of partialisation resulted in an average drop 
of 0.250 (SD = 0.08) in the correlation coefficients across the entire 
cohort (sub-cohort drops: controls = 0.253 (SD = 0.07); MCI = 0.214 
(SD = 0.08); AD Dementia = 0.253 (SD = 0.09)). Confidence intervals 
were calculated around each estimated edge weight (Supplementary 
Figs. S4–S6; please note that y-axis labels were not included to avoid 
cluttering) via 1000 nonparametric bootstrapping iterations (Epskamp 
et al., 2018). 

The Network Invariance Test revealed no differences in the overall 
network pattern between ε4 carriers and non-carriers (M “maximum 
statistics” are described in Table 2). Similarly, no differences in global 
strength were found (S “distances” are described in Table 2). 

3.2. Nodal centrality metrics 

Node EI and Strength were initially compared to define the impact of 
converting each edge weight to its absolute value. Correlation co-
efficients were calculated across the whole set of 108 nodes (r = 0.89), as 
well as within each diagnostic sub-set of 36 nodes (controls: r = 0.98; 
MCI: r = 0.95; AD Dementia: r = 0.83). These associations indicated that 
the conversion of edges weights into their absolute values led to minimal 
discrepancies only (see Supplementary Fig. S7 for a few examples of 
Strength-EI discrepancies). For this reason, the remainder of the ana-
lyses were run on EI only. 

The between-group comparison of EI for the five nodes of interest 
revealed no significant differences between genotype groups. However, 
the graphical representation of node-by-node EI-informed centrality 
(globally illustrated in Fig. 3a) showed that LMTI and LMTD centralities 
had very different trends in MCI ε4 carriers and non-carriers (Fig. 3b). A 
Bootstrapped Difference Test was thus run to compare LMTI and LMTD 
nodal centrality in each diagnostic and genotype-dependent sub-group 
(Epskamp et al., 2018). The results confirmed the significance of the 
trend (Fig. 3b; Table 2): no differences in centrality were found between 
LMTI and LMTD in MCI ε4 non-carriers, while a statistically significant 
difference was found among MCI ε4 carriers, in the analyses of both v1 
and v2 sub-cohorts (at a p < 0.001). No comparable differences emerged 
from this contrast in controls or AD-dementia patients. 

To corroborate these findings, the LMTI-LMTD difference in cen-
trality found in the group of MCI ε4 carriers was compared to the vari-
ability that emerged from differences between sub-cohorts tested with 
v1 and v2 of the cognitive assessment battery. A subtraction score (i.e., 
v1 minus v2) was calculated for each nodal centrality metric across all 
diagnoses. These differences (Fig. 3c) ranged between − 0.80 and 0.93 
(with mean ~ 0). A 3-SD confidence interval was built around the mean 
difference value (i.e., ±0.90): the differences between LMTI and LMTD 
found in the group of MCI ε4 carriers were significantly larger (v1: 1.99; 
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Fig. 2. Cognitive networks emerging from each diagnostic class and in each APOE subgroup. Networks associated with v1 and v2 are illustrated separately. Edges rep-
resenting positive and negative correlations are coloured grey and red, respectively. Edge width is proportional to weight. Node size is proportional to EI. Node colour 
represents modularity class identified by the Louvain community detection algorithm. 
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v2: 0.93), indicating a discrepancy larger than those normally occurring 
from the analyses of distinct sub-cohorts (Fig. 3d). 

We also measured the stability of network centrality by calculating 
the correlation stability (CS) coefficient. This assesses whether the order of 
nodal centrality metrics is unaltered when the network is re-estimated 
(via 1000 bootstrapped iterations; Supplementary Table S5) with 
fewer participants (i.e., a 5%-to-75% case drop) and there is a ≥0.7 
correlation between the original and re-estimated networks in at least 
95% of cases. The outcome indicated very strong stability (CS(cor = 0.7) 
= 0.75), which is above the recommended 0.5 cut-off (Epskamp et al., 
2018). 

Finally, we correlated the standard deviation of nodes with EI values 
for each group to investigate the impact of differential variability 
(Terluin et al., 2016). Correlations ranged between 0.37 and 0.73 and, 
although two of these were associated with significant p-values (Sup-
plementary Table S6), these analyses were characterised by low power, 
i.e., there were only n = 9 data points. 

