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Abstract—Multimodal emotion recognition has attracted increasing
interest from academia and industry in recent years, since it enables
emotion detection using various modalities, such as facial expression
images, speech and physiological signals. Although research in this field
has grown rapidly, it is still challenging to create a multimodal database
containing facial electrical information due to the difficulty in capturing
natural and subtle facial expression signals, such as optomyography
(OMG) signals. To this end, we present a newly developed Multimodal
Genuine Emotion and Expression Detection (MGEED) database in this
paper, which is the first publicly available database containing the facial
OMG signals. MGEED consists of 17 subjects with over 150K facial
images, 140K depth maps and different modalities of physiological signals
including OMG, electroencephalography (EEG) and electrocardiography
(ECG) signals. The emotions of the participants are evoked by video
stimuli and the data are collected by a multimodal sensing system. With
the collected data, an emotion recognition method is developed based on
multimodal signal synchronisation, feature extraction, fusion and emotion
prediction. The results show that superior performance can be achieved
by fusing the visual, EEG and OMG features. The database can be
obtained from https://github.com/YMPort/MGEED.

Index Terms—Emotion recognition, facial expression analysis, multi-
modal emotion database, affective sensing and analysis

I. INTRODUCTION

Automatic emotion detection is a crucial part of affective comput-
ing and has been successfully applied to various applications, such
as multimedia [1], [2], biopsychosocial healthcare [3] and human
computer interaction (HCI) [4]. With the development of the wearable
sensing and computing techniques, a lot of efforts have been made
on the multi-sensory emotional data acquisition and analysis [5], [6].
Multi-sensory data are also referred to as multimodal data, which
are captured with multiple different sensors and collected in multiple
modalities, such as facial expression images, vocal & speech signals
and physiological signals.

Facial expression is one of the most important means for humans
to express emotions. In the past decade, image-based facial emotion
and expression recognition methods have made great progress [7],
[8], [9], [10]. The mainstream research in this field is based on six
universal and recognizable categories: happy, sad, angry, fear, disgust
and surprise [11]. Thus, most existing facial emotional recognition
databases are created by capturing facial expression images or videos
for six primary emotion recognition [12], [13]. There are also
some other popular facial expression databases created for the facial
Action Unit (AU) detection [12], [14] and dimensional Valence-
Arousal (VA) estimation [13], [15], [16]. The main advantage of
vision-based databases is that the image or video data are easy
to obtain and annotate. Compared with the physiological data, the
facial images can be simply obtained using a camera. There are also
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rich online resources for facial expression image data. Moreover, it
is relatively easier for human experts to annotate facial expression
images compared with physiological signals.

The above-mentioned emotional datasets are conducted on a sin-
gle modality of visual sensor data. With the recent development
of human-computer interfaces, novel emotion recognition databases
have been created using multimodal sensors. Most existing multi-
modal datasets are developed by capturing the physiological sig-
nals, such as electroencephalography (EEG), facial electromyogra-
phy (EMG), electrocardiography (ECG) and galvanic skin response
(GSR). A multimodal database is often created in laboratory con-
ditions where the emotion of a participant is evoked by watching
affective stimuli videos. DEAP was one of the earliest multimodal
datasets where physiological signals and facial images of participants
in response to the video stimuli are recorded [17]. Soleymani et
al. [6] presented a multimodal dataset including facial image data
and EEG signal data, and further proved that EEG signals indeed
carried expression-related information [18]. There are also some other
emotion-related modalities, such as speech signals [19], eye gaze
directions [20] and facial thermal images [21].

Although the modern wearable and easy-to-use physiological sens-
ing devices have promoted the research of multimodal emotional
analysis [22], [23], it is still a challenging task to collect multimodal
data [24]. This is mainly because of the need for interdisciplinary
knowledge to process different data from different sensing devices
[6]. A specific sensing device requires a human expert with domain
knowledge to solve the technical problems. There will be complex
teamwork for constructing a multimodal data acquisition system
regarding experimental setup, data recording, signal synchronisation
and annotation. Therefore, it is still challenging to create a multi-
modal database.

In general, the study of multimodal databases faces two prob-
lems. Firstly, the facial electrical data might not reveal the natural
expressions. The commonly used facial electrical signal is EMG. To
capture EMG signals, the EMG sensors need to be directly attached
to a human face, which may cause uncomfortable feelings to the
participants and thus affects the participants to perform natural facial
expressions. Secondly, the problem of low-level facial expression
intensity is not addressed in the existing multimodal emotional
databases. Empirically, annotating a facial expression relies heavily
on the visual modality rather than other modalities, which intuitively
requires the facial expressions performed in relatively high intensities
[6], [18]. However, watching affective stimuli videos often stimulates
subtle facial expressions with relatively low intensities, such that
genuine emotions cannot be reflected by visual modality alone. Thus,
there is an urgent demand to create a multimodal emotion database
that addresses the acquisition of natural facial electrical signals and
the problem of low-intensity facial expressions.

In this paper, we present a new multimodal dataset called Genuine
Emotion and Expression Detection (MGEED) by using modalities of
the optomyography (OMG [25], EEG, ECG signals and facial images,
as well as depth maps. The “genuine expressions” can also be referred
to as real, natural and spontaneous expressions. This term can be
explained in two aspects. Firstly, the “genuine” emotion (expression)
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should be mostly expressed in a relatively low intensity. It has also
been shown that facial expressions in real life are often low intensity
[26]. Compared with the existing databases consisting of many high-
intensity facial expression images, the majority of MGEED facial
images contain relatively low expression intensities. Secondly, the
“genuine” emotions can be natural and spontaneous. Considering
that the expressions may be unnatural if the participants wear the
EMG sensors, MGEED replaces the EMG with OMG signals which
uses the latest non-contact OMG sensors to capture facial electric
signals. By using the OMG sensors that effectively avoid skin contact,
the participants can perform more natural expressions when wearing
OMG sensors.

