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ABSTRACT
The Unconditional Quantile Regression (UQR) method, initially introduced by Firpo et al. has gained
significant traction as a popular approach for modeling and analyzing data. However, much like Conditional
Quantile Regression (CQR), UQR encounters computational challenges when it comes to obtaining
parameter estimates for streaming datasets. This is attributed to the involvement of unknown parameters in
the logistic regression loss function used in UQR, which presents obstacles in both computational execution
and theoretical development. To address this, we present a novel approach involving smoothing logistic
regression estimation. Subsequently, we propose a renewable estimator tailored for UQR with streaming
data, relying exclusively on current data and summary statistics derived from historical data. Theoretically,
our proposed estimators exhibit equivalent asymptotic properties to the standard version computed
directly on the entire dataset, without any additional constraints. Both simulations and real data analysis are
conducted to illustrate the finite sample performance of the proposed methods.
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1. Introduction

Quantile regression (QR) models proposed by Koenker and
Bassett (1978) are more robust to outliers than the classical
mean regression models, and any quantile can be used in any
part of the outcome distribution. The most commonly used QR
framework is the conditional quantile regression (CQR). It is
used to assess the impact of a covariate on a quantile of the
outcome conditional on specific values of other covariates (Jiang
and Yu 2023). CQR is widely seen as an ideal tool to understand
complex predictor-response relations, however, CQR models do
not average up to their unconditional population counterparts.
As a result, the estimates obtained cannot be used to estimate
the impacts of an explanatory variable X on the corresponding
unconditional quantile of the outcome variable Y . To overcome
this restriction, Firpo et al. (2009) proposed a regression of the
(recentered) influence function of the unconditional quantile of
the Y on the X, or UQR estimates the impact of changing the
distribution of Y on marginal distribution of X. The advantage
of the UQR model is that the quantiles are defined preregression;
therefore, the model is not influenced by any right-hand-side
variables. In UQR, one can, for instance, include fixed effects to
adjust for selection bias without redefining the quantiles (Borgen
2016). The UQR method has attracted substantial attention in
statistics and econometrics with many applications in different
fields. By January 2023, Firpo et al. (2009) has attracted 2500+
Google Scholar citations, such as Ghosh (2021), Inoue, Li, and
Xu (2021), Sasaki, Ura, and Zhang (2022), and Martinez-Iriarte,
Montes-Rojas, and Sun (2022) and so on.
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In spite of its rapidly growing popular method for modeling
and analyzing data, however, UQR faces challenges to obtaining
parameter estimates from “big data.” The concept of “big data”
may have different meanings to people from different fields
and has since become a dominant topic in nearly all academic
disciplines and in applied fields. In a broad sense, big data is data
on a larger scale in terms of volume, variety, velocity, variability,
and veracity. In this article, we consider one type of big data:
streaming data, which grows rapidly in volume and velocity. Due
to the explosive growth of data onto nontraditional sources such
as mobile phones, social networks and e-commerce, streaming
data is becoming a core component of big data analysis.

Streaming data grows rapidly in volume and velocity. Then
storing and combing data becomes increasingly challenging.
To reduce the demand on computing memory and achieve
real-time processing, the nature of streaming data calls for the
development of algorithms which require only “one pass” over
the data. This means that in order to reduce storage require-
ments and computation time, data is only used once. There-
fore, the primary goal of processing such streaming data is to
sequentially update some statistics of interest upon the arrival
of a new data batch, in the hope to not only free up space
for the storage of massive historical individual-level data, but
also provide real-time inference and decision-making. Online
updating approaches are distinct from the massive data analysis
because they target problem where data arrive in streams or
large chunks and address statistical problems in an updating
framework without storage requirements for previous data, as
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Figure 1. Online-updating algorithm for streaming datasets.

shown in Figure 1. There are three online updating methods
for analyzing streaming data in the literature as follows: average
updating methods (Schifano et al. 2016), subsampling methods
(Xie, Bai, and Ma 2023) and renewable methods based on esti-
mation equations (Luo and Song 2020). The average updating
methods developed in Schifano et al. (2016) require the total
number of batches smaller than the sample size of each batch
to establish the same statistical properties as that of the ora-
cle estimators with the full datasets, see Theorem B.1 in the
Appendix, supplementary materials. This means that streaming
data cannot be unlimited, which is not very suitable for the
practical application of streaming data. The estimators obtained
by subsampling-based approaches are

√
ñ-consistent instead of√

n-consistent, where ñ is the sample size of subsample and
n is the sample size of all data, see Wang, Min, and Stufken
(2019) and Xie, Bai, and Ma (2023). This means that there is
information loss in this method. The estimators obtained by the
renewable methods based on estimation equations in Luo and
Song (2020) can achieve

√
n-consistent and overcome the above

unnatural restriction for average updating methods. Other ref-
erences on the online updating methods can see Deshpande,
Javanmard, and Mehrabi (2023), Luo, Zhou, and Song (2023),
Yang and Yao (2023) and so on.

Specifically, the difficulties faced in analyzing UQR under
streaming data are as follows.

First, it is difficult to perform standard logistic regression
based on the loss function (3.4) in Section 3 under streaming
data according to the term I(Yi > q̃τ ). Although the method
in Luo and Song (2020) can be used to construct a renewable
estimator, due to the term I(Yi > q̃τ ), the error of the estimator
of βqτ

increases as the number of streams increases. To solve the
above problem, we adopt a smoothing technique to smooth the
above indicative function, which helps to reduce the error from
Op(|q̃τ −qτ |) to Op(|q̃τ −qτ |2), so that the error can be ignored.
The smoothing technique are often used in QR, see Horowitz
(1998), Chen, Liu, and Zhang (2019), Fernandes, Guerre, and
Horta (2021), He et al. (2023) and so on. But, to the best of our
limited knowledge, there is no literature on the application of
smoothing technique to UQR.

Second, as we all known that the bandwidth h is important for
the kernel density estimator (3.6) in Section 3, and it depends
on the sample size. For streaming data, we cannot know the
total sample size at the beginning, so h needs to change with
the arrival of new data. Kong and Xia (2019) developed an
online density estimate with a single point of update. In this

article, we extend the single point update estimation method to
batch update estimation. Moreover, the kernel density estimator
(3.6) contains q̃τ , thus, we take Taylor expansion to construct a
renewable estimator.

Finally, the unconditional quantile partial effect defined in
(3.3) involves the quantile of Y . The above methods for stream-
ing data based on the least squares or estimating equations are
not suitable for the QR because the quantile regression estimator
has no display expression like the least squares estimator and the
loss function of the quantile regression is not differentiable, even
though loss function needs to be second-order differentiable
in the estimation equation (Luo and Song 2020). In order to
overcome the non-differentiable of the QR loss function, Jiang
and Yu (2022) used a convolution-type smoothing method to
develop a renewable estimation. Chen, Liu, and Zhang (2019)
and Wang, Wang, and Li (2022) also studied QR estimation
for streaming data. However, their methods are all required
additional strict conditions on the sample size of each bath. In
this article, we adjust method of Jiang and Yu (2022) to estimate
qτ in the (3.3).

To summarize, we develop a renewable estimation for UQR.
Our statistical contributions include: (i) Note that the loss func-
tion (3.4) in Section 3 is different to the standard logistic regres-
sion according to the term I(Yi > q̃τ ). Therefore, the method
of Luo and Song (2020) does not work. To solve the above
problem, we adopt a smoothing technique to smooth the above
indicative function, which helps to produce a renewable estima-
tor. (ii) We develop a renewable kernel density estimator and
a renewable QR estimator. (iii) We propose a renewable UQR
estimation that only requires the availability of the current data
batch in the data stream and sufficient statistics on the historical
data at each stage of the analysis. The asymptotic properties
of the proposed renewable estimator under the conditions are
similar to those in an offline setting and no restrictions on
number of batches, which means that the new methods are
adaptive to the situation where streaming datasets arrive fast and
perpetually.

The remainder of this article is organized as follows. Section 2
presents a motivational example. The review of the standard
UQR is given in Section 3. In Section 4, the streaming datasets
analysis method is proposed. Both simulation studies and
empirical applications are given in Sections 5 and 6 to illustrate
the proposed procedures. We conclude the article with a brief
discussion in Section 7. All technical proofs are deferred to the
Appendix, supplementary materials.
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2. Motivating Example

We exemplify the application of streaming data in economics
using the following stock price and exchange rate data.