3.3. Post-hoc analyses in the MCI sub-cohort 

First, to test whether these findings might have been due to a dif-
ference in clinical sub-type frequencies, the analyses were rerun in the 
sole sub-cohort of amnestic MCI patients (n = 2971). The findings were 
replicated in both v1 and v2 sub-cohorts (Table 2). 

Second, we tested the association between cognitive performance 
and three major demographic/clinical sources of variability: age, years 
of education and clinical severity estimated with the Mini Mental State 
Examination (this was done for each MCI sub-group; Supplementary 
Table S7). Almost all these associations (i.e., 98 out of 108) were sig-
nificant at a p < 0.001, indicating that conditional dependencies 
calculated by the graphical model regressed out a very large portion of 
variability accounted for by these variables. This implies that the dif-
ferences between ε4 carriers and non-carriers cannot be attributed to 
differences in age, educational attainment, or clinical severity. 

Finally, we inspected network communities in ε4 carriers and non- 
carriers (Blondel et al., 2008). A community can be thought as a set of 
nodes that are highly interconnected and, when cognitive profiles are 
analysed, they broadly represent network-informed estimates of cogni-
tive domains. The so-called "Louvain" community-detection method 
aims to maximise the graph’s modularity. This is a metric that factors in 
within-community and between-community edge weights. The initial 

(and least parsimonious) solution allocates each node to its own com-
munity. Then, each node is moved to one of its neighbour’s community 
and any gain in modularity is recorded. The node is then assigned to the 
community based on the maximum gain (or, if no gain is observed, it is 
maintained within its community). This process is repeated iteratively 
until no further gain is recorded (Blondel et al., 2008). The final solution 
indicated that both ε4 carriers and non-carriers showed the same four 
sets (Fig. 2), ruling out the possibility that the results were due to “up-
stream” structural differences in network communities. 

4. Discussion 

This study investigated network-level differences in cognitive pro-
files between APOE ε4 carriers and non-carriers across three diagnostic 
stages of the clinical “ageing-AD” continuum. As neuropsychological 
test performance relies upon multiple abilities interacting with one 
another, the study of cognitive functioning as informed by the principles 
of graph theory may provide a novel, higher-order view of how genetics 
influences cognitive profiles at the basis of clinical diagnoses. We 
hypothesised that carriers and non-carriers of the APOE ε4 allele (i.e., 
the best-established risk factor for sporadic AD) would show differences 
in nodal centrality of cognitive networks. 

EI is a centrality metric that quantifies the correlation-based relevance 
of a node within the network, while accounting for negative edges as 
well (Robinaugh et al., 2016). Overall, LMTD was significantly less 
central than LMTI in patients, regardless of APOE status. However, 
although between-group inferential models revealed no EI differences 
between ε4 carriers and non-carriers, a significant within-group diver-
gence emerged from the sub-analysis of episodic memory nodes in pa-
tients with MCI. Specifically, ε4 carriers showed significantly lower 
centrality on the immediate compared to the delayed recall of the 
Logical Memory Test, while no such difference was found among 
non-carriers. This indicates that the ε4 allele is associated with a sig-
nificant shift of the normal pattern of network centrality in these pa-
tients, with a greater “isolation” of the LMTD node. Among MCI ε4 
carriers LMTD scores tend to be significantly less positively correlated 
than LMTI to the performance on the other cognitive tasks. In other 
words, while presence of the ε4 allele is not linked to an absolute 
reduction in LMTD centrality in this sub-group, it is linked to a relative 
reduction of LMTD centrality, when compared to LMTI centrality. This 
statistical effect was independently replicated in both v1 and v2 large 

Table 2 
Between-group comparison of global and nodal network metrics.  

Global Network Metrics Nodal Network Metrics 

Diagnostic Group 
and Sub-cohort 

Network Invariance 
Test: M (p) 

Strength Global Strength 
Invariance Test: S (p) 

Centrality Invariance Test (p) LMTI-LMTD Difference 
(Bootstrapped C.I.) 

