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Abstract— Spike sorting is crucial in studying neural
individually and synergistically encoding and decoding be-
haviors. However, existent spike sorting algorithms per-
form unsatisfactorily in real scenarios where heavy noises
and overlapping samples are commonly in the spikes,
and the spikes from different neurons are similar. To ad-
dress such challenging scenarios, we propose an auto-
matic spike sporting method in this paper, which integrally
combines low-rank and sparse representation (LRSR) into
a unified model. In particular, LRSR models spikes through
low-rank optimization, uncovering global data structure for
handling similar and overlapped samples. To eliminate the
influence of the embedded noises, LRSR uses a sparse
constraint, effectively separating spikes from noise. The
optimization is solved using alternate augmented Lagrange
multipliers methods. Moreover, we conclude with an auto-
matic spike-sorting framework that employs the spectral
clustering theorem to estimate the number of neurons. Ex-
tensive experiments over various simulated and real-world
datasets demonstrate that our proposed method, LRSR,
can handle spike sorting effectively and efficiently.

Index Terms— spike sorting, optimization, similar wave-
form, overlapped spike

[. INTRODUCTION

XTRACELLULAR recording, which traces the local
electrical potentials around the implanted probe tip, is
one of the most reliable methods for monitoring neural ac-
tivities and unveiling the behavior of neural systems [1],
[2]. By utilizing the extracellular recording technique, one
can obtain the action potentials outside the neurons (i.e.,
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Fig. 1: Flowchart of the spike sorting framework.

spikes) [3]. Since the recorded spikes may come from multi-
ple neurons, they need to be identified and assigned to the
tentative neurons for further downstream studies, including
brain-machine interfaces [4], treating paralysis, epilepsy, and
memory loss, etc [5], [6]. Spike sorting aims to fill the
identification and assignment gaps from the raw spikes, and
has gained much attention recently [7]. As shown in Fig.1,
the conventional pipeline of spike sorting includes filtering,
spike detection, feature extraction, and spike clustering [8],
[9]. Among them, the filtering and detection processes are
straightforward, and performing simple filters and thresholding
could yield acceptable results [10]. However, the last two steps,
i.e., the spikes’ feature extraction and clustering procedures,
are far from settled [7]. This is mainly caused by unique
characteristics that have not been thoroughly investigated yet,
such as overlapping spikes and noise disturbance [11]. Hence,
this paper focuses on such characteristics for more efficient
and effective feature extraction and clustering.

Early endeavors of spike sorting originate from Grey, et
al. [12], who introduced the cluster-cutting method by man-
ually defining the boundaries of different classes. Before
clustering, they directly extracted features from the spikes’
waveform (e.g., peak-to-peak amplitudes [13] and waveform
derivatives [14], etc.) or down-sampled from the aligned
spikes [15], [5]. Though these features are intuitive, they
are limited to being represented in a 2- or 3-dimensional
space for carrying out the cluster cutting [16]. Moreover, the
final clustering results would vary significantly with different
extracted features and subjective human interventions [17].

Some recent efficient spike-sorting methods have emerged
to mitigate the limitations of early endeavors. They could fall
into two categories, i.e., the two-stage methods (performing the
feature extraction and the clustering in turn) and the one-stage
methods (performing both the feature extraction and the clus-
tering simultaneously in a unified framework) [18], [19]. On
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Fig. 2: Modeled spikes under the framework of one-stage
methods. It views the signal x as the sum of components
Cr,k = {1,2,3} and noise ¢. Here, the m-th sampling
point of the k-th component C(m) is formed by taking the
convolution of the template waveform W) with the time-
shifted impulses 6(-) amplified with «,,, where ny is the
number of impulse times of the corresponding k-th neuron.
That is, z(m) = >, >, an, Wi(m) * 6(m — ny) + e(m),
where * represents the convolution operation.

the one hand, the two-stage methods include Wave_clus [20],
[21] and High-Accuracy Spike Sorting (HASS) [22], [9],
which extract features in a time-frequency domain. There also
exist methods that extract features only in the time domain,
including the features from principal component analysis [23],
linear discriminant analysis [24], locality preserving projec-
tion [25], etc. Since these methods did not integrally consider
the underlying assumptions behind the distinct extraction and
clustering procedures, they may readily induce errors and
render failures to the performance [7].

On the other hand, the one-stage methods usually perform
better since they take the underlying assumptions of different
data procedures into consideration and integrate feature extrac-
tion and clustering into a unified framework. These methods
mainly include [6], [26], [27], [28], [29], etc. In particular, [26]
specified the issued time of neurons as a prior Bernoulli
distribution and modeled them as a generative process; [27]
assumed the recorded voltage trace as a noisy linear superpo-
sition of different template waveforms and took a continuous
basis pursuit method [30] for the solution. As demonstrated
in Fig.2, both methods [26], [27] fix the template waveforms
Wi to follow some distributions. Unlike fixing the template
waveforms, other methods focus on dynamically estimating
the waveforms. For instance, [6], [28] proposed a Focused
Mixture Model (FMM) and used a Bayesian dictionary learn-
ing strategy to construct suitable suppositional waveforms
automatically; [29] developed a Sparse Coding Spike Sorting
algorithm (SCSS) that merges the neural impulse time ¢ and
the amplitudes « (in Fig. 2) as one decipher vector s. In this
way, SCSS could transform the convolution operation * to
the multiplication one, recasting the model in a matrix form.
Please refer to the foundation in Section II for details [29].

