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A B S T R A C T   

Water is the most valuable natural resource on earth that plays a critical role in the socio-economic development 
of humans worldwide. Water is used for various purposes, including, but not limited to, drinking, recreation, 
irrigation, and hydropower production. The expected population growth at a global scale, coupled with the 
predicted climate change-induced impacts, warrants the need for proactive and effective management of water 
resources. Over the recent decades, machine learning tools have been widely applied to various water resources 
management-related fields and have often shown promising results. Despite the publication of several review 
articles on machine learning applications in water-related fields, this review paper presents for the first time a 
comprehensive review of machine learning techniques applied to water resources management, focusing on the 
most recent achievements. The study examines the potential for advanced machine learning techniques to 
improve decision support systems in the various sectors within the realm of water resources management, which 
includes groundwater management, streamflow forecasting, water distribution systems, water quality and 
wastewater treatment, water demand and consumption, hydropower and marine energy, water drainage systems, 
and flood management and defence. This study provides an overview of the state-of-the-art machine learning 
approaches to the water industry and how they can be used to ensure water supply sustainability, quality, and 
flood and drought mitigation. This review covers the most recent related studies to provide the most recent 
snapshot of machine learning applications in the water industry. Overall, LSTM networks have been proven to 
exhibit reliable performance, often outperforming ANN models, traditional machine learning models, and 
established physics-based models. Hybrid ML techniques have exhibited great forecasting accuracy across all 
water-related fields, often showing superior computational power over traditional ANNs architectures. In 
addition to purely data-driven models, physical-based hybrid models have also been developed to improve 
prediction performance. These efforts further demonstrate that Machine learning can be a powerful practical tool 
for water resources management. It provides insights, predictions, and optimisation capabilities to help enhance 
sustainable water use and management and improve socio-economic development, healthy ecosystems and 
human existence.   

1. Introduction 

Water is the most essential natural resource for human life that is 
used in various ways, which are keys for human socio-economic 
development. Water is used for drinking, bathing, recreational activ-
ities, agriculture, hydropower production, and more. Although water 
covers around 71% of the earth’s surface, only about 2.5% is freshwater 

(USGS, 2019). Therefore, appropriate water resources management is 
crucial to a well-developed society. As a complex system of nature, 
aquifers are constantly changing. Hence, our accessibility to freshwater 
is continually changing, too. In its water scarcity report (United Nations 
Water, 2020), the United Nations estimates that by 2025, 1.8 billion 
people will be living in water-scarce areas, highlighting the urgent need 
for innovative solutions within the water sector. Engineers and 
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decision-makers constantly look for promising methods to address 
climate change and its consequential impacts. As temperatures rise 
rapidly, more extreme weather is observed. One of the most concerning 
consequences is flooding, with over one billion people worldwide pre-
dicted to live in cities with a risk of catastrophic flood levels due to 
climate change (Rentschler and Salhab, 2020). A natural disaster, such 
as a devastating level of flooding, can cost lives, property, crop 
destruction and much more. The damaging effects of flooding can have a 
long-lasting impact on the affected area, which can be challenging to 
recover from. 

On a global scale, the exploitation and consumption of water re-
sources often need to be better managed. An important aspect of water 
resources management is providing solutions for optimal resource use, 
ensuring overexploitation does not occur, and equipping water re-
sources managers with the appropriate decision-support tools to plan for 
potential shortages of effective management. Conventionally, physical 
models have assisted decision-makers in enabling a sustainable and 
optimal use of water resources. However, the relationships between 
hydrological, meteorological and water table levels are well known to be 
very complex. Additionally, these models require a larger number of 
data, and such data tend to be very expensive and/or scarce, particularly 
in developing countries. 

In recent years, Machine Learning (ML) has demonstrated its high 
efficiency and practicability for water resources management compared 
to traditional models due to its capability to handle different sources 
simultaneously and its lower cost and time requirements. ML has been 
applied to water resources management in various ways to improve the 
monitoring, prediction, and sustainable use of water resources. ML 
models are often trained on historical hydrological data for forecasting. 
The main hydrological data commonly used as input features include 
discharge, rainfall, water table level, temperature, evapotranspiration, 
land use, and pumping rates. Preference has recently been given to data- 
driven models over physically based or conceptual forecasting models, 
which have the potential to unravel the non-linear input-output rela-
tionship and produce reliable predictions of physical systems, even 
without prior knowledge of the underlying physical relationships and 
the catchment information. 

There are numerous examples of how ML can be applied to water 
resources management. For example, ML can analyse historical usage 
data in a water distribution system, provide optimum water allocation, 
predict future demand, and help detect system leaks (e.g. Shahra et al., 
2019). With the availability of historical data on groundwater levels, ML 
has been widely used for future predictions of water level dynamics, 
which helps in the management of groundwater reservoirs (e.g. Pathak 
et al., 2021; Ghosh et al., 2022; Kochhar et al., 2021; Teimoori et al., 
2023). ML can also be used for streamflow forecasting (e.g. Cheng et al., 
2020; Mehedi et al., 2022; Dehghani et al., 2023; Akbarian et al., 2023). 

There is increasing pressure on irrigation water demand for agri-
culture use, which is expected to double by 2050 (The Food and Agri-
culture Organization of the United Nations, 2017), with only limited 
resources. ML has been extensively used to narrow this gap and to 
develop smart irrigation practices (e.g. Chen et al., 2021; He et al., 
2022). Another example where ML has proved successful is the water 
quality prediction. This has been crucial given that water pollution has 
worsened significantly in most rivers in Africa, Asia, and Latin America 
(United Nations Environment Programme, 2016). This has prompted 
many studies focusing on the applications of ML to estimate and predict 
water quality (Zhou, 2020). 

This study presents an overview of the recent water resources-related 
studies that implemented ML algorithms, with the main aim being to 
answer the following research question: which ML algorithms have been 
used in water resource management in recent years, and what were the 
most effective approaches adopted for forecasting application? This 
provides the most up-to-date and relevant information pertaining to the 
application of ML to the water sector, thereby highlighting its relevance 
and potential in practical application. Most of the research studies 

covered in this review extend from the time we initiated it until October 
2023.  

Nomenclature 

Abbreviations Significations 

ANFIS Adaptive Neuro-Fuzzy Inference System 
ANN Artificial Neural Network 
ARIMA Autoregressive Integrated Moving Average 
Bi-LSTM Bidirectional-LSTM 
CNN Convolutional Neural Network 
Conv LSTM Convolutional LSTM 
DI Data Integration 
ELM Extreme Learning Machine 
En-De Encoder-Decoder 
GA Genetic Algorithm 
GB Gradient Boosting 
GBRT Gradient Boosted Regression Trees 
GHM Global Hydrological Model 
GloFAS Global Flood Awareness System 
GMDH Group Method of Data Handling 
GNN Graph Neural Network 
GRU Gated Recurrent Unit 
GWO Grey Wolf Optimisation 
KGE Kling-Gupta Efficiency 
LASSO Least Absolute Shrinkage and Selection Operator 
LR Linear Regression 
LSSVM Least-squares support-vector machines 
LSTM Long Short-Term Memory 
MLP Multilayer Perceptron 
MLR Multivariate Linear Regression 
NARX Nonlinear AutoRegressive network with eXogenous inputs 
NSE Nash–Sutcliffe efficiency 
PCA Principle Component Analysis 
PCC Pearson Correlation Coefficient 
PSO Particle Swarm Optimisation 
R2 Coefficient of Determination 
RF Random Forest 
RNN Recurrent Neural Network 
SAC-SMA Sacramento Soil Moisture Accounting Model 
SAE Stacked Auto Encoder 
seq2seq sequence-to-sequence 
SVM Support Vector Machine 
SVR Support Vector Regression 
SWAT Soil & Water Assessment Tool 
WT Wavelet Transform  

2. Machine learning methods 

Various statistical and Machine Learning (ML) techniques have 
found significant applications in water resource management for pre-
diction purposes, ranging from pure forecasting to estimating certain 
parameters of optimisation models (see Table 1). Statistical models 
provide mathematical representations of observed data, which are used 
for prediction purposes. They are generally based on variants of 
regression models, which include simple linear regression, multiple 
linear regression, generalized linear models, nonlinear regression, and 
autoregressive integrated moving average models (ARIMA) (Bovas and 
Johannes, 1983; Agresti, 2011; Agresti and Franklin, 2011), regularized 
regression models - such as Ridge regression (Hoerl and Kennard, 1970), 
Least Absolute Shrinking and Selection Operator (LASSO) (Tibshirani, 
1996), as well as logistic regression models (Agresti, 2011). The latter 
are used for classification. 

ML can be cast as either (i) supervised learning, (ii) unsupervised 
learning, (iii) semi-supervised learning or (iv) reinforcement learning. 

2.1. Supervised learning 

Supervised learning techniques are used to devise a functional 
mapping between input variables and output variable(s) which have 
proven to be efficient for prediction tasks. Depending on the type of the 
dependent variable(s), a supervised learning technique is categorised as 
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either a classification model (for a nominal dependent variable) or a 
regression model (for a continuous dependent variable). Therefore, 
statistical models can be viewed as supervised learning techniques. 
Classification models for ML include Decision Trees classifiers (Breiman 
et al., 1984; Quinlan, 1986), Support Vector Machines (SVM) classifiers 
(Cortes and Vapnik, 1995; Steinwart and Christmann, 2008), Naïve 
Bayes classifiers (Domingos and Pazzani, 1997), Adaptive Boosting 
(AdaBoost) classifiers (Freund and Schapire, 1995), Gradient Boosted 
Trees classifiers (Friedman, 2001; Hastie et al., 2009), Extreme Gradient 
Boosting (XGBoost) classifiers (Chen and Guestrin, 2016), Random 
Forest classifiers (Breiman, 2001), Linear Discriminant Analysis (LDA) 
(Friedman, 1989). Regression models include the regression variants of 
the aforementioned classifiers, namely Decision Trees regressors (Brei-
man et al., 1984), Support Vector regressors (SVR) (Drucker et al., 

1997), Naïve Bayes regressors (Frank et al., 2000), AdaBoost regressors 
(Freund and Schapire, 1995), Gradient Boosted Trees regressors 
(Friedman, 2001; Hastie et al., 2009), XGBoost regressors (Chen and 
Guestrin, 2016), Random Forest regressors (Breiman, 2001), as well as 
K-Nearest Neighbour (KNN) regressors (Cover and Hart, 1967). 

Deep learning (Le Cun et al., 2015; Schmidhuber, 2015) is a class of 
supervised learning suitable for both classification and regression tasks, 
which includes classical Artificial Neural Networks (ANN) (Amari, 1972; 
Hopfield, 1982), Convolutional Neural Networks (CNN) (Le Cun et al., 
1990), Recurrent Neural Networks (RNN) (Hopfield, 1982), Generative 
Adversarial Networks (GAN) (Goodfellow et al., 2014), Gated Recurrent 
Unit (GRU) (Cho et al., 2014), Long Short-Term Memory (LSTM) 
(Hochreiter and Schmidhuber, 1997), Deep Belief Networks (DBN) 
(Hinton, 2009), Deep Convolutional Generative Adversarial Networks 
(DCGAN) (Radford et al., 2015). 