ε4 NC ε4 C DSST TRAILB DIGITB LMTI LMTD ε4 NC ε4 C 

Controls - v1 0.068 (0.733) 3.982 3.903 0.079 (0.723) 0.717 0.303 0.994 0.769 0.192 [-0.127 - 
0.081] 

[-0.197, 
0.130] 

Controls - v2 0.053 (0.781) 3.756 3.787 0.031 (0.626) 0.772 0.472 0.960 0.313 0.485 [-0.137 - 
0.045] 

[-0.092, 
0.165] 

MCI - v1 0.109 (0.351) 3.849 3.866 0.018 (0.905) 0.087 0.434 0.112 0.076 0.773 [-0.083 - 
0.231] 

[0.107, 
0.667] * 

MCI - v2 0.073 (0.870) 3.786 3.672 0.114 (0.275) 0.114 0.107 0.826 0.901 0.239 [-0.115 - 
0.169] 

[0.018, 
0.432] * 

AD Dementia - v1 0.107 (0.429) 4.379 4.133 0.245 (0.164) 0.866 0.165 0.348 0.099 0.565 [0.430–0.776] 
* 

[0.403, 
0.721] * 

AD Dementia - v2 0.110 (0.240) 4.181 3.916 0.265 (0.187) 0.392 0.016 0.203 0.124 0.502 [0.339–0.681] 
* 

[0.392, 
0.695] * 

aMCI - v1 0.101 (0.569) 3.875 3.634 0.241 (0.166) 0.019 0.220 0.090 0.691 0.526 [-0.084 - 
0.233] 

[0.078, 
0.638] * 

aMCI - v2 0.073 (0.890) 3.740 3.674 0.066 (0.424) 0.091 0.056 0.977 0.741 0.373 [-0.170 - 
0.174] 

[0.023, 
0.428] * 

‘M’: “maximum statistic”, i.e., the largest difference in edge weight between ε4 non-carriers and ε4 carriers across the entire network of 36 edges. ‘S’: summed difference 
of all edge strength metrics between the two groups. aMCI: amnestic MCI; C.I.: confidence intervals; C: carriers; NC: non-carriers. *: p < 0.001. Bootstrapped confidence 
(indicated as [‘lower limit’, ‘upper limit’]) are significant when not including the zero. 
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sub-cohorts of NACC MCI patients (n = 1778 and 1704, respectively), 
indicating reliability of findings. Moreover, the numerical difference in 
centrality found between LMTI and LMTD in MCI ε4 carriers was more 
than 3-SD larger than the average “normal” test-retest variability indi-
cated by the comparison of v1 and v2 within each node. Additionally, 
the outcome of a series of post-hoc analyses supports the conclusion that 
the difference between MCI ε4 carriers and non-carriers was not due to 
difference in clinical sub-type distribution, age, education, clinical 
severity, or network community structure. In particular, the findings 
were confirmed even when limiting the analyses to participants with a 
diagnostic of amnestic MCI. This indicates that the effect of APOE on 
node centrality cannot be exclusively due to carriers having worse 

episodic memory performance: APOE genotype can also influence the 
extended cognitive profile by altering the relation between measures of 
episodic memory and other functions. 

In experiencing memory alterations, patients with AD show degra-
dation of recall abilities when they tackle the delayed phase of the 
Logical Memory Test retrieval (Albert, 1996). The ε4 allele fosters hip-
pocampal atrophy (Suh et al., 2021), and is associated with reduced 
cerebral metabolism in limbic and frontal regions normally deputed to 
episodic-memory processing (Liu et al., 2015). When the retention in-
terval is taken into account, however, the ε4 allele is associated only with 
worse delayed recall among MCI patients, while no similar genetic effect 
is found on immediate recall, nor among normal adults or patients with 

Fig. 3. Summary of all nodal centrality metrics operationalised as EI. (A) Bar graphs indicating nodal centrality calculated for each APOE genotype group and for each 
NACC sub-cohort (i.e., v1 and v2); (B) Memory centrality of the two nodes representing immediate and delayed recall (i.e., while bars indicate z-converted centrality 
scores, raw centrality scores were numerically superimposed); (C) Distribution of same-node v1-to-v2 variability of centrality measures; the ±3-SD interval con-
structed around the mean of this distribution is shown in (D). The distance in centrality between the two memory nodes at the basis of the group difference in the MCI 
sub-cohorts (i.e., v1 and v2) is indicated in this graph with the two dotted lines. C: ε4 carriers; NC: ε4 non-carriers. *: p < 0.001. 
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AD dementia (Wang et al., 2019). Our findings expand this area of 
knowledge by characterising the statistical effect of the ε4 allele in terms 
of its differential impact on immediate and delayed recall, and how this 
results in specific network effects. 

