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ABSTRACT

This paper presents a theoretical analysis of multi-channel modulo
analog-to-digital converters (ADCs) for high-dynamic range sam-
pling under bounded noise. In particular, we derive the maximum er-
ror tolerance in terms of ADC dynamic range, signal dynamic range,
and channel number. Additionally, we present closed-form expres-
sions for ADC thresholds, ensuring near-optimal error resilience,
and analyzing the minimal bit-depth needed for stable recovery.
Compared to single-channel modulo ADCs, our approach achieves
superior error tolerance with reduced sampling rates. Moreover, it
demands a minor bit rate increase compared to conventional ADCs
but operates with a significantly smaller ADC dynamic range.

Index Terms— Analog-to-digital converters(ADC), modulo
samplers, Chinese remainder theorem(CRT)

1. INTRODUCTION

Saturation or clipping issues pose challenges in various applications.
For example, in high dynamic range photography, sunlit scenes often
result in overexposure [1]. Similarly, in scientific imaging systems
like ultrasound and radar, intense reflections risk overwhelming the
sensors [2–6]. Additionally, in audio, clipping generates artifacts
diminishing sound quality [7–9]. These complications stem from
ADC’s range limitations. Specifically, when input amplitudes sur-
pass the ADC’s threshold, described by |fin| > ∆

2
where ∆ denotes

the ADC’s peak-to-peak range, the result is aliasing due to clipping.
Consequently, output values are confined to [−∆

2
,+∆

2
]. To address

this challenge, modulo ADCs have been developed [10, 11]. For an
input x ∈ R and a threshold ∆ > 0, the modulo ADC wraps the
input amplitude as:

⟨x⟩∆ = x mod ∆ = x−∆
⌈ x

∆

⌋
∈
[
−∆

2
,
∆

2

)
, (1)

with ⌈·⌋ denoting the rounding function. Single-channel modulo-
ADC has been applied in areas like radar, imaging, and communica-
tions to increase dynamic range [12–14]. However, single-channel
modulo-ADC system requires high sampling rates and computa-
tional costs.

Drawing on the Chinese Remainder Theorem (CRT), multi-
channel modulo-ADC systems are introduced in [15, 16]. These
systems promise reliable, high-dynamic range sampling even at
low sampling rates. Illustrated in Fig. 1, an L-channel modulo-
ADC system employs a sequence of distinct ADC thresholds
∆1 < ∆2 < · · · < ∆L = ∆max defined as:

∆l = ϵτl, 1 ≤ l ≤ L (2)

Fig. 1. Multi-channel modulo-ADC sampling architecture.

where ϵ is a positive floating-point number, and τl is pair-wise co-
prime integer. Each channel samples at the Nyquist rate and the
maximum signal amplitude P , is given by

P =
ϵτ1τ2 · · · τL

2
(3)

The robust CRT algorithms [17, 18] facilitate point-by-point, fast,
and reliable signal reconstruction when the modulo ADC errors stay
below |e| < ϵ/4.

While multi-channel modulo-ADCs offer substantial promise,
open questions remain about optimizing their performance. This pa-
per analyzes and optimizes multi-channel modulo ADC systems to
enable robust, high-dynamic range signal acquisition while keeping
the bitrate overhead minimal. Our main contributions are:

• Deriving relationships between error tolerance, sampling
rates, ADC dynamic range, and signal dynamic range to offer
insights into multi-channel modulo system robustness and
parameter selection;

• Providing closed-form expressions for the ADC thresholds
for L = 2, 3, 4 that offer (near-) optimal resilience to errors,
given the signal’s peak magnitude gmax and the maximum
ADC dynamic range ∆max;

• The multi-channel modulo ADC architecture achieves high
dynamic range signal acquisition with comparable hardware
costs to conventional ADCs in terms of bits/sample.

