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Abstract

Predicting typhoon intensity accurately across space and time is crucial for issuing
timely disaster warnings and facilitating emergency response. This has vast poten-
tial for minimizing life losses and property damages as well as reducing economic
and environmental impacts. Leveraging satellite imagery for scenario analysis is
effective but also introduces additional challenges due to the complex relations
among clouds and the highly dynamic context. Existing deep learning methods
in this domain rely on convolutional neural networks (CNNs), which suffer from
limited per-layer receptive fields. This limitation hinders their ability to capture
long-range dependencies and global contextual knowledge during inference. In
response, we introduce a novel approach, namely “Typhoon Intensity Transformer”
(Tint), which leverages self-attention mechanisms with global receptive fields
per layer. Tint adopts a sequence-to-sequence feature representation learning per-
spective. It begins by cutting a given satellite image into a sequence of patches
and recursively employs self-attention operations to extract both local and global
contextual relations between all patch pairs simultaneously, thereby enhancing
per-patch feature representation learning. Extensive experiments on a publicly
available typhoon benchmark validate the efficacy of Tint in comparison with both
state-of-the-art deep learning and conventional meteorological methods. Our code
is available at https://github.com/chen-huanxin/Tint.

1 Introduction

In recent decades, global warming has led to both the intensification and expansion of typhoons [1].
Typhoons are severe or even extreme weather systems that originate from warm tropical oceans and
gradually build up their own power when approaching nearby lands. Upon making landfall, they
pose significant threats to lives and properties in their vicinity [2, 3]. Different typhoon intensities
correspond to varying levels of economic losses and environmental devastation [4]. The intensity
of a typhoon is closely associated with the maximum sustained surface wind speed near its center,
making it a key factor in disaster management.
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Typhoon satellite imagery plays a pivotal role in predicting typhoon intensity due to its rich and
timely real-time data, enabling us to dynamically monitor the typhoon’s structure, cloud patterns, and
environmental conditions [5]. Ample studies focus on predictive regressions using the information,
features, and parameters extracted from these remote sensing images [6, 7].

In recent years, to overcome the limitations of regression-based methods, researchers have resorted
to deep learning methods [8] for estimating typhoon intensity using satellite imagery [9]. One of
the most prevailing methods in this field relies heavily on Convolutional Neural Networks (CNNs)
[10], which are renowned for their proficiency in capturing local image features and intricate image
structures. However, the over-concentration on local information may deteriorate the model’s overall
performance as it neglects the global context that is essential for improving predictive accuracy.

In this study, we address the above critical limitations by proposing a novel method called the
Typhoon Intensity Transformer (Tint). The Tint employs self-attention mechanisms with expansive
global fields in each layer. This is achieved by partitioning input images into fixed-size patches and
transforming them into one-dimensional feature vector sequences. Self-attention mechanisms are
then used for establishing the connections among these patches so as to extract comprehensive global
features and contextual information spanning the entire image. Moreover, The Tint further refines
and consolidates image features through the incorporation of multiple Transformer layers, through
which these features are forwarded to an output layer for typhoon intensity predictions. The superior
performance of the Tint can be attributed to its capacity in treating images analogously to text data
from a sequential perspective, i.e., it is able to extract extensive global relations and contextual cues
beyond the local features captured by the CNNs.

2 Methodology

The Tint adopts the same input-output configuration as Vision Transformers[11, 12, 13] with a key
difference that it outputs a continuous integer as the typhoon intensity estimation. Overview of our
Tint is given in Figure 1.

Image to sequence Our method takes a 1D sequence of feature embeddings Z ∈ RL×C as inputs
with L as the preset sequence length and C as the hidden channel size. This is implemented as
follows: (1) We first cut a given input image into a grid of patches; (2) Then an embedding block
is employed to encode each individual patch into a feature embedding; (3) Positional embedding is
further added on top of each content embedding.

Model architecture To strike a balance between computational efficiency and model performance,
we choose to implement the Tiny-ViT architecture [11]. Our model comprises four stages with
progressively decreasing resolutions. The patch embedding block consists of two convolutional
layers using a kernel size of 3, a stride of 2, and a padding size of 1. In the initial stage, we employ
lightweight and efficient MBConvs [14] along with downsampling blocks. This choice is motivated
by the efficiency of early convolutional layers in learning low-level features [15].

The subsequent three stages are constructed using Transformer blocks that employ window attention
mechanisms to reduce computational overhead. We incorporate attention bias [13] and apply a
separable convolution of 3×3 depth between the attention and MLP components to capture local
information [16], emphasizing the intrinsic ability to learn global context information. The residual
connections [10] are used in each block of the first stage also within the attention and MLP blocks.
For activation functions, we employ GELU [17]. Furthermore, BatchNorm [18] is applied to the
normalization layers of the convolutional layers, and LayerNorm [19] is used for the linear layers.