Though these one-stage model-based methods have evaded
the problem of inconsistent assumptions incurred in the two-
stage methods, they cannot perform well in cases where the
spikes are similar and overlapping or where there are heavy
noises in the spikes. Such characteristics are prevalent in
the extracellular recording [1], [2] and must be carefully
considered to avoid high failure rates in the spike sorting.
Further, the number of neurons needs to be known or assumed

in advance, which hinders the achievement and application of
the automatic sorting process.

In this paper, we propose a novel joint low-rank and sparse
representation (LRSR) model for spike sorting in the matrix
form. Specifically, we first utilize the low-rank model to handle
the samples with similar and overlapped spikes. As the low-
rank model defines the intrinsic relationships between different
clusters, it could capture the spikes of each neuron in fine
detail globally, separating the similar and overlapped spikes.
We further engage a sparsity constraint to capture the local
noises, with which the model is robust to the heavy noises
in the spikes. By adopting the spectral clustering theory to
estimate the number of clusters, we finally devise our one-
stage automatic spike sorting method in LRSR. To summarize,
our contributions are mainly three-fold !

o Based on the matrix forms of spikes, we model the
feature extraction and clustering of spike sorting as a
one-stage integrated problem with low-rank and sparsity
optimizations. We theoretically analyze why our proposed
model could handle cases with similar and overlapped
spikes, as well as the embedded noise.

o We develop an automatic spike sorting framework, which
includes the estimation of the number of neurons, and the
optimization procedure of the proposed LRSR model.

o We conduct extensive experiments both on synthetic and
real-world datasets to verify the effectiveness of our
proposed method in sorting the similar and heavily noisy
corrupted spikes, which also interestingly validate our
superiority against the overlapped spikes.

The rest of the paper is organized as follows. We introduce
the foundation model, SCSS, in Section II and propose our
automatic spike sorting framework, LRSR, in Section III.
Section IV presents the solution to the LRSR optimization
problem as the core part. In Section V, we conduct extensive
experiments compared with several state-of-the-art methods,
verifying the LRSR’s effectiveness. Finally, we conclude our
paper in Section VI.

Il. FOUNDATION: SCSS

As shown in Fig.2, after filtering and spike detection, SCSS
models the my, sampling point of the recorded signal x
as [27],

2(m) =" o, Wi(m) « 5(m — ny) +e(m), (1)
k ng

where () is the unit impulse function, «,, denotes the
amplitude of the neural spike template W, at the ng-th time
shift, where k£ ranges from 1 to K. K stands for the total
number of neurons. Integrating the neural impulse time and the
amplitudes into a decipher vector, and explicitly constructing
W in the Toeplitz structure W' € R4*mw  SCSS recasts the
above model in a matrix form as [29],

X=WS+E. )

Here, X € R*" is the aligned spikes, S € R"™*" is the
sparse coding matrix, and E € R¥*" is the noise matrix. d,

I'This paper is an extension of our conference version [31].
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n, and n,, are the dimensions of spikes, the number of spikes,
and the number of shifted waveform templates, respectively.
The following non-negative least square sparse coding strategy
is employed to solve the SCSS model [29],

A:argmsin/sHX—W'SHg+T||S||1, (3)

where «,7 > 0 are two trade off parameters [29], [32]. After
obtaining a proper solution S, one can determine the clusters
that each spike belongs to with a posteriori map estimator,

A= in | X — WS> 4
arg iy || [ )

where QV is the searching region, i.e., each individual
template-constructed class.

[1l. PROPOSED FRAMEWORK

In this section, we outline the proposed automatic spike
sorting framework, which consists of the LRSR model for the
detected spikes (Section III-A) and the automatic strategies
(Section III-B), including the accelerated process and the esti-
mation of the number of neurons. Key mathematical notations
for LRSR are provided in Table 1.

TABLE I: Key mathematical notations for LRSR

Symbols Definitions
d Dimension # of each detected spike
n # of all detected spikes
A Trade-off parameter
rd Row rank # of the matrix X
K Estimated neurons #
J Auxiliary matrix
Yi,i=1,2 Lagrange multipliers
X € Réxn Detected spikes matrix
E € Rdxn Noise matrix
A € REX7Td Dictionary
Q € R"X"d Linear set of orthonormal basis in X7
Z* € Rraxmn Low-rank optimal solution matrix
Z e Rnxn Block diagonal matrix which preserves
the global structure of X
F e R**n Affinity matrix of spectral clustering
(X)+ (X)Jr = max{X, 0} y
p
X[l = 1,2 1Xp = (s Sy 1X65P)
[ X+ X7 = [ X1l2
1 Xl oo I X|oo = max;—1, .. d;j=1,...,n {Xis}
(X1« Xl = 32324 04

where o; is the singular value of X

A. LRSR Model

Similar to [21], [20], we filter the raw signal by using
a fourth-order Butterworth bandpass filter in the range of
300-3,600 Hz and obtain the spike matrix X € R
by using automatic threshold detection. In real-world spike
sorting scenarios, the raw signals tend to have overlapping and
similar spikes, which may be caused by the signal acquisition
devices [8] and the characteristics of neuron distribution [9].
Additionally, various noise sources, including those from local
field potentials and probe devices [9], are inevitably mixed in
the acquired signals. Considering these factors, we propose

a low-rank and sparse representation (LRSR) model for the
detected spike X as follows,