2.2. Unsupervised learning 

Unsupervised learning techniques are used to discover patterns or 
relationships within unlabelled data. These machine learning techniques 
can be classified as either:  

- feature extraction techniques, including Hierarchical and Partitional 
Clustering (e.g., K-means and k-medoid) (MacQueen, 1967; Hartigan 
and Wong, 1979; Kaufman and Rousseeuw, 1990), Gaussian Mixture 
Model (GMM)-based Clustering (Maugis et al., 2009), Principal 
Component Analysis (PCA) (Jolliffe, 2002), Uniform Manifold 
Approximation and Projection (UMAP) (Ghojogh et al., 2021), Iso-
map Embedding (Tenenbaum et al., 2000), Non-negative Matrix 
Factorization (NMF) (Lee and Seung, 2001), Association Rules (e.g. 
Apriori algorithm, (Agrawal and Srikant, 1994)), or  

- feature selection techniques, which revolve around Filter Methods 
based on mutual information (Pudjihartono et al., 2022). 

Variants of Deep learning (Le Cun et al., 2015) models used for un-
supervised learning are Auto-Encoders (Kramer, 1991), which include 
Sparse Auto-Encoder (SAE) (Frey and Makhzani, 2013), Denoising 
Auto-Encoder (DAE) (Vincent and Larochelle, 2010), Variational 
Auto-Encoder (VAE) (Welling and Kingma, 2019) and Restricted Boltz-
man Machines (RBM) (Sherrington and Kirkpatrick, 1975), and Deep 
Boltzman Machines (DBM) (Salakhutdinov and Hinton, 2009). 

2.3. Semi-supervised learning 

Semi-supervised learning (Chapelle et al., 2006; van Engelen and 
Hoos, 2020) combines both supervising and unsupervised learning 
framework, namely when the data available consist of both unlabelled 
and labelled data, with the sample of unlabelled data generally out-
weighing the one for labelled data. Semi-supervised learning techniques 
include Label Spreading (Zhu and Goldberg, 2009), Label Propagation 
(Zhu and Ghahramani, 2002), and Self-Training classifier (Triguero 
et al., 2015). 

2.4. Reinforcement Learning 

Reinforcement Learning (RL) (Kaelbling et al., 1996) is a framework 
based on an agent’s behaviour with a defined environment where some 
feedback from previous actions are used to adjust optimally the subse-
quent actions. RL techniques include Q-Learning (Watkins, 1992), 
Markov Decision Process (MDP) (Wrobel, 1984), 
State-Action-Reward-State-Action (SARSA) (Rummery and Niranjan, 
1994), Proximal Policy Optimisation (PPO) (Schulman, 2017), and 
Policy Gradient (PG) (Sutton et al., 2000). 

Sometimes, different ML techniques and statistical models are com-
bined to improve the predictive accuracy. Such hybrid approaches 
include the combination of RL with Deep Learning (e.g., Deep 

Table 1 
Summary of statistical and machine learning models as well as their associated 
paradigms and tasks.  

Models Paradigm Task 

Statistical 
models 

Linear regression Supervised 
learning 

Regression, 

Nonlinear regression Supervised 
learning 

Regression 

Regularized 
regression models: 
Ridge Regression, 
LASSO 

Supervised 
learning 

Regression 

Generalized linear 
models 

Supervised 
learning 

Classification, 
regression 

ARIMA Supervised 
learning 

Regression, time 
series forecasting 

Machine 
Learning 
models 

Decision Trees Supervised 
learning 

Classification, 
regression, time 
series forecasting 

SVM/SVR Supervised 
learning 

Classification, 
regression 

Naïve Bayes Supervised 
learning 

Classification, 
regression, time 
series forecasting 

Gradient Boosted 
Trees, AdaBoost, 
XGBoost 

Supervised 
learning 

Classification, 
regression, time 
series forecasting 

Random Forest Supervised 
learning 

Classification, 
regression, time 
series forecasting 

K-NN Supervised 
learning 

Regression, time 
series forecasting 

Deep learning: 
ANN, RNN, CNN, 
GAN, GRU, LSTM, 
DBN, DCGAN 
Autoencoders, SAE, 
DEA, VAE, RBM, 
DBM 

Supervised 
learning 
Unsupervised 
learning 

Classification, 
regression, time 
series forecasting 
Feature extraction, 
dimensionality 
reduction 

Clustering: k-mean, k- 
medoid, GMM-based 
clustering 

Unsupervised 
learning 

Feature extraction, 
dimensionality 
reduction 

PCA, UMAP, Isomap 
Embedding, NMF, 
Apriori 

Unsupervised 
learning 

Feature extraction, 
dimensionality 
reduction 

Filter Methods Unsupervised 
learning 

Feature selection, 
dimensionality 
reduction 

Label Spreading, 
Label Propagation, 
Self-Training 
classifier 

Semi-supervised 
learning 

Classification 

Q-Learning, MDP, 
SARSA, PPO, PG 

Reinforcement 
learning 

Decision-making 

Hybrid models: 
ARIMA-ANN, Deep 
Q-Learning, Deep 
Reinforcement 
Learning 

Supervised 
learning, 
Reinforcement 
learning 

Classification, 
regression, time 
series forecasting, 
decision-making  
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Reinforcement Learning, Deep Q-Learning) (Mnih et al., 2015), and the 
combination of ANNs with ARIMA (Zhang, 2003). 

This study aims to provide a comprehensive overview of the appli-
cations of machine learning in water resources management related 
fields, including groundwater management, water distribution systems, 
water quality and wastewater treatment, water demand and consump-
tion, hydropower and marine energy, irrigation and agriculture, water 
drainage systems, and flood management and defence. The following 
sections provide an overview of the recent water resource-related 
research studies where ML algorithms were implemented (Fig. 1). 

3. Review methodology 

This review involved establishing a systematic literature search on 
the water industry. ScienceDirect and Scopus were mainly used as the 
database. The search also mainly focused on journal articles. Two sets of 
keywords were used, where one set included the machine learning ele-
ments, and the other set included elements related to the water industry. 
Those relating to the former included keywords such as ‘machine 
learning’, ‘deep learning’, ‘neural networks’, ‘LSTM’, ‘long short-term 
memory’, ‘random forest’, ‘genetic algorithm’, ‘support vector ma-
chine’, ‘extreme learning machine’, and ‘extreme gradient boosting’. 
Those relating to the latter included keywords such as ‘groundwater’, 
‘water distribution systems’, ‘water quality’, ‘wastewater treatment’, 
‘water demand’, ‘water consumption’, ‘hydropower’, ‘marine energy’, 
‘irrigation’, ‘agriculture’, ‘river basin management’, ‘water drainage 
systems’, ‘flood management’, and ‘water retaining structure’. The 
searches were limited to mainly include journal publications. While the 
search mainly focused on the articles published in the past ten years, 
some older articles were cited. 

4. Groundwater management 

Groundwater resources are large natural reservoir located within the 
ground. Arid areas often rely on groundwater resources for water sup-
ply, irrigation and industrial activities. (Pathak et al., 2021; Ghosh et al., 
2022). Half of drinking water is supplied by groundwater, and irrigation 
accounts for nearly 43% (Rajeevan and Mishra, 2020). However, natural 
and human factors have put groundwater resources under tremendous 
pressure. The main detrimental factors impacting groundwater quantity 
and quality include climate change, population growth, and agricultural 

demands. Most groundwater-related studies where ML was applied 
focus on groundwater level (GWL) forecasting. Understanding ground-
water flow dynamics is essential to assess the potential availability and 
scarcity of water. Hence, a sustainable management of the available 
groundwater resources in arid and semi-arid regions is contingent of an 
accurate and reliable prediction of GWL, which directly reflects 
groundwater availability and provides relevant cues on its hydrody-
namics. However, characterising groundwater dynamics is a difficult 
task since the occurrence and availability present spatial and temporal 
variations, which depend on several factors, including, but not limited 
to, slope, geology, rainfall, and soil type. 

A large number of studies have demonstrated the usefulness of data- 
driven models for GWL application, especially in data-scarce context 
and/or complex aquifer systems. Conventional approaches applied to 
GWL have often involved the use of multivariate linear regression 
models (MLR), autoregressive integrated moving average (ARIMA) 
model, and seasonal autoregressive moving average (SARIMA) (e.g., 
Rahaman et al., 2019), which are generally considered as linear fitting 
models. Future predictions could be derived using the SARIMA model 
along with the input and output of groundwater data (Kochhar et al., 
2021). Teimoori et al. (2023) demonstrated that K-means clustering and 
relevance vector machine (RVM) could identify the optimal number and 
locations of monitoring wells and thus help design efficient groundwater 
level monitoring networks. 

Traditional ML models have also yielded acceptable GWL prediction 
performance. Rohde et al. (2021) use the ensemble-based Random 
Forest model and satellite-based remote sensing for long-term GWL 
prediction in California, USA. GWL was forecasted within all 
groundwater-dependent ecosystems across the state. They demonstrated 
that their results could be used to help groundwater data gaps filling and 
improve sustainable groundwater management policy in California even 
in the absence of groundwater monitoring well data. Liu et al. (2022) 
also implemented Random Forest and found it very effective in pre-
dicting GWL in the lower Tarim River. They demonstrated that RF was 
superior to other models in one-step-ahead predictions of groundwater 
depth in the space-time domain. Sharafati et al. (2020) assessed the 
performance pattern of the Gradient Boosting Regression (GBR) model 
to predict the monthly GWL with short- and long-lead times over the 
Rafsanjan aquifer. This study demonstrated the performance of GBR in 
predicting GWL. Regions with higher water depth and abstraction rates 
yielded better prediction performance. Hikouei et al. (2023) found that 

Fig. 1. The different water resource management related applications covered in this review.  
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XGBoost exhibited good performance, reduced prediction uncertainties, 
and could capture true features of GWL in areas near canals. Their re-
sults showed that peat surface elevation was the most important 
parameter amongst other parameters tested, including precipitation, 
distance from the canal, and evapotranspiration. 

Several studies have shown that standalone deep learning models are 
more performant than traditional ML models but are still subjected to 
data characteristics that can affect their performance. The most common 
ML implementation is the use of artificial neural networks, which have 
been used to predict the dynamics of GWL in numerous studies. Ahmadi 
et al. (2022) showed that feed-forward ANN was very effective in 
groundwater characteristics quantitatively with good accuracy. Taor-
mina et al. (2012) compared the ability of feed-forward neural network 
(FFANN) in forecasting GWL to regression and statistical models. 
Mohanty et al. (2015) also employed neural networks to predict GWL 
and found positive results. 