The architectural selection aims to balance computational efficiency and model performance. For-
mally, given the embedding sequence Z as an input, the Transformer with M layers of multi-head
self-attention (MSA) and Multilayer Perceptron (MLP) blocks is employed to learn feature represen-
tations. At each layer l, the input to self-attention is a triplet (query, key, value) computed from the
input Zl−1 ∈ RL×C as Zl−1Wq , Zl−1Wk, and Zl−1Wv , respectively, where Wq/Wk/Wv ∈ RC×d

are the parameters of the learnable linear projections, and d is the dimension of (query, key, value).
Self-attention (SA) is then formulated as:

SA(Zl−1) = Zl−1 + softmax(
Zl−1Wq(Z

l−1Wk)
⊤

√
d

)(Zl−1Wv). (1)
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Figure 1: Overview of our proposed Typhoon Intensity Transformer (Tint) method. Our approach
begins with a sensor image, which undergoes the following key steps: (a) An input image is initially
divided into a grid of patches. (b) We then perform patch embedding and integrate positional embed-
dings, resulting in a sequence of feature embeddings, which serve as our initial image representations.
(c) Subsequently, we employ a lightweight vision Transformer to process this sequence of feature
embeddings. This step enables both local and global information processing, yielding a comprehen-
sive representation for each patch. (d) Finally, we apply average pooling to aggregate the patch-level
feature representations, creating an image-level representation. This is followed by a fully connected
layer, which is responsible for predicting the typhoon intensity.

The Multi-Head Self-Attention (MSA) design including m independent SA operations
is deployed. It projects a concatenated output in the form of MSA(Zl−1) =
[SA1(Z

l−1); SA2(Z
l−1); · · · ; SAm(Zl−1)]WO, where WO ∈ Rmd×C and d is set to C/m.

The output of the MSA is then transformed by an Multi-Layer Perceptron (MLP) block with a
residual skip as the layer output Zl = MSA(Zl−1) +MLP (MSA(Zl−1)) ∈ RL×C . The layer
normalization applied prior to the MSA and MLP blocks is excluded here for simplicity.

Head design The final layer’s feature output is represented as Zm ∈ RL×C . We initially perform
an average pooling operation on Zm, generating v = avg(Zm). Subsequently, a fully connected
layer uses v to derive the final prediction y = vw + b with w and b as trainable parameters.

3 Experiments

3.1 Experiment Settings

Dataset Our experiments are conducted using the Tropical Cyclone for Image-to-Intensity Regression
(TCIR) dataset [20]. This dataset serves as an important open benchmark for evaluating typhoon
intensity estimation models with a fair assessment setting. See the Supplementary Dataset for details.

Performance metric Given that typhoon intensity estimation is formulated as a regression problem
[20], we evaluate the model’s performance using the Root Mean Squared Error (RMSE).

Training strategy Details of our implementation can be found in the Supplementary Material.

Competitors We conduct a comparative analysis of our Tint model with conventional meteoro-
logical models and recent deep-learning methods (See more details of these competitors in the
Supplementary Material).

3.2 Evaluation results

We present the results from typhoon intensity estimation using various methods in Table 1a (validation
set) and Table 1b (testing set). Our analysis starts with a comprehensive examination of the validation
set, offering the following insights:
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Table 1: Compare with other models. IR: Infrared; PMW: Passive Microwave; WV: Water Vapor.
The unit of RMSE is knots

(a) Performance evaluation on TCIR validation dataset.

Model Modality RMSE

ADT [6] IR 11.79
AMSU [21] IR 14.10
SATCON [22] IR+PMW 9.21
KT [23] IR+PMW 13.20
FASI [7] IR 12.70
Improved DAV-T [24] IR 12.69
TI index [25] IR 9.34

MLRM [26] IR 12.01
TDCNN [9] IR 10.00
Deep CNN [27] IR 10.18
CNN-TC [20] IR 10.59
GAN-CNN [28] IR 10.45
ResNet32 [10] IR 11.63
Tint IR 9.63
Tint IR+PMW 9.54

(b) Performance evaluation on TCIR testing dataset.

Model Modality RMSE

ADT [6] IR 12.19
SATCON [22] IR+PMW 9.21

CNN-TC [20] IR+PMW 10.13
GAN-CNN [28] IR+WV 10.45
ResNet32 [10] IR 10.42
ResNet32 [10] IR+WV 10.39
ResNet32 [10] IR+PMW 10.32
Tint IR 9.35
Tint IR+WV 9.33
Tint IR+PMW 9.00

Meteorological Modeling: Surprisingly, simple linear regressions show considerable performance,
surpassing more complex retrieval-based methods (e.g., KT [23] and FASI [7]), as well as brightness
temperature gradient-based approaches (e.g., Improved DAV-T [24]). Notably, the TI index as one
of the latter [25] provides valuable incremental information but is slightly outperformed by the
composite approach that leverages multiple models and meteorological expertise [22].