X =AZ+E, (5)

where A is an appropriate dictionary, Z and E are the low-
rank matrix and the sparse noise matrix, respectively. The main
differences between LRSR and the existing model-based spike
sorting frameworks include: (I) The dictionary A in LRSR is
automatically derived from the spike matrix X, rather than
being manually defined based on the “ideal” and assumed-
given templates, as demonstrated in prior works [27], [29].
(II) Unlike the sparsity constraint in the SCSS model or the
reconstruction constraint of the template [33], [29] capture
the local structure of the dataset, the matrix Z in LRSR
contains the global structure underlying dataset [34]. (III)
Unlike the existing model-based works [33], [27], [29] assume
the noises are Gaussian distribution, LRSR does not make
prior assumptions. Instead, LRSR claims that only a few spikes
are corrupted by noises after filtering and detection and models
the noise E as a sparse matrix.

One possible dictionary in LRSR is to set A = X directly,
where each entry Z;; can be interpreted as the correlation
degree between the i-th and j-th columns in X. In other words,
Z;; represents the correlation between i-th and j-th spikes.
We can solve for Z and E through convex optimization by
formulating the problem as follows [35]:

min || Zl. + A ]|,
(45 (©)
st. X=AZ+F,

where || Z||. represents the nuclear norm of Z, which is defined
as the sum of the singular values of Z, and || E||; denotes the
li-norm of E, which is defined as the sum of the absolute
value of the elements in E. A > 0 is a tradeoff parameter that
allows us to balance the level of noise interference against the
pure data. As A increases, the model becomes less reliant on
the structure present in the pure data. It is worth noting that
noise is not always present in every spike, and in some cases,
it may not heavily disrupt the pure spikes. This suggests that
the sparse constraint on E is a valid assumption in our model.

As a quick demonstration, Fig.3 provides a graphical repre-
sentation of the optimization results obtained from the model
(6). In this example, the size of X is 64 x 3514. By solving
the model (6) over X, we obtain the optimal values of Z*
and E*. To provide a clear visual representation, only the
first 200 entries of the detected spikes X are shown with
their corresponding pure waveforms AZ* and sparse noise
E*. Each column of X, AZ*, and E* represents one detected
spike, its corresponding pure waveform, and the embedded
noise, respectively. Compared with detected spikes X, the
pure waveforms, AZ*, display a more regular profile with less
disturbance and exhibit near global structures, where the rank
of Z* is approximately 15. The noise is quite sparse, where
only 5% of E* columns present noise disruption.

B. Automatic Spike Sorting Framework with LRSR

1) Accelerated Process of LRSR: Optimizing the n X n
matrix Z from model (6) can be challenging because there
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Fig. 3: A quick demonstration of 200 detected spikes X
represented by pure waveforms AZ* and noise E*. Here, each
column in (a), (b), and (c) represents one spike, one pure wave-
form, and one noise vector embedded in the corresponding
detected spike, respectively.

are usually many spikes, which leads to high time complexity.
To achieve faster implementation, we can represent A as,

A=XQ e R4, (7

where (Q € R™*"< gerves as a set of orthonormal basis vectors
for the transposed matrix X T and r, is the rank of X and
satisfies 7y < d < n. Note that the basis vectors could be
calculated in advance by orthogonalizing the rows of X [36],
i.e., orth(XT). This process effectively reduces the dimension
of matrix Z from (n x n) to (rg x n).

With Eq.(7) and assuming the optimal solution of model (6)
is (Z*, E*), which is detailed in Section IV, we could recover
the square matrix Z € R™*™ by,

7 =Qz". ®)

Mathematically, under mild assumptions [36], [35], such as
the independence or disjointness of data subspaces within
the matrix X, the matrix Z exhibits a blocked diagonal
structure. To enhance clustering performance, we choose to
apply the skinny singular value decomposition (SVD) [37]
to Z. This enables us to robustly perform clustering analysis
using various spectral clustering algorithms [38].

2) Estimating the Number of Neurons : Separating the esti-
mation of the number of neurons from the spike sorting al-
gorithm always results in much un-associated and superfluous
work and even leads to worse results [10], [40]. To avoid
these problems, we incorporate such estimation procedure into
LRSR using spectral theorem [36], [38].

Specifically, we construct an affinity matrix F' by perform-
ing skinny SVD on Z at first. Then, we estimate the number
of neurons, K, by counting the number of ones in the singular
values set {o;}7_, of the auxiliary matrix L = D~ 2FD"2,
where D is a diagonal matrix whose diagonal element is the
sum of the corresponding F’s row [38]. In our method, we
utilize soft thresholding to account for the unavoidable noise
in the real scenario [36]. The estimated number of neurons,
denoted as K , 1s determined as follows,

K = round <z”: Ir (O'i)> , &)
1=1

where round(-) is the operation of round towards the nearest
integer, and f. () is a soft thresholding operator defined as,
1, ifo>T1

(o) =4 e , (10)
fr (@) {272—1, otherwise

Algorithm 1 Automatic spike sorting framework with LRSR

Input: Extracellularly recorded raw data.
Qutput: Sorted spikes.

1: Apply a Butterworth bandpass filter to the raw data with
a passband from 300 to 6,000 Hz, resulting in filtered
signal z.