As the process of financial globalization continues to deepen,
the financial markets of various countries become increasingly
interconnected, underscoring the pivotal role of the exchange
rate system in the capital market. The exchange rate represents
the international price of a country’s currency. Changes in the
exchange rate signify alterations in the international purchas-
ing power of the currency, making it a crucial policy tool for
maintaining national economic security and ensuring financial
stability. Stock prices act as a “barometer” of macroeconomics,
offering timely reflections of microeconomic changes. The fluc-
tuation in exchange rates not only impacts the macroeconomic
operations of a country but also influences the behavior of
microeconomic entities, subsequently affecting the stock prices
of companies. A comprehensive understanding of the relation-
ship between exchange rates and stock indexes is instrumental
for countries and international organizations to manage their
exposure to foreign exchange risks. Moreover, it proves invalu-
able for investors seeking to hedge or predict returns on their
foreign investments.

The relationship between the foreign exchange market
and the stock market has garnered significant attention from
scholars. Bahmani-Oskooee and Sohrabian (1992) used Granger
causality tests and co-integration methods to investigate the
connection between the foreign exchange market and the stock
market in the United States. The research indicates the presence
of a short-term two-way causal relationship. Pan, Fok, and Liu
(2007) delved into East Asia using data from January 1988 to
October 1998, discovering that, before the Asian financial crisis
in 1997, there was a causal relationship from the exchange rate to
the stock market in Hong Kong, Japan, Malaysia, and Thailand.
Additionally, there was a causal relationship from the stock
market to the exchange rate in Hong Kong, South Korea, and
Singapore. Amba and Nguyen (2019) examined the relationship
between stock prices and exchange rates in the Mexican and
Canadian markets, employing weekly data from January 2013
to December 2018. The Granger causality test affirmed the
existence of a short-term one-way causal relationship between
exchange rates and stock prices in the Mexican market.

In this section, we will provide a detailed introduction to
the Chinese A-share stock market and explore the relationship
between daily stock returns and exchange rates. China’s A-share
stock market, encompassing the Shenzhen Stock Exchange and
Shanghai Stock Exchange, was officially established in 1990. The
trading data within the stock industry is substantial, reaching
the gigabyte level. As of March 31, 2023, the A-share market in
China comprises 4495 stocks, with 1824 listed on the Shanghai
Stock Exchange and 2671 on the Shenzhen Stock Exchange.
A study by Zhang and Li (2010) investigated the correlation
between exchange rate changes and the stock market in China
post the reform of the exchange rate system and the split struc-
ture of the stock market in 2005. The study revealed a long-term
co-integration relationship between the exchange rate and the
stock market. The results indicate that, in the long run, the rela-
tionship between exchange rate changes and the stock market
primarily follows the flow-oriented model, with the Shanghai

A-share index being more noticeably affected by exchange rates.
Both stock transaction and exchange rate datasets undergo real-
time changes with each transaction, adhering to the typical
characteristics of streaming data: (a) the data object is real-
time and online; (b) the scale of the data is extensive and the-
oretically limitless, making it optimal to read each data object
only once, thereby reducing data storage requirements. Simul-
taneously, both institutional and individual investors seek real-
time insights into the stock market. Consequently, the analysis
of stock trading data should offer real-time analysis functions.
Fulfilling these requirements is unattainable with traditional
data analysis techniques.

For instance, when examining the relationship between the
daily returns in the Shanghai Stock Exchange in China and
the exchange rate between the Chinese currency and the US
dollar, we can collect approximately 1600 data points per day
(excluding suspended trading and stocks under special treat-
ment). Considering the 871 trading days between January 1,
2020, and August 25, 2023, the total data volume amounts to
1,339,591. If we break down the data per minute, the volume
becomes 1339591 × 4 × 60 = 321, 501, 840 (accounting for the
4 hr of daily trading). As established in Section 6.2, analyzing
1,339,591 data points takes 65.37 sec, indicating that processing
minute-level data, totaling 321,501,840, would certainly exceed
a minute, which is deemed unacceptable. However, employing
stream data analysis techniques, specifically update estimation
methods, allows for the processing of the last batch of incoming
data and some statistics from past data, resulting in an analysis
time of just 0.02 sec. Whether considering daily or minute
data, the volume of the last batch typically hovers around 1600,
making this approach highly efficient.

3. Standard Unconditional Quantile Regression

In this section, we first review the standard unconditional quan-
tile regression with full data (assuming that streaming data can
be pooled into a dataset and can be analyzed and stored by a
computer). Consider a general structural model:

Y = g(X, ε), (3.1)

where the unknown mapping g(·, ·) is invertible on the second
argument, ε is an unobservable determinant of the outcome
variable Y and X is a p-dimensional covariates.

According to the definition in Firpo et al. (2009), we use
another name unconditional quantile partial effect (UQPE) for
UQR. The UQPE at quantile level τ proposed by Firpo et al.
(2009) is defined as

UQPEτ =
∫ dE{RIF(Y , qτ )|X = x}

dx
dFX(x)

= 1
fY(qτ )

∫ dE{I(Y > qτ )|X = x}
dx

dFX(x),

where FX(·) is the distribution function of X, RIF(y, qτ ) =
I(y > qτ )/fY(qτ ) + qτ − (1 − τ)/fY(qτ ) is the recentered influ-
ence function, I(·) is the indicator function, qτ and fY(·) are the
τ th quantile and the density function of Y , respectively. Assume
that

P
(
Y > qτ |X = x

) = �(x�βqτ
), (3.2)
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where βqτ
=arg maxβ E

[
I(Y >qτ ) · X�β + log{1 − �(X�β)}]

and �(r) = 1/(1 + e−r) is the logistic distribution function.
Then, by the assumption (3.2), UQPEτ is equal to

UQPEτ = βqτ

fY(qτ )

∫
�′(x�βqτ

)dFX(x), (3.3)

where �′(r) = �(r){1 − �(r)} is the derivative of �(r). Note
that the assumption (3.2) is the assumption 11 in Firpo et al.
(2009) and (3.3) is the RIF-Logit in Firpo et al. (2009).

We first review the standard estimation method of UQPEτ in
Firpo et al. (2009). Let {Xi, Yi}n

i=1 be an iid sample from (X, Y)

in model (3.1). Based on the assumption (3.2), the estimator of
βqτ

based on q̃τ is

β̃ q̃τ
= arg max

β

n∑
i=1

[
I(Yi > q̃τ ) · X�

i β + log{1 − �(X�
i β)}

]
,

(3.4)

where q̃τ is the estimator of qτ as

q̃τ = arg min
q

n∑
i=1

ρτ

(
Yi − q

)
, (3.5)

where ρτ (r) = τ r − rI(r < 0) is the check loss function.
Moreover, the kernel density estimator for the density of Y at
q̃τ is

f̃Y(q̃τ ) = 1
n

n∑
i=1

Kh
(
Yi − q̃τ

)
, (3.6)

where Kh(·) = K(·/h)/h, K(·) is a smooth kernel function and
h is a bandwidth.

Then, the estimator of UQPEτ based on (3.3)–(3.6) is

˜UQPEτ = β̃ q̃τ

f̃Y(q̃τ )

1
n

n∑
i=1

�′(X�
i β̃ q̃τ

). (3.7)

4. Streaming Datasets Analysis

Now let us discuss how to develop a renewable estimator for
UQPE based on streaming datasets. Assume we have the stream-
ing datasets {D1, . . . , Db} up to the bth batch, where Dj =
{(Xi,j, Yi,j), i = 1, . . . , Nj} is the jth batch dataset with a sample
size of Nj. We suppose that the (Xi,j, Yi,j) for all is and js are iid
samples from (X, Y) in model (3.1). The sample size up to the
bth batch is N̄b = ∑b

j=1 Nj.
The key idea of the following renewable estimation is to

use the Taylor expansion of the score function so that the new
estimation equation uses only the combined information of the
previous data and the data of the current batch. In the non-
differentiable case, smoothing techniques will be used to enable
Taylor expansion of the scoring function.