At present, mechanisms explaining why these genotype-based dif-
ferences in EI centrality occur are unknown. A number of neurological 
routes have been proposed to account for the cognitive differences 
observed between ε4 carriers and non-carriers (Mahley et al., 2006). 
Recent evidence emerged from studies that have used neuromolecular 
PET radioligands indicates that ε4 carriers show higher uptake of 
[18F]-MK6240 (a tracer that binds to neurofibrillary tangles) in the en-
torhinal cortex and hippocampus, controlling for amyloid pathology, 
age, sex and clinical status (Therriault et al., 2020), and higher uptake of 
[11C]-PBR28 (a tracer that binds to a translocator protein expressed in a 
range of neural components, including activated microglia) in the hip-
pocampus, perirhinal and entorhinal cortex, controlling for amyloid and 
tau pathology (Ferrari-Souza et al., 2023). This suggests that a range of 
biological mechanisms linked to APOE variability (at least partially in-
dependent of AD pathophysiology) may concur in causing changes in 
memory function that can be captured by network analysis. 

Node-to-node correlations (and, in turn, measures of centrality) may 
be affected by differences in node variability (Terluin et al., 2016). 
Although the association between EI and node variability was significant 
among v1 MCI non-carriers, the marginally significant p-value (i.e., =
0.05) suggests that, in all likelihood, this methodological aspect only 
had a minimal impact on the differences observed between genotypes. 
Moreover, similar variability across MCI patients was observed on both 
LMTI and LMTD, suggesting that differential variability between these 
two specific nodes did not bias the results. As the analysed data were 
cross-sectional, the variability associated with any node likely reflects a 
mixture of within- and between-subjects effects (Epskamp et al., 2022). 
It remains to be seen whether the decreased EI centrality of delayed 
episodic memory is reliably associated with APOE genotype in indi-
vidual patients with amnestic MCI. 

Previous research has indicated that the cognitive domains most 
often affected by APOE genotype variability are episodic memory, 
processing speed and executive functioning, with ε4 carriers showing 
worse performance (Small et al., 2004; Wisdom et al., 2011). This 
pattern, however, is quite inconsistent across studies (O’Donoghue 
et al., 2018). This may be due to the insufficient level of “complexity” via 
which test scores are typically addressed by standard analytical pro-
cedures, as the independent analysis of multiple test scores only pro-
vides a partial description of cognitive profiles (Tosi et al., 2020). A 
network approach investigates the pattern of cognitive test performance 
scores in more depth, emphasising the role played by a specific test in 
relation to metrics that also account for the performance shown on other 
tests. These findings contribute to the understanding of the impact risk 
factors have on clinical profiles and are informative to the future design 
of comparable network-based investigations exploring the effect of other 
variables of clinical relevance. At the same time, they also expand the 
study of APOE-dependent neurofunctional systems informed by network 
neuroscience. When eigenvector centrality is investigated (a path-based 
centrality metric that, differently from degree and betweenness, factors 
in the low/high score of nodes), amnestic MCI ε4 carriers show 
decreased centrality in the anterolimbic-medioprefrontal territory 
(Yuan et al., 2016), and episodic-memory impairment in this group is 
negatively correlated with functional connectivity between this region 
and the right middle-cingulate cortex (Wang et al., 2017). This suggests 
a wider and crossmodal effect of APOE variability on network-based 
neurocognitive organisation, in which neurofunctional and cognitive 
complexity are both influenced. 

This study is not free from limitations. First, although we applied a 
robust set of exclusion criteria to minimise aetiological variability, we 
did not rely on biological criteria (e.g., Dubois et al., 2021). This is a 
methodological aspect that can be potentially improved by future 
studies, especially in the characterisation of MCI patients (Frisoni and 