2: Apply automatic threshold detection [20] on x( to obtain
the spikes matrix X.

3: Normalize each row in X so that its elements fall within
the range of 0.2 to 0.8 [39].

4: Execute LRSR method described in Algorithm 2 on matrix
X to obtain matrix Z in a block diagonal form.

5: Perform skinny SVD on Z, i.e. Z = USV7T, to get U and
3.

6: Construct the intermediate matrix P with normalized rows
by US>

7: Calculate the afﬁnit%/ matrix F' with its (¢, j)-element as
Fij= [PPT]M

8: Calculate the diafgonal matrix D whose diagonal element
is the sum of corresponding F’s row.

9: Construct the auxiliary matrix L = D_%FD_%, and
estimate the number of neurons K by (9).

10: Perform Ng-Jordan-Weiss algorithm on matrix F' with the
number of neurons K to get the sorted spikes.

where 0 < 7 < 1 is a parameter used to weigh the strength
of the soft thresholding. As 7 approaches 1, the impact of
soft thresholding decreases. We perform feature extraction and
clustering with the Ng Jordan Weiss [38] spectral clustering
algorithm for four-step spike sorting. The entire spike sorting
framework based on LRSR is outlined in Algorithm 1.

IV. LRSR OPTIMIZATION METHOD

In this section, we present an efficient solution for the
LRSR model by engaging the alternate augmented Lagrange
multipliers strategy [41].

We start by introducing an auxiliary variable, J, to refor-
mulate model (6) as follows,

min [ J]. + A B[,
(J.2,E)
st. X =AZ+E,

Z=J.

(1)

By introducing the Lagrange multiplier, we can get the corre-
sponding unconstrained optimization model as,

min [[J]l, + M| Ells + (Y1, X — AZ — E) + (Y2, Z — J)
(J,Z,E)

7
+5 (IX = AZ - ElF + 112 - JII) , (12)
where Y] and Y; are Lagrange multipliers, (-,-) and || - ||%
denote the matrices inner product operator and matrices Frobe-
nius norm, respectively, ;> 0 is a penalty parameter. Below,
we show how to update each variable alternatively.
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A. Update J with Singular Value Thresholding
With the given matrices Z and FE, J is updated by,

JH = argmin ] + (v, 20 = )+ £ 120 = [, 413)

where t is the index of iteration. Based on the equivalence
operators on matrices A and B, (A, A) = ||A]|% = tr(AT A)
and (A, B) = tr(AT B), we can recast (13) as,

JtHt :argm}n [[J]]« + tr (YQTZt — YQTJ)
+ 5w (272 = 2T = T2 4 ),

—argmin |.J]], + tr< YL T -T2+ gJTJ),

1 1 Yo\ |7
:argmin|J||*—|-HJ— (Zt—l—z) (14)
J o 2 jz

F

where ¢r(-) is the matrix trace operator. The last two equations
are derived from the fact that terms independent of J can be
treated as constants. Adding or subtracting such terms does
not impact the optimal solution of Problem (13). Finally, we
can determine J'*! by applying the singular value threshold-
ing [42] on (Z* + %) with,

JH =UDy, ()VT, (15)

where the matrices, U, X, and V, satisfy the SVD on
Zt + % , e, Zt + % = USVT, and D,/ () is the
singular value shrinkage operator defined as,

Dl/N(E) = diag ((0’ — i)+> )

where o is a vector containing the diagonal elements of 3,
zy = max(z,0), and diag(z) is the diagonal matrix by
specifying the diagonal elements with vector z while other
elements with zeros.

(16)

B. Update Z with Matrix Derivation Rule
With the given matrices J and F, Z is updated by,
VAR in(Y1,X — AZ — E") + (Yo, Z — J'!
arngm< 1 >+< 2, J >
+5(IX —AZ - B} + |12 = I3,
. KT (4T
= =7t (ATA+ 1) Z 17
arg min tr {2 ( + ) (17)
_ (—YQT 4 uXTA— B A+ th“T) Z} ,
where [ is the identity matrix with the same dimensions as

AT A. By using the first-order condition and the following
properties of the matrix trace operator,

otr (ATB otr (ATBA
7r(8A ) _, 7r(6A ) (571 B)a,

we can recast (17) as,

(18)

20 = (ATA+ 1) (ADA=Ya 4 ATY — AT 4 J141). (19)

where A~! is the inverse of matrix A.

Algorithm 2 Solution for LRSR model

Input: Spikes matrix, X € R*"  and parameter .
Output: Block diagonal matrix, A= R™*™ and noise matrix,
E* € Rdxn.
1: Initialization: Q < orth(X7T) € R™*7, A + XQ €
RIxra 70 = JO = VD < 0,50, E° = Y « Oaxns
p® =10"% and ¢ + 0.
2: Update J, Z, E and other parameters sequentially follow-
ing Egs.(15), (19), (23) and (24).
3: Quit the loop if the convergence criterion (26) holds,
otherwise, set ¢ <— ¢ + 1 and go back to step 2.
4 7 ZHL B* « X — AZ".
5: Return E* and Z + QZ*.

C. Update E with Soft Thresholding
With the given matrices J and Z, F is updated by,
B —arg mb;nAnEHl +(Y1,X — AZ"*' — E)

(20)
o 2
+5 |X —AZ"* - E||,.