4.1. Estimate qτ for Streaming Datasets

Note that for a quantile regression, the loss function ρτ (r) =
τ r−rI(r < 0) is non-differentiable. Therefore, the QR estimator
has no display expression, so it is impossible to construct

a renewable estimator for streaming data. To circumvent
the non-differentiable of the QR loss function, we smooth
quantile regression loss function ρτ (r) to a twice continuously
differentiable function (Nadaraya 1964; Fernandes, Guerre, and
Horta 2021):

Qh(r) =
∫

ρτ (t)Kh(t − r)dt. (4.1)

For example, we take Logistic kernel K(u) = e−u/(1 + e−u)2

in (4.1), the explicit expression of Qh(r) is τ r + h log(1 + e−r/h).
By (4.1), the q̂1

τ based on D1 satisfies,∑
i∈D1

{
K̃((q̂1

τ − Yi)/hq,1) − τ
}

= 0, (4.2)

which is the derivative of Qh(·) on dataset D1, and where K̃(r) =∫ r
−∞ K(u)du and hq,j is a bandwidth for jth batch. We propose

a new estimator q̂2
τ for streaming data {D1, D2} as a solution to

the equation of the form∑
i∈D1

Khq,1(q̂1
τ − Yi)(q̂2

τ − q̂1
τ )

+
∑
i∈D2

{
K̃((q̂2

τ − Yi)/hq,2) − τ
}

= 0, (4.3)

which is according to∑
i∈D1

{
K̃((q̂2

τ − Yi)/hq,1) − τ
}

=
∑
i∈D1

{
K̃((q̂1

τ − Yi)/hq,1) − τ
}

+
∑
i∈D1

Khq,1(q̂1
τ − Yi)(q̂2

τ − q̂1
τ ) + Op(N1|q̂2

τ − q̂1
τ |2)

=
∑
i∈D1

Khq,1(q̂1
τ − Yi)(q̂2

τ − q̂1
τ ) + Op(N1|q̂2

τ − q̂1
τ |2),

where the last equation is according to (4.2), Op(·) means
bounded with probability and the error term Op(N1|q̂2

τ − q̂1
τ |2)

is asymptotically ignored.
Generalizing (4.3) to streaming datasets {D1, . . . , Db}, a

renewable estimator q̂b
τ of qτ is defined as a solution to the

following incremental estimation equation:

K̂b−1
(q̂b

τ − q̂b−1
τ ) +

∑
i∈Db

{
K̃

(
q̂b
τ − Yi
hq,b

)
− τ

}
= 0, (4.4)

where K̂b−1 = ∑b−1
j=1

∑
i∈Dj Khq,j(q̂j

τ − Yi). The asymptotic
property of q̂b

τ can see Lemma 2 in the Appendix, supplementary
materials. Numerically, it is quite straightforward to find q̂b

τ from
(4.4) using the Newton-Raphson method as

q̂b
τ = q̂b−1

τ −
⎧⎨
⎩K̂b−1 +

∑
i∈Db

Khq,j(q̂b−1
τ − Yi)

⎫⎬
⎭

−1

∑
i∈Db

{
K̃

(
q̂b−1
τ − Yi

hq,b

)
− τ

}
. (4.5)

Only one iteration in (4.5) is due to that q̂b
τ is

√
N̄b-consistent

by Lemma 2 in the Appendix, supplementary materials and con-
dition Nj = O(N1) for j = 1, . . . , b. Therefore, the estimators q̂b

τ

can converge in one iteration.
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4.2. Estimate fY(qτ ) for Streaming Datasets

It is easy to estimate fY(qτ ) based on the first batch as f̂ 1
Y =

N1
−1 ∑

i∈D1 Khf ,1(Yi − q̂1
τ ), where hf ,j is a bandwidth for the

jth batch. When the next data D2 arrive, the estimator of fY(qτ )

should be

1
N̄2

⎧⎨
⎩
∑
i∈D1

Khf ,2(Yi − q̂2
τ ) +

∑
i∈D2

Khf ,2(Yi − q̂2
τ )

⎫⎬
⎭ .

As we all known that we can not know the sample size of
next batch, thus, it is difficult to use hf ,2 in D1 because of hf ,2
always depending on N̄2. We will prove in Theorem 4.1 that the
following estimator is also effective

1
N̄2

⎧⎨
⎩
∑
i∈D1

Khf ,1(Yi − q̂2
τ ) +

∑
i∈D2

Khf ,2(Yi − q̂2
τ )

⎫⎬
⎭ .

Moreover, we use Taylor expansion to q̂2
τ in D1 as∑

i∈D1

Khf ,1(Yi − q̂2
τ ) =

∑
i∈D1

Khf ,1(Yi − q̂1
τ )

+
∑
i∈D1

h−1
f ,1 K ′

hf ,1
(Yi − q̂1

τ )(q̂1
τ − q̂2

τ ) + Op(N1h−2
f ,1 |q̂1

τ − q̂2
τ |2),

where K ′(·) is the derivative of K(·) and K ′
h(·) = K ′(·/h)/h.

Then, we can obtain the estimator of fY(qτ ) based on D1 and
D2 as

f̂ 2
Y = 1

N̄2

2∑
j=1

∑
i∈Dj

Khf ,j(Yi − q̂j
τ ) + 1

N̄2∑
i∈D1

h−1
f ,1 K ′

hf ,1
(Yi − q̂1

τ )(q̂1
τ − q̂2

τ ).

Generalizing the above method to streaming datasets
{D1, . . . , Db}, a renewable estimator f̂ b

Y of fY(qτ ) is defined as

f̂ b
Y = 1

N̄b

b∑
j=1

∑
i∈Dj

Khf ,j(Yi − q̂j
τ )

+ 1
N̄b

b−1∑
j=1

∑
i∈Dj

h−1
f ,j K ′

hf ,j
(Yi − q̂j

τ )(q̂j
τ − q̂b

τ ) (4.6)

= 1
N̄b

⎧⎨
⎩Kb−1

1 + Kb−1
2 − q̂b

τ Kb−1
3 +

∑
i∈Db

Khf ,b(Yi − q̂b
τ )

⎫⎬
⎭ ,

where Kb−1
1 = ∑b−1

j=1
∑

i∈Dj Khf ,j(Yi − q̂j
τ ), Kb−1

2 = ∑b−1
j=1∑

i∈Dj h−1
f ,j K ′

hf ,j
(Yi − q̂j

τ )q̂j
τ and Kb−1

3 = ∑b−1
j=1

∑
i∈Dj h−1

f ,j K ′
hf ,j

(Yi − q̂j
τ ).

The item N̄−1
b
∑b

j=1
∑

i∈Dj Khf ,j(Yi − q̂j
τ ) in (4.6) is to

extend the single point update estimation method in Kong
and Xia (2019) to batch update estimation, and the term
N̄−1

b
∑b−1

j=1
∑

i∈Dj h−1
f ,j K ′

hf ,j
(Yi−q̂j

τ )(q̂j
τ −q̂b

τ ) makes approximate
to the density estimation of point q̂b

τ . To reveal the merits of the
proposed method, we now establish the asymptotic normality
of f̂ b

Y .

To establish the asymptotic properties of the proposed
estimator, the following technical conditions are imposed.

C1. Density function fY(·) is positive and has second-order
derivative, whose second-order derivative is bounded and con-
tinuous in a neighborhood of a grid of selected points qτ ∈ �.
Moreover,

∫ |fY(y)|dy < ∞.
C2. The kernel function K(·) is even, integrable, and twice

differentiable with bounded first and second derivatives such
that

∫
K(u)du = 1,

∫ |u2K(u)|du < ∞,
∫

uK(u)du = 0 and∫
u2K(u)du �= 0.

Remark 4.1. Conditions C1 and C2 are Assumptions 2, 3, 6, and
7 in Firpo et al. (2009). The Logistic kernel K(u) = e−u/(1 +
e−u)2 satisfies condition C2.

Theorem 4.1. Assume that conditions C1 and C2 hold. If Nj =
O(N1) and N1 → ∞, hf ,j = O(N̄−c1

j ) with 0 < c1 < 1/4 and
N̄j = ∑j

i=1 Ni for j = 1, . . . , b, where b can be a fixed number
or a divergent number, we have

√
N̄bhN̄b

⎛
⎝f̂ b

Y − fY(qτ ) − 1
2

f ′′
Y (qτ )μK

b∑
j=1

Nj

N̄b
h2

f ,j

⎞
⎠ L−→

N
(
0, fY(qτ )νK

)
,

where hN̄b
= N̄b/

∑b
j=1 Njh−1

f ,j , μK = ∫
u2K(u)du, νK =∫

K2(u)du and an = O(bn) means supn |an/bn| < c < ∞ with
a positive and bounded constant c.