Coleman, 2011). The current findings, however, may contribute to a 
pathway of clinical translation that is relevant to those settings where 
biological diagnoses are not possible due to lack of resources, or are not 
routinely implemented, e.g., in the United Kingdom (Dunne et al., 
2021). A clinical diagnosis of MCI still retains its clinical validity and is 
regulated by dedicated guidelines (Petersen et al., 2018). In this respect, 
the findings described in the current study address the link between 
cognitive networks and the most important genetic risk factor for AD in a 
way that is independent of biomarker profiles. Second, although our 
graphs were defined by solid methodological principles, it must be 
recognised that networks may be constructed based on a multitude of 
procedural choices, such as the use of unweighted edges (Wright et al., 
2021), the inclusion of demographic descriptors (Ferguson, 2021; Tosi 
et al., 2020), or the use of other (and/or more/fewer) neuropsycholog-
ical tests. On this note, psychological tests often operationalise con-
structs that show a degree of mutual contiguity and, as a result, this can 
lead to large node-to-node correlations that can inflate centrality mea-
sures. Although the neuropsychological battery analysed in this study 
did include pairs of tests characterised by theoretical and methodolog-
ical contiguity (e.g., DIGITF and DIGITB; TRAILA and TRAILB), 
node-to-node edges weighted only between 0.125 and 0.484 for these 
nodes (see Supplementary Tables S2–S4). The only edge with a consis-
tent weight above 0.5 was that between LMTI and LMTD. This, however, 
did not contribute to any of our findings, as this edge contributed to 
centrality of both LMTI and LMTD. Nonetheless, it is important to be 
aware of the possibility that inflated centralities might arise from the use 
of multiple test measures that are excessively correlated to one another. 
Moreover, additional metrics beyond centrality (e.g., integration and 
segregation) may further contribute to an in-depth characterisation of 
cognitive profiles and the impact on these of APOE or other risk factors. 
These additional features deserve to be investigated in sufficient depth, 
and need to be accompanied by adequate hypotheses in support of their 
potential clinical role. In a previous exploratory study of cognitive 
profiles consisting of unweighted networks and relying on a range of 
metrics, for instance, we found that MCI individuals had higher level of 
local efficiency and clustering (two indices indicating how well integrated 
a node’s neighbourhood is) than controls, but no differences in global 
efficiency, i.e., an index of global integration between the node and the 
rest of the network (Wright et al., 2021). Arguably, metrics that describe 
a node’s neighbouring sub-graph are particularly sensitive to the se-
lection of tests included in the cognitive battery. For this reason, it is 
important to rely on metrics that are methodologically compatible with 
the number and diversity of the available variables. A further aspect of 
relevance is the complexity of the inferential approach: at present, sta-
tistical tools are based on the comparison of two networks (van Borkulo 
et al., 2022). As, however, APOE genotypes result from the expression of 
three alleles (i.e., ε3, ε4 and ε2), approaches that account for multinomial 
predictors would help provide a more accurate picture. In all likelihood, 
future studies will contribute to consolidating and fine-tuning a wide 
range of methodological gold-standards for network analysis of cogni-
tive profiles and how these are influenced by the intricate mechanisms 
of clinical risk factors. 

5. Conclusions 

In conclusion, our study indicates that graph-theory-informed 
network-based cognitive profiles of MCI patients are significantly 
influenced by the presence of the APOE ε4 allele. This is visible in nodes 
corresponding to episodic memory performance: delayed recall was less 
central than immediate recall regardless of APOE status, but ε4 non- 
carriers showed comparable centrality in immediate and delayed 
recall, while ε4 carriers showed instead a dissociation between the two 
forms of retrieval. This finding indicates that genetic variability is not 
only associated with variability in individual test performance, but also 
in the overall network-level cognitive profiles. 

M. De Marco et al.                                                                                                                                                                                                                             



Neuropsychologia 192 (2024) 108741

10

Funding sources 

This research was supported by Neurocare (United Kingdom), under 
Grant agreement No. 181924 to MDM and by an Alzheimer’s Associa-
tion Research Grant (23AARG-1030190) to MDM. 

CRediT authorship contribution statement 

Matteo De Marco: Funding acquisition, Conceptualization, Meth-
odology, Data curation, Visualization, Writing - original draft, Writing - 
review & editing. Laura M. Wright: Data curation, Methodology, 
Visualization, Writing - review & editing. Jose Manuel Valera Ber-
mejo: Data curation, Methodology, Writing - review & editing. 
Cameron E. Ferguson: Data curation, Methodology, Software, Formal 
analysis, Writing - review & editing. 

Declaration of competing interest 

The authors declare that they have no conflicts of interest. 

Data availability 

Data used in this study was obtained from the National Alzheimer’s 
Coordinating Center initiative (https://naccdata.org/). 