Another common application of ML in GWL forecasting is using deep 
learning models such as the LSTM, Gated Recurrent Unit (GRU) and the 
Recurrent Neural Network (RNN). Cai et al. (2021) evidenced the su-
periority of the GRU model in regions with higher precipitation, higher 
average temperatures, lower snowfall fraction, more extreme climate 
events, and more frequent baseflow interactions. Regarding input fea-
tures for the model, precipitation and streamflow data were found to be 
the most influential ones for groundwater level forecasting. Ghar-
ehbaghi et al. (2022) also examined the performance of the GRU model 
in Northwest Iran. They used three different layer structures of 
GRU-based neural network models via the seq2seq module, a modern 
deep learning scheme. Their proposed models could predict ground-
water level fluctuations in arid/semi-arid regions. Wu et al. (2023) 
showed that the GRU model outperformed SVM, LSTM and MLP models 
at most groundwater monitoring stations. 

Recently, Pham et al. (2022) investigated the performance of seven 
machine learning models, namely random tree (RT), random forest (RF), 
decision stump, support vector machine (SVM), locally weighted linear 
regression (LWLR), as well as reduced error pruning tree (REP Tree), for 
the prediction of groundwater levels in a drought-prone area. This study 
found that the Bagging-RT and Bagging-RF models outperformed other 
models. Yin et al. (2021) compared the performance of machine learning 
and physical models in forecasting groundwater dynamics. The 
physically-based models included W3 and CLSM models, while the 
data-driven models were based on ANN, RF and LSTM models, respec-
tively. The predicted GWLs from the LSTM model significantly perform 
better than those of RF and ANN models during validation and predic-
tion periods. They quantified the importance of GRACE observations in 
data-driven models and found noticeable improvements in the perfor-
mance metrics considered. Liu et al. (2022) found that when compared 
to Support Vector Machine, Generalized Regression Neural Network, 
Decision Tree, Convolutional Neural Network, Long Short-Term Mem-
ory and Gated Recurrent Network, Random Forest performed the best in 
predicting groundwater levels. They showed that RF was superior to 
other models in one-step-ahead predictions of groundwater depth in the 
space-time domain. Mahammad et al. (2023) compared six ML models, 
including Linear regression, Decision tree regressor, Support vector re-
gressor, Random Forest regressor, K-nearest neighbours regressor, and 
Extreme gradient boost regressor. They showed that the XGB regressor 
was the most reliable model for future prediction, while the Decision 
Tree proved to be the least efficient technique for portraying the GWL 
dynamics. They demonstrated that changes in GWL over space and time 
were strongly linked to changes in rainfall and population in the study 
area. 

Shakya et al. (2022) compared the Support Vector Regression (SVR) 
model, Multivariate Linear Regression (MLR) model, Decision Tree 
Regression (DTR) model, Random Forest Regression (RFR) model, 
Multivariate Polynomial Regression (MPR) model, and two deep 
learning algorithms, namely ANN model and ANFIS in the task of pre-
dicting GWL in an arid area in India. They demonstrated that the MPR 

model was excellent for GWL forecasting and found that the ground-
water table was highly correlated with evapotranspiration. Sun et al. 
(2022) employed three common data-driven models for GWL fore-
casting applications, which included a back-propagation artificial neural 
network (BP-ANN), ARIMA, and LSTM. The prediction accuracy of the 
models was tested by deploying them in five zones in a Northern Plain in 
China, which exhibited various hydrogeological properties. Amongst the 
three models, the LSTM model exhibited the best performance. Moha-
patra et al. (2021) compared the performance of ANFIS, DNN, and SVM 
to assess their capability to predict seasonal GWL in different agroeco-
logical Zones of India. They found that the DNN model was the most 
efficient in predicting seasonal GWL in most of these agroecological 
zones and would, therefore, be a reliable forecasting tool for seasonal 
groundwater levels in different agroecological zones of India. 

Wunsch et al. (2022) investigated the impact of climate change on 
groundwater resources in Germany using CNN. Declining trends of GWL 
could be observed in most of the sites as well as spatial patterns of 
stronger decreases, especially in the northern and eastern parts of the 
country. They also observed increased variability of low GWL, which 
extended over long periods during the annual cycle towards the end of 
the century. Bai and Tahmasebi (2023) compared the performance of a 
graph neural network (GNN) to two baseline models - LSTM and GRU - 
for GWL forecasting. They demonstrated that the GNN model out-
performed the other models regarding all the performance metrics 
considered. Also, they demonstrated that their model could still learn 
spatial dependencies from the data even when these were completely 
unknown while still obtaining similar performance. Their model also 
exhibited a high efficiency since it could simultaneously model GWL 
change for all monitoring wells in the system. 

In addition to standalone ML models, recent studies have also 
examined the performance of hybrid-based models, which combine 
various ML methods to improve forecasting performance. Rahman et al. 
(2020) used ML models coupled with wavelet transforms and showed 
that wavelet-based hybrid models such as WT-XGB and WT-RF were 
more accurate than standalone models (non-wavelet-based), which 
included Extreme Gradient Boosting, Random Forests, and Support 
Vector Regression models. They also demonstrated that the coupling of 
WT further improved the performance for all ML approaches, and the 
improvement was more significant for a longer forecasting horizon (3 
months). Wei et al. (2023) used ANN models combined with wavelet 
transform (WT) and phase space reconstruction (PSR) and found that the 
performance of the WT-PSR-ANN model was better than that of the 
WT-ANN model and substantially better than the standalone models in 
GWL forecasting. They also found that the type of mother wavelet 
affected the accuracy of the WT-hybrid models, which was more 
apparent for the WT-ANN models than for the WT-PSR-ANN model. 
Azizpour et al. (2021) proposed hybrid models to predict the monthly 
GWL in Kermanshah, Iran. The hybrid models comprised a differential 
evolutionary algorithm to optimise the ELM and a WT to decompose the 
input parameters into different time series. Their study suggested that 
their hybrid meta-heuristic ML could effectively predict the available 
water quantity in the investigated study area. 

Yadav et al. (2020) demonstrated that the hybrid models (HANN and 
HSVM) perform better than the original models (ANN and SVM) while 
predicting groundwater level fluctuations. They found that prediction 
accuracy decreased with increasing forecasting horizons for original and 
hybrid models. They evidenced that groundwater decline was much 
higher in peri-urban areas. Van Thieu et al. (2023) proposed a novel 
hybrid ML model combining Augmented Artificial Ecosystem Optimi-
sation (AAEO) algorithm with a traditional MLP network and showed 
that AAEO-MLP exhibited the highest performance and stability with 
reasonable convergence. They evidenced that the AAEO was a promising 
approach for optimising ML models (e.g. MLP) and should, therefore, be 
explored for other hydrological forecasting applications (e.g., stream-
flow, rainfall) to further examine its performance over commonly 
known methods. 
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Other than all purely data-driven hybrid models, physical-based 
hybrid models combine ML models and physics-based models to 
improve forecasting performance. Su et al. (2020) used deep learning 
algorithms combined with a range of complex numerical models and 
large-scale Internet of Things (IoTs) to measure groundwater levels with 
acceptable performance. Kayhomayoon et al. (2022) proposed a new 
hybrid model that combines MODFLOW simulation, clustering, and 
optimisation tools for GWL prediction. Specifically, they simulated GWL 
using the MODFLOW, clustered the study aquifer into different clusters 
using the k-mean method, and predicted regional GWL using ANN and 
ANFIS methods that were optimised by the Harris Hawks Optimisation 
(HHO), Whale Optimisation Algorithm (WOA), and Particle Swarm 
Optimisation (PSO). They evidenced that the most important variables 
for groundwater levels in different clusters included GWL in the previous 
month (produced by MODFLOW), groundwater withdrawal, precipita-
tion, temperature, and evaporation. Patra et al. (2023) compared 
Global-LSTM, and Local-LSTM to examine the relevance of groundwater 
sequential forecasting. Their study showed that the Global (MS) model 
was the least performant model in forecasting applications and that 
LSTM was reliable in GWL forecasting. They demonstrated that the local 
LSTM models from the mid-fan area exhibited the best choice for 
regional groundwater forecasting. 

Groundwater is also sensitive to pollution from various sources 
which is related to GWL decline, particularly in coastal areas, where the 
associated GWL decrease caused by excessive groundwater pumping 
leads to seawater intrusion, pollution and groundwater quality degra-
dation. Nitrate contamination has also become a serious threat to coastal 
groundwater worldwide. Hence, the application of ML on groundwater 
contamination, although outside the scope of this review study, war-
rants further investigation. 

5. Surface water management 

5.1. Streamflow forecasting 

Machine learning has widely been applied to river basins, specif-
ically for short-, mid- or long-term river flow forecasting, which is a 
pivotal task for optimal water resource management during the era of 
rapid climate change. The rapid evolution of hydrological variables, e.g., 
precipitation, substantially impacts the temporal evolution of river flow 
distribution in recent days, thereby rendering prediction challenges 
even more complex. The high uncertainty associated with basin char-
acteristics, hydrological processes, and climatic factors affecting river 
flows makes streamflow prediction challenging. 

LSTM Networks have gained increasing attention in streamflow 
forecast, given its strong learning ability for time series data and ability 
to process sequential time-series data. Numerous studies have demon-
strated the superiority of LSTM in streamflow forecasting over some 
traditional physics-based models, including the SAC-SMA model for 
runoff predictions (Kratzert et al., 2018) or the CaMa Flood calibrated 
model for streamflow and climate data forecasting (Damavandi et al., 
2019). LSTM networks have recently yielded the most promising results 
in the realm of river streamflow forecasting (Wegayehu and Muluneh, 
2022). Xu et al. (2020a, 2020b) assessed the performance of LSTM 
networks for 10 days average flow predictions and the daily flow pre-
dictions at Hun River and Upper Yangtze River basins, respectively. The 
impacts of network structures and parameters, such as the batch size and 
the number of LSTM cells, impacted the learning efficiency and pre-
dictive accuracy. Overall, LSTM was proven to yield good forecasting 
capabilities compared to traditional hydrological and data-driven 
models tested, which included the SWAT, Xinanjiang model (XAJ), 
multiple linear regression model (MLR) and back-propagation neural 
networks (BP). 

The predictive performance of LSTM models has also been compared 
to a wide range of machine learning models. Cheng et al. (2020) 
examined and compared the performance of ANN and LSTM in long 

lead-time forecasting in the Nan River Basin and Ping River Basin. Their 
ANN and LSTM models were shown to yield reliable daily forecasts up to 
20 days lead time, albeit the LSTM model outperformed the ANN model 
when the forecasting horizon was increased. Mehedi et al. (2022) used 
the LSTM neural network to forecast river discharge and demonstrated 
its higher performance than other neural network regression models, 
including for longer lead periods. Dehghani et al. (2023) compared 
LSTM, CNN, and Convolutional Long Short-Term Memory (ConvLSTM), 
in hourly streamflow prediction in two rivers in Malaysia, namely the 
Kelantan and Muda River basins. They showed all three deep learning 
methods performed with high accuracy in predicting streamflow, but 
LSTM outperformed CNN and ConvLSTM in small basins with 
well-spatial distributed rainfall stations, while it underperformed them 
in moderate to high streamflow and large river basin. Le et al. (2021) 
examined and compared the performance of six supervised machine 
learning models in forecasting streamflow in the Red River basin in 
Vietnam. These included a CNN, a feed-forward neural network (FFNN), 
and four LSTM-based models. They also compared two standard models, 
LSTM and GRU, which comprised a single hidden layer, to two more 
complex algorithms: the stacked LSTM (Stacked LSTM) and the Bidi-
rectional LSTM (BiLSTM). They showed that their four LSTM-based 
models performed better and were more stable than the FFNN and 
CNN models. They also evidenced that the complexity of the Stacked 
LSTM and BiLSTM models did not substantially improve the prediction 
accuracy compared to the two standard and simple models comprising a 
single layer (LSTM and GRU). 