Deep Learning: Most of the deep learning methods exhibit competitive performance or even surpass
their conventional counterparts, highlighting the promising potential of the data-driven methods. In
particular, ResNet [10], as one of the most widely used CNN architectures, shows notable performance
comparable to traditional linear regressions. CNN models with specific task-oriented designs, such as
regularization [27] and multi-modality exploitation [20], exhibit improved performance. Still, these
developments fail to overcome the limitations imposed by restricted receptive fields. While it is clear
that our Tint model characterized by per-layer global receptive fields outperforms significantly. This
supportive evidence validates our model assumptions and structure design.

Our findings remain consistent and qualitatively unchanged on the test set, confirming the stability
and generality of our proposed model. In addition, the empirical results suggest that incorporating
more sensor data tends to improve the predictive performance. In the test set, our model achieves
state-of-the-art after adding WV information, and more so with PMW information.

Qualitative evaluation: We also provide attention visualization for comparing ResNet32 with our
Tint model (refer to Figure 2 in the Supplementary Material for details). The visualization clearly
indicates that Tint captures a broader spatial context and empowers more comprehensive feature
representation learning that results in significant improvement in prediction accuracy.

4 Conclusion

In summary, our “Typhoon intensity Transformer” (Tint) model significantly improves the predictive
accuracy of typhoon intensity, which is of great value for real-world disaster management. The
innovative use of self-attention mechanisms is attributable to the superior performance of the Tint,
as they succeed in featuring global receptive fields per layer, thereby substantially enhancing its
ability in capturing the long-range dependencies in sensor observations. This also makes it adaptive
across diverse domains with dynamic high-dimensional data. The results from the experiments
conducted on a benchmark dataset demonstrate Tint’s superiority over both deep learning and
meteorological methods and highlight Tint’s potential in innovating disaster management in response
to meteorological disasters such as typhoons.
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Appendix

Dataset

TCIR gathers tropical cyclone data from satellite images across four channels: infrared (IR), water vapor (WV),
passive microwave (PMW), and visible light (VIS). Each frame contains 201 × 201 data points, alongside
corresponding wind speed information.

For our experiment setup, we employ typhoon images spanning the years 2003 to 2014 as the training dataset.
Data from 2015 to 2016 are designated for validation, and the data from 2017 are reserved for testing. The training
dataset comprises 40,348 frames corresponding to 730 typhoons, while the validation dataset encompasses 7,569
frames associated with 131 typhoons. The test set comprises 4,580 frames covering 94 typhoons.

Training strategy

Before feeding an image into the model, we apply preprocessing steps, which include resizing the image to
224x224 pixels, performing a random rotation within the range of [0, 20◦], and randomly applying horizontal or
vertical flips with a 50% probability.

To address potential overfitting, the Tint model’s backbone is pretrained on ImageNet. We utilize the Mean
Squared Error (MSE) as the loss function for network training. Our training setup employs a batch size of 32
and an initial learning rate of 0.00001. The learning rate undergoes a 10-fold decay at the 50th and 75th epochs,
respectively. The training process continues for a total of 100 epochs.

Qualitative results

Input ResNet32 Tint Input ResNet32 Tint

Figure 2: The Grad-CAM visualization of ResNet32 and Tint.

Competitors

Among the conventional meteorological models, we include: Linear Regression-based Advanced Dvorak
Technique (ADT) [6]. Advanced Microwave Sounding Unit (AMSU) [21], which relies on near-earth orbit
satellites and operates only during satellite passages through typhoons. SATellite CONsensu (SATCON) [22],
which is a heuristic combination of ADT and AMSU, widely used in forecasting practice, in particular relying on
low-earth orbit satellite observations and expert inputs. Kossin Technique (KT) [23], which improves predictive
performance by constructing a global record of typhoon/hurricane intensity from existing data. Feature Analogs
in Satellite Imagery (FASI) [7], which employs a k-nearest-neighbor algorithm to determine intensity based on
the ten closest typhoons. Improved DAVT [24], which predicts typhoon intensity through statistical analysis of
the gradients of the IR brightness temperatures. TI index [25], which leverages image edge processing techniques
to examine meaningful discontinuity characteristics and calculate the brightness temperature gradients for
typhoon intensity prediction.

We also consider the recently developed deep learning methods for our task: Multiple Linear Regression Model
(MLRM) [26], which designs multiple features, including eyewall slope and brightness temperatures, and
aggregates multiple regression models using different features for typhoon intensity prediction. Transferring
Deep Convolutional Neural Networks (TDCNN) [9], which introduces a simple Convolutional Neural Network
(CNN). Deep CNN [27], which proposes a deep neural network with regularization techniques. CNN-TC [20],
which presents a multi-modality deep network that takes both IR and PMW inputs meanwhile incorporating
rotation-blending and sequence-smoothing techniques. GAN-CNN [28], which employs Generative Adversarial
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Networks (GANs) to generate high-quality images, reducing the reliance on PMW data. ResNet [10], which is a
widely adopted CNN architecture with numerous successful applications in various domains.
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