Acknowledgements 

The NACC, US database is funded by NIA/NIH Grant U24 AG072122. 
NACC data are contributed by the NIA-funded ADRCs: P30 AG062429 
(PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 
AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas 
Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 
(PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 
AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), 
P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott 
Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI 
Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 
AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, 
MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank 
LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 
AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, 
MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI 
Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), 
P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd 
Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), 
P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI 
Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 
AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, 
MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI 
Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 
AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Lev-
erenz, MD). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.neuropsychologia.2023.108741. 

References 

Albert, M.S., 1996. Cognitive and neurobiologic markers of early Alzheimer disease. 
Proc. Natl. Acad. Sci. U. S. A. 93, 13547–13551. https://doi.org/10.1073/ 
pnas.93.24.13547. 

Andrews, S.J., Fulton-Howard, B., Goate, A., 2020. Interpretation of risk loci from 
genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 19, 
326–335. https://doi.org/10.1016/S1474-4422(19)30435-1. 

Arpawong, T.E., Pendleton, N., Mekli, K., McArdle, J.J., Gatz, M., Armoskus, C., et al., 
2017. Genetic variants specific to aging-related verbal memory: insights from 
GWASs in a population-based cohort. PLoS One 12, e0182448. https://doi.org/ 
10.1371/journal.pone.0182448. 

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of 
communities in large networks. J. Stat. Mech. 2008, P10008 https://doi.org/ 
10.1088/1742-5468/2008/10/P10008. 

Bringmann, L.F., Elmer, T., Epskamp, S., Krause, R.W., Schoch, D., Wichers, M., et al., 
2019. What do centrality measures measure in psychological networks? J. Abnorm. 
Psychol. 128, 892–903. https://doi.org/10.1037/abn0000446. 

Burger, J., Isvoranu, A.M., Lunansky, G., Haslbeck, J.M.B., Epskamp, S., Hoekstra, R.H. 
A., et al., 2023. Reporting standards for psychological network analyses in cross- 
sectional data. Psychol. Methods 28, 806–824. https://doi.org/10.1037/ 
met0000471. 

Debette, S., Ibrahim Verbaas, C.A., Bressler, J., Schuur, M., Smith, A., Bis, J.C., et al., 
2015. Genome-wide studies of verbal declarative memory in nondemented older 
people: the Cohorts for Heart and Aging Research in Genomic Epidemiology 
consortium. Biol. Psychiatry 77, 749–763. https://doi.org/10.1016/j. 
biopsych.2014.08.027. 

Dubois, B., Villain, N., Frisoni, G.B., Rabinovici, G.D., Sabbagh, M., Cappa, S., et al., 
2021. Clinical diagnosis of Alzheimer’s disease: recommendations of the 
International Working Group. Lancet Neurol. 20, 484–496. https://doi.org/ 
10.1016/s1474-4422(21)00066-1. 

Dunne, R.A., Aarsland, D., O’Brien, J.T., Ballard, C., Banerjee, S., Fox, N.C., et al., 2021. 
Mild cognitive impairment: the Manchester consensus. Age Ageing 50, 72–80. 
https://doi.org/10.1093/ageing/afaa228. 

Epskamp, S., Borsboom, D., Fried, E.I., 2018. Estimating psychological networks and 
their accuracy: a tutorial paper. Behav. Res. Methods 50, 195–212. https://doi.org/ 
10.3758/s13428-017-0862-1. 

Epskamp, S., Cramer, A.O.J., Waldorp, L.J., Schmittmann, V.D., Borsboom, D., 2012. 
Qgraph: network visualizations of relationships in psychometric data. J. Stat. Soft. 
48, 1–18. https://doi.org/10.18637/jss.v048.i04. 

Epskamp, S., Hoekstra, R.H.A., Burger, J., Waldorp, L.J., 2022. Longitudinal design 
choices: relating data to analysis. In: Isvoranu, A.M., Epskamp, S., Waldorp, L.J., 
Borsboom, D. (Eds.), Network Psychometrics with R: a Guide for Behavioral and 
Social Scientists. Routledge, Taylor & Francis Group, New York, pp. 157–168. 

Ferguson, C.E., 2021. A network psychometric approach to neurocognition in early 
Alzheimer’s disease. for the Alzheimer’s Disease Neuroimaging Initiative Cortex 
137, 61–73. https://doi.org/10.1016/j.cortex.2021.01.002. 