Akbarian et al. (2023) examined the ability of the European Centre 
for Medium-Range Weather Forecasts (ECMWF) ensembles in runoff 
forecast application, with one-to three-months lead time in Iran. Five ML 
models were also used for the runoff prediction, including RF, ANN, 
XGBoost, SVR, and MLR, while results were compared to observations. 
Results showed that the ANN exhibited the best fit, followed by XGBoost 
and RF models, while SVR and MLR models yielded lower performance. 
ANN and XGBoost outperformed the other models for longer lead times, 
but the performance decreased with an increase in forecasting horizon. 
Ilhan (2023) explored a variety of ML algorithms in the estimations of 
one-ahead instantaneous measurement of streamflow rate in the Ergene 
River, including LSTM neural network, ANFIS with fuzzy c-means 
(FCM), ANFIS with subtractive clustering (SC), and the ANFIS with grid 
partition (GP). All four algorithms could successfully perform in the task 
of streamflow prediction. 

To further improve streamflow forecasting accuracy and model ef-
ficiency, a variety of traditional ML models that belong to the supervised 
category have also been either used directly or combined to develop 
hybrid models (Granata et al., 2022; Wang et al., 2023; Akbarian et al., 
2023). Granata et al. (2022) proposed a novel ensemble model 
composed of RF and MLP algorithms and compared its forecasting 
capability to a deep learning model based on bidirectional LSTM net-
works. The results show that the two models showed comparable per-
formance, but the forecast horizon strongly affected the predictive 
accuracy. Wang et al. (2023) developed a hybrid decomposition-based 
multi-model and multi-parameter (DMP) ensemble streamflow fore-
cast method. Their novel ensemble forecast method extracted the 
characteristic periodic term and trend term of hydrological series, 
improved streamflow forecasting accuracy, reduced ensemble uncer-
tainty and expanded the ensemble size. 

Hybrid models combining numerical models and ML models have 
also been tested to improve streamflow forecasting accuracy, especially 
for longer forecasting horizons. Hunt et al. (2022) tested LSTM for 
streamflow forecasting purposes for up to 10 days lead time at ten hy-
drological stations in the western US. The catchment-mean meteoro-
logical and hydrological variables from the ERA5 and Global Flood 
Awareness System (GloFAS)–ERA5 reanalyses were used to train the 
LSTM model, as well as historical streamflow data. They showed for the 
first time that their LSTM model could be used in a hybrid system to 
create a medium-range streamflow forecast outperforming established 
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physics-based models. Chu et al. (2023) assessed the ability of novel 
integrated streamflow modelling method combined with the DC-LSTM 
model with the DC-B-LSTM model in improving the forecasting perfor-
mance. Both the DC-LSTM and DC-B-LSTM models were shown to 
outperform the standalone LSTM models for all river basins considered. 
Li et al. (2022) examined a hybrid model composed of a convolutional 
neural network and long short-term memory network (CNN-LSTM) and 
evidenced its superiority over the Soil and Water Assessment Tool 
(SWAT) model, especially in wet seasons, due to its nonlinear learning 
ability. 

5.2. Water demand, allocation, and irrigation 

5.2.1. Water demand and consumption 
Potable water can be inaccessible for many reasons, including 

inadequate water infrastructures, climate-based issues such as drought, 
and overexploitation of freshwater resources. Researchers have recently 
attempted to apply ML in drought forecasting, including Wang et al. 
(2022), who assessed the feasibility of using extreme learning machines 
(ELMs) to forecast hydrological droughts. They deployed support vector 
machine models and ELMs with approximately 144 different models, 
and they confirmed that ELMs could forecast the standardised hydro-
logical drought index with high precision. Their study also demon-
strated that self-adaptive differential evolution ELM could outperform 
all other tested models and that the wavelet hybrid positively impacted 
the model’s performance, yielding less error in their predictions. 

Global water scarcity presents an extraordinary challenge, so the 
United Nations prioritise it among its 17 sustainable development goals 
for 2030. Many regions are coming dangerously close to enclosing the 
gap between water demand and its sustainable limit. United Nations 
Water (2020) estimated that the water demand rate is more than twice 
the population growth rate within the last century. Arid areas are facing 
the worst of the water crisis. Therefore, monitoring water demand is of 
considerable significance for decision-makers. Water resources can be 
more efficiently managed if demand is accurately forecasted. This will 
help resolve the overexploitation of precious and limited water 
resources. 

Forecasting water demand is a challenging problem. As such, it has 
been approached in various ways, ranging from linear methods (Zhou 
et al., 2000; Alhumoud, 2008) to nonlinear regression models (Nasseri 
et al., 2011; Bennett et al., 2013). However, modelling water demand 
could be quite complex, and not all input variables have linearity be-
tween them. Due to the complexities of the water demand data, Romano 
and Kapelan (2014) explored the use of deep learning for forecasting 
and management of smart water distribution using real-life data from a 
water distribution network within the United Kingdom. Perea et al. 
(2019) applied deep learning to a previous study by Romano and 
Kapelan (2014) to improve the performance of existing short-term water 
forecasting models in Southern Spain. Banadkooki et al. (2022) attempt 
to resolve conflicts related to water resources in arid basins through the 
exploration of intelligent algorithms: genetic algorithms (GA) and 
non-dominated sorting genetic algorithm (NSGA-II). The study consid-
ered environmental parameters and the integrated water management 
indices to determine optimal water management scenarios. The study 
performed a variety of trade-offs to balance economic benefit and de-
mand management. The results showed that less water was allocated to 
industries with high water demand to conserve aquifers and meet water 
demands. 

The real-life application of smart metering has become more 
apparent in recent years. Monitoring demand is vital for the adequate 
management of resources across all service sectors. Recently, neural 
networks have been more commonly implemented to address water 
demand prediction issues. While the water industry has not explored the 
use of deep learning for smart metering as extensively as in the energy 
sector (Kavousian et al., 2013). Pesantez et al. (2020) attempted to 
address this gap using artificial neural networks and cluster analysis to 

forecast the water demand at the customer level. They used smart 
metered data on water consumption, with no differentiation between 
the type of user, whether residential or non-residential. The study found 
that support vector regression underperformed compared to random 
forest and artificial neural network models despite applying optimisa-
tion methods supported by previous works (Herrera et al., 2010; 
Mouatadid and Adamowski, 2017; Antunes et al., 2018). As inferred 
previously by Herrera et al. in (2010), the random forest technique was 
found to be either on par with or slightly outperformed the artificial 
neural network model. 

Salloom et al. (2021) explored the use of GRU on historic water 
demand data and implemented k-means, an unsupervised classification 
method, to enhance prediction accuracy whilst also reducing the pa-
rameters fed into the model. The model was found to significantly 
reduce the complexity required (six times what was archived in the most 
current literature at the time of the study) while maintaining the pre-
dictive accuracy rate. Salloom et al. (2022) used a 
proportional-integral-derivative (PID) control approach to boost the 
performance and efficiency of neural network models for water demand 
prediction. The PID’s prediction error experienced the same level of 
reduction as other techniques in the study; however, the efficiency of 
error reduction showed superior performance compared to other tech-
niques. This was evident by the negligible effects on the number of 
variables via the PID approach. 

Wang et al. (2022) explored the use of principal component analysis 
(PCA) and backpropagation (BP) neural network in water resource de-
mand prediction in Taiyuan, China, a city subject to severe water 
shortages. Compared with other models (namely PCA-ANN, ARIMA, 
NARX, Grey-Markov, serial regression, and LSTM), the PCA-BP model 
outperformed them by making highly complex variables easier to 
compute. The model achieved this by reducing the dimensionality of the 
variables and transforming them into uncorrelated composite data. 
However, their model was limited by limited data collection, affecting 
its accuracy. In addition, although the model’s computation accuracy 
was sufficient to meet the threshold, there was still room for further 
development. 

5.2.2. Water allocation and irrigation 
Water plays a vital role in irrigation and agriculture all over the 

world. The Food and Agriculture Organization of the United Nations 
(2017), FAO, states that 70% of freshwater withdrawn globally is sup-
plied to agriculture to sustain the ever-growing human population. 
Future projections on the water demand for irrigated food production 
will double by 2050, increasing pressure on the already limited fresh-
water supplies. The FAO also anticipated an increase in water with-
drawal by agriculture by 2050; however, this increase is only by 10%. 
This small increase is attributed to improved management and practices 
for irrigation. Therefore, efficient water use within the irrigation and 
agricultural sectors is crucial to lessen the strain on water demand 
worldwide. Evapotranspiration is an important aspect of irrigation and 
agriculture, which is split into two components: evaporation and tran-
spiration. Evaporation refers to the water evaporated over a specific 
area, whereas transpiration refers to the water lost through the stomata 
of the vegetation. As these natural processes occur simultaneously, they 
are difficult to disentangle. Accurate estimation of the evapotranspira-
tion rate is a vital parameter for farmers and agricultural engineers, as it 
helps reduce crop water demand. 

Traditional methods to address these issues include the Penman- 
Monteith equation, which Baille et al. (1994) used as a simplified 
method for the rate of evapotranspiration prediction. Other approaches 
found success using scintillometer and meteorological measurements 
applied to the FAO-PM56 model, as used by Poisson et al. (2017) study. 
However, the authors showed that the FAO-PM56 model had more 
significant uncertainties when minor variations were applied and fewer 
input variables were used. Deep learning techniques have been exten-
sively used to model and forecast evapotranspiration within the 
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agricultural sector. Feedforward backpropagation ANN outperformed 
multi-linear regression models (MLR) for predicting wind drift and 
evaporation losses of sprinkler irrigation systems (Al-Ghobari et al., 
2018). Various studies found that convolutional neural networks (or 
CNN-hybrids) were more accurate than other nonlinear regression 
models, such as random forest or extreme gradient boosting, for 
evapotranspiration forecasting (Ferreira and da Cunha, 2020a, 2020b; 
Lucas et al., 2020). 