The OMG sensing equipment is the Emteq smart glasses which
benefit from a wide range of sensing channels and the latest non-
contact sensing technique. The sensing channels guarantee that en-
riched expression-related signals can be captured and the non-contact
sensing technique enables sensors to avoid physical contact with
the human face in order to avoid the uncomfortable feelings of the
participants. Besides OMG, the facial images & videos, EEG and
ECG signals are also recorded in MGEED database. According to
the video recordings, the participants rarely perform macro (high-
intensity) facial expressions, which makes it difficult to identify
the true emotion from visual modality. Therefore, the physiological
signals, especially the OMG signal, are more important than the
visual modality in this database. To this extent, the MGEED database
is designed to contribute to the study and benchmark of genuine
emotion detection.

In this experiment, a data acquisition system is designed to simulta-
neously capture the multimodal data, including the EEG, OMG, ECG
signals, facial videos and depth maps. With this sensing system ready,
17 participants have been recruited to participate in the experiment.
During the experiment, they watch a group of emotional videos, and
then frame-by-frame self-report their emotional responses in terms
of one of the six basic emotions and VA levels. In general, the
collected MGEED database contains 17 different subjects with totally
150497 facial images, 147539 frames of depth map and three types
of physiological signals including 70-channel EEG, 20-channel OMG
and single-channel ECG signals.

With the collected dataset, a baseline multimodal emotion recogni-
tion method is developed including multimodal, data synchronisation,
feature extraction, feature fusion and emotion recognition. We firstly
propose an extended Convolutional Neural Network (CNN) method
to extract and fuse the facial image feature and depth feature. Then
the EEG, ECG and OMG signals are synchronised, segmented and
normalized to their respective compact features. Finally, all the
features are concatenated and fed to a prediction network.

The main contribution of this paper can be summarized as follow:
1) A new MGEED database is created for multimodal genuine

emotion analysis. This database is characterised by a large
number of facial expression images and depth maps, highly
reliable expression-related OMG signals and emotion-related
physiological signals. MGEED database contributes to the
benchmarking of genuine emotion detection where the real
emotions can be better reflected by the modalities of physi-
ological signals rather than the facial expression images due to
the relatively low intensities of the facial expressions.

2) As far as we are aware, this is the first study on creating a
public emotional dataset that contains OMG signal recordings.

3) Based on the MGEED database, a multimodal signal synchro-
nisation, feature extraction and fusion method is proposed for
data analysis. The experimental results demonstrate that OMG
features indeed improve emotion recognition accuracy, and the
best performance is achieved by combining image, OMG and

EEG features.

II. RELATED WORK

A. Vision-based Facial Emotion Recognition

Although human emotions can be detected in multiple modalities,
the majority of emotion recognition research is still conducted on
the visual modality (facial expression images or videos). Facial
expression recognition (FER) aims to use advanced computer vision
and machine learning methods for image/video-based facial affective
analysis [27], [28], [29]. Till now, there is a large number of vision-
based FER databases that are publicly available. Some popular FER
databases and their attributions are shown in Table I. In this section,
these databases are introduced in the view of conditions (laboratory
vs in-the-wild conditions), scales (small vs large) and benchmarks
(categorical model vs continuous dimensional model).

Laboratory VS in-the-wild conditions: Early studies and bench-
marking of FER are normally conducted based on laboratory-
controlled conditions, where the facial expression images of the
participants are captured in a laboratory. The emotions are either
directly acted by the participants or evoked by video stimuli. Related
databases include CK+ [12], MMI [30], Multi-PIE [31], DISFA [32]
and SAMM [14]. The main problem with these databases is that
the facial expressions consciously posed by the participants may not
reflect their true emotions. This is an obvious restriction for these
databases to be applied to real-world scenarios. Although laboratory-
controlled databases seem impractical, they still form the foundation
of FER research and are reported to be referred to in the majority of
FER methods [33], [34].

Different from the laboratory-controlled databases, the in-the-wild
databases consist of facial images captured from real-world scenarios.
Such databases are characterised by spontaneous facial expressions
and unconstrained conditions where there are various changes in
head pose, illuminations and occlusions. Related databases include
FER-Wild [35], FER2013 [36], RAF-DB [37], EmotioNet [38],
AffectNet [13], Static Facial Expression in the Wild (SFEW) [39]
and Acted Facial Expression in the Wild (AFEW) [40]. To tackle
the in-the-wild challenges, a series of facial image preprocessing
and mid-level feature processing methods have been proposed, such
as view-invariant methods [41], [29], [42], characterized expression
enhancement (expressionlets) [43], illumination normalization [44],
de-occlusion [45] and time alignment [46].

Small vs large: The typical small-scale FER databases include
CK+, SFEW and BU-3DFE, which contains only hundreds or thou-
sands of images. The main advantage of small-scale databases is
that the emotion label is relatively more accurate and reliable since
all the images can be well annotated by human experts. On the
contrary, EmotioNet [38] and AffectNet [13], currently the largest
FER databases, may include incorrect labels. This is because the
images are obtained from the Internet by using emotion-related
keywords to query search engines. Due to the large data volume,
it is nearly impossible to clean and annotate all the data by human
experts. Therefore, the noises may occur due to the potential mistakes
caused by the search engines. Although there are obvious drawbacks,
these large-scale databases still become the mainstream and have
promoted a series of high-quality end-to-end FER methods with
valuable outputs [47], [48].

