
 

 
 
 
 

Methods to Measure and Enhance the 
Circularity of Wastewater Resources 

 
   

 
A thesis submitted for the degree of Doctor of Philosophy 

by 

David C. Renfrew 

 

 

Department of Civil and Environmental Engineering 

College of Engineering Design and Physical Sciences 

Brunel University London 

Uxbridge, UB8 3PH, United Kingdom 

October 2023  



 

 
ii 

  



 

 
iii 

 

 

 

 

Dedicated to John Harris  

– I would’ve loved your feedback  



 

 
iv 

 

 

 

 

  



 

 
v 

Acknowledgements 

I would like to extend my dearest thanks to the following people, who directly and indirectly 

helped with the completion of my research journey, as without their emotional and intellectual 

support it would not have been possible.   

Firstly, I would like to express my deepest gratitude to my supervisor Prof. Evina Katsou. The 

trust she has had in me since the beginning and the opportunities she provided me with have 

not only grown my confidence as a researcher, but also as a person. The level of enthusiasm 

and creativity she brings instilled an environment that meant everyday was exciting and filled 

with new possibilities. Her kindness, knowledge, patience, and work ethic are an inspiration 

and meant that during the last 3 years there were more times of enjoyment than not.  

I would also like to thank members of the H2020 DEEP PURPLE consortia, as their 

collaboration throughout my research was invaluable. I am especially grateful the project co-

ordinator Patricia Zamora, scientific manager Dr. Daniel Puyol, and Eugenio Marin for their 

support. Additionally, I would like to extend thanks to Amanda Lake, Prof. Simos Malamis, 

and Dr. Eliza Harris for their interesting discussions and contributions to this work.   

Next, I would like to thank my friends and colleagues from Brunel University London Eliza, 

João, Daniel, George, Nilay, and Morad, for creating such a fruitful and successful 

environment, as well as collaboration. I must also extend a special thanks to Vasileia, who was 

always there when I needed help or advice, and whose breadth of knowledge is truly something 

to aspire to.  

Without a doubt, the support of friends in London, Bath, and back home have eased the difficult 

times with both reassurance and laughter. I would like to especially thank Becky and Adam for 

their enduring sense of humour when cooped up together during COVID-19 lockdowns.  

I am eternally grateful for the love and support of my family. To my parents, your success and 

endeavour, especially seeing what you have dealt with and achieved over the last few years, is 

a true inspiration. To Ewan and Maya, thank you for providing light relief and a sense of 

perspective when I needed it most. And to my grandparents, Vera, John, Betty, and Bill, your 

guidance has helped me far beyond just completing this work, and I will forever hold it dear.  

Finally, I would like to express how grateful I am to Emma, for her love and being at my side 

throughout this shared journey. The passion you have and ability to express it is something I 



 

 
vi 

constantly strive for. Your continued empathy and support have helped me through the difficult 

times, and your reassurance has instilled confidence when needed most, so without you this 

would not have been possible.   

 

David C. Renfrew 

Brunel University London 

Uxbridge, United Kingdom 

October 2023 

  



 

 
vii 

Abstract 

The need for an alternative to the linear economy and a practical method to operationalise 

sustainable development has led to a surge in popularity of the circular economy (CE) concept. 

Europe’s CE Action Plan establishes the importance of circular wastewater treatment and 

resource utilisation, however, a lack of standardised CE definitions and assessment methods 

are hindering this transition. Therefore, the first step of this research reviewed the indicator-

based decision support systems (DSS) developed for wastewater treatment plant (WWTPs). It 

found that technology selection DSS aims are ill-defined and the scope of indicators used for 

process optimisation is narrow, meaning the sector is far from standardised assessments and 

decision making. This led to the development of a structured approach that generates shared 

CE strategies at a regional level, by adapting a multi-criteria analysis tool to select resource 

recovery technologies. A UK wastewater sector example demonstrated the approach’s 

decision-making capabilities, identifying five priority resources and quantifying the expected 

benefits in terms of nutrient recovery. However, it was concluded that a holistic assessment is 

required for further analysis of impacts to circularity and sustainability when implementing the 

selected technologies. Reviewing circularity assessments, and definitions of waste, showed a 

paradox exists when applied to WWTPs, as wastewater, regardless of its production, is non-

virgin so is currently considered a circular input. To overcome this, the CE principle of resource 

traceability was combined with their degree of environmental harm, to define the circularity of 

water, carbon, nitrogen, and phosphorus. This method showed how actions of water users 

impact upstream and downstream circularity of a conventional WWTP. Following this, it was 

seen that material circularity is commonly used as a proxy for environmental performance, 

revealing a large disconnect between circularity and sustainability during assessments. 