The remainder of this paper is organized as follows. Section 2 re-
views existing results on modulo ADC systems with bounded noises.
Section 3 analyzes moduli selection and bitrates. Section 4 presents
simulations of sampling bitrate, dynamic range, and channel number
tradeoffs and concludes in Section 5.

Notations: Rational integers and natural numbers are repre-
sented by Z and N, respectively. The ceiling and rounding opera-
tions for a real number x are given by ⌈x⌉ and ⌊x⌋. The greatest
common divisor of two integers, p and q, is gcd(p, q). An integer p
has a modular multiplicative inverse, q, if pq mod m = 1.
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2. LITERATURE REVIEW

Consider an L-channel modulo ADC system characterized by ADC
dynamic ranges ∆1 < ∆2 < . . . < ∆L = ∆max. Given a band-
limited input signal g(t), the k-th sample (where k ∈ Z) is defined as
gk = g(k/fs). Here, fs represents the uniform sampling frequency
across all channels. We set gmax = ∥g(t)∥∞ and express the noisy
output for the k-th sample in the l-th channel as yk,l = ⟨gk⟩∆l+ek,l,
1 ≤ l ≤ L. Let ∥e∥∞ = maxk,l |ek,l| indicate the peak magnitude
of ADC sample noise. In our context, the noise is bounded such that
∥e∥∞ < b0. If the reconstruction of the k-th sample is ĝk, then a
stable reconstruction is defined by the relation:

⌈ĝk/∆l⌋ = ⌈gk/∆l⌋ ∀ k ∈ Z, 1 ≤ l ≤ L, (4)

which further suggests that |gk − ĝk| ≤ ∥e∥∞. In what follows, we
summarize existing works of modulo-ADCs under bounded noises.

Single-channel modulo-ADCs (L = 1), commonly referred to
as the unlimited sampling framework (USF), facilitate the perfect re-
construction of a bandlimited signal g(t) from its oversampled mod-
ulo samples, as detailed in [11, 19]. Under noiseless conditions, a
signal can be accurately recovered using the USF approach if the
sampling rate meets the threshold of fT ≥ 2πefNY Q, where fNY Q

represents the Nyquist sampling rate [11]. Furthermore, Theorem
3 from [20] indicates that a bandlimited signal can be stably recon-
structed from noisy modulo samples provided specific conditions are
met. Specifically, with a sampling rate of fT > 2απefNY Q, sta-
ble recovery can be achieved given that the modulo ADC’s noise is
bounded by

∥e∥∞ ≤ ∆max

8
(2ρ)−

1
α . (5)

Here, α is a natural number, ρ = 2gmax/∆max is the amplitude scal-
ing factor (also referred to as normalized dynamic range in [20]).
The aforementioned bound demands a considerably high oversam-
pling factor relative to the Nyquist rate. While empirical studies [11,
21–23] suggest that imposing extra constraints on g(t) may allow
for reduced sampling rates, to the best of our understanding, (5) rep-
resents the most robust theoretical bound for a generic bandlimited
signal in a single-channel system.

Multi-channel modulo-ADC systems with L > 1 were first in-
troduced in [15], leveraging a robust CRT recovery algorithm pre-
sented in [18,24–27], as outlined in Algorithm 1. Within this frame-
work, each channel samples at the Nyquist rate fs = fNY Q, result-
ing in a total sampling rate of fT = LfNY Q. Adopting ∆l as spec-
ified in (2), stable reconstruction is attainable when ∥e∥∞ ≤ ϵ

4
. A

central challenge lies in optimizing τl to amplify ϵ given a specified
∆max and ρ. Additionally, there is a lack of study on the necessary
bit rates. This paper aims to address these concerns.

It’s worth noting that a dual-channel system (L = 2) was intro-
duced in a recent study [28]. Unlike our CRT-based approach, their
system requires that the ratio ∆1/∆2 is an irrational number. How-
ever, implementing such a system in hardware poses challenges due
to the inherent precision limitations of components. Moreover, the
study did not address the noise robustness of their system [28].