If 1/5 < c1 < 1/4, we have√
N̄bhN̄b

(
f̂ b
Y − fY(qτ )

) L−→ N
(
0, fY(qτ )νK

)
.

Note that hN̄b
= O(N̄−c1

b ) = O(hf ,b) by Lemma 1 in the
Appendix, supplementary materials, we obtain the same con-
vergence rate and asymptotic variance as the full data estimator
(3.6).

4.3. Estimate βqτ for Streaming Datasets

Note that (3.2), the estimate βqτ
contains qτ . Thus, it is diffi-

cult to construct the estimator of βqτ
according to indicative

function I(Y > qτ ) with unknown parameter qτ . Therefore, we
approximate the indicator factor I(Y > qτ ) in the score equation
with a smooth function H

(
(Y − qτ )/h

)
and h is the bandwidth.

For the first streaming data D1, the smoothing logistic regression
estimator β̂1 satisfies,∑

i∈D1

Xi

{
�(X�

i β̂1) − H
(

Yi − q̂1
τ

h1

)}
= 0, (4.7)

where hj is a bandwidth for the jth batch and q̂j
τ is the up to

jth batch estimator of qτ in Section 4.1. In the Lemma 3 in the
Appendix, supplementary materials, we prove that β̂1 achieves
optimal efficiency and its asymptotic covariance matrix is the
same as that of estimator in (3.4) by ordinary logistic regression
estimator.

Then, β̂
∗
2 for streaming data {D1, D2} satisfies the following

aggregated score equation:

S(D1; q̂2
τ ; β̂

∗
2; h1) + S(D2; q̂2

τ ; β̂
∗
2; h2) = 0, (4.8)
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where S(Dj; q; β ; h) = ∑
i∈Dj Xi{�(X�

i β) − H((Yi − q)/h)}.

Note that S(D1; q̂2
τ ; β̂

∗
2; h1) in (4.8) should be S(D1; q̂2

τ ; β̂
∗
2; h2),

we can prove that the difference between h1 and h2 in (4.8)
can be ignored, see the proof of Theorem 4.2 in the Appendix,
supplementary materials.

Solving (4.8) for β̂
∗
2 actually involves the use of subject-level

data in both D1 and D2, where D1 may no longer to accessi-
ble. Our renewable estimation is able to handle this issue. To
proceed, we take the first-order Taylor series expansion of the
S(D1; q̂2

τ ; β̂
∗
2; h1) around q̂1

τ and β̂1 as

S(D1; q̂2
τ ; β̂

∗
2; h1) =S(D1; q̂1

τ ; β̂1; h1) + S′
q(D1; q̂1

τ ; h1)(q̂2
τ − q̂1

τ )

+ S′
β(D1; β̂1)(β̂

∗
2 − β̂1)

+ N1Op(|q̂2
τ − q̂1

τ |2 + ‖β̂∗
2 − β̂1‖2

2)

=S′
q(D1; q̂1

τ ; h1)(q̂2
τ − q̂1

τ )

+ S′
β(D1; β̂1)(β̂

∗
2 − β̂1)

+ N1Op(|q̂2
τ − q̂1

τ |2 + ‖β̂∗
2 − β̂1‖2

2),
(4.9)

where the last equation is according to (4.7), S′
q(Dj; q; h) =∑

i∈Dj XiH′
h((Yi − q)/h), S′

β(Dj; β) = ∑
i∈Dj XiX�

i �′(X�
i β),

H′(·) is the derivative of H(·) and H′
h(·) = H′(·/h)/h.

By (4.8) and (4.9), and removing the asymptotically ignored
term N1Op(|q̂2

τ −q̂1
τ |2+‖β̂∗

2−β̂1‖2
2), we propose a new estimator

β̂2 as a solution to the equation of the form

S′
q(D1; q̂1

τ ; h1)(q̂2
τ − q̂1

τ ) + S′
β(D1; β̂1)(β̂2 − β̂1)

+ S(D2; q̂2
τ ; β̂2; h2) = 0.

(4.10)

Generalizing the (4.10) to streaming datasets {D1, . . . , Db},
a renewable estimator β̂b of βqτ

is defined as a solution to the
following incremental estimation equation:

Ŝb−1
q (q̂b

τ − q̂b−1
τ ) + Ŝb−1

β (β̂b − β̂b−1) + S(Db; q̂b
τ ; β̂b; hb) = 0,

(4.11)

where Ŝb−1
q = ∑b−1

j=1 S′
q(Dj; q̂j

τ , hj) and Ŝb−1
β = ∑b−1

j=1 S′
β(Dj; β̂ j).

Through (4.11), the initial β̂b−1 is renewed by β̂b only using
the historical summary statistics, including sample variance
matrices {Ŝb−1

q , Ŝb−1
β } and estimators {q̂b

τ , q̂b−1
τ , β̂b−1} instead

of the subject-level raw datasets {D1, . . . , Db−1}. Numerically, it
is quite straightforward to find β̂b from (4.11) using the Newton-
Raphson method as

β̂b =β̂b−1 −
{

Ŝb−1
β + S′

β(Db; β̂b−1)
}−1

{
Ŝb−1

q (q̂b
τ − q̂b−1

τ ) + S(Db; q̂b
τ ; β̂b−1; hb)

}
,

(4.12)

where only one iteration in (4.12) is due to that β̂b is
√

N̄b-
consistent and condition Nj = O(N1) for j = 1, . . . , b in
the following Theorem 4.2. Therefore, the estimators β̂b can
converge in one iteration.

To establish the asymptotic property of the proposed
estimator β̂b, the following technical conditions are imposed.

C3. Conditional density function fY|X(·) is bounded away
from zero and Lipschitz continuous in a neighborhood of a grid
of selected points qτ ∈ �.

C4. �X = E
{

XX��′(X�βqτ
)
}

is a positive definite matrix.
C5. The smoothing function H(·) is twice differentiable and

its second derivative is bounded. Moreover, (i) H(u) = 1 if u > 1
and H(u) = 0 if u < −1,

∫
H′(u)du = 1,

∫
uH′(u)du = 0 and∫

u2H′(u)du < ∞. (ii)
∫

H′′(u)du = 0,
∫

uH′′(u)du < ∞ and∫ {H′′(u)}2du < ∞, where H′′(·) is the second derivative of H(·).

Remark 4.2. Condition C3 is a smoothing condition of the con-
ditional density function fY|X(·), which is a standard condition
for smoothing method, see Jiang and Yu (2021). The condition
C4 ensures that �−1

X exists. Condition C5 is a mild condition
on H(·) for smoothing approximation. For example, a biweight
kernel H(u) = {1/2 + 15/16(u − 2/3u3 + 1/5u5)}I(|u| ≤
1) + I(u > 1) satisfies condition C5.

Theorem 4.2. Assume that conditions C1–C5 hold. If Nj =
O(N1) and N1 → ∞, hj = O(N̄−c2

j ) with 1/4 < c2 < 1/3,
for j = 1, . . . , b, where b can be a fixed number or a divergent
number, we have√

N̄b
(
β̂b − βqτ

) L−→ N
(

0, �−1
X �Xβ(�−1

X )�
)

,

where �Xβ = E(ψ2
βXX�) + τ(1 − τ)E(X|Y = qτ )E(X|Y =

qτ )
� − 2E(ψ2

βX)E(X|Y = qτ )
� and ψβ = X

{
I(Y > qτ )

−�(X�βqτ
)
}

.

Through the result of Theorem 4.2, it is interesting to notice
that the renewable estimator β̂b achieves optimal efficiency and
its asymptotic covariance matrix is the same as that of estimator
β̃ q̃τ

in (3.4) which is computed directly on all the samples, as
shown in Firpo et al. (2009). This implies that the proposed
renewable estimator achieves the same asymptotic distribution
as β̃ q̃τ

.