Similar to the derivations of (14) and (19), we can recast (20)
as,

2
Et+1:argminE%HEHl—i—%HE— <%+X—Azt+1>H .21
F

(21) is a standard sparse optimization problem. By conducting
the first-order condition on (21) in the form of,

o(21El +3IE-GI3)
oE -
and all boundary points condition elementwisely, where G' =

YL X— AZt and % is a gradient operator on E, we can
update E*+1 by,

B = (abs (G) — 2)

where (G) and sgn(G) are the absolute value and sign
operators on matrix G, respectively.

(22)

-sgn(G),
+

(23)

D. Update Other Parameters Automatically

Finally, we update other parameters, including two Lagrange
multipliers Y7 and Y5, and the penalty parameter pu, by,

Y1t+1 — Ylt + /,LtAYf+1,
VI S 4 AT,

t+1

p'T = min (5 x it ,umam) , (24)

where § > 1 and fi,,,4, stand for the step size and the maximal
value regarding the parameter p, and in our model, we fix them
with 1.1 and 10°, respectively. We define AY; ™! i = 1,2 as,
AY! T = X — Az - pitt
AY =zt gl (25)

and use the following convergence criterion to determine the
termination,

max (”AYlHIHOOa ||AY2t+1||00) <k¢, (26)
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where € is a small enough precision to control the model
convergence, and || - || refers to the maximum entry of
a matrix. We summarize the overall solution for the LRSR
model in Algorithm 2.

V. EXPERIMENTS

In this section, we validate the effectiveness of the proposed
method, LRSR, on various datasets. All experiments are con-
ducted in the same PC with Intel Core i7-8750H, 2.21 GHz
CPU, and 32GB main memory.

A. Experimental Settings

1) Datasets: We utilize simulated and real-world bench-
mark datasets in our experiments.

The first simulated dataset is proposed by Quiroga Ro-
drigo Quian er al. [21], [20], [43], which consists of 20
sub-datasets originating from 594 neurons in the neocortex
and basal ganglia. Each sub-dataset includes three distinct
neurons with known labels, varying levels of noise (with a
standard deviation ranging from 0.05 to 0.4), overlapping
spikes, and similar waveforms. The noise in these sub-datasets
mimics background activity generated by distant neurons.
The degree of waveform similarity is denoted as “easy” or
“difficult” on the sub-dataset name, where “easy” indicates low
similarity and “difficult” suggests high waveform similarity.
More details about this dataset, including their names (DS),
noise levels (NL), the number of spikes/overlapped spikes
(SN(O)), and the number of spikes/overlapped spikes per
neuron (SN(O)/Neuron), can be found in Table II. Besides,
we also utilize another simulated dataset proposed by Pedreira
et al. [17], [21], which contains 95 sub-datasets. Each set
contains background noise, multiunit activity, and 2 to 20
neurons (5 sub-datasets for each neuron count). This dataset is
primarily used to evaluate the effectiveness of the estimation
process of the automatic spike sorting methods.

We engage the real-world vivo dataset, HC1 [16], [27], in
our experiments. HC1 is recorded from the hippocampus of
an anesthetized rat. It contains unlabeled spikes of several
unknown neurons from the implanted extracellular tetrode
and labeled spikes of one known neuron from an implanted
intracellular electrode. Based on these labeled spikes, we
can sort and analyze all spikes to study different sorting
methods [27], [7].

2) Evaluation Metrics: Since the proposed LRSR is fully
unsupervised, we use the Adjusted Rand Index (ARI) [44],
[10], [45] as our main performance metric. ARI is an improved
metric to eliminate the bias chance from the Rand Index (RI)
that is formulated as (TP +TN)/(TP+ FP+ FN +TN),
where TP, TN, FN, and F P represent true positives, true
negatives, false positives, and false negatives, respectively. RI
values range from 0 to 1, with O indicating no agreement
between two clustering results and 1 indicating perfect agree-
ment. Given a sample-set S with n items, a known ground
truth partition of ¢ clusters denoted as V = {V1,V5,..., V. .},
and another validated partition from any clustering algorithm
of r clusters denoted as U = {U;,Us,...,U,} (r may not

equal c), we can outline the overlapping elements between U
and V in the contingency table (27),

N Vi Ve ... Vo | Sums
Ui N1 Ni2 Nic ni.
Us N21  TNa22 Nas na.
(27)
Ur Nr1 Nyr2 Nye Ny
Sums | n.y  n.o N.c n

where n;; is the number of the overlapped samples between
sets U; and Vj, i.e., n;; = |U; NV}|, and ARI is defined as,

Sy (P)-[2 ()%, (9))/(G)
(32 ()45, (9))/2= 52 ()52, ()1 (B)
where (1) = n(n — 1)/2. ARI can be negative if predicted
clusters are fewer than expected, while RI ranges from 0 to 1.

Besides, we also engage the quantitative metrics of mis-
classification number, error rate, and mean processing time.
The misclassification number is the count of missed target
spikes, the error rate is the percentage of incorrectly classified
spikes, and the mean processing time is the total processing
time divided by the number of datasets. For HC1 evaluation,
false negative rate (FNR), false positive rate (FPR), and scatter
plots are used to demonstrate method effectiveness in spike
sorting [24], [7].