Categorical model vs continuous dimensional model: Based on
different FER tasks, there are generally three expression models for
quantifying facial expression distributions: basic emotional model,
AU model and continuous dimensional model. The basic emotional
model and AU model belong to the categorical model where the
facial expressions are classified into several meaningful categories.
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The basic emotional model describes emotions by six basic emotional
states (Happy, Sad, Angry, Fear, Disgust and Surprise). The majority
of the existing databases follow this benchmarking. AU model is the
encoded facial actions that directly represent the small facial muscle
movements. The AU and basic emotions are often jointly labelled in
many databases, such as CK+, DISFA and EmotioNet.

In contrast to categorical models, the dimensional model describes
the continuous affective response reflecting the changes of both the
emotional state and intensity [51]. The most popular dimensional
model is a Valence-Arousal (VA) pair where valence is the emotional
scale ranging from negative to positive and arousal represents the
intensity level ranging from calm to exciting. VA is a fine-grained
model that requires professional researchers to continuously observe
and capture the subtle expression changes and carefully locate each
frame in the VA space. The related database include AFEW-VA [15],
AffectNet [13] and Aff-Wild2 [49].

Recently, the dimensional VA model has attracted significantly
increasing attention. However, annotating VA levels is challenging
due to the lack of objective metrics. The annotators have to rely on
their own experience and provide a subjective assessment of VA levels
when labelling data [58]. Therefore, it is difficult to obtain commonly
accepted VA evaluation according to visual modality alone. The high-
resolution electrical signals recording biological changes provide
a proper way to characterize the fine-grained subtle VA changes.
Recently, multimodal emotional databases have shown the advantages
of VA evaluation. Many existing multimodal databases are annotated
with VA levels.

B. Physiological Signal-based Emotion Recognition

Apart from facial expressions, human emotions can also be re-
flected by physiological changes. Compared to vision-based facial
expression databases, physiological signal-based emotional databases
have been applied to the broader emotion distributions, such as basic
emotions and VA scales [20], [52], wellbeing [17], [53], stress /
tension / panic [56], [6], like / dislike [17], and personality [54]. The
commonly used physiological signals include Electroencephalogra-
phy (EEG), Electromyography (EMG), Electrocardiography (ECG),
Galvanic Skin Response (GSR), Blood Volume Pulse (BVP), respi-
ration amplitude, Skin Temperature (SKT) and Electrooculography
(EOG). The popular multimodal databases are shown in Table II.

EEG records the brain electrical signal measuring neurons synaptic
excitation characterized by its amplitude and frequency. EEG signal
typically reflects cognitive processing in the human brain[59]. Quanti-
tative EEG data within a physiological database is normally obtained
through non-invasion Brain-Computer Interfaces (BCI) which capture
multi-channel brain signals. There have been several works on
developing affect monitoring methods using EEG alone [60], [61],
[62]. The relation between facial expression actions and EEG is
investigated in [18] and promising emotion recognition results have
been obtained by using both visual facial expression features and
EEG. Although visual features fused with EEG signals do not always
boost performance, the researchers still elaborate that EEG signals
contain valuable information of affects. Most existing EEG-based
research focuses on EEG feature extraction. Popular EEG feature
representations include statistics features (e.g. standard deviation and
mean) [60], neural networks [63] and Power Spectral Density (PSD)
[64].

Facial EMG records the electrical signals of facial muscle actions
in which a tiny electric impulse can be detected and amplified.
EMG can easily capture the changes in the baseline muscle tone
and record electrical activity directly. The existing EMG acquisition
systems normally attach two electrodes to the Zygomaticus Major

muscle that is located near the corner of the mouth below the
cheekbones [17], [65]. The sensors can detect the cheek raising and
lip corner stretching movements that are highly associated with a
smile expression. However, the main drawback of the EMG sensors
is that they are directly attached to the human face, which may cause
uncomfortable feelings to the participants. The early methodologies
of EMG feature extraction often applied discrete wavelet transform
method to extract discriminative features [66]. There are also a
number of works using statistical features for EMG-based emotion
analysis [65], [67].

ECG captures an electrical signal of the heart through tracking
heart rhythms. There are many different ECG sensors. Most of them
are chest straps consisting of a group of Carbon electrodes that are
directly placed on the chest. Modern products equipped with ECG
sensors, such as smart watches and armbands, are designed to be
wearable and able to monitor the heart rate in real-time. The ECG
wave directly reflects cardiac cycles which are associated with Heart
Rate Variability (HRV) that measures the variations of time intervals
between adjacent heartbeats (RR intervals). In [68], 56.9% accuracy
of 5-class (happy, sad, angry, fear, relax) emotion recognition is
reported by using ECG signals alone. The relatively low accuracy
indicates that the ECG may not contain rich information on the
6 basic emotional states. The emotion classification experiments in
[69] show that ECG prefers discriminating negative emotions rather
than positive emotions. There are also some other works using
ECG for negative emotion recognition [70], [71]. A more reasonable
application of ECG is arousal prediction as human may have exciting
/ calm responses with obvious changes in heart beat rhythms. Much
effort has been made to develop the arousal scoring system based on
ECG [72], [73]. The fundamental ECG features are the measurement
of the difference between adjacent RR intervals (e.g. Root Mean
Square of the Successive Differences–RMSSD) [55]. Other means of
ECG data processing include frequency domain analysis [68], [69],
[55], time domain analysis [71] and statistical analysis [74].

GSR is also referred to as Electrodermal Activity (EDA) which
detects sweat gland activity by measuring skin conductance. The
wearable GSR sensor is in a ring shape whose electrodes are often
placed on the proximal part (below the joint) of the index and middle
fingers. Similar to ECG, GSR is often used for negative emotion
(deception, stress, anxiety) recognition [75], [76], even if no evidence
shows that GSR prefers differentiating negative emotions. The GSR
signals have also been applied to 6-class emotion recognition [77]
and VA estimation [78].