4.4. Estimate UQPEτ for Streaming Datasets

Finally, we estimate UQPEτ based on the streaming datasets
{D1, . . . , Db} by (4.5), (4.6), (4.12) and Taylor series expansion
of the �′(X�

i β̂b) as

̂UQPE
∗b
τ = β̂b

f̂Y

1
N̄b

b∑
j=1

∑
i∈Dj

�′(X�
i β̂b) = δ̂

b
τ

f̂Y

+ Op

⎛
⎝ 1

N̄b

b−1∑
j=1

Nj‖β̂b − β̂ j‖2
2

⎞
⎠ ,

where δ̂
b
τ = β̂bN̄−1

b

{
Bb + B̂�

b−1β̂b − B̃b−1
}

, B̃b−1 = ∑b−1
j=1∑

i∈Dj �
′′(X�

i β̂ j)X�
i β̂ j, B̂b−1 = ∑b−1

j=1
∑

i∈Dj �
′′(X�

i β̂ j)Xi,
Bb = ∑b

j=1
∑

i∈Dj �
′(X�

i β̂ j) and �′′(r) = �′(r){1 − 2�(r)}
is the derivative of �′(r). Thus, we can obtain a renewable
estimator of UQPEτ as

̂UQPE
b
τ = δ̂

b
τ /f̂Y . (4.13)
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Theorem 4.3. Assume that conditions in Theorems 4.1 and 4.2
hold, we have

√
N̄bhN̄b

(
̂UQPE

b
τ − UQPEτ

)
L−→ N

(
0, �hN̄b

)
, (4.14)

where �hN̄b
= νKf −3

Y (qτ )δτ δ
�
τ +limhN̄b

→0
[

hN̄b

{
var(ψ) − f −3

Y

(qτ )δτ δ
�
τ

}]
, ψ = f −1

Y (qτ )�X��−1
X ψβ − {

�X��−1
X E(X|Y

= qτ ) + f −2
Y (qτ )δτ f ′

Y(qτ )
}
ψq, �X� = E

{
�′(X�βqτ

) + βqτ

X��′′(X�βqτ
)
}

,δτ = βqτ
E
{
�′(X�βqτ

)
}

and ψq = f −1
Y

(qτ ){I(Y > qτ ) + τ − 1}.

From the analysis in Theorem 4.1, hN̄b
= O(N̄−c1

b ) =
O(hf ,b) which is the same convergence rate as the full data
estimator h. Thus, �hN̄b

is equal to �h. Therefore, the renewable

estimator ̂UQPE
b
τ achieves optimal convergence speed and its

asymptotic covariance matrix is the same as that of the esti-
mator ̂UQPEτ in (3.7) which is computed directly on all the
samples.

We can estimate the �hN̄b
in (4.14) by a renewable estimator

as

�̂hN̄b
=νK{f̂ b

Y}−3δ̂
b
τ {δ̂

b
τ }� + hN̄b

{f̂ b
Y}−4δ̂

b
τ {δ̂

b
τ }�

{
ωK f̂

′b
Y − f̂ b

Y

}

+ hN̄b
{f̂ b

Y}−2 1
N̄b

b∑
j=1

∑
i∈Dj

AiA�
i ,

where ωK = ∫
uK2(u)du, f̂ ′b

Y = N̄−1
b
∑b

j=1
∑

i∈Dj h−1
f ,j K ′

hf ,j
(Yi −

q̂j
τ ) + N̄−1

b
∑b−1

j=1
∑

i∈Dj h−2
f ,j K ′′

hf ,j
(Yi − q̂j

τ )(q̂j
τ − q̂b

τ ), Ai =
ψ̂b

i − {f̂ b
Y}−1(Ĥb − 1 + τ)(δ̂

b
τ f̂ ′b

Y /f̂ b
Y + Ĝb

X{Ĝb
XX}−1 f̂ b

YX),
ψ̂b

i = Ĝb
X{Ĝb

XX}−1Xi{Ĥb − �′(X�
i β̂ j) − �′′(X�

i β̂ j)X�
i (β̂b −

β̂ j)} + δ̂
b
τ ,i − δ̂

b
τ Ĝb

X = 2N̄−1
b
∑b

j=1
∑

i∈Dj X�
i β̂b�(X�

i β̂ j){1 −
�(X�

i β̂ j)}2[1 + {1 − 3�(X�
i β̂ j)}X�

i (β̂b − β̂ j)], Ĝb
XX =

N̄−1
b
∑b

j=1
∑

i∈Dj XiX�
i [�′(X�

i β̂ j) + �′′(X�
i β̂ j)X�

i (β̂b − β̂ j)],
Ĥb = H((Yi − q̂j

τ )/hj) + H′
hj
(Yi − q̂j

τ )(q̂j
τ − q̂b

τ ), δ̂
b
τ ,i is

the ith of δ̂
b
τ and f̂ b

YX = N̄−1
b
∑b

j=1
∑

i∈Dj XiKhf ,j(Yi − q̂j
τ ) +

N̄−1
b
∑b−1

j=1
∑

i∈Dj Xih−1
f ,j K ′

hf ,j
(Yi − q̂j

τ )(q̂j
τ − q̂b

τ ).
From Theorems 4.1–4.3, we can see that there are no restric-

tions on the number of batches b, so b can be a very large number,
even greater than maxj Nj.

4.5. Algorithm

We summarize the general algorithm for the proposed renew-
able method to estimate UQPEτ by (4.13)) as follows.

Note that in step 9 in Algorithm, we only need to save q̂b
τ , β̂b

and Ab. The scale of the data to be stored is 4 + p + p2 instead
of N̄b × p, which is the sample size of the streaming datasets
up to b batches. Because p is assumed to be a fixed number
in this article, our method greatly reduces the amount of data
storage.

Algorithm 1: Renewable estimation for streaming
datasets.

1: Input: streaming datasets D1, . . . , Db, . . ., the
quantile level τ , kernel function K(·), smoothing
function H(·) and bandwidths hq,b, hf ,b, hb with
b = 1, 2 . . .;

2: Initialize: calculate q̂1
τ by Fernandes, Guerre, and

Horta (2021) with D1, β̂1 by (4.7) with q̂1
τ and compute

K̂1, f̂ 1
Y , Ŝ1

q, and Ŝ1
β ;

3: for: b = 2, 3, . . . do
4: read in dataset Db;
5: obtain q̂b

τ by (4.5);
6: obtain f̂ b

Y and β̂b by (4.6) and (4.12) with q̂b
τ ,

respectively;
7: compute ̂UQPE

b
τ by (4.13);

8: update
Ab−1 = {K̂b−1, Ŝb−1

q , Ŝb−1
β , Kb−1

1 , Kb−1
2 , Kb−1

3 } to Ab;
9: save q̂b

τ , β̂b, and Ab, and release dataset Db and
other statistics from the memory;

10: end
11: Output: ̂UQPE

b
τ .

5. Simulation Studies

In this section, we use Monte Carlo simulation studies to assess
the finite sample performance of the proposed procedures in
Sections 4. All programs are written in R code. We generate data
from the following linear model:

Y = 1 + X�β0 + ε, (5.1)

where X = (X1, X2, X3)
� is a covariate vector and Xj, j = 1, 2, 3

are drawn from a normal distribution N(0, 1). The true value
of the parameter is β0 = (1, −2, 1)�. Three error distributions
of ε are considered: a standard normal distribution N(0, 1), a
t distribution with 3 degrees of freedom t(3) which is a sym-
metric thick-tailed distribution and a Chi-square distribution
with 1 degree of freedom χ2(1) which is a skewed distribution.
Quantile levels τ ∈ {0.1, 0.5, 0.9} are considered in all of the
simulation experiments. Simulation results are all the average of
200 simulation replications.

For streaming datasets, we fix the sample size of each batch
Nj = 500 for j = 1, . . . , b and vary the number of batches
b = 100, 200, 500, 1000, 2000, 5000, 10,000. Then the total sam-
ple size is N̄b = 500b. We take the Logistic kernel K(u) =
e−u/(1 + e−u)2 and K̃(u) = 1/(1 + e−u) as used in He et al.
(2023), and choose hq,j = N̄−1/4

j / log N̄j for j = 1, . . . , b as in
Jiang and Yu (2022).

5.1. Choosing the Bandwidths for the Density Estimations

We first study the selection of bandwidths for density estima-
tions by f-Streaming (4.6). From Theorems 4.1, we choose hf ,j as

hf ,j = C × (0.5 + |τ − 0.5|) × N̄−1/5
j / log N̄j, (5.2)

where C > 0 is the scaling constant. We vary the constant C from
0.1 to 100. We use the relative absolute errors (RAE=|f̂Y(q̂τ ) −



8 R. JIANG AND K. YU

fY(qτ )|/|fY(qτ )|) to evaluate the performance of the different
estimation methods. We only consider ε ∼ N(0, 1) for model
(4.1) because of Y ∼ N(1, 7) under this case. Then fY(qτ ) at
τ = 0.1, 0.5, 0.9 are 0.0663, 0.1508, and 0.0663, respectively.