Ferguson, C.E., 2022. Network neuropsychology: the map and the territory. Neurosci. 
Biobehav. Rev. 132, 638–664. https://doi.org/10.1016/j.neubiorev.2021.11.024. 

Ferrari-Souza, J.P., Lussier, F.Z., Leffa, D.T., Therriault, J., Tissot, C., Bellaver, B., et al., 
2023. APOE ε4 associates with microglial activation independently of Aβ plaques 
and tau tangles. Sci. Adv. 9, eade1474 https://doi.org/10.1126/sciadv.ade1474. 

Frisoni, B., Coleman, P.D., 2011. Mild cognitive impairment: instructions for use at 
Neurobiology of Aging. Neurobiol. Aging 32, 761–762. https://doi.org/10.1016/j. 
neurobiolaging.2010.12.004. 

Hersi, M., Irvine, B., Gupta, P., Gomes, J., Birkett, N., Krewski, D., 2017. Risk factors 
associated with the onset and progression of Alzheimer’s disease: a systematic 
review of the evidence. Neurotoxicology 61, 143–187. https://doi.org/10.1016/j. 
neuro.2017.03.006. 

Ibrahim-Verbaas, C.A., Bressler, J., Debette, S., Schuur, M., Smith, A.V., Bis, J.C., et al., 
2016. GWAS for executive function and processing speed suggests involvement of 
the CADM2 gene. Mol. Psychiatry 21, 189–197. https://doi.org/10.1038/ 
mp.2015.37. 

Kuang, L., Jia, J., Zhao, D., Xiong, F., Han, X., Wang, Y., et al., 2020. Default mode 
network analysis of APOE genotype in cognitively unimpaired subjects based on 
persistent homology. Front. Aging Neurosci. 12, 188. https://doi.org/10.3389/ 
fnagi.2020.00188. 

Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., 
et al., 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci 
for Alzheimer’s disease. Nat. Genet. 45, 1452–1458. https://doi.org/10.1038/ 
ng.2802. 

Li, Y., Yao, Z., Yang, Y., Zhao, F., Fu, Y., Zou, Y., et al., 2020. A study on PHF-Tau 
network effected by apolipoprotein E4. Am. J. Alzheimers Dis. Other Demen. 35 
https://doi.org/10.1177/1533317520971414. 

Liu, Y., Yu, J.T., Wang, H.F., Han, P.R., Tan, C.C., Wang, C., et al., 2015. APOE genotype 
and neuroimaging markers of Alzheimer’s disease: systematic review and meta- 
analysis. J. Neurol. Neurosurg. Psychiatry 86, 127–134. https://doi.org/10.1136/ 
jnnp-2014-307719. 

Lumsden, A.L., Mulugeta, A., Zhou, A., Hyppönen, E., 2020. Apolipoprotein E (APOE) 
genotype-associated disease risks: a phenome-wide, registry-based, case-control 
study utilising the UK Biobank. EBioMedicine 59, 102954. https://doi.org/10.1016/ 
j.ebiom.2020.102954. 

Mahley, R.W., Weisgraber, K.H., Huang, Y., 2006. Apolipoprotein E4: a causative factor 
and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. 
Acad. Sci. U. S. A. 103, 5644–5651. https://doi.org/10.1073/pnas.0600549103. 

Morris, J.C., Weintraub, S., Chui, H.C., Cummings, J., DeCarli, C., Ferris, S., et al., 2006. 
The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data 
from Alzheimer Disease Centers. Alzheimer Dis. Assoc. Disord. 20, 210–216. https:// 
doi.org/10.1097/01.wad.0000213865.09806.92. 

Nevado, A., Del Rio, D., Pacios, J., Maestú, F., 2022. Neuropsychological networks in 
cognitively healthy older adults and dementia patients. Neuropsychol. Dev. Cogn. B 
Aging Neuropsychol. Cogn. 29, 903–927. https://doi.org/10.1080/ 
13825585.2021.1965951. 