3. MODULI SELECTION AND BITRATE ANALYSIS OF
MULTI-CHANNEL ARCHITECTURE

3.1. Performance analysis for bounded noise

Theorem 1 presents the upper bound for noise tolerance in the con-
text of a predetermined maximum threshold ∆max and amplitude
scaling factor ρ = 2gmax/∆max

Algorithm 1 Robust CRT reconstruction algorithm [18]
Input: ADC threshold parameters τl and ϵ, ADC modulo samples

yk,l = ⟨gk⟩∆l + ek,l
Output: Recovered estimate g̃k

1: Compute γ1 =
∏L

l=2 τj

2: Compute q̂k,l,1 =
⌈

yk,l−yk,1

ϵ

⌋
, 2 ≤ l ≤ L

3: Compute ξ̂k,l,1 = q̂k,l,1τ̄l,1 (mod τl), where τ̄l,1 is the multi-
plicative modulo inverse of τ1 (mod τl)

4: Compute n̂k,1 =
∑L

l=2 ξ̂k,l,1bl,1
γ1
τl

(mod γ1), where bl,1 is
the modulo inverse of ⟨ γ1

τl
⟩τl

5: Compute n̂k,l =
n̂k,1τ1−q̂k,l,1

τl

6: Compute g̃k = 1
L

∑L
l=1 (n̂k,l∆l + yk,l).

Theorem 1 (Multi-channel Modulo ADC Systems with Bounded
Noise). Consider an L-channel modulo-ADC system (Fig. 1), with
thresholds ∆l = τlϵ, 1 ≤ l ≤ L. Here, ϵ > 0 and each τl are pair-
wise coprime integers. When each channel is sampled at its Nyquist
rate, resulting in a total rate fT = LfNY Q, and let the k-th modulo
sample in the l-th channel as yk,l = ⟨gk⟩∆l

+ ek,l, with noise ek,l.
Stable reconstruction is achievable if the maximum error amplitude
∥e∥∞ = maxk,l |ek,l| satisfies:

∥e∥∞ ≤ C∆max

4
ρ−

1
L−1 , (6)

where ρ = 2gmax/∆max is the amplitude scaling factor in (5) and
C < 1 is a parameter determined by ρ and τl (1 ≤ l ≤ L). For
large values of ρ, C ≈ 1.

Proof. Due to space constraints, we outline the main steps. First,
the maximum recoverable value P in (3) must exceed gmax, i.e.,
τ1τ2...τLϵ

2
≥ gmax. Given the ADC’s threshold restrictions, we also

have: τLϵ ≤ ∆max. These lead to τ1τ2 . . . τL−1 ≥ ρ as well as
ϵ ≤ ∆max

τL
. Recall from Algorithm 1, the modulo ADC’s error needs

to be bounded by ∥e∥∞ ≤ ϵ
4

for stable reconstruction. As ϵ is a
positive real number, we can select ϵ = ∆max

τL
. For optimal error

tolerance, τL is minimized under the constraints τ1τ2 . . . τL−1 ≥ ρ,
the order τ1 ≤ τ2 . . . ≤ τL−1 ≤ τL, and their pairwise co-primality.
Therefore, each τl should be on the order of ρ

1
L−1 . This makes

ϵ = ∆max
τL

= C∆maxρ
− 1

L−1 for some C ≈ 1, validating (6). ■

Table 1 presents a comparative evaluation between the theoreti-
cal bounds of the single-channel system [11] and the proposed multi-
channel modulo-ADC systems in terms of error tolerance and sam-
pling rate. Notably, α in the single-channel system corresponds to
L − 1 in its multi-channel counterpart. Both systems exhibit error
tolerance orders of O

(
ρ−

1
L−1

)
and O

(
ρ−

1
α

)
, respectively. How-

ever, our multi-channel approach linearly increases the sampling rate
with L, whereas the single-channel has an exponential dependence
on α. This significant difference highlights that multi-channel mod-
ulo ADCs can achieve comparable error resilience to single-channel
systems but with substantially lower sampling overhead. Therefore,
the analysis substantiates the benefits of multi-channel architectures
in attaining high dynamic range acquisition at low sampling frequen-
cies.
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Table 1. Performance comparison of modulo-ADC systems under
bounded noise, where fT and ∥e∥∞ denote the total sampling rate
and maximum error. Here, α ∈ N, L ≥ 2 and C < 1.