The simulation results of RAEs are shown in Table 1.
(i) As can be seen from Table 1 that C = 10 is a good
choice for hf ,j because of smallest RAEs in most cases. (ii)
The method (4.6) of density estimation for streaming data is
effective and very close to f-All (the full data estimation by (3.6))
in case C = 10.

5.2. Study the Sensitivity of ̂UQPE
b
τ to Bandwidths {hj}b

j=1

We study the sensitivity of ̂UQPE
b
τ in (4.13) to bandwidths

{hj}b
j=1. From Theorem 4.3, we choose hj = C × N̄−1/4

j / log N̄j

Table 1. The means and standard deviations (in parentheses) of the RAEs (×100) for
f-Streaming under different C, quantile levels τ = 0.1, 0.5, 0.9 and b = 100, 10,000
for simulation study 5.1.

b = 100 b = 10,000

τ C f-All f-Streaming f-All f-Streaming

0.1 0.1 18.38 (15.46) 118.36 (104.86) 4.58 (3.32) 9.00 (7.60)

0.5 7.96 (5.97) 13.20 (11.26) 1.63 (1.12) 1.67 (1.07)

1 5.93 (4.73) 7.70 (6.16) 1.17 (0.82) 1.26 (0.86)

5 2.50 (1.85) 2.69 (2.16) 0.44 (0.45) 0.45 (0.40)

10 1.73 (1.28) 2.18 (1.54) 0.32 (0.26) 0.30 (0.19)

50 2.88 (0.97) 3.92 (1.76) 0.24 (0.14) 0.56 (0.22)

100 6.12 (0.69) 4.70 (1.30) 1.00 (0.12) 1.67 (0.18)

0.5 0.1 17.12 (13.63) 134.72 (126.04) 2.57 (2.32) 8.30 (6.24)

0.5 7.49 (5.90) 15.03 (13.59) 1.53 (1.31) 1.95 (1.28)

1 5.33 (3.88) 7.05 (5.62) 0.77 (0.91) 1.21 (1.06)

5 2.20 (1.70) 1.96 (1.58) 0.47 (0.31) 0.41 (0.25)

10 1.59 (1.18) 1.30 (1.04) 0.26 (0.22) 0.26 (0.18)

50 1.61 (0.73) 3.25 (0.66) 0.14 (0.11) 0.26 (0.13)

100 5.85 (0.47) 10.57 (0.38) 0.53 (0.12) 1.08 (0.10)

0.9 0.1 19.88 (14.34) 111.97 (103.34) 3.09 (2.37) 11.24 (7.13)

0.5 8.41 (6.35) 15.16 (12.08) 1.50 (1.32) 1.40 (0.90)

1 5.88 (4.89) 7.28 (5.80) 1.26 (0.68) 0.96 (0.76)

5 2.65 (1.84) 3.01 (2.14) 0.46 (0.31) 0.42 (0.26)

10 1.63 (1.24) 2.20 (1.61) 0.27 (0.22) 0.28 (0.19)

50 2.72 (0.93) 4.02 (1.69) 0.25 (0.15) 0.51 (0.31)

100 6.01 (0.67) 4.65 (1.28) 1.05 (0.13) 1.81 (0.21)

similar to hq,j for j = 1, . . . , b, where C > 0 is the scaling
constant. We vary the constant C from 0.01 to 100.

To evaluate the performance of the different estimation meth-
ods, we calculate the root-mean-square error (RMSE):

RMSE = 1
3

√√√√ 3∑
j=1

(̂UQPE
b
τ ,j − UQPEτ ,j)2, (5.3)

where the true value UQPEτ is β0 under settings of model (5.1).
According to the analysis of Section 5.1, we choose hf ,j = 10 ×
(0.5+|τ −0.5|)×N̄−1/5

j / log N̄j for j = 1, . . . , b. The simulation
results of the RMSE in Table 2 show that the performances of
̂UQPE

b
τ are better under C = 0.1, 1, 10 than those of C =

0.01, 100, and ̂UQPE
b
τ is insensitive to bandwidths {hj}b

j=1 under
C = 0.1, 1, 10. Therefore, we can choose hj = 10×N̄−1/4

j / log N̄j
based on the smallest RMSEs in most cases for j = 1, . . . , b.

5.3. Simulation Studies for Renewable Estimation Methods

Building upon the analysis in Sections 5.1 and 5.2, we proceed
to investigate the performance of the proposed renewable esti-
mation method. In order to assess the effectiveness of various
estimation methods, we compute the Root Mean Square Error
(RMSE) as outlined in (5.3), along with the corresponding com-
putation time in seconds. It’s worth noting that, for brevity, we
only present the computation time for the normal error, as the
computation time for different errors is closely comparable.

The simulation results presented in Tables 3–6 lead to the
following conclusions:

(i) Regarding the RMSEs in Tables 3–5, both UQPE-A (using
the all data estimator (3.7)) and UQPE-S (our proposed renew-
able estimator for streaming data (4.13)) closely approximate
the true values. The RMSE results are consistently small across
various numbers of batches b, quantile levels τ , and errors.
Notably, UQPE-S demonstrates proximity to UQPE-A in terms
of accuracy. (ii) Examining the computation time t in Table 6,
it is evident that UQPE-S is significantly faster to compute than
UQPE-A across all scenarios. (iii) As the number of batches b

Table 2. The means and standard deviations (in parentheses) of the RMSEs (×100) under different C, quantile levels τ = 0.1, 0.5, 0.9, b = 100, 10,000 and errors for
simulation study 5.2.

b = 100 b = 10000

Error C τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9

N(0, 1) 0.01 3.69 (7.06) 1.88 (2.19) 5.32 (8.05) 0.33 (0.39) 0.20 (0.17) 0.30 (0.18)

0.1 2.51 (1.85) 1.37 (0.91) 2.93 (4.76) 0.31 (0.20) 0.27 (0.16) 0.30 (0.22)

1 2.15 (1.36) 1.23 (0.83) 2.09 (1.46) 0.25 (0.17) 0.21 (0.15) 0.33 (0.20)

10 2.06 (1.38) 1.22 (0.79) 1.87 (1.19) 0.22 (0.15) 0.20 (0.18) 0.30 (0.19)

100 2.38 (1.93) 1.59 (0.98) 2.69 (3.67) 0.39 (0.36) 0.26 (0.21) 0.24 (0.21)

t(3) 0.01 3.86 (6.12) 2.05 (1.85) 4.07 (7.96) 0.30 (0.21) 0.26 (0.19) 0.28 (0.15)

0.1 2.72 (2.08) 1.38 (0.77) 2.77 (1.91) 0.29 (0.21) 0.22 (0.17) 0.33 (0.25)

1 2.29 (1.56) 1.41 (0.84) 2.20 (1.39) 0.36 (0.17) 0.25 (0.22) 0.34 (0.19)

10 2.24 (1.38) 1.29 (0.84) 2.24 (1.40) 0.29 (0.20) 0.21 (0.18) 0.33 (0.26)

100 2.00 (1.13) 1.54 (0.85) 2.17 (1.40) 0.35 (0.23) 0.21 (0.16) 0.28 (0.20)

χ2(1) 0.01 4.26 (9.82) 2.01 (3.92) 4.05 (4.98) 0.30 (0.18) 0.22 (0.14) 0.40 (0.27)

0.1 3.64 (6.95) 1.46 (0.86) 2.86 (1.88) 0.27 (0.12) 0.17 (0.13) 0.31 (0.28)

1 2.01 (1.39) 1.27 (0.75) 2.49 (1.57) 0.25 (0.12) 0.24 (0.20) 0.36 (0.22)

10 1.91 (1.56) 1.19 (0.75) 2.49 (1.56) 0.34 (0.22) 0.24 (0.15) 0.35 (0.25)

100 4.95 (6.70) 1.47 (0.99) 2.19 (1.27) 1.15 (1.76) 0.27 (0.24) 0.33 (0.20)
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Table 3. The means and standard deviations (in parentheses) of the RMSEs (×100) under different estimation methods, quantile levels τ = 0.1, 0.5, 0.9 and b for simulation
study 5.3 with ε ∼ N(0, 1).