3) Baseline Methods: We compare four state-of-the-art
spike sorting methods, HASS [22], SCSS [29], FMM [6]
and Wave_clus [21]. HASS and SCSS require the manually
defined neuron number, while FMM and Wave clus are fully
automatic. Additionally, we also compare the baseline, LR, an
ablation method that pays no attention to noise interference
compared with LRSR. For fairness, The raw signal filtering
and spike detection in all comparisons follow the methodol-
ogy outlined in Algorithm 1. Unless specified otherwise, the
parameters of baselines align with those in the original paper,
maintaining consistency.

ARI =

B. Evaluation on Simulated Dataset

1) Overall Experiments: We conduct extensive experiments
to evaluate the performance of all baseline methods in spike-
sorting on the simulated datasets.

As shown in Table II, the results include ARI, neuron
number (NN), and average processing time, where ARI*
represents ARI with the fixed ground-truth neuron number of
3. Overall, all methods perform well on low-noise, distinct
waveform datasets labeled “Easy”. LRSR and HASS outper-
form Wave_clus in ARI on most datasets, while SCSS and
FMM struggle with high-noise datasets. LRSR’s performance
is comparable to HASS, especially in high-noise situations.
It is worth noting that HASS requires the prior number of
neurons, whereas LRSR is fully automatic. Besides, FMM
yields a negative ARI on “Difficult]” when predicting fewer
neurons than the expected 3, indicating ARI’s sensitivity to the
estimation results. SCSS excels in handling overlapping spikes
but suffers on heavily noise-disrupted datasets, possibly due to
the fixed weight of the [y norm term as indicated in Eq.(3). In
construct, LRSR both automatically estimates the number of
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TABLE |I: Details of the simulated dataset and the results of ARI value, estimated number of neurons (NN) of various
methods, where ART* denotes the results with a manually fixed NN of 3.

DS NL  SN(O) SN(O)/Neuron | sCSs HASS LR | FMM Wave_clus LRSR
| ARI* ARI* ARI* | ARI NN ARI NN ARI NN
Easyl 005  3514(785)  1165(250) 1157(275) 1192(260) | 0.9633  0.9872  0.8405 | 0.9005 8 0.8906 3 0.9668 3
010  3522(769)  1151(248) 1134(264) 1237(257) | 0.9563  0.9854 0.7823 | 09370 6 09561 3 09719 3
015 3477(784)  1132(242) 1188(272) 1157(270) | 0.8973  0.9862  0.3855 | 0.9379 5 09685 3 09682 3
020  3474(796)  1198(279) 1128(248) 1148(269) | 0.8223  0.9786 0.3703 | 0.9528 5 09791 3 09768 3
025  3298(712)  1094(237) 1089(229) 1115(246) | 0.7911  0.9827  0.1533 | 0.9627 4 0.8000 6 09819 3
030  3475(846)  1162(294) 1164(285) 1149(267) | 0.7403  0.9735 0.3233 | 0.9384 4 0.8248 3 09785 3
035  3534(832) 1208(285) 1137(269) 1189(278) | 0.6880 0.9705 0.3012 | 0.8922 3 0.7893 4 09711 3
040  3386(741) 1079(238) 1158(261) 1149(242) | 0.6358  0.9806 0.2377 | 0.8274 3 0.9597 3 0.9609 3
Easy2 005  3410(791)  1130(274) 1113(257) 1167(260) | 09114  0.9576  0.8537 | 0.8999 6 0.6998 6 0.8475 4
010  3520(826) 1160(269) 1146(280) 1214(277) | 0.5666  0.9855  0.8342 | 0.8593 6 09604 3 09789 3
015  3411(763)  1181(265) 1098(237) 1132(261) | 0.5651 0.9505 0.5301 | 0.5390 3 09641 3 0.9649 3
020  3526(811)  1186(262) 1188(278) 1152(271) | 0.5523  0.9629  0.4022 | 0.5348 3 0.9553 3 09713 3
Difficult] 005  3383(767)  1115(244) 1113(256) 1155(267) | 0.7956  0.8442  0.9069 | 0.7743 6 0.7336 4 09664 3
010  3448(810)  1164(260) 1155(269) 1129(281) | 0.4467  0.7903  0.8846 | 0.6893 4 09131 3 0.9460 3
015  3472(812)  1159(275) 1172(260) 1141(277) | 0.0073  0.6187 0.8113 | 0.2619 4 0.6121 3 0.8499 3
020  3414(790)  1136(267) 1099(257) 1179(266) | 0.0004  0.5919  0.6450 | -0.0001 2 0.7297 4 0.7474 3
Difficult2 005  3364(829) 1120(271) 1109(274) 1135(284) | 0.9507 0.9646 0.9078 | 0.8715 6 0.7471 4 0.8205 4
010  3462(720)  1187(230) 1136(238) 1139(252) | 0.2848  0.9683  0.2793 | 0.8651 5 09630 3 0.9665 3
015 3440(809)  1142(284) 1113(262) 1185(263) | 0.4173  0.9346  0.2216 | 0.5323 3 0.8010 4 09622 3
020  3493(777)  1151(260) 1195(277) 1147(240) | 0.2072  0.9289  0.1640 | 0.5405 3 09704 3 09820 3
Mean processing time (in seconds) \ 137.55 39435 24.19 \ 8.27 347 16.21

neurons as shown in section III-B.2 and sets the parameters as Difficult2_noise020

analyzed in section IV-D, indicating the effectiveness of our
proposed spike sorting framework.