Elbeltagi et al. (2020) opted for a more modern approach to the 
problem by modelling long-term evapotranspiration dynamics using 
deep learning algorithms in major wheat-producing sites in Egypt. They 
applied deep neural networks using real-life data collected from remote 
sensors, which included the monthly maximum temperature, the 
monthly minimum temperature, and the monthly solar radiation. The 
model parameters were intentionally chosen to give the lowest root 
mean squared error, following a similar procedure presented by Mar-
oufpoor et al. (2019a,b). He et al. (2022) successfully demonstrated the 
use of biological heuristic algorithms integrated with an extreme 
learning machine (ELM) to accurately determine the daily evapotrans-
piration (ETo) in the Hetao irrigation district of China. In the hybrid 
ELMs, the optimisers include grey wolf optimiser (GWO), moth-flame 
optimisation (MFO), particle swarm optimisation (PSO), and whale 
optimisation algorithm (WOA). The GWO was highlighted as the 
strongest performer of the four algorithms, obtaining the highest accu-
racy (R2 = 0.945–0.955), specifically using mass transfer (Tmax, Tmin, 
RH, u2) combination as opposed to temperature or radiation. GWO is 
characterised by the avoidance of local optimisation when dealing with 
nonlinear and multivariate functions. 

Water resources can often become contaminated by agricultural 
runoff. Improper agricultural practices lead to elevated levels of faecal 
coliforms and other pollutants, thus negatively impacting the water 
quality of the surrounding area. Bilali and Taleb (2020) found that 
artificial neural networks and other machine learning models, such as 
random forest, multi-linear regression and decision tree, are highly ac-
curate at predicting irrigation water quality parameters, such as the 
sodium absorption ratio and the TDS dissolved in the water surface. The 
study found that the ANNs outperformed k-nearest neighbours and 
support vector regression models. H. Chen et al. (2020) found that the 
CNNs architecture could be developed and integrated with decision tree 
algorithms to aid in smart feature extraction and to establish intelligent 
spectroscopic modelling of agricultural water pollution. 

Furthermore, ANNs have been used to forecast infiltration water 
volume under furrow irrigation (Mattar et al., 2015), to forecast irri-
gation flow (Mouatadid et al., 2019), and to forecast estimates for drip 
irrigation systems (Karimi et al., 2020). However, Mouatadid et al. 
(2019) highlighted that LSTM models were able to outperform the other 
models used in their study, which included an ANNs model, least squares 
support vector regression (LSSVR), multi-linear regression (MLR) and 
extreme learning machine (ELM). The LSTM was coupled with a 
maximal overlap discrete wavelet transform analysis and bootstrap 
technique. The wavelet-bootstrap-ANN and wavelet-LSTM, both with 
three hidden layers, displayed the most accurate forecasting capability 
compared to the other models used in the study. 

Chen et al. (2021) explored reinforcement learning, a deep 
Q-learning network (DQN), to develop smart irrigation practices 
focusing on conserving irrigation water and time without losing paddy 
rice yield. DQN combines the perception ability of deep learning with 
decision-making ability. The study found that the DQN strategy could 
conserve 23 mm of irrigation water compared to conventional irrigation 
decisions. Drainage water was also reduced by 21 mm without a 
reduction in yield. Alibabaei et al.’s (2022) case study in Portugal uti-
lised a deep reinforcement learning model to optimise irrigation re-
quirements on the site. The model would serve as a smart irrigation 
scheduling system that would aid farmers in water quantity and the 
irrigation frequency required for the site. The model post-training would 
not require expertise to operate and, thus, would be a valuable system 

for farmers to use after the completion of the study. The model would 
also adjust the irrigation requirements based on climate change, as 
climate data is used in the model. The study considered ANN, LSTM, and 
CNN. However, the LSTM was found to be better at predicting the 
Q-table than the other models. The trained model decreased the water 
requirement by 20–30% and increased productivity by 11% compared 
to the fixed method. 

Gorgij et al. (2023) demonstrated the predictive potential of LSTM 
for spatiotemporal forecasting of the quality of groundwater used for 
irrigation. Sodium Adsorption Ratio (SAR) was highlighted as a crucial 
criterion for the study. An 18-year SAR dataset based in northwest Iran 
was supplied to the model to forecast the irrigation water quality for the 
subsequent year. They found that the LSTM marked against the perfor-
mance indicator RBIAS showed underestimation by the model. How-
ever, when assessed against the performance indicator GA 
(generalisation ability), the LSTM model exhibited more acceptable 
performance. 

The allocation of water sourced from the Transboundary River 
generally involves many stakeholders in different countries that share 
the water resource. Water scarcity and the often-conflicting use of water 
resources ultimately increase tensions between riparian countries. 
Tension can be eased by the efficient management and allocation of 
transboundary water resources, which warrants the need for advanced 
techniques to enable the proactive and efficient planning of available 
water for human well-being and environmental sustainability. As an 
attempt to apply ML techniques for water allocation in a transboundary 
context, Yan et al. (2019) comprehensively evaluated the water re-
sources of China’s transboundary river basins at the basin and country 
levels. They assessed the performance of several ML algorithms, 
including random forest, gradient boosting, and stacking in the task of 
forecasting runoff. Their study provided valuable information on 
long-term averaged surface water resources by country and basin in 
China’s transboundary river basins and high-resolution runoff coeffi-
cient and runoff maps of all the riparian countries, thereby providing 
valuable spatially distributed runoff information. Their study also 
demonstrated the satisfactory implementation of ML models for water 
resources assessment and their superiority over traditional linear models 
and two popular runoff data products (the UNH/GRDC Global Com-
posite Runoff Fields and the Global Streamflow Characteristics Dataset) 
from a predictive accuracy standpoint. 

6. Hydropower management, marine energy and reservoir 
operation 

6.1. Hydropower management and marine energy 

Statistics from Our World in Data (2020) showed that in 2019, global 
fossil fuel consumption totalled 136,761 TW-hours, reaching a new re-
cord and continuing the increasing trend observed in the past years. 
Fossil fuels were classified into three categories: gas, coal and oil. The 
data showed that most consumption was attributed to oil (53,620 
TW-hours), while the least consumed fossil fuel was gas (39,292 
TW-hours). This leaves global coal consumption at 43,849 TW-hours. 
Global efforts to struggle against climate change have been increasingly 
witnessed over recent years by shifting towards clean and renewable 
energy. According to the International Hydropower Association (2020), 
the 2020 Hydropower Status report showed that global clean electricity 
generation through hydropower achieved a new record of 4306 
TW-hours. This record was acknowledged as the “single greatest 
contribution from a renewable energy source in history”. However, this 
record can only account for a small portion of the global fossil fuel 
consumption in 2019, approximately 3%. Therefore, it is essential to 
maximise the full potential of hydropower and marine energy by 
exploring new methodologies to solve current problems and increase the 
energy efficiency provided, particularly in some parts of the developing 
world where the load on the system is increasing, but hydro-turbines 
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struggle to match the demand. 
The application of ML in hydropower management and marine en-

ergy has recently met some level of success. Hammid et al. (2018) 
explored the use of artificial neural networks on a small hydropower 
plant using a Kaplan turbine at the Himreen Lake dam in Diyala, Iraq, to 
enhance the accuracy of forecasting the energy produced. Wang et al. 
(2020) developed a novel integrated approach using traditional and 
more modern methodologies for the production capacity prediction of a 
hydropower station to enhance energy efficiency. A previous study by 
Zhang et al. (2017) found that a backpropagation neural network model, 
although powerful in terms of performance, took a relatively long time 
to train on the input data. Although a radial basis function neural 
network model could outperform the backpropagation neural network 
(Li et al., 2018), they were both prone to the risk of local minimum 
convergence. To avoid this challenge, Wang et al. (2020) opted for using 
a simple single hidden layer feedforward neural network, defined as an 
extreme learning machine (ELM). The corresponding model showed a 
generalisable performance with a relatively quick training time. 

Technological advances have made it possible to predict energy that 
can be gained from ocean waves. This type of renewable energy carries a 
higher power density than other renewable resources, such as solar or 
wind energy. Accurate predictions can enhance energy efficiency to 
reach the full extent of potential wave energy, ultimately helping the 
shift from fossil fuels. An early comparative study by Reikard (2009) 
supported a time-varying parameter approach, attributing the weakness 
of the neural network model to inadequate architecture and optimisa-
tion for that dataset. Hybrid models have been found to have the po-
tential to achieve accurate predictions. Real-life application of wave 
energy control is difficult as it depends on accurate predictions of future 
waves. Li et al. (2018) explored the use of deep learning, namely ANNs, 
and showed that the model was able to provide accurate predictions, 
which substantially increased the average energy absorption from 60% 
to 80%. However, the control efficiency could still be further developed 
and improved as it was slightly lower than the optimal level. Avila et al. 
(2020) showed that using ANNs and fuzzy interference systems (FIS) 
proved to be effective tools to accurately predict wave power at any 
point in deep oceanic waters, even with a small dataset of a few months 
collected from buoys in the Micronesian region. 

Recently, Giles et al. (2021) explored the issue caused by sun glint for 
high-resolution red-green-blue (RGB) imagery collected by drones over 
shallow marine environments. An artificial neural network model was 
developed to automatically detect and classify the sun glint in 
high-resolution aerial imagery. The model was supplied with a highly 
imbalanced dataset, with the pixels of sun glint accounting for only 
1.19% of the training dataset. Despite this, 99.18% of overall predictions 
were correct. It was also shown that large hydropower plants could have 
high environmental impacts. Bortoluzzi et al. (2022) used Data Envel-
opment Analysis (DEA) and an artificial neural network to accurately 
predict the local impact of such projects. While the DEA allowed the 
environmental impacts to be ranked, the ANN allowed the assessment of 
the size of the local environmental impact. In other words, they created a 
hybrid DEA-ANN decision-making approach, which enables a more 
informed evaluation of hydroelectric generation projects. The 
GRU-LSTM hybrid model of Ma et al. (2023) successfully predicted 
water levels in cascade hydropower stations at different time scales. 
Such information is vital for irrigation and flood control. Authors note 
prediction errors associated with downstream tributary backwater 
jacking could be significantly reduced by adding downstream tributary 
flow as an additional parameter in the dataset. The LSTM parameters 
implemented the Archimedes optimisation algorithm. The output results 
of the GRU and LSTM were weighted. This resulted in increased accu-
racy of the water levels predicted. The authors highlight the use of a 
semisoft threshold function to improve the model in various ways, such 
as eliminating the noise of the original hydrological dataset. 

6.2. Reservoir operation 

Reservoirs provide a plethora of services, including the provision of 
freshwater supply. On the other hand, groundwater level fluctuation is 
subject to factors such as changes in precipitation during different sea-
sons. National Thailand (2019) pointed out that the Vajiralongkorn Dam 
in Kanchanaburi was at 51% capacity with 4500 million cubic metres of 
water, down from 70% the same time the previous year, highlighting the 
harsh reality of dams drying up due to climate change. Given this fact, 
decision-makers are under more pressure to be aware of potential 
shortages in the future. Therefore, accuracy in predicting the water 
balance of a reservoir is crucial. 