Physiological data acquisition systems require a complicated lab-
oratory setup with many different sensors attached to different parts
of the human body and the interfaces of the sensors need to connect
to a computer with high specifications for real-time signal processing
and recording. DEAP [17] is one of the earliest multimodal emotion
databases. It covers nearly all known physiological signals including
32-channel EEG, 4-channel EMG, 4-channel EOG, GSR, SKT, BVP
and respiration. The MAHNOB-HCI [6] database focuses more on
visual signal acquisition where six web cameras are used to capture
the facial expressions and body gestures of the participants. The
SEED-V [20], DECAF [53], Amigos [54] and DREAMER [55]
databases follow similar laboratory-setups as DEAP and MAHNOB-
HCI.

The BP4D+ [21] and BU-EEG [57] are currently the only two
benchmarks including AU annotations. The recent research [79], [80]
on these databases shows that fused physiological signals indeed
improve the performance of basic emotion and pain recognition.
However, the AU recognition methods are still based on visual
information alone. The brief analysis shows that the dynamic AU
activities are somewhat associated with the physiological signals [79],
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TABLE I
ATTRIBUTES OF SOME REVIEWED VISION-BASED FACIAL EXPRESSION DATABASES

Database Database information Condition Expression model

CK+ [12]
• 593 video sequences, 123 subjects
• Faces are captured in frontal view
• Annotation of facial landmarks

Controlled, posed 7 classes + contempt, AU

Multi-PIE [31] • More than 750,000 images, 337 subjects
• 15 facial viewpoints including frontal view, 19 illumination conditions Controlled, posed Smile, surprise, squint, etc

DISFA [32]
• 27 videos including 130,788 images
• Facial expressions of subjects are aroused by video stimuli
• Smile accounts for a large number of frames

Controlled, spontaneous Smile, AU

SFEW 2.0 [39] • Train (958 images), Validation (436 images) and Test (372 images)
• Strictly person-independent evaluation protocol In-the-wild 7 classes

AFEW 7.0 [40] • 1809 video clips selected from movies
• Strictly person-independent evaluation protocol In-the-wild 7 classes

AFEW-VA [15]
• 600 videos selected from AFEW
• Accurate annotation of ladmarks
• Discrete VA levels from -10 to 10

In-the-wild VA (discrete)

EmotioNet [38] • 1,000,000 images queried from Internet
• 25,000 images labelled manually In-the-wild 23 emotions, AU

Aff-Wild2 [49]
• 564 Youtube videos including around 2.8 millions frames
• First large scale in-the-wild database containing annotations of all

the three expression models
In-the-wild 7 classes, AU, VA

AffectNet [13] • 450,000 images (labelled) queried from Internet
• Annotation of facial landmarks In-the-wild 7 classes + contempt, VA

RAF-DB [37] • 29672 images queried from Internet
• Annotation of 5 facial landmarks In-the-wild 7 basic + 12 compound

BU-3DFE [50] • 2500 3D facial models, 100 subjects
• Annotation of 5 facial landmarks Controlled, posed 7 classes

SAMM [14] • 159 facial micro-movements, 32 subjects
• A high-resolution facial micro-expression database Controlled. spontaneous 6 classes + contempt, AU

TABLE II
ATTRIBUTES OF REVIEWED PHYSIOLOGICAL SIGNAL-BASED EMOTION RECOGNITION DATABASES

Database Database information Signals Emotion annotations

DEAP [17] • 32 participants
• 40 one-minute music video stimuli EEG, EOG, EMG, GSR,

BVP, SKT, respiration,
face video

VA, liking, dominance, familiarity

MAHNOB-HCI [6] • 27 participants
• 20 video stimuli EEG, ECG, GSR, SKT,

EOG, respiration, face and
body video, audio

7 classes + amusement + anxiety,
VA, dominance, predictability

SEED-V [20] • 20 participants
• 15 video (2-4 minutes movie clips) stimulus EOG, EEG 5 classes (surprise excluded)

RECOLA [52]
• 46 participants attending a video conference
• Participants will complete a task requiring

affective interactions
ECG, GSR, audio, face
video

VA

DECAF [53]
• 46 participants
• 40 one-minute music video and 30 movie

clips as stimuli
MEG, EOG, ECG, EMG,
face video

VA, dominance

Amigos [54]

• 40 participants
• 16 short and 4 long video stimuli
• RGB and depth videos recording full body

of an individual or a group

EEG, ECG, GSR, audio,
video, depth

VA, personality traits

DREAMER [55] • 23 participants
• 18 video stimuli EEG, ECG VA, dominance

Schneegass et al [56] • 10 participants in real-world driving condition
• five different road types ECG, GSR, SKT, face

video
Assessing driver’s workload

BP4D+ [21]
• 140 participants
• 10 tasks (interview, game, video stimuli) for

emotion elicitation
ECG, GSR, BVP, respi-
ration, dynamic 3D face
model, face video, thermal

10 emotions (6 classes, pain, em-
barrassment, startle, skeptical), AU

BU-EEG [57]
• 29 participants with 2320 experiments trails
• Posed expressions and spontaneous pain by

cold-pressor
EEG, face video 7 classes, AU, pain
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(a) Epoc+ and the position
of 14 electrodes

(b) Smart glasses and the
position of 9 sensors

(c) HRM strap (d) Kinect and its output

Fig. 1. Deceives for data acquisition

[57].
Physiological signals have extended the modalities and applications

of emotional research. However, none of the above-mentioned signals
can be used alone for emotion recognition. The most remarkable
cues of emotions are still conveyed by facial expressions. The
existing research of multimodal emotion analysis generally utilizes
physiological signals as auxiliary features integrated with the facial
expression features for emotion recognition.