M. De Marco et al.                                                                                                                                                                                                                             

https://naccdata.org/
https://doi.org/10.1016/j.neuropsychologia.2023.108741
https://doi.org/10.1016/j.neuropsychologia.2023.108741
https://doi.org/10.1073/pnas.93.24.13547
https://doi.org/10.1073/pnas.93.24.13547
https://doi.org/10.1016/S1474-4422(19)30435-1
https://doi.org/10.1371/journal.pone.0182448
https://doi.org/10.1371/journal.pone.0182448
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1037/abn0000446
https://doi.org/10.1037/met0000471
https://doi.org/10.1037/met0000471
https://doi.org/10.1016/j.biopsych.2014.08.027
https://doi.org/10.1016/j.biopsych.2014.08.027
https://doi.org/10.1016/s1474-4422(21)00066-1
https://doi.org/10.1016/s1474-4422(21)00066-1
https://doi.org/10.1093/ageing/afaa228
https://doi.org/10.3758/s13428-017-0862-1
https://doi.org/10.3758/s13428-017-0862-1
https://doi.org/10.18637/jss.v048.i04
http://refhub.elsevier.com/S0028-3932(23)00275-0/sref12
http://refhub.elsevier.com/S0028-3932(23)00275-0/sref12
http://refhub.elsevier.com/S0028-3932(23)00275-0/sref12
http://refhub.elsevier.com/S0028-3932(23)00275-0/sref12
https://doi.org/10.1016/j.cortex.2021.01.002
https://doi.org/10.1016/j.neubiorev.2021.11.024
https://doi.org/10.1126/sciadv.ade1474
https://doi.org/10.1016/j.neurobiolaging.2010.12.004
https://doi.org/10.1016/j.neurobiolaging.2010.12.004
https://doi.org/10.1016/j.neuro.2017.03.006
https://doi.org/10.1016/j.neuro.2017.03.006
https://doi.org/10.1038/mp.2015.37
https://doi.org/10.1038/mp.2015.37
https://doi.org/10.3389/fnagi.2020.00188
https://doi.org/10.3389/fnagi.2020.00188
https://doi.org/10.1038/ng.2802
https://doi.org/10.1038/ng.2802
https://doi.org/10.1177/1533317520971414
https://doi.org/10.1136/jnnp-2014-307719
https://doi.org/10.1136/jnnp-2014-307719
https://doi.org/10.1016/j.ebiom.2020.102954
https://doi.org/10.1016/j.ebiom.2020.102954
https://doi.org/10.1073/pnas.0600549103
https://doi.org/10.1097/01.wad.0000213865.09806.92
https://doi.org/10.1097/01.wad.0000213865.09806.92
https://doi.org/10.1080/13825585.2021.1965951
https://doi.org/10.1080/13825585.2021.1965951


Neuropsychologia 192 (2024) 108741

11

O’Donoghue, M.C., Murphy, S.E., Zamboni, G., Nobre, A.C., Mackay, C.E., 2018. APOE 
genotype and cognition in healthy individuals at risk of Alzheimer’s disease: a 
review. Cortex 104, 103–123. https://doi.org/10.1016/j.cortex.2018.03.025. 

Papassotiropoulos, A., Henke, K., Stefanova, E., Aerni, A., Müller, A., Demougin, P., 
et al., 2011. A genome-wide survey of human short-term memory. Mol. Psychiatry 
16, 184–192. https://doi.org/10.1038/mp.2009.133. 

Petersen, R.C., Lopez, O., Armstrong, M.J., Getchius, T.S.D., Ganguli, M., Gloss, D., et al., 
2018. Practice guideline update summary: mild cognitive impairment. Neurology 
90, 126–135. https://doi.org/10.1212/wnl.0000000000004826. 

Petersen, R.C., Morris, J.C., 2005. Mild cognitive impairment as a clinical entity and 
treatment target. Arch. Neurol. 62, 1160–1163. https://doi.org/10.1001/ 
archneur.62.7.1160. 

Robinaugh, D.J., Millner, A.J., McNally, R.J., 2016. Identifying highly influential nodes 
in the complicated grief network. J. Abnorm. Psychol. 125, 747–757. https://doi. 
org/10.1037/abn0000181. 

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses 
and interpretations. Neuroimage 52, 1059–1069. https://doi.org/10.1016/j. 
neuroimage.2009.10.003. 

Sanabria-Diaz, G., Melie-Garcia, L., Draganski, B., Demonet, J.F., Kherif, F., 2021. 
Apolipoprotein E4 effects on topological brain network organization in mild 
cognitive impairment. Sci. Rep. 11, 845. https://doi.org/10.1038/s41598-020- 
80909-7. 

Small, B.J., Rosnick, C.B., Fratiglioni, L., Bäckman, L., 2004. Apolipoprotein E and 
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