Artificial neural networks (ANN) have been applied by Hadiyan et al. 
(2020) to accurately forecast the Sefidroud Dam reservoir inflow. Their 
study compared different types of static and dynamic ANNs, which 
included static feedforward neural networks (FFNN), nonlinear autore-
gressive (NAR) neural networks, and nonlinear autoregressive neural 
networks with exogenous inputs (NARX). The models were trained using 
two input variables, namely, the monthly inflow discharge and the 
precipitation data. The architectures were optimised by adjusting the 
number of neurons within the hidden layers. They found that the dy-
namic NAR model outperformed the other two models and could predict 
high inflows while achieving the lowest RMSE values. They evidenced 
that the most optimum number of time delays was 12 for the input 
variable as the model could perform computation more accurately. They 
also attempted to use dynamic artificial neural networks instead of static 
ones for forecasting discharge inflows. Recurrent neural networks have 
also been used to forecast water levels to improve water resource 
management, and long short-term memory (LSTM) models have proved 
to be efficient for this purpose, achieving an accuracy of 97.05% (Ren 
et al., 2020). 

Amongst the main hydrological processes impacting the sustainable 
planning and management of river, dam operation and reservoir ca-
pacity is suspended sediment load (SSL). AlDahoul et al. (2022) suc-
cessfully demonstrated the application of ML models to accurately 
classify suspended sediment load SSL using the data from the Johor 
River in Malaysia. The analysed models include extreme gradient 
boosting (XGB), random forest, support vector machine, multi-layer 
perceptron, and k-nearest neighbours. The XGB model exhibited supe-
rior classification performance over the other ML techniques. The model 
used several parameters, such as environmental factors influencing the 
SSL pattern, while using two different time scales. Nonetheless, they 
demonstrated that most of the ML models achieved acceptable classifi-
cation results. 

7. Water distribution and drainage systems 

7.1. Water distribution systems 

As water demands increase and freshwater availability decreases, 
water resource mapping (WRM) becomes a key aspect of water resource 
management. Water resource managers need to know where the next set 
of potential resources are to use them in their plans for the future. 
Therefore, accurate predictions are imperative to ensure the availability 
of freshwater supply is over- or underestimated during the planning. 
Due to inadequate information, traditional approaches for WRM, such as 
water spectral indices (WSI), reach an impasse with high-resolution 
multispectral images. This can be problematic for more complex areas. 
To provide an alternative approach to mediate the issue, K. Chen et al. 
(2020) deployed a water body extraction neural network (WBE-NN) 
model for a more accurate surface water resource mapping. This 
approach outperformed previous methods (e.g., Feng et al., 2018; Nandi 
et al., 2017) with reduced processing time and a reduction of under-
estimated water areas. 

Water distribution networks (WND) are crucial infrastructure sys-
tems that provide potable water to the public. However, according to 

A.A. Ahmed et al.                                                                                                                                                                                                                               



Journal of Cleaner Production 441 (2024) 140715

10

Interreg Central Europe (2020), up to 50% of water is lost in some parts 
of Europe, with an average of 26% due to various structural problems, 
including poor water pressure management, deteriorated infrastructure, 
and leakages. For instance, the Consumer Council for Water (2017) 
stated that England and Wales collectively have a water leakage loss of 
3.1 billion litres daily. Many traditional approaches have been under-
taken to resolve water leakage issues; however, these methodologies are 
limited as they need to consider the complex and nonlinear deterioration 
of the infrastructures over time. To resolve the issue of leakage detec-
tion, Arsene et al. (2012) explored the use of deep learning combined 
with graph theory. 

Water distribution systems require adequate pressure management 
to sustain many operational aspects, which include demand control, 
maintenance, water leakage and failure management, cost reductions, 
and energy efficiency. Non-revenue water is largely attributed to water 
that is lost through leakage within the distribution network, thus 
resulting in substantial amounts of water loss through leakage. This 
increases operational costs, impacting the economic value of water 
companies. Traditional approaches for pressure monitoring often leave 
high uncertainties about pressure values at the nodal points that do not 
have sensors on them. Ridolfi et al. (2014) used artificial neural net-
works with a combination of the entropy-based methodology, which 
was outlined as shifting towards conditions of the highest order. The 
study found that optimal sensor placement on nodes could be achieved 
by finding the best trade-off between sampling design and model 
accuracy. 

Other studies show the successful use of neural networks for leakage 
or contamination detection within a water distribution system. Rut-
kowski and Prokopiuk (2018) used learning vector quantisation (LVQ) 
neural networks to pinpoint contamination locations within a water 
distribution system in Poland, whereas Zhou et al. (2019) used a con-
volutional neural network as part of a novel burst location identification 
framework. Hu et al. (2021) proposed a novel approach to leakage 
detection within a water distribution system using multiscale fully 
convolutional networks integrated with spatial clustering of applica-
tions with noise. This approach outperformed k-nearest neighbour 
(KNN), support vector machine (SVM) and naive bayes classifier (NBC) 
by 28%, 78%, and 72%, respectively. 

Water resource carrying capacity (WRCC) is an essential aspect of 
urban planning, which aims to balance out the amount of water demand 
concerning the available water resources within an urbanised area. 
Analysis of the WRCC of a city helps prevent the exploitation and 
degradation of the water resources and environment while ensuring a 
sustainable standard of living for the people. However, addressing this 
issue depends on multiple input variables, which become far too com-
plex and reduce the accuracy of the predictions. Yu et al. (2020) pro-
posed two simple types of feedforward neural networks (FNN) based on 
the normalisation value (NV) and error correction to address these 
issues. 

Almheiri et al. (2021) outlined the superior performance of deep 
learning compared to other machine learning methodologies, e.g., sur-
vival random forest (SRF). However, since the amount of data available 
controls DL approach, it is therefore limited as pipe failure data are not 
widely scarce. They developed a hybrid model using an ANN-based 
method and integrated an ML process to predict the hazard ratio of 
water pipes. The performance of ML approaches (e.g., SRF) decreased as 
the training shots decreased, whereas the stability of the hybrid model 
remained constant despite the decrease in the training shots. The au-
thors suggested the two learning phases allow the hybrid to effectively 
generalise, while one phase was used in the baseline approaches. 
Garðarsson et al. (2022) successfully demonstrated strong performance 
of Graph Neural Networks (GNNs) to predict pressure values in water 
distribution networks in order to detect leakage and localisation. Results 
were evaluated by the benchmark set in the Battle of the Leakage 
Detection and Isolation Methods challenge (Vrachimis et al., 2020). The 
authors noted that the model was limited by false positives; however, 

the GNN model could obtain the highest economic score among the 
contestants, suggesting the model was still considered a viable approach 
to leakage detection. More recently, Yu et al. (2023) implemented ML 
methods with piezoelectric accelerometers installed within real-life pipe 
networks across several cities in China that classified vibration signals in 
order to detect leakages within the systems. They demonstrated that a 
pre-trained compact CNN with 18 deep learnable layers with the ability 
to classify images into 1000 classes, namely SqueezeNet, performed the 
best and showed a 95.15% in leak-detection accuracy compared to the 
other ML approaches, which included SVM, DTR and KNN. They also 
demonstrated that larger dataset enabled SqueezeNet to achieve more 
accurate results. 

7.2. Water drainage system 

The advent of advanced sewage and drainage systems can be traced 
back to the Indus Valley Civilisation around 3000 BC. This historical 
infrastructure spanned 91 cm across and 1.5 m in depth as a watertight 
sanitary drainage system (Harappa, 2020). Nowadays, natural processes 
required for drainage systems, namely the infiltration, which enables 
water to move into the ground easily, is hindered and reduced in 
urbanised areas. Therefore, increased stormwater can easily overwhelm 
surface water drainage systems of urbanised areas. Pollutants and con-
taminants within the system can potentially be released and have serious 
consequences on public health, as well as the health of any surrounding 
organisms. Concerns over climate change and future projections of 
heavier rainfall can present a challenge to decision-makers and drainage 
engineers. If drainage systems cannot function properly, urban flooding 
is inevitable and may eventually lead to various issues for both the 
public and the environment. 

An important aspect when designing drainage systems is under-
standing the rainfall-runoff relationship for any given catchment. Gong 
et al. (1996) and Loke et al. (1997) have attempted to address this issue 
using ANNs models as a predictive tool for urban stormwater drainage. 
Loke et al. (1997) were able to show that neural networks had a high 
fault tolerance, good generalisation, and a high ability to learn. How-
ever, limitations of the models included the need for substantial 
amounts of data for more accurate predictions, little transparency, and 
relatively long training times. Pektaşa and Cigizoglu (2013) highlighted 
the inadequate performances of ANNs, univariate autoregressive inte-
grated moving average (ARIMA), and multivariate autoregressive inte-
grated moving average (ARIMAX) models for time series predictions for 
direct runoff coefficients within large drainage basins. They proposed a 
hybrid ANN-ARIMA model and found that it could be generalized to 
enhance the computational power of the neural networks and offer for 
more accurate time-series predictions. 

On the other hand, ANNs have also been explored to alleviate issues 
pertaining to stormwater and optimisation of the drainage system (Hsu 
et al., 2013; Rjelly et al., 2018; Mullapudi et al., 2020). An early study by 
Tran et al. (2007) outlined the use of neural network modelling with 
CCTV data to identify the deterioration of stormwater pipes made from 
concrete. The architecture used backpropagation weight estimation and 
was compared to a Monte Carlo simulation using Bayesian weight esti-
mation. Although the neural network model outperformed the Monte 
Carlo simulation, the model struggled to accurately process irrelevant 
features, namely redundant factors such as ’soil type’ and ’buried 
depth’. More recently, Li et al. (2019) used backpropagation neural 
networks (BPNN) as a monitoring tool to assess the performance of 
stormwater green infrastructure practices. The model was successfully 
able to reduce peak flow rate averages of 61% per storm event and 
reduce the flow volume by 33% per storm event. 

Truong et al. (2021) input a 21-year dataset of water levels into a 
gradient tree boosting (GTB) model to forecast the water levels in the 
culverts within irrigation and drainage systems. The GTB consistently 
outperformed eight other machine learning methods. Over 91% of 
predicted and observed values had an error rate below 10%. The 
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comparative common machine learning techniques such as DTR, DL, 
Adaboost, SVM, XGBoost, RF, and LightGBM. The resultant predictions 
could aid in forming a strategic approach considering water resources 
reallocation, affordable pumping technologies, or water rotation in 
times of low water levels. Zhang et al. (2022) utilised deep reinforce-
ment learning (DRL), specifically a Duelling Double Deep Qu-learning 
(D3QN) strategy, to evaluate the uncertainty of control within 
drainage systems. DRL-based real-time control showed reduced statis-
tical dispersion by 15.48–81.93% compared to the conventional 
rule-based control strategy, thus demonstrating an advantage over the 
rule-based strategy. The reduction in statistical dispersion specifically 
pertained to random and system uncertainties in monitoring water level 
signals within an urban drainage system. 

8. Water quality monitoring 

Water quality is an absolute necessity for public health and safety. 
However, since the 1990s, water pollution has worsened in most rivers 
in Africa, Latin America and Asia (United Nations Environment Pro-
gramme, 2016). The global population has only increased and intensi-
fied the global demand for potable water, thus putting enormous 
pressure on water treatment plants. Extensively urbanised cities such as 
London, Hong Kong and New York experience high levels of stormwater 
runoff. Much of the effluents carry various types of pollutants, which 
lower the drinking water quality, in some cases making the water 
dangerous for marine life. Therefore, water treatment engineers faced 
various challenging issues requiring advanced and innovative solutions. 