III. EXPERIMENTAL SETUP

A. Participants

The experiment is designed to monitor facial behaviours of par-
ticipants and record their physiological signals. We use a group of
video stimuli that attempt to induce the emotions of the participants.
The emotional videos used in this experiment are from the DISFA
dataset[81]. It consists of 9 independent video clips extracted from
online resources and TV programmes. The duration of the video is
around 4 minutes.

The ethical approval of this study has been granted by the ethical
committee. Before the experiment, we firstly released the information
sheet and introduced this study to the participants. Then, by signing
the consent agreement, the participants gave consent to recording,
sharing and publishing their physiological signals and facial images
for academic purposes. The participant should be aware that their
participation is voluntary and they are free to withdraw at any time
without giving any reasons.

In this experiment, 17 voluntary participants aged from 18 to 40
are recruited. During the experiment, participants are asked to wear
the physiological sensors and watch the stimuli videos. The 9 video
clips play one-by-one continuously with a 5-second between-clip
interval. The participants watch all the video clips at once. Finally,
the participants are asked to self-rate their emotions for the time when
watching each video clip.

B. Device

There are four sensing devices used in this data acquisition system
for capturing the physiological and visual signals of the participants
as shown in Fig. 1.

1). EPOC+: We use EMOTIVE EPOC+ to collect EEG signals
during the experiment. EMOTIVE EPOC+ is a neuron-headset with
an electrode placement system which is designed for contextualised
research and advanced brain-computer interface (BCI) applications.

It has 14 electrodes at a 128Hz sampling rate (16-bit resolution). The
14 sensors are attached to the corresponding positions of the head
(scalp), shown in Fig. 1a, capturing electric brain activities in terms
of various frequencies. These raw EEG electric signals are converted
to the PSD using the Fast Fourier Transform (FFT) method. The
PSD features of EEG signals are identified as four main types of
brainwaves located at different frequencies, named Beta (14Hz to
30Hz), Alpha (7Hz to 13Hz) theta(4Hz to 7Hz) and Delta(less than
4Hz). EPOC+ further divides the Beta wave into high-frequency Beta
wave and low-frequency Beta waves. Each electrode can detect the
brainwaves in 5 bands, which leads to a total number of 14×5 = 70
EEG features. These features are available at an 8Hz sampling rate.

2) Smart Glasses: The Emteq smart glasses are used in our
experiment for collecting facial OMG signals. Fig. 1b illustrates
the smart glasses and the position of sensors. The smart glasses
use the latest non-contact sensing techniques that can detect local
facial movements without contacting the human face. There are 9
optical sensors measuring momentary position changes (and output
the accumulation along the time axis) and 9 corresponding proximity
sensors measuring the distance from the face. Three sensors distribute
between eyebrows, named respectively sensor 1, sensor 2 and sensor
3 from the right side to the left side of the face. Sensor 4, sensor 5,
sensor 6 and sensor 7 are located under the right eye and left eye.
Sensor 8 and sensor 9 are facing towards the right side and the left
side of the face from the side arms of the glasses. The raw output
of the smart glasses is 27-channel signal data representing the move-
ments of the nine points along X, Y and Z directions. Empirically,
we remove the signals from the centred-eyebrows sensors and the
Z-direction values from the eyebrow sensors (sensor 1 and 3) and
side-face sensors (sensor 8 and 9), as these values are not useful for
facial emotion analysis. The final recording of OMG signals contains
20 channels. The recorded OMG signals are available at a 50 HZ
sampling rate.

3) Kinect: Kinect is used to capture depth maps and RGB images.
A depth map is a single-channel image in which the pixel value
reflects the distance between the sensor and the object point. The
core technology of Kinect is the depth and motion sensing system
whose hardware incorporates an RGB camera, an infrared projector
and a detector. Kinect can record a sequence of RGB images and
the corresponding sequence of depth maps. But Kinect does not
always output an RGB image and a depth map in pairs. Therefore,
we record the timestamp of each frame of RGB image and depth
map in preparation for synchronisation.
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Fig. 2. User application for emotion annotation

4) HRM soft strap: The ECG device we used in the experiment is
Garmin soft strap for Heart Rate Monitoring (HRM). The HRM strap
is worn by the participants around their chests. The ECG signals are
available at a 1000Hz sampling rate. The collected ECG data contain
the single-channel ECG signals and the time stamps.

C. Emotional Response Ratings

The ratings of emotional responses mainly rely on the self-rating
of the participants. In this experiment, the self-rating requires the
participants to rate three types of emotional responses: emotional
states, valence and arousal. The emotional state can be justified
according to the experience of the participants. The VA responses
of the participants are rated based on the Self-Assessment Manikins
(SAM) [82]. SAM describes three types of emotional response:
valence (pleasure), dominance and arousal, and rates them by 9-
score scales, respectively. Valence ranging from 1 to 9 represents the
emotional response gradually changing from negativity to positivity.
Arousal rates the level of excitation ranging from calm (at lower
scores) to excitation (at higher scores).