System Type fT ∥e∥∞
[11] ≥ 2απefNY Q ≤ ∆max

8
(2ρ)−

1
α

This work LfNY Q ≤ ∆max
4

ρ−
1

L−1 · C

3.2. Moduli Selection

This subsection studies the (near-)optimal selection of τl and ϵ to
enhance the system’s error resilience. To address the interest in low
oversampling factors, we provide closed-form solutions for L =
2, 3, and 4 in the following corollary.

Corollary 1. Consider an L-channel modulo-ADC sampling system
given in Theorem 1 with amplitude scaling factor of ρ and maximum
ADC dynamic range of ∆max. For L = 2, 3 and 4, τl (1 ≤ l ≤ L)
given below are pair-wise coprime and satisfy τl = O(ρ

1
L )

• L = 2: τ1 = ⌈ρ⌉, τ2 = τ1 + 1 and ϵ = ∆max
τ2

• L = 3: τ1 = 2a− 1, τ2 = 2a, τ3 = 2a+ 1 and ϵ = ∆max
τ3

,

in which a = ⌈(
√
1 + 4ρ+ 1)/4⌉ (a > 1)

• L = 4: ϵ = ∆max
τ4

and there are two sets of solutions of τl
(1 ≤ l ≤ 4)

– τ1 = 2a− 1, τ2 = 2a, τ3 = 2a+ 1, τ4 = 2a+ 3 in
which a = ⌈0.5 3

√
ρ⌉, a mod 3 ̸= 0 and a > 1

– τ1 = 2a− 1, τ2 = 2a+1, τ3 = 2a+2, τ3 = 2a+3,
in which a = ⌈ 3

√
5 + 0.125ρ − 0.5⌉, a mod 3 = 0

and a > 1.

Proof. For each value of L, we observe τL − τ1 ≤ L. This suggests
that the τl values are closely grouped and have similar magnitudes.
Given that

∏L−1
l=1 τl is roughly equivalent or slightly greater than ρ,

it’s clear that each τl is of the order O(ρ
1

L−1 ).
To establish the pairwise coprime nature, it suffices to show that

gcd(τl, τj) = 1 for 1 ≤ l < j ≤ L. Remember, for two integers p
and q, their difference p− q can be divided by gcd(p, q).

For L = 2, τ1 and τ2 are consecutive integers, ensuring they
are coprime. For L = 3, one can show that gcd(τ1, τ2) = 1 and
gcd(τ2, τ3) = 1 in a similar manner. Additionally, since both τ1
and τ3 are odd and their difference is 2, this confirms that they are
relatively prime.

For L = 4, we build upon the conclusions derived from the
L = 3 case. In the first set of solutions for τl where 1 ≤ l ≤ 4:
First, by applying the logic from the L = 3 discussion, we deduce
that τ1, τ2, and τ3 are pairwise co-prime. Then, for τ3 and τ4, their
difference is 2. Since both are odd integers, they are not divisible
by 2, implying gcd(τ3, τ4) = 1. Next, the difference between τ4
and τ1 is 4. Both τ1 and τ4 being odd integers ensures they are not
divisible by 2 or 4. This establishes that gcd(τ1, τ4) = 1. Finally,
analyzing τ4 and τ2, we see that their difference, τ4−τ2 = 3. Given
the condition a mod 3 ̸= 0, neither τ2 = 2a nor τ4 = 2a + 3 are
divisible by 3. This confirms gcd(τ2, τ4) = 1.