τ = 0.1 τ = 0.5 τ = 0.9

b UQPE-A UQPE-S UQPE-A UQPE-S UQPE-A UQPE-S

100 1.56 (1.04) 1.85 (1.30) 1.31 (0.89) 1.17 (0.74) 1.61 (1.02) 1.96 (1.22)
200 1.25 (0.81) 1.51 (1.00) 1.15 (0.78) 1.01 (0.70) 1.26 (0.82) 1.54 (1.06)
500 0.82 (0.54) 0.85 (0.65) 0.68 (0.43) 0.62 (0.38) 0.85 (0.59) 1.00 (0.63)

1000 0.74 (0.47) 0.75 (0.48) 0.63 (0.41) 0.54 (0.33) 0.66 (0.40) 0.74 (0.49)
2000 0.55 (0.29) 0.54 (0.39) 0.48 (0.33) 0.45 (0.30) 0.53 (0.34) 0.65 (0.39)
5000 0.31 (0.21) 0.33 (0.22) 0.35 (0.23) 0.29 (0.22) 0.38 (0.30) 0.39 (0.26)

10,000 0.30 (0.20) 0.29 (0.21) 0.14 (0.09) 0.14 (0.08) 0.28 (0.18) 0.27 (0.16)

Table 4. The means and standard deviations (in parentheses) of the RMSEs (×100) under different estimation methods, quantile levels τ = 0.1, 0.5, 0.9 and b for simulation
study 5.3 with ε ∼ t(3).

τ = 0.1 τ = 0.5 τ = 0.9

b UQPE-A UQPE-S UQPE-A UQPE-S UQPE-A UQPE-S

100 1.84 (1.14) 2.15 (1.36) 1.48 (1.03) 1.32 (0.84) 1.79 (1.04) 1.98 (1.24)
200 1.33 (0.83) 1.70 (1.10) 1.28 (0.81) 1.10 (0.70) 1.43 (0.92) 1.61 (1.08)
500 0.98 (0.64) 1.22 (0.73) 0.78 (0.47) 0.71 (0.41) 0.92 (0.63) 1.03 (0.70)

1000 0.82 (0.50) 0.88 (0.55) 0.63 (0.43) 0.55 (0.39) 0.71 (0.51) 0.88 (0.58)
2000 0.57 (0.38) 0.63 (0.43) 0.48 (0.29) 0.45 (0.27) 0.61 (0.45) 0.74 (0.53)
5000 0.40 (0.24) 0.40 (0.26) 0.29 (0.21) 0.27 (0.19) 0.38 (0.25) 0.41 (0.24)

10,000 0.34 (0.23) 0.34 (0.25) 0.24 (0.14) 0.19 (0.14) 0.27 (0.15) 0.23 (0.14)

Table 5. The means and standard deviations (in parentheses) of the RMSEs (×100) under different estimation methods, quantile levels τ = 0.1, 0.5, 0.9 and b for simulation
study 5.3 with ε ∼ χ2(1).

τ = 0.1 τ = 0.5 τ = 0.9

b UQPE-A UQPE-S UQPE-A UQPE-S UQPE-A UQPE-S

100 1.62 (0.99) 1.89 (1.28) 1.44 (0.97) 1.27 (0.84) 2.03 (1.24) 2.24 (1.30)
200 1.07 (0.67) 1.44 (1.07) 1.05 (0.72) 0.93 (0.62) 1.58 (0.85) 1.76 (1.11)
500 0.87 (0.58) 0.95 (0.67) 0.78 (0.55) 0.72 (0.50) 0.98 (0.60) 1.17 (0.69)

1000 0.68 (0.46) 0.69 (0.48) 0.63 (0.42) 0.58 (0.34) 0.79 (0.50) 0.94 (0.57)
2000 0.47 (0.29) 0.55 (0.40) 0.42 (0.34) 0.37 (0.30) 0.64 (0.37) 0.58 (0.37)
5000 0.38 (0.27) 0.41 (0.29) 0.34 (0.25) 0.32 (0.22) 0.40 (0.24) 0.38 (0.27)

10,000 0.29 (0.20) 0.30 (0.25) 0.21 (0.17) 0.22 (0.15) 0.36 (0.19) 0.35 (0.21)

Table 6. The means of computing time t (in seconds) under different estimation
methods, quantile levels τ = 0.1, 0.5, 0.9 and b for simulation study 5.3 with ε ∼
N(0, 1).

τ = 0.1 τ = 0.5 τ = 0.9

b UQPE-A UQPE-S UQPE-A UQPE-S UQPE-A UQPE-S

100 0.31 0.09 0.28 0.10 0.24 0.07
200 0.72 0.18 0.57 0.18 0.46 0.12
500 2.07 0.41 1.44 0.41 1.17 0.27

1000 4.30 0.82 3.07 0.82 2.73 0.53
2000 7.91 1.51 6.52 1.72 5.44 1.03
5000 18.76 3.56 15.48 4.15 14.70 2.77

10,000 39.03 7.50 29.16 8.06 42.42 7.94

increases, RMSEs decrease, and computation time t expands,
aligning with expectations.

6. Empirical Application

6.1. Labor Income and Minimum Wage Dataset

To illustrate the proposed methods in Sections 4, we employ a
substantial sample consisting of 941,174 observations derived
from the 2011 to 2020 Current Population Survey (CPS)-
merged outgoing rotation group earnings data. This dataset
is accessible online for replication at https://www.nber.org/

research/data/current-population-survey-cps-merged-outgoing-
rotation-group-earnings-data. Additionally, we use a dataset
documenting the minimum wage (minimum hourly wage) set
by U.S. states from 2011 to 2020, obtainable at http://www.
dol.gov/whd/state/stateMinWageHis.htm. This dataset is also
considered streaming data, as data continually enters the stream
over time, resulting in a substantial volume of data. The objective
is to evaluate the effects of Minwage (minimum wage) on the
quantile of the unconditional distribution of log wages. In this
application, Y = lwage (log hourly wage), X1 = Minwage
(our focal covariate), and other covariables include X2 = Age,
X3 = Sex (1 for female and 0 for male), X4 = Grade92
(the highest grade completed), X5 = Race, X6 = Marital
(marital status), and X7 = Ftpt94 (full-time or part-time status).
Additional details on data processing can be found at https://
data.nber.org/morg/docs/cpsx.pdf .

The minimum wage system serves as a government policy
tool aimed at adjusting income distribution in the primary stage
and is often a crucial means of poverty alleviation. Numerous
scholars in the literature have delved into the CPS dataset and
examined the minimum wage. For instance, Lee (1999) used
CPS data spanning from 1979 to 1989 to explore the relationship
between labor income (hourly wage) and the minimum wage.
Their analysis suggests that the minimum wage can signifi-
cantly contribute to the increase in dispersion in the lower tail

https://www.nber.org/research/data/current-population-survey-cps-merged-outgoing-rotation-group-earnings-data
https://www.nber.org/research/data/current-population-survey-cps-merged-outgoing-rotation-group-earnings-data
https://www.nber.org/research/data/current-population-survey-cps-merged-outgoing-rotation-group-earnings-data
http://www.dol.gov/whd/state/stateMinWageHis.htm
http://www.dol.gov/whd/state/stateMinWageHis.htm
https://data.nber.org/morg/docs/cpsx.pdf
https://data.nber.org/morg/docs/cpsx.pdf
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Table 7. The estimated coefficients by methods OLS, CQR, UQPE-A, UQPE-S-Year, and UQPE-S-Month for Labor income and minimum wage dataset.