To help the participants self-rating their emotional responses, a user
application is developed with a friendly graphic user interface, as is
shown in Fig. 2. The two figures illuminating 9-score VA scales is
displayed in this application, as a reference for the participant to rate
VA scales. With the help of this friendly software tool, the participants
can easily choose 1) which emotional state is (by ticking one option
from Happy, Surprise, Neutral, Disgust, Anxiety, Sad and Fear); and
2) what levels of valence and arousal are (both ranging from 1 to
9). By clicking the “Next” (or “Previous”) button, the participants
can simultaneously observe the stimuli video and their recorded
images of facial expression, and then frame-by-frame provide self-
rated emotional annotation correspondingly. It should be noted that

the emotion changes are normally very slow and the adjacent 10
frames may share the same levels of emotional responses. This
application provides an option for quick annotation by clicking the
“Next 10” button to skip over 10 frames and assign these frames with
the same annotation. With this convenient function, the participants
can complete the whole process of self-rating within 5 minutes.

After obtaining all the data, two researchers who have done
professional training, are then responsible for checking the anno-
tation frame-by-frame. Both researchers should independently rate
all the frames and provide feedback if they strongly disagree with
the original annotations. For those frames where one researcher
agrees with the original annotations while the other disagrees, the
original annotations will have remained. For those frames where
both researchers disagree with their original annotations, the average
scores of the rating results from the two researchers will be used
as the corrected annotations. Both the original and the researcher-
corrected annotations are provided in the MGEED database, so that
the researchers who use this database can conduct comprehensive
experiments and make the correct conclusions.

IV. BASELINE METHOD FOR EMOTION ANALYSIS

Given the collected dataset, a multimodal emotion analysis method
is developed including the following steps: synchronisation, feature
extraction, feature fusion and emotion recognition.

A. Synchronisation

In this experiment, all the sensing devices are connected to one
computer and we have developed a program to assign each sample
point with a timestamp. For the visual signals, the program assigns
each frame with a timestamp. For the other sensors whose sample
frequencies are very high, the program only records the timestamp
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Fig. 3. Multimodal data synchronisation

of the first sample point and the remaining samples are calculated
afterwards according to the sampling rate. It can be seen that
timestamps are not aligned since the EEG, OMG, ECG and visual
signals are captured in different sample rates and starting times.
Therefore, a synchronisation operation is needed to align all the
signals to the same time axis.

To synchronise different modalities, the recorded time is firstly
segmented at every 0.5 second into non-overlapping time intervals
along the time axis. For each segmentation, the centred images
and depth maps are selected to represent the visual modality of
this segment. Then the EEG and OMG signals are synchronised by
simultaneously aligning and segmenting the starting time and ending
time within this segment. Finally, the ECG signal segmented by the
RR interval is synchronised by selecting an RR interval whose time
period has the largest overlapping ratio with the current time segment.
This three-step synchronisation is illuminated in Fig. 3. With this
synchronisation operation, all the modalities are well aligned and thus
can be used for further feature extraction and emotion recognition.

B. Physiological Feature Extraction

1) OMG features: The OMG signals can be easily interfered with.
There are two main problems in the raw OMG data. 1) The optical
sensors of the smart glasses capture momentary spatial changes and
accumulate their values along the time axis. It can be observed
that the OMG signals tend to involve several discrete monotonous
changes. 2) The time series signals may occasionally drift due to
external factors, such as illumination changes. Owing to these two
problems, a three-step pre-processing is undertaken to clean the OMG
signals. Firstly, we apply a least square fitting of a straight line to
remove the linear trend. Secondly, the Notch filter is used to block
50Hz components and their harmonics up to 350 Hz. Finally, the

bandpass filter is applied to retain the components from 30 Hz to
450 Hz.

The cleaned OMG signals are then available for feature extraction.
Following our previous work on [83], we consider reducing the
dimensionality by segmenting and compressing the signals. The
signals are divided into non-overlapping segments of the same length
that lasts for 0.5 seconds. Each segment contains 25 sample points.

In each segment, the Root Mean Square (RMS) value is calculated
as the time-domain feature representation. The RMS is computed as:

RMS =

√√√√ 1

N

N∑
n=1

x2
n (1)

where xn is a sample point within a segment and N is the length of
this segment (25 for OMG). Generally, the 20 OMG sensing channels
produce a 20-dimensional vector representing the compressed OMG
feature within 0.5 second.

2) EEG features: There is no need to perform the EEG pre-
processing. The output EEG signals from EPOC+ have been filtered
and cleaned already. The EEG feature extraction is consistent with the
recorded OMG signals that are segmented every 0.5 seconds and then
compressed using RMS. The derived EEG feature is a 70-dimensional
vector.

3) ECG features: The raw ECG signals also suffer from the same
problem as OMG signals where the values of sample points are
accumulated along the time axis. To remove this linear trend, the
least square fitting is used to filter the raw ECG signals. Then, the
filtered ECG signal is segmented into individual RR intervals. In each
segment, three types of ECG features are extracted: difference of RR
intervals, frequency domain features and statistical features.

RR interval is the duration of an individual heartbeat. It is obtained
by measuring the distance between two adjacent R-peak. In the
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Fig. 4. Feature extraction and fusion

ECG wave, the R-peak refers to the maximum amplitude within an
individual heartbeat. In order to detect the R-peak, we find out all
the local maximum points and set an appropriate threshold to block
those points a the relatively low level of amplitude. Fig. 5 illuminates
the R-peak and RR interval. Given the consecutive RR intervals,
the feature of RR interval changes is obtained by calculating the
difference between the current RR interval and the mean value of the
RR interval.

For the frequency domain feature extraction, Fast Fourier Trans-
form is firstly used to convert each RR interval into a band with
different spectral frequencies. Then, we select two bands of the
power spectrum: the low-frequency band (LF) ranging from 0.04
to 0.15Hz and the high-frequency band (HF) ranging from 0.15 to
0.4Hz. Finally, the frequency domain features are extracted including
the PSD for LF, PSD for HF, the ratio of LF to HF, and the total
power.