As for the ablation model, LR excels on “Difficult” datasets

with notable ARI values due to its focus on low-rank rep- Difficult]_noise020 | SN 77777777
resentation, effectively sorting similar spikes. However, its Difficult]_noise015 N 7777

performance drops on high-noise datasets due to the lack of
a noise cancellation strategy. In contrast, LRSR significantly
improves by incorporating a noise term. Interestingly, the
time complexity of LRSR is less than that of LR. There
may be owing to two main reasons. Firstly, the rank of Z
in the LR model is large as the presence of noise, which
results in more iterations and SVD operations in the solution
process. Secondly, compared with the LR model, the noise
term added in the LRSR is element-wisely updated using
a soft threshold algorithm, whose complexity is low and
negligible. The processing time of LRSR is also acceptable
for the online spike sorting applications [46], as evidenced by
its average processing time of 16.21 seconds, less than that of
the recording period, 60 seconds, of each dataset.

In summary, as one of the automatic methods, LRSR
outperforms others in achieving the best ARI and estimated
neurons, comparable to supervised spike sorting methods. By
incorporating a noise cancellation strategy, LRSR outperforms
LR in sorting performance and time complexity, which is also
acceptable for online spike sorting applications.

2) Effects of Overlapping and Noise Interference: We only
report the results of LRSR and HASS here, since the ARI
values of other methods (SCSS, LR, FMM, and Wave_clus)
were relatively much lower, as shown in Table II. We use 3
artificially assigned neurons to conduct the following experi-
ments to ensure fair evaluations.

Fig.4 shows the total numbers of the missed target
spikes, including the non-overlapped spikes and the over-

Difficult2_noise015
Difficult2_noise010

Difficult2_noise005

Difficult] _noise010

Y,
7

Difficult] _noise005
Easy2 noise020
Easy2 noise015
Easy2 _noise010
Easy2 noise005
Easyl_noise040
Easyl_noise035

Easyl_noise030
. % LRSR: overla

Easyl_noise025 overep
Easy!_noise020 ~ LRSR: non-overlap
X = HASS: overlap
Easyl noise015 overtar
. #HASS: non-overlap
Easyl_noise010

Easyl_noise005

350 250 150 50 50 150 250 350 450 550

Fig. 4: The number of miss-classified spikes (including the
non-overlapped and overlapped spikes) of LRSR and HASS.

lapped spikes obtained by both LRSR and HASS meth-
ods. It can be seen that 15 datasets are well clas-
sified without any non-overlapped missed target spike
for LRSR, while only 10 for HASS. There are five
datasets with non-overlapped missed target spikes for LRSR,
“Easyl_noise035”, “Easyl_noise040”, “Difficultl_noise010”,
“Difficult] _noise015” and “Difficult]l _noise020”, and all these
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Fig. 5: Error rates of LRSR and HASS on datasets, (a)
“Easyl”, (b) “Easy2”, (c¢) “Difficultl”, and (d) “Difficult2”,
disrupted by different noise levels.

waveforms are corrupted by the high-level noises. HASS
performs worse on them. Besides, the misclassification spikes
of “Difficult]” are relatively higher than other datasets. It
is mainly because the similarities of the waveforms in the
“Difficult]” are shallow, and the high-level noises corrupt
these waveforms. Overall, the total numbers of the missed
target overlapped spikes of most datasets, except for “Diffi-
cultl _noise015” and ‘“Difficultl_noise020”, are under 50 for
LRSR. The sorting results of overlapping spikes are much
worse for HASS, especially on the “Difficult]” datasets,
demonstrating the satisfactory performance of our proposed
LRSR.

Fig.5 shows the error rates obtained by LRSR and HASS
methods at different noise levels. Overall, with the increasing
noise levels, the classification error rate of LRSR is more
stable than HASS. This conclusion is particularly evident in
the datasets “Easy2”, “Difficultl”, and “Difficult2”. For the
dataset “Easy1”, although the classification error rate of LRSR
is slightly worse than that of HASS, they always remain
near the error rate of 1%. In the “Difficult]” and “Difficult2”
datasets with the high spikes’ similarity, LRSR achieves better
results than HASS, which generally confirms the sound anti-
noise performance of our proposed model.

3) Parameter Analysis: Algorithm 2 implies that the LRSR
method has only one parameter, A, to decide. In general, the
choice of this parameter depends on the prior knowledge of
the noise level of a signal, which many existing methods
could estimate [47]. When the noise is slight, we should use
a relatively large A, while a minor A is recommended with
heavy noises.

We conducted experiments of parameter analysis on four
datasets, including both ‘“easy” and “difficult”. In partic-
ular, we used two datasets with the lowest noise level,
0.05, named “Easy1_noise005” and “Difficult] noise005”, and
the other two with the highest noise level, 0.4 for “easy”
and 0.2 for “difficult”, named “Easyl_noise040” and “Diffi-

Fig. 6: (a) The influence of parameter A in LRSR com-
pared with the theoretical optimum performance on “Diffi-
cult]l _noise020” dataset and (b) the mean deviation of total
errors over all datasets.
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Fig. 7: Effects of the parameter A\ = 2° on the accuracy of
spike sorting.
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Fig. 8: Estimation results on the simulated dataset of automatic
spike sorting methods.

cultl _noise020”. We set A = 27, where [ was set from —15 to
5 with the increasing step 1 so that the conducted experiments
are in a wide enough range of A. The other steps are the
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Fig. 9: Results on the real-world dataset, including (a) the mean waveform of the ground truth, and the low-dimensional
distributions of spikes and the corresponding mean waveforms of each tentative neuron got from the spike sorting methods,
(b) SCSS, (c) HASS, (d) FMM, (e) Wave_clus, and (f) LRSR. We provide the FNR and FPR results of each method in the

caption accordingly.

same as Algorithm 1, and we recorded the final results of the
accuracy with the increasing parameter [3.