τ Method Minwage Age Sex Grade92 Race Marital Ftpt94

− OLS 0.0181 0.0093 −0.1802 0.1750 0.0048 −0.0027 −0.0354

0.1 CQR 0.0228 0.0057 −0.1123 0.1625 0.0043 0.0045 −0.0414
UQPE-A 0.0013 0.0019 −0.0347 0.0079 −0.0011 −0.0126 −0.0262

UQPE-S-Year 0.0013 0.0027 −0.0468 0.0115 −0.0011 −0.0163 −0.0333
UQPE-S-Month 0.0015 0.0028 −0.0467 0.0118 −0.0011 −0.0167 −0.0343

0.5 CQR 0.0159 0.0088 −0.1805 0.1764 0.0024 −0.0053 −0.0370
UQPE-A −0.0028 0.0037 −0.1166 0.0081 −0.0121 −0.0373 −0.0679

UQPE-S-Year −0.0026 0.0055 −0.1500 0.0144 −0.0157 −0.0523 −0.1014
UQPE-S-Month −0.0027 0.0057 −0.1534 0.0149 −0.0160 −0.0537 −0.1042

0.9 CQR 0.0184 0.0154 −0.2519 0.1832 0.0101 −0.0003 −0.0124
UQPE-A −0.0093 0.0023 −0.1004 −0.0070 −0.0129 −0.0474 −0.0346

UQPE-S-Year −0.0090 0.0025 −0.1185 −0.0053 −0.0145 −0.0496 −0.0443
UQPE-S-Month −0.0090 0.0025 −0.1168 −0.0056 −0.0144 −0.0496 −0.0429

Figure 2. The estimates of the effect of Minwage on log wages by UQPE-A, UQPE-S-Year, and UQPE-S-Month for Labor income and minimum wage dataset.

of the wage distribution, especially for women. In a similar
vein, Dube (2019) examined individual-level data from the CPS
covering the period between 1984 and 2013. Their study pro-
vided an assessment of how U.S. minimum wage policies impact
the distribution of family incomes for the non-elderly popula-
tion. They comprehensively characterized how minimum wage
increases shift the cumulative distribution of family incomes,
subsequently using this information to estimate the uncondi-
tional quantile partial effects (UQPE) of the policy.

For comparison with standard OLS (conditional mean)
estimates and with standard (conditional) quantile regressions
(CQR), we use the following linear model for OLS and CQR:

Y = X�β + ε, (6.1)

where X = (X1, . . . , X7)
�. The mean relative absolute errors

(MRAE=n−1 ∑n
i=1 |Yi−Ŷi|/|Yi|) of OLS and CQR with quantile

level 0.5 are 5.318% and 5.317%, respectively. Therefore, model
(6.1) is assumed to be reasonable for OLS and CQR. Table 7
reports the estimated coefficients of model (6.1) by methods
OLS, UQPE-A, and CQR for the 10th, 50th, and 90th quantiles,
which shows the difference between conditional and uncondi-
tional quantiles regressions.

Next, we consider the proposed method UQPE-S in Sections 4.
Since the data of minimum wage is recorded in years and
the data of CPS is recorded in months, we consider b = 10
(year) and 120 (month), respectively. The data of 2011 and

January 2011 are regarded as D1 for UQPE-S-Year (b = 10) and
UQPE-S-Month (b = 120), respectively. The difference between
the estimated effect of Minwage for UQPE-A, UQPE-S-Year and
UQPE-S-Month is illustrated in Figure 2, which plots at nine
different quantiles (from the 10th to the 90th). From Table 7
and Figure 2, we can see that the estimated coefficients and the
effects of Minwage on log wages under different quantiles by
UQPE-A, UQPE-S-Year, and UQPE-S-Month are all very close.

Finally, as with the streaming data setup, when the last batch
of data arrives (2020 and December 2020 are regarded as Db
for UQPE-S-Year (b = 10) and UQPE-S-Month (b = 120),
respectively), the total running time of UQPE-A with nine quan-
tiles is also 52.98 sec, which needs to compute all the data.
However, UQPE-S-Year is 0.87 sec and UQPE-S-Month is 0.08
sec, because only Db and some past statistics are required. In
addition, for the setting of massive data, that is, all data can be
stored, the cumulative time from 1 to b of UQPE-S-Year (b =
10) and UQPE-S-Month (b = 120) with nine quantiles is 21.58
sec and 18.51 sec, respectively. Therefore, UQPE-S (UQPE-
S-Year and UQPE-S-Month) is much faster to compute than
UQPE-A.

6.2. Daily Return of Stocks and Exchange Rate Dataset

In order to illustrate the proposed methods in Sections 4 for
large batches b, we used data from 871 trading days between
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Table 8. The estimated coefficient of ERF by methods CQR, UQPE-A, and UQPE-S for Daily return of stocks and exchange rate dataset.

Method τ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CQR −0.6335 −0.6257 −0.6094 −0.5740 −0.5190 −0.4916 −0.4628 −0.4384 −0.4071
UQPE-A −0.5625 −0.5693 −0.5930 −0.6043 −0.6201 −0.6187 −0.6443 −0.7395 −1.1355
UQPE-S −0.5466 −0.5674 −0.5812 −0.6121 −0.6252 −0.6322 −0.6749 −0.7856 −1.1572

Figure 3. The estimates of the effect of ERF on Return by OLS, CQR, UQPE-A, and UQPE-S.

January 1, 2020 and August 25, 2023 for all companies listed
on the Shanghai Stock Exchange in China and exchange rate
between the U.S. dollar and the Chinese currency. The dataset
contains 1,339,591 observations, where suspension and special
treatment stock transactions have been deleted. There were 1546
stocks in 2020, 1629 stocks in 2021, 1665 stocks in 2022 and 1689
stocks in 2023. We focus on the effects of Return (daily return of
stock) on the quantile of the unconditional distribution of ERF
(exchange rate fluctuation).

In this application, Y = Return, which is (closing price of
the day − closing price of the previous day)/closing price of the
previous day, X1 = ERF, which is our interested covariate, X2 =
TR (daily turnover rate of stock) and X3 = Vol (daily trading
volume of stock). Similar to the analysis of streaming time series
data conducted in Deshpande, Javanmard, and Mehrabi (2023)
and Jiang, Choy, and Yu (2023), the dataset in this study is not
independent and identically distributed. However, we employ
OLS, UQPE-A, CQR, and UQPE-S to analyze the dataset. It
is important to note that this application poses a limitation
on the iid assumption commonly used in practical time series
data analysis. Table 8 and Figure 3 report the estimated coef-
ficients X1 = ERF of model (6.1) with X = (X1, X2, X3)

�
by methods OLS, CQR, UQPE-A, and UQPE-S under nine
different quantiles (from the 10th to the 90th), which shows
the difference between conditional and unconditional quantiles
regressions.

Next, we consider the proposed method UQPE-S in Sec-
tions 4. For different stocks, the exchange rate is the same every
day, so we choose D1 for the first 30 trading days. Since the data
between January 1, 2021 and August 25, 2023 is recorded in days,
we consider b = 842. The difference between the estimated
effect of ERF for UQPE-A and UQPE-S is illustrated in Table 8
and Figure 3. From Table 8 and Figure 3, we can see that the
effects of ERF on Return under different quantiles by UQPE-A
and UQPE-S are all very close.

Finally, as with the streaming data setup, when the last batch
of data arrives (the transaction data as of August 25, 2023 is
regarded as Db), the total running time of UQPE-A with nine
quantiles is also 65.37 sec and UQPE-S is 0.02 sec. In addition,
for the setting of massive data, that is, all data can be stored,
the cumulative time from 1 to b of UQPE-S (b = 842) with
nine quantiles is 18.11 sec. Therefore, UQPE-S is much faster
to compute than UQPE-A.

7. Discussion

In this article, we delve into renewable parameter estimation for
unconditional quantile regression applied to streaming datasets.
A pivotal insight derived from our work is the introduction of
a smoothing logistic regression estimator, a crucial tool in gen-
erating renewable estimators for unconditional quantile regres-
sion. This innovative approach necessitates only the availability
of the current data batch within the stream, along with sufficient
statistics on the historical data at each stage of analysis. Notably,
our proposed renewable methods do not impose constraints on
the number of batches, allowing them to adapt seamlessly to sit-
uations where streaming data arrives rapidly and continuously.

Theoretical analysis reveals that the proposed estimators for
streaming datasets attain optimal efficiency, with asymptotic
covariance matrices mirroring those of estimators derived from
full data. The algorithm’s swiftness stems from its reliance on
the Newton-Raphson method. Empirical results presented in
Sections 5 and 6 demonstrate that our proposed method closely
approximates the estimator derived from complete data, yet
boasts a shorter running time.

Furthermore, the smoothing technique employed for the
logistic regression estimator in this article can be extended to
benefit other estimation methods, such as quantile regression
and Huber estimation. As highlighted in Kong and Xia (2019)
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and Jiang and Yu (2022), our renewable estimation method is not
confined solely to streaming data, but is also apt for the analysis
of massive data. “Massive data” denotes data that exceeds a com-
puter’s storage or computational capacity, often originating from
a distributed system. Specifically, we can employ the divide-and-
conquer method to partition the dataset into b blocks, or the
dataset itself may stem from b sub-devices. This empowers us
to analyze massive data with the aid of our renewable estimation
method.

Supplementary Materials

The proofs of the proposed theorems are given in the supplementary
material file.
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