The statistical feature extraction is simple and straightforward. The
mean value, standard deviation, minimum value and maximum value
are extracted from the ECG segment. Consequently, all the features
are concatenated to form a 9-dimensional feature vector.

C. Image and Depth Feature Extraction

The visual analysis of facial expressions starts with facial region
detection. In our dataset, the depth information can be used to
accurately crop the facial region from an image. Given a depth map, a
reasonable threshold is set to distinguish foreground and background.
The obtained foreground region can be seen as the facial region which
will be cropped for the next step process of the facial visual feature
extraction.

The field of visual feature extraction and recognition has been
dominated by CNN [84], [85] in recent years. Various CNN architec-
tures have been proposed and proved to be effective for vision-based
facial expression recognition. Among numerous CNN architectures,
ResNet is a popular method and has achieved impressive results in
the ImageNet competition [86], [87]. ResNet has been recognised
as the gold-standard architecture in computer vision applications and
served as the default method in many existing studies [88]. ResNet
addresses the problem of accuracy saturation in which the accuracy
of a very deep CNN model may get saturated, and then degrade

Fig. 5. ECG signal pre-processing and RR interval detection

with increasing depth. ResNet is designed to alleviate this problem
by introducing the so-called shortcuts to jump over some layers. The
shortcut connection learns to adaptively block some layers so that
even a very deep model can be suitably trained without degradation.
Moreover, the model size of ResNet is relatively smaller, compared
with the popular CNN architectures (e.g. VGG and AlexNet) [89].

Given so many advantages of ResNet, we employed ResNet101,
a 101-layer network, as the visual feature extraction method. To
improve the generalization ability, the transfer learning technique
[90] is also used where the ResNet101 model is pre-trained on
ImageNet and fine-tuned on the MGEED dataset. To extract the
depth features, we modify the ResNet101 architecture by adding an

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-
author/publishing-ethics/guidelines-and-policies/post-publication-policies/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TAFFC.2023.3286351 IEEE IEEE Transactions on Affective Computing



REVISED 9

TABLE III
DIVISION OF THE DATABASE BASED ON SUBJECTS

Set 1 Set 2

1,2,5,9,13,14,16,17 3,4,6,7,8,10,11,12,15

Neutral 1522 1300

Happy 1180 1150

Sadness 349 404

Angry 43 126

Fear 748 981

Disgust 311 469

Surprise 592 751

additional convolutional layer to receive and process the depth map.
The weights of this additional convolutional layer are initialized by
the first convolutional layer of the pre-trained ResNet101 model. The
depth map is duplicated three times and stacked so that a three-
channel map is generated to meet the input requirement of the
convolutional operation. The generated depth map passes through
the additional convolutional layer and its output is accumulated to the
first convolutional layer of the main CNN architecture. This modified
network can extract both feature and depth features, and then fuse
them at the feature level. The architecture of this network is shown
in Fig. 4. The output of this network is a 2048-dimensional feature
vector.

D. Fusion and Recognition

Given the synchronised signals, their features can be extracted
according to section IV-B. Then, the EEG, OMG, ECG and visual
features are fused to make a joint prediction of the emotions.

The architecture of the feature fusion and recognition method
is shown in Fig. 4. The main branch of this architecture is the
ResNet101 dedicated to extracting the visual features represented
by a 2048-dimensional feature vector. The other branches receive
the feature vectors of EEG (70 dimensions), OMG (20 dimensions)
and ECG (9 dimensions), respectively. To allow effective feature
fusion, the EEG, OMG and ECG features are firstly normalized
by the commonly used L2 normalization. Then, all the features are
concatenated to form a 2147-dimensional (2048+70+20+9) feature
vector. The concatenated features are fed to a fully connected network
for the joint prediction of emotions.

The output layer of the network includes 9 prediction nodes
regarding seven emotional states and a pair of VA levels. For the
loss in the training stage, the cross-entropy (with softmax activation)
is calculated as 7-emotion classification loss and the mean square
error is used as VA intensities regression loss. The final loss function
is obtained by adding these two loss functions.

To address the problem of class imbalance, we investigate two
commonly used strategies to deal with the imbalanced classes: over-
sampling and weighted loss function. The implementation of over-
sampling is to randomly duplicate some samples from the minority
classes and add them to the training sets. By over-sampling, classes
can be balanced within a mini-batch although the training time may
increase due to the increasing size of the training set.

Another commonly used solution for the class imbalanced problem
is the weighted loss function, which highlights the importance of
minority classes by extending the classification loss to its weighted
counterpart. For each class, the weighted cross-entropy loss function
is expressed by:

Li = −wi log
ezi∑K
j=1 e

zj
(2)

where i, j = 1, ...,K is the class index, [z1, ..., zk] is the output
vector (class score) of the prediction model and wi is the weight of
the i-th class.

To tackle the imbalanced classes, dynamic weighting scheme [91]
is used to adjust the weights based on the class frequency computed
over the training set. The class weight can be designed as follow:

wi = log(
max(nj |j = 1, ...,K)

ni
) + 1 (3)

where ni is the total number of samples of the i-th class.

V. DATA ANALYSIS

A. Evaluation Protocol

The MGEED dataset includes 17 subsets with regard to 17 different
subjects. Each contains around 8000 sequential images, around 7000
sequential depth maps, 20-channel OMG signals, single-channel
ECG signals and 70-channel EEG signals. As mentioned above, the
timestamps are also recorded for each frame or sample point. The
frames from the image sequences are designed as fiducial points
where each frame is labelled as one of 7 emotional categories (6
basic emotions and a neutral category), a valence level and an arousal
level.