For instance, estuaries face various environmental issues, including 
toxic chemicals, water flow changes, and habitat loss. According to the 
National Biodiversity Network (2019), physical changes impact a third 
of the water ecology in the United Kingdom, thus hindering the natural 
functions of the estuaries. Many estuaries undergo large-scale conver-
sions into urbanised areas, agricultural areas, and shipping ports. 
Therefore, human interference imposes a great burden on the natural 
environment, and a substantial number of estuarine habitats are lost, 
forcing more competitive survival pressures on the species inhabiting 
those areas. Other environmental issues include toxins within the water 
supply, such as Cyanobacteria, also known as blue-green algae. Human 
interference can haphazardly provide optimum conditions for Cyano-
bacteria to bloom. This includes degradation of the surrounding water 
quality caused by the release of fertiliser-polluted runoff from farms, 
eutrophication of waterways and septic tank overflows. These environ-
ments allow Cyanobacteria to thrive and multiply above a safe level for 
humans, animals, and plants. 

Various studies have been conducted using deep learning for esti-
mations and predictions regarding water quality, including Zhou 
(2020), who used transfer-based LSTMs, and Yu and Qu (2020), who 
used radial basis function neural networks. Zhang and Hu (2020) used 
difference-gated neural networks, and Y. Chen et al. (2020) used deep 
cascade forests. Jouanneau et al. (2014) found that monitoring 
Biochemical Oxygen Demand (BOD), a key water quality indicator, 
required more time and effort to detect. Ma et al. (2020) addressed this 
issue by developing a deep matrix factorization (DMF) combined with 
deep neural networks (DNN) in a New York City (United States) harbour. 
The proposed model showed strong computational power, superior to 
other machine learning algorithms such as gradient-boosted decision 
trees, random forest, and support vector regression. Traditional linear 
methods, such as Ridge, LR, and LASSO, were also used as a benchmark 
but underperformed compared to the machine learning methods. 

The history of modern-day water supply infrastructures can be traced 
back to the 1600s in Medieval London (Water History, 2020). Newhart 
et al. (2019) found that water treatment plants are excellent subjects for 
neural network studies due to the large quantity of historical data that is 
usually available and easily accessible. Several studies have shown that 
ANNs outperform other machine learning algorithms for investigating 
the operations of the water treatment plant (Guo et al., 2015; Ghaedi 

and Vafaei, 2017; Najafzadeh and Zeinolabedini, 2019). These opera-
tions ranged from predictions for membrane fouling in the filtration 
systems of a water treatment system to predictions for real-time coag-
ulant dosage (Dharman et al., 2012; Kim and Parnichkun, 2017; Bagheri 
et al., 2019). Alternatively, Zhang et al. (2019a, 2019b) used ANN with 
genetic algorithms to predict the performance of drinking water treat-
ment plants under varying pressures and stresses to effectively manage 
the water treatment plant. 

Wastewater treatment is imperative to ensure the health and safety 
of the public and the surrounding environment. In 2015, the United 
Nations International Children’s Emergency Fund (UNICEF) estimated 
that 1.8 billion people have no other water source except water 
contaminated by faecal matter. Therefore, a significant part of the 
world’s population is highly exposed to various water-related diseases, 
including polio, cholera and typhoid. The United Nations Educational, 
Scientific and Cultural Organization (2017) reported that 80% of inad-
equately treated wastewater is released into the environment world-
wide. The pollutants in this water can severely impact human health and 
the surrounding ecosystem, such as decaying organic matter, reducing 
oxygen availability, and essentially killing the aquatic inhabitants. 

Proper management of wastewater treatment is pivotal before 
effluent can be safely discharged back into the environment. Ráduly 
et al. (2007) used ANNs to evaluate the performance of wastewater 
treatment plants, while Shi and Xu (2018) proposed a model based on a 
stacked denoising auto-encoders deep learning network to predict bio-
film system’s performance under various wastewater treatment plant 
operations. Zhang et al. (2018) used LSTMs to forecast flow to optimise 
inter-catchment wastewater transfer and reduce overflow, and Niu et al. 
(2020) used genetic algorithms integrated into deep belief networks to 
accurately predict effluent quality and improve process monitoring. 
Bhagat et al. (2020) provided a critical analysis of the development of 
artificial intelligence for modelling the removal of heavy metals within 
wastewater. The approaches investigated included ensemble models, 
various metaheuristics, different ANN models, and unsupervised 
methods. Recently, Sang-Soo et al. (2020) used CNN and LSTM com-
bined with a deep learning approach to predict the water level and water 
quality in the Nakdong river basin. The study highlighted the proposed 
model’s performance and ability to capture the temporal variations of 
the pollutants in the Nakdong River basin. 

Zhu et al. (2022) successfully used enhanced feed-forward neural 
networks to predict biochemical oxygen demand (BOD) and ammonia 
nitrogen (NH3–N) water quality indicators within wastewater treatment 
plants. The highly accurate model obtained a mean error of less than 
10% with an R2 of 90%, thus improving on the previous feed-forward 
neural network with the least square support vector machine 
(FFNN-LSSVM) model. However, the authors suggested that the data 
obtained from real-time monitoring should be used to inform future 
research and improve the model performance. Yang et al. (2023) 
demonstrated the sufficient accuracy of LSTM network in the task of 
forecasting the effluent quality of a constructed wetland. Their model 
could outperform other predictive ML methods including multiple linear 
regression, backpropagation neural network (BPNN), and a 
GA-BPNN-hybrid neural network (genetic algorithm as an optimisation 
method integrated into a BPNN model) to resolve local minima issues. 
They showed that their data exhibited significant effluent population 
fluctuations. A moving average method was applied to smooth the data, 
improving the accuracy of the traditional and hybrid neural networks. 
Ibrahim et al. (2023) outlined using ANNs to successfully predict the 
water quality index (WQI). The authors used principal component 
analysis (PCA) to identify the sources of pollution within the Ter-
engganu River and reflect the general conditions. They applied three 
ANN models with differing input layers to predict the water quality 
index (WQI) of the river. The best-performing ANN was found to be the 
one that used the raw data as the input layer, as opposed to principal 
component factor scores (obtained from the previously conducted PCA). 
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9. Flood management and water-retaining structures 

9.1. Flood prediction 

Flooding poses a serious risk to many people worldwide, with many 
regions of the earth impacted by this natural disaster. Flooding is caused 
by a wide range of factors, including (i) heavy, prolonged rainfall events, 
which are more likely to rise in the future as a consequence of climate 
change, (ii) urbanisation., which substantially increases the surface 
water runoff and impedes the rate of infiltration, or (iii) infrastructure 
failure such as overtopping of dams. The impacts of flooding can have a 
substantial economic burden, particularly in the developing world. 
Some studies (e.g., Ward et al., in 2017; Peduzzi in 2017; Alfieri et al., 
2018) anticipate the global economic impact of flooding to cost 
approximately $1 trillion by 2050. Other impacts include mass migra-
tion, socio-psychological implications, loss of livelihood and property 
and, in more severe cases, loss of life. According to a report presented by 
the United Nations (2015), 2.3 billion people were affected by flooding, 
with a significantly high death toll of 157,000 people between 1995 and 
2015. Future flooding events have been predicted to become more 
frequent and more intense than they have been in the past. Therefore, to 
sufficiently mitigate and manage the consequences of flooding, 
exploring innovative solutions and technologies that enhance the ac-
curacy of predicting flood occurrences is imperative. 

Conventional methodologies include prediction using flood inunda-
tion models (Salvadore et al., 2015; Gires et al., 2015; Teng et al., 2017). 
However, these models can only simulate results based on distinct types 
of flooding, and complete real dynamic processes are omitted, resulting 
in the decayed accuracy of the projections. Fenech et al. (2019) attempt 
to follow a similar methodology but include dynamic processes. They 
aimed to improve this model by using a model that divides the irregular 
urban area into various grid cells. The proposed model considered the 
characteristics of the urban environment, including urban drainage 
systems and impermeable surfaces. To evaluate the model, the authors 
attempted to reproduce the flood in Lafayette Parish in Louisiana in 
2016. Results showed that due to coarse resolutions, simulations could 
not reproduce the flood regions of the 2016 Lafayette Parish flooding. 
However, spatial patterns were observed after the model resolution was 
refined. Fang et al. (2019) introduced deep learning for flood prediction 
and proposed an integrated LSTM and reduced-order-model (ROM) 
framework to perform time series prediction and prescriptive analysis 
on flooding. Their study found that the LSTM-ROM model outperformed 
the full model and maintained its accuracy in predicting flooding. 
However, they found that when lead time is extended, the predictive 
accuracy decreases. 

Bui et al. (2020) introduced a novel approach using deep learning 
neural networks to aid in forecasting the likelihood of flash floods. This 
type of ANNs architecture was selected due to its ability to represent and 
process highly complex input data and to produce highly accurate pro-
jections despite the non-linearity of the given data (Lewis, 2016). Their 
study was specifically designed to address the challenges in regions 
susceptible to a high frequency of tropical storms. Therefore, the model 
was based on real-life data collected in the northwest mountainous re-
gion of Vietnam. The geographic information system (GIS) input dataset 
included the slope, lithology, rainfall, soil type, elevation, steam density, 
curvature, and normalised difference vegetation index (NDVI). All nine 
factors influenced the susceptibility of flash flooding within the area. 
The influencing factors were selected based on the information gain 
ratio method proposed by Quinlan (1986) and Dai and Xu (2013), thus 
eliminating the need for data collection on unnecessary factors. 

Hosseiny’s (2021) study utilised U-net, an advanced CNN, to predict 
river flood depth and extent. The results surmised an improved accuracy 
in predicting the maximum flood depth by 29%. Löwe et al.’s (2021) 
research also successfully implemented advanced convolutional neural 
networks, U-Net, to predict urban pluvial flood water depth. It was 
found that deeper networks improved the prediction until reaching a 

limit of around 28 million trainable parameters. It was noted that too 
many datasets led to overfitting and increased prediction errors. The 
dataset that led to the model performing the best included a combina-
tion of terrain aspect, curvature, depth of depressions, flow accumula-
tion and imperviousness. Ahmed et al. (2021) found exponential 
Gaussian process regression (GPR) accurately predicted the daily water 
levels in a river subject to annual flash flooding in Malaysia based on 
data collected from 1990 to 2019. The GPR model outperformed several 
other machine learning models such as linear regression (LR), interac-
tion regression (IR), robust regression (RR), stepwise regression (SR), 
support vector regression, boosted trees ensemble regression 
(BOOSTER), bagged trees ensemble regression (BAGER), XGBoost, and 
tree regression (TR). The GPR was further used to predict water levels 
based on 10-day minimum and maximum water levels and could fore-
cast the extremes of the water levels. The authors of the study denote the 
study was limited by data availability. 