For the second set of solutions for L = 4, the pairwise coprime
property can be proved using a similar approach. ■

In Table 2, we compare the single-channel modulo ADC sys-
tem from [11] against our multi-channel system for ∆max = 40 and
varying ρ. At ρ = 10, the single-channel requires up to 34.3fNY Q

Table 2. Comparison of modulo-ADC systems under bounded
noise, where ∆max = 40, fT and ∥e∥∞ denote the sampling rate
ADC error tolerance, respectively

ρ Systems L τl α ∥e∥∞ fT

10
[11] 1 - 1 0.25 17.1fNY Q

1 - 2 1.11 34.3fNY Q

Ours 2 10, 11 - 0.91 2fNY Q

3 3, 4, 5 - 2 3fNY Q

100
[11] 1 - 1 0.025 17.1fNY Q

1 - 2 0.35 34.3fNY Q

Ours 2 100, 101 - 0.099 2fNY Q

3 11,12,13 - 0.77 3fNY Q

for an error tolerance of 1.11, whereas our system, with three chan-
nels, uses only 3fNY Q to achieve an error of 2. For ρ = 100, our
two-channel setup attains a 0.099 error at just 2fNY Q, contrasting
with the single-channel’s 0.025 error at 17.1fNY Q. Overall, our
CRT-based multi-channel system consistently achieves a larger error
tolerance with significantly reduced sampling rates compared to the
single-channel modulo ADC.

3.3. Bit depth analysis

In this subsection, we analyze the bit rate for the multi-channel sys-
tem, focusing on the minimum bits needed for stable recovery.

Corollary 2. For an L-channel modulo-ADC system as specified
in Theorem 1, with amplitude scaling factor ρ and ADC dynamic
ranges ∆l = τlϵ (1 ≤ l ≤ L). Assuming that a mid-rise uniform
quantizer is used with b bits per modulo-ADC sample (totaling B =
Lb bits per signal sample), stable reconstruction requires

b ≥ log2 τL + 1. (7)

If Bc represents bits per signal sample in a conventional ADC with-
out saturation (with the same quantization step) and let η = B/Bc

denote the bit-rate oversampling factor, then

Bc = b+ log2 ρ and η =
Lb

b+ log2 ρ
(8)

Proof. Given the maximum dynamic range of the ADC system as
∆max, the quantization step is defined by q = ∆max

2b
. With the maxi-

mum quantization error capped at q
2

, a stable reconstruction requires
that ϵ/4 ≥ ∆max/2

b+1. Substituting ϵ = ∆max/τL yields (7). For
a conventional ADC with the same quantization step, the relation
2gmax/2

Bc = ∆max/2
b leads to (8). ■

The Corollary specifies the minimum bit requirement for stable
signal reconstruction and compares it to a conventional ADC without
clipping. Specifically:

Bit-depth requirement Eq. (7) suggests the minimum bit re-
quirement is bmin = log2 τL + 1. Let τL = cLρ

1
L−1 (cL > 1),

one can derive that for every signal sample, the minimum number of
required bits Bmin = Lbmin is

Bmin =
L

L− 1
log2 ρ+ L(1 + log2 cL), (9)

Building on the parameters given in Corollary 1, we plot the rela-
tionship between ρ and Bmin for L = 2, 3 and 4 in Fig. 2. One can
observe that for when ρ < 60, a 2-channel system requires the least
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Fig. 2. The evolution of minimum precision B in different multi-
channel system recovery as ρ varied from 2 to 200.

total bits. But as ρ increases, a 3-channel configuration emerges as
the optimal choice. This observation furnishes crucial insights for
the selection of modulo-ADC parameters in practical applications.