To enable evaluating the performance of an algorithm using
MGEED dataset, we recommend using the proposed synchronisation
method for data preprocessing, as is described in section IV-A. With
this strategy, a simplified dataset is generated containing a total of
9926 sample points. Each sample consists of an image, a depth map
and the synchronised signals of OMG, EEG and ECG.

The evaluation protocol follows strict person-independent valida-
tion. In this protocol, all images are rearranged according to the
identity of subjects where all the images from an arbitrary subject
can only be assigned to either the training set or the testing set.
To enable the person-independent evaluation protocol, the dataset is
divided into two subsets following two principles: 1) the two subsets
contain non-overlapping subjects; and 2) for each emotional category
and each level of the 9-scale VA, the number of frames should be
balanced in both subsets. Consequently, 8 subjects including 4745
frames are assigned to one subset and the remaining 9 subjects with
5181 frames placed in the other subset. The detailed information can
be found in Table III.

With the two subsets, researchers can evaluate the performance
of their methods/algorithms by training the models on one set and
testing on the other, and vice versa. This protocol could guarantee
that the experiment is strictly person-independent without subject
overlapping.

For the evaluation metric, the recognition rate is a commonly used
option for measuring the seven-class emotion classification. However,
this is not a good choice for tackling imbalanced data. From Table
III, it is obvious that the data is class imbalanced. There are a large
number of images with neutral and happy while only a few images
with angry. To account for the imbalanced problem, we follow the
protocol from [92] by adopting a balanced accuracy:

Acc = 0.5× (
np

Np
+

nn

Nn
) (4)

where np and nn denote the numbers true positive and true negative
samples, while Np and Nn are the numbers of positive and negative
samples.
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TABLE IV
COMPARISON OF BALANCED ACCURACY (%) OF EMOTION CLASSIFICATION

Neutral Happy Sadness Angry Fear Disgust Surprise Overall

RGB (weighted loss) 25.73 19.61 7.32 0 30.15 5.35 26.32 20.59

RGB (over-sampling) 27.13 24.49 7.39 1.60 27.98 15.30 25.21 22.00

RGB + Depth 25.34 23.07 7.27 1.60 28.59 8.89 25.21 20.69

RGB + ECG 22.18 14.48 20.55 13.44 32.70 8.84 25.08 19.58

OMG + EEG 20.56 22.14 20.72 55.96 30.17 27.13 25.95 26.77

RGB + EEG + OMG 31.04 37.56 20.36 25.29 28.52 22.34 26.82 29.24

TABLE V
COMPARISON OF RMS EVALUATION OF VA

Valence Arousal

RGB 0.212 0.355

RGB + Depth 0.354 0.411

RGB + OMG 0.226 0.347

RGB + EEG 0.202 0.312

RGB + ECG 0.234 0.326

For the evaluation evaluation of VA estimation, we measure the
results by calculating Root Mean Square (RMS) differences:

RMS =

√√√√ 1

N

N∑
i=1

(xi − yi)2 (5)

where x and y are the predicted value and groundtruth, respectively,
and N is the number of testing samplings.

B. Results

Table IV shows the evaluation result of emotion classification
comparing the 6 methods based on different feature fusion. We firstly
compare the two methods for solving the class imbalance problem
based on the RGB feature alone. It can be seen that the accuracy
of the minority classes (sadness, angry and disgust) are still very
low. For the weighted loss function-based method, the accuracy on
a minority class (fear) can even become zero, which suggests that
the model completely ignores this class. Compared to the weighted
loss function-based method, the oversampling method is obviously a
better solution. We use oversampling strategy as the default option
for solving the problem of imbalanced classes.

Compared with the single modality method (using RGB feature
alone), there are two fusion strategies that perform inferior to the
single modality method. The results show that depth maps and ECG
signals do not provide useful features for emotion recognition. For
the depth map data, we have set the Kinect to capture the depth
map in a high frame rate (10 fps), which leads to poor performance
on depth data acquisition. Although the depth features degrade the
recognition rate, the depth map is still useful as it directly contributes
to fast and reliable face detection, as described in section IV-C. For
the ECG signals, the result indicates that ECG may not be a good
feature for basic emotion classification.

The fusion of OMG and EEG features achieves remarkable results.
The accuracy of fear is outstanding even though it is a minority class.
The performance of negative emotions (sadness, angry ,fear, disgust)
is also impressive. The best performance is achieved by the fusion of
RGB, EEG and OMG features with over 7% superior accuracy than

the RBG modality and 2% superior to the fusion of OMG and EEG.
Generally, this result demonstrates that genuine emotions sometimes
cannot be reflected by the visual information, whilst they can be
better detected by the OMG and EEG signals.

Table V shows the results of VA estimation. The depth features still
harm the feature-fusion method. The EEG feature achieves superior
performance on both valence and arousal prediction but inferior
performance on valence estimation. The VA levels are inherently
difficult to be annotated. Due to the lack of agreement on how to
determine the VA levels, the participants just annotate the VA values
according to their own understandings. Therefore, the annotations of
VA are not so convincing as emotional classes. However, the results
of VA estimation still show that the physiological signals have great
significance on emotion prediction.

VI. CONCLUSION

In this paper, we have presented a new MGEED database for mul-
timodal genuine emotion recognition. This database consists of EEG,
OMG, ECG and RGB-D signals of human participants. MGEED is
the first public database containing OMG signals. The non-contact
OMG sensors enable more naturalistic and high-resolution OMG
data acquisition. With the MGEED database, a baseline method
is developed for signal preprocessing, synchronisation, feature ex-
traction, multimodal feature fusion and multi-dimensional emotion
recognition. The data analysis results demonstrate the effectiveness
of physiological signals in the emotion recognition task. In the
future, we plan to extend the MGEED database by introducing more
physiological signals and recruiting more participants to increase the
scale of this database.
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