Ramayanti et al. (2022) explored the generation of flood suscepti-
bility mapping, where they implemented two deep learning architec-
tures to the problem: group method of data handling (GMDH) and CNN. 
The study was centred around the March 2019 flood in the Beria Area, 
Mozambique. The models were both able to produce similar mapping, 
where lower-sloped areas (i.e., areas along the river) were at a higher 
risk of flooding. The CNN performance indicator, RMSE value, was four 
times lower than the RMSE value derived from GMDH. This showed that 
CNN could generate an accurate flood susceptibility map more than the 
GMDH. Sorkhabi et al. (2023) employed CNN and LSTM to predict the 
variability in sea level and flooding to measure coastal city resilience. 
Variables included wind speed, sea surface temperature, precipitation, 
and mean sea level. The study found that deep learning approaches 
offered good predictive accuracy in the resilience of the city against 
flooding due to the variable sea level. However, future works suggested 
are to incorporate more parameters, such as updated satellite data, to 
improve the accuracy of the models. 

9.2. Water retaining structures 

Throughout human history, dating back more than 5000 years, ac-
cording to Biswas and Tortajada (2010), water-retaining structures have 
been constructed in many places worldwide. Dams provide many ben-
efits, although their fundamental purpose is to facilitate water storage. 
These benefits include, but are not limited to, flood control, hydropower 
and human consumption. Currently, there are 50,000 of these large 
hydraulic structures (Tata and Howard, 2016) being used worldwide, of 
which a large majority are embankment dams. The British Dam Society 
(2019) attributes the most common dam failure modes to overtopping 
during floods. 

The health and structural integrity of dams are crucial since the 
consequences of failure can be severe. Therefore, understanding dam 
behaviour and failure mechanisms is vital. De Granrut et al. (2019) 
explored using ANNs to analyse the behaviour of piezometric data on 
arch dams, focusing on the rock-concrete interface to monitor uplift 
pressures on the dam. The study highlighted the limitations of tradi-
tional multi-linear regression (MLR) models, such as the 
Hydrostatic-Season-Time (HST) model, which are commonly used 
across engineering practices to monitor dams (Crépon and Lino in 1999; 
Penot et al., in 2005; Léger and Leclerc in 2007). The advantage of using 
HST is that only the reservoir level is required and performs well only 
under certain circumstances. On the other hand, various mathematical 
approaches have been proposed to model dam seepage (Ding and Han, 
2017). Cui and Zhu (2009) successfully implemented a 
three-dimensional finite element method integrated with genetic algo-
rithms; however, issues with convergence and basic operators in the 
genetic algorithms impacted the model’s accuracy. Zhang et al. (2020) 
successfully applied ANNs integrated with a three-dimensional finite 
element model to forecast the regions of weakness (particularly seepage) 
of concrete dam foundations. Unlike the HST model, ANNs enable the 
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capture of the non-linearity of the piezometric data, such as the leakage 
flows, movements, and head of the reservoir. 

Overtopping occurs when the dam’s design, such as the freeboard, is 
not sufficient to cater to the actual requirements, which may change 
over time. Hence, a suitable design during the initial construction may 
no longer be appropriate later due to the changes in conditions. The 
likelihood of overtopping is further exacerbated during extreme weather 
conditions. For example, due to fluctuations caused by the weather, the 
head of the water rises above the designed freeboard, which leads to 
overtopping. The Environment Agency (2018) reports that the pro-
jections show increased winter precipitation over the United Kingdom 
because of climate change. Although seasonal variation is expected, 
there will be times during the year when dams will be subjected to store 
more water due to the high precipitation, increasing the risk of over-
topping. As the years go on, the trend of a rainfall event is expected to 
further increase the risk of overtopping. Huang et al. (2003) used con-
volutional ANNs for coastal water level predictions. However, this 
method requires large amounts of long-term historical data, which is not 
always readily available. Fuzzy logic parameters integrated into ANNs 
provide effective estimations of water levels under uncertainty; how-
ever, they do not give insight into the parameters’ uncertainties alone 
(Alvisi and Franchini, 2011). Yang et al. (2019) applied recurrent ANNs 
to simulate reservoir operations using inflow, storage and climate data. 
In this study, the authors used LSTM, nonlinear autoregressive models 
with exogenous input (NARX) and a NARX-based genetic algorithm, and 
they found that the latter was able to outperform the other models. 

Ren et al. (2021) implemented an interpretable mixed attention 
mechanism long short-term memory (MAM-LSTM) model to predict 
displacement associated with concrete dams. The authors found success 
in their two-staged encoder approach. The highly influential factors 
were adaptively selected by the factor attention mechanism module. The 
temporal attention mechanism module, in contrast, was able to select 
the relevant hidden states. This model outperformed classical statistical 
modelling and other deep learning and machine learning models. Fan 
et al. (2022) utilised a transfer learning approach, MA-AttUNet. This 
sophisticated methodology applied previous knowledge from a source 
domain to underwater crack image segmentation. The knowledge 
transfer occurs using a multi-level adversarial transfer network. An 
attention mechanism also limited background noise during detection. 
Although the model exhibited poor real-time performance, it was able to 
accurately identify underwater dam crack images. Nonetheless, the 
model outperformed other methods at the time of the study. Zhang et al. 
(2023) used a unifying transformer encoder integrated into a CNN ar-
chitecture for pixel-level dam crack detection. The proposed model 
demonstrated flexibility and was able to adapt to a variety of scenarios. 
Although the model performed well against quantitative indicators, the 
authors showed that the model’s accuracy in detection was critically 
impacted by weak or disturbing background information. They also 
highlighted that the model’s speed was slightly lower than comparative 
machine learning models, thereby suggesting that future works could 
include a lightweight deep learning architecture for faster training. 

10. Conclusions, open issues, and prospects 

Machine learning techniques have successfully been used to identify 
patterns within nonlinear datasets. This study explored the various ML 
techniques that have been applied within the realm of water resources 
management. Various Machine Learning techniques have found signif-
icant applications for prediction purposes, ranging from pure forecasting 
to estimating certain parameters of optimisation models. Particularly, 
implementing artificial neural networks has found great success in 
recent years. 

Proactive and effective water management requires accurate pre-
diction, and several studies have shown that standalone deep learning 
models could outperform conventional machine learning models, albeit 
the data characteristics could substantially affect their performance. 

Specifically, LSTM networks have been proven to exhibit reliable fore-
casting performance and even outperform ANN models, traditional 
machine learning models, and established physics-based hydrological 
models. Complexifying the architecture of LSTM-based models (via 
stacked structure) has not substantially improved forecasting perfor-
mance. More complex ML models require more data, and thus, the 
complexity of the deep learning model should be in accordance with the 
data. However, the performance of standalone deep learning models 
could sometimes be limited and unable to effectively capture features 
from multivariate time series. 

Presently, more studies have considered hybrid ML techniques, such 
as hybrid ANNs, as they have shown superior computational power over 
traditional ANNs architectures. Hybrid models combining classic deep 
learning models such as the LSTM or GRU and decomposition algorithms 
(WT, EMD, and VMD) have shown good performance and should, 
therefore be further developed. The development of hybrid machine 
learning models has often yielded comparable performance in terms of 
forecasting accuracy. Hence, these models could still be further 
improved and developed, especially for long forecasting horizons, as the 
predictive accuracy has always decreased with increasing lead time. 
Hybrid deep learning models should be more developed than standalone 
deep learning models, considering their superiority in terms of predic-
tion performance. 

Physics-hybrid models, which combine data-driven models and 
physical models, have also proven to improve prediction performance. 
Physical-based hybrid models are commonly either developed by 
feeding the ML model with the simulation outputs of physical-based 
models, or by forecasting its errors. When forecasting the error, the 
deep learning models can detect the location of most errors made by the 
physical-based models. When using the output of physical-based models 
as input for the ML model, its contribution should be first assessed to 
ascertain it would add positive impact on model performance. 

Other advanced deep learning architectures, such as transformers 
(Polosukhin et al., 2017), have yet to be tested in water resources 
management. Transformers have so far been successfully used to design 
neural networks in various application domains, including natural lan-
guage processing, genomic sequences, time series data, and signal pro-
cessing. Such models are known for their general structure, which 
includes an additional layer between the encoder and decoder, enabling 
them a high degree of parallelisation and, hence, faster training. This 
could be a valuable feature when handling complex data, which is very 
valuable given that several studies have shown that several hydro-
logical/meteorological variables could contribute positively to predic-
tion performance. Recent studies (e.g., Janner et al., 2021) highlighted 
how transformer architectures can be used to simplify reinforcement 
learning by formulating it into a single big sequence. Such an approach 
provided more capacity and power to reinforcement models in their 
attempt to address decision-making problems via the distributions of 
rewards and actions over sequences of states. Furthermore, transformer 
architecture offers some promising features for dynamics prediction as 
well as long-horizon dynamics prediction, which could tremendously 
improve groundwater level or river streamflow forecasting. 

In a data-scarce context, implementing Transfer Learning techniques 
could be a potential solution when developing hybridising physical- 
based and deep learning models. In the future, it is thus highly recom-
mended to further employ Transfer Learning to improve ML model 
performance, particularly for long forecasting horizons, as predictive 
accuracy has always been shown to decrease with increasing lead times. 
The implementation of Transfer Learning could substantially improve 
the performance of hybrid deep learning models, and thus enable more 
informed decision-making process in the realm of water resource man-
agement and flood defence applications. 

In the real-world context, ML proved to be a powerful tool in water 
resources management, providing insights, predictions, and optimisa-
tion capabilities. The practical application of ML in the water sector has 
taken a wide disparity of forms, depending on the intended use or 
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desired benefits. For instance, ML has successfully been used to develop 
a Smart Water Networks in Barcelona, Spain, where ML and IoT 
(Internet of Things) technologies were implemented to improve water 
efficiency and reduce losses in the distribution network (Shahra et al., 
2019). This was done by monitoring water quality, detecting leaks, and 
optimising water distribution using sensors and data analytics. Another 
example was the application of ML for burst locations in water distri-
bution network in Jiangsu province, east China (Zhou et al., 2019). They 
correctly located 57 of 58 synthetic bursts in the system. 

Another practical application of ML is the development and 
deployment of decision support systems (DSS) to help water resources 
managers and authorities to make informed decisions. DSS have also 
been greatly beneficial for water resources allocations in several coun-
tries, including the US (WRF-Hydro), Australia (AQUATOR), or the 
Netherlands (HydroNET). These often leverage machine learning to 
analyse complex data including – but not limited to - satellite imagery, 
real-time sensor data, and hydrological and weather data, to make 
predictions and assist decision-makers. ML algorithms have also been 
implemented to develop an early warning system that helps residents 
and authorities take preventive measures during heavy rainfall events 
(Dong et al., 2022). Weather patterns, river levels, and historical flood 
data are first analysed to enable the system to provide early warnings. 
All in all, Machine learning has become a valuable asset in the water 
sector, providing valuable insights, predictions, and optimisation ca-
pabilities applicable in real-world practice to enhance sustainable water 
use and management, and subsequently improving socio-economic 
development, healthy ecosystems and human existence itself. 
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