Comparison with Conventional ADCs: In an L-channel mod-
ulo ADC system, despite the frequency oversampling factor being
L, the bit rate factor η is always less than L, i.e., η < L, as shown
in Eq. (8). For a given b and L, a larger ρ reduces η, highlight-
ing efficiency at high ρ. Given L and ρ, η grows with the increase
of b. Thus, high-resolution quantizers lead to higher η, while low-
resolution ones reduce overhead. The lowest η occurs at b = bmin,
and the conventional ADC’s bit requirement is:

Bc,min = Bmin − (L− 1)(1 + log2 cL) (10)

Considering cL > 1, Bc,min is less than Bmin, implying η > 1 and
denoting a higher bit demand in modulo-ADCs compared to con-
ventional ones. For an optimal system with cL ≈ 1, Bmin is close
to Bc,min + L, indicating a minor addition of L bits per sample. Es-
pecially for small L values (2 to 4), this slight increase in bit rate
is offset by a notable rise in dynamic range, suggesting significant
potential in practical applications.

4. SIMULATION RESULTS

In this section, we compare the performance of different ADC sys-
tems under quantization noises, including: i) Our 2-channel modulo
ADC system; ii) Single-channel modulo ADC system; and iii) con-
ventional ADC system without saturation. The input band-limited
signal takes the following form:

g(t) =

30∑
i=−30

A · ai · sinc(t− i), (11)

The coefficients ai follow a uniform distribution within the interval
[-1,1], and A is a normalization factor such that gmax = 2000. For
modulo ADC systems, we set ∆max = 150, resulting in an ampli-
tude scaling factor of ρ = 2gmax/∆max ≈ 26.7. Utilizing Corol-
lary 1, we choose τ1 = 27, τ2 = 28, and ϵ = 150/28 ≈ 5.36 in our
system. Each channel is sampled at the Nyquist rate fs = 1 Hz, re-
sulting in a total sampling rate of fT = 2 Hz. For the single-channel
modulo ADC system and conventional ADC system, the sampling
frequencies are fT = 18.2 Hz and fT = 1 Hz, respectively. We
quantify the performance based on the maximum distortion of the
reconstructed signal.

E = max
k

|g̃(k)− g(k)| (12)

Fig. 3. Comparison of total bitrate vs. distortion: our 2-channel
modulo-ADCs (∆max = 150) vs. conventional ADC (∆max =
4000) at peak amplitude gmax = 2000.

Table 3. Bitrate Analysis

System Type ∆max L E Bitrate fT

[11] 150 1 10−3 309 bps 18.2 Hz
10−1 163 bps

Conventional ADCs 4,000 1 10−3 22 bps 1 Hz
10−1 14 bps

Ours 150 2 10−3 30 bps 2 Hz
10−1 18 bps

In Fig.3, we compare the total bit rates of our 2-channel modulo
ADC system with those of a conventional ADC. Despite doubling
the sampling rate, our modulo ADC system requires only a slight in-
crease in bit rate. This is particularly noteworthy because our system
operates with a significantly reduced ADC dynamic range compared
to conventional ADCs. Table3 provides a more detailed compari-
son of bit-rate requirements among various ADC frameworks. For
the same distortion levels, our system’s bit rate is slightly higher
than that of traditional ADCs but significantly lower than that of the
single-channel modulo ADC, highlighting its practical potential.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we provide a comprehensive theoretical analysis of
multi-channel modulo-ADC systems under bounded noise, leverag-
ing a robust CRT reconstruction algorithm [18]. We derive the max-
imum error tolerance of the ADC in terms of its dynamic range,
maximum signal amplitude, and number of channels. Additionally,
we present the closed-form expressions of ADC thresholds required
to achieve (near-) optimal error resilience, followed by an analysis
of bit depth. In comparison to single-channel ADC systems [20], our
system offers a larger error tolerance at a much lower sampling fre-
quency. While it requires a marginal increase in bit rate compared to
conventional ADC systems, it operates with a significantly reduced
ADC dynamic range at comparable distortion levels.

In the future, we aim to conduct error analysis using advanced
reconstruction techniques like lattice-based methods [15]. We also
plan to explore practical hardware integrations and radar applica-
tions.
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