As shown in Fig.7, by setting a relatively more minor g3,
the performance on such two high noise level disrupted data,
“Easyl_noise040” and “Difficultl noise020”, are satisfactory,
and vice versa for the slight noise corrupted dataset.

Also, to evaluate the influence of A in LRSR compared
with the theoretical optimum performance, we employed the
best ellipsoid error rate (BEER) measure [16], [48] on the
“Difficult] _noise020” dataset. We engaged one two-layer feed-
forward neural network and a 5-fold cross-validation method
in a supervised manner, and plotted the final theoretical upper
bound region of convergence (ROC) curve [48] with cyan
color in Fig.6.a. Based on the prior fact that the noises in the
selected dataset are not too heavy, we assigned A of LRSR
in a relatively reasonable guessing range, from 1 to 50, for
experiments. Fig.6.a demonstrates 50 blue dots, representing
the mean FPR and TPR about the multi-classification perfor-
mance of LRSR. For comparison, we also conducted the SCSS
method by manually setting the number of neurons with 3,
and plotted the result in Fig.6.a with one red star dot. The
corresponding total error’s mean and standard deviation over
all twenty datasets for theoretical optimum (BEER measure),
LRSR, and SCSS are given in Fig.6(b).

On the dataset “Difficultl _noise020”, the performance of
LRSR is close to the theoretical optimum obtained by BEER
measure (Fig.6(a))), while the performance of SCSS is inferior,
with error rates typically exceeding 20% (Fig.6(b)). Among
all twenty datasets, we found no significant difference in the
total error between the LRSR and theoretical optimum, but
a distinct difference between the performances of LRSR and
SCSS. Thereafter, we fixed the 3 with —7, i.e., A =277, for

simplifying the procedure in the whole experiments.

4) Estimating Number of Neurons: To evaluate the effec-
tiveness of our proposed automatic spike sorting method,
specifically in estimating the neuron numbers, we conduct
experiments on the simulations with various neurons from
2 to 20 [17], [21], [45]. With each neuron count, there
are 5 different sub-datasets. We conduct 20 experiments for
each neuron count and report the final average estimated
results and its standard deviation accordingly. As shown in
Fig.8, Wave_clus exhibits a similar trend as their primary
work [17], illustrating that Wave_clus could estimate up to
8 neurons. FMM improves this estimation to around 14,
although its standard deviation is larger than Wave_clus. In
contrast, LRSR produces a stable and accurate estimation from
2 to 20 neurons, verifying the effectiveness of our estimation
strategy. This is mainly attributed to the well-constructed low-
rank matrix and the robust thresholding estimator given in
section III-B.2.

C. Evaluation on Real-World Benchmark

To evaluate the effectiveness of LRSR, we conducted exper-
iments on the real-world dataset HC1. Refers to the existing
works [24], [27], we filter the raw signal with a highpass
Butterworth filter at 250 Hz with an order of 50 at first. Then,
we detect all spikes by a thresholding method [27]. Each spike
is 4 x 41, as indicated in Fig.9a. We concatenate the spike
along the channel to a 164-dimension signal for automatic
sorting [27], [7]. It is worth noting that we manually fixed the
neuron number of SCSS and HASS with the empirical number
3 as they could not estimate the number automatically [27].

As shown in Figs.9b-f, we illustrate the low-dimensional
spikes in their feature space to indicate the separations of each
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method. Below the feature space illustration, we also provide
the corresponding mean waveforms of each method, where
the most similar one(s) to the ground truth is(are) emphasized
with the dashed box. The quantitative results of FNR and FPR
are given in the caption of each figure. Generatively, LRSR
outperforms others in both the separations in the feature space
and the quantitative results. From the perspective of the mean
waveforms, LRSR (Fig.9f) and Wave_clus (Fig.9¢) estimated
3 neurons in line with the previous works [27], [7]. FMM
(Fig.9d)intends to estimate more neurons, causing the third and
fourth mean waveforms to share a similar profile. In summary,
LRSR exhibits excellent accuracy and stability on synthetic
and real-world datasets.

VI. CONCLUSION AND FUTURE WORKS

In this paper, a joint low-rank and sparse representation
(LRSR) model has been proposed for automatic spike sorting.
LRSR efficiently recognizes noise corruption or similar spikes,
and is robust to overlapped spikes. Extensive experimental
results demonstrated the superiority of LRSR over the other
four state-of-the-art methods. In the future, we aim to improve
the computational speed of our approach further. Besides, our
current work is limited to extracellular single-channel and
vivo spike sorting processing. It is potential and desirable to
extend LRSR with tensor optimization for signals recorded
from the multi-channel, multi-electrode array, and nonlinear
spatial arrays.
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