Therefore, the assessment method was expanded to investigate how changes to physical 

resource circularity directly impacts value creation. By defining several principles from 

sustainability science literature, a method that systematically selects resource, action, and 

sustainability indicators using participatory approaches was developed. Additionally, it showed 

how appropriate benchmarks are defined for direct quantification of impacts to resource 

circularity and sustainable value creation. This was validated by comparing extended aeration 

and novel photobioreactor (PBR) WWTPs, highlighting multi-dimensional benefits of the PBR 

compared with the conventional process. Lastly, it is believed the developed method can act as 

the basis for standardising the holistic circularity assessment of wastewater resources.  
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1 Introduction 

1.1 Research motivation 

Throughout the 20th century, economic growth has led to prosperity and a greater standard of 

living for many people across the globe (Didenko et al., 2018; Jørgensen and Pedersen, 2018). 

The traditional linear economic model that achieved these unprecedented levels of growth is 

founded upon the principles of unrestrained extraction and consumption of natural resources, 

and impudent disposal of the resultant waste (Ellen MacArthur Foundation, 2015). This 

treacherous path has resulted in the immense production of negative externalities, accelerating 

anthropogenic impacts on the environment including climate change, biodiversity loss, and 

water scarcity (Corvellec and Paulsson, 2023; Geissdoerfer et al., 2017; Voulvoulis, 2018). In 

response to these concerns, several initiatives have evolved that offer a compromise between 

boundless economic growth and environmental protection with the hope of evading catastrophe, 

the most successful being sustainable development (Velenturf and Purnell, 2021).  

The seminal Brundtland report, published in 1987, defined the basis for sustainable 

development and called for the creation of routes to initiate its progress (Saidani et al., 2019), 

resulting in the definition of the United Nation’s Sustainable Development Goals (SDGs) 

(Schroeder et al., 2019) and the planetary boundary framework (Steffen et al., 2015) in 2015. 

However, their effectiveness was called into question, as the ambiguity of sustainable 

development means it is often too vague to implement (V Superti et al., 2021), whilst six of the 

nine planetary boundaries have already been exceeded (Persson et al., 2022; Wang-Erlandsson 

et al., 2022). Unfortunately, the patterns of urbanisation and population growth have only 

exacerbated finite resource pressures and unwanted impacts of the linear economy (Dagilienė 

et al., 2021; Ellen MacArthur Foundation, 2015). This meant industrial and political decision 

makers needed a practical alternative to the unsustainable and linear ‘take-make-dispose’ 

economy, leading to the emergence of the circular economy (CE) concept (Papageorgiou et al., 

2021; V Superti et al., 2021).  

Although the premise of the CE concept is not entirely new (CE related waste legislation 

implemented since 1970s (Moraga et al., 2019)), its popularity has surged in recent years since 

its inclusion within national policy, endorsement from industry, and appraisal by academia 

(Geissdoerfer et al., 2017). As a result, a plethora of definitions have been developed that 
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capture the CE’s principles, actions, and values. Most notably, the Ellen MacArthur Foundation 

(EMF) define CE principles as enhancing natural capital, designing out negative externalities, 

and keeping materials at their highest utility, with the ultimate aim of decoupling economic 

growth from finite material consumption (Ellen MacArthur Foundation, 2015). The CE is an 

umbrella concept that brings together many emerging fields in sustainability science, including 

industrial symbiosis, eco-efficiency, natural capitalism, biomimicry, and eco-design (Korhonen 

et al., 2018), which through the implementation of specific actions provides a route to 

operationalise the sustainable development of economic systems (Kirchherr et al., 2017), such 

as those of the 10R framework (Reike et al., 2018). Concurrently, the ability of the CE to 

directly facilitate many SDGs (and indirectly support all) (Morseletto et al., 2022; Schroeder et 

al., 2019) has cemented its pertinence in achieving the shared goal of sustainable economic 

development.  

Validation of the relationship between the practical nature of the CE and achieving SDGs 

somewhat justifies the concepts popularity. The first country to directly implement national CE 

policy was China in 2008 with the Circular Economy Promotion Law (Harris et al., 2021), 

achieving success at local government levels (Su et al., 2013). The European Union (EU) then 

following with its first Circular Economy Action Plan (CEAP) in 2015, detailing 54 actions that 

were to be completed by 2019, in areas such as waste management, plastics, food waste, 

innovation, and monitoring (European Commission, 2015). Following this, a new CEAP was 

published (European Commission, 2020a), which is labelled as one of the main building blocks 

of making Europe the first climate neutral continent as part of the European Green Deal 

(European Commission, 2021a). Again, the new CEAP provides specific actions that should be 

taken to improve the circularity of key product value chains, whilst establishing circularity as a 

prerequisite to climate neutrality (European Commission, 2020a), undoubtably intertwining 

circularity and sustainability objectives even further. The CEAP has led to the subsequent 

development of numerous initiatives, such as the Zero Pollution Action Plan (European 

Commission, 2021b) and Critical Raw Materials Communication (European Commission, 

2020b), which has manifested the EU as a global CE leader, explaining the exponential increase 

of academic interest and publications during this period (Alcalde-Calonge et al., 2022). 

However, the success of the EU’s CE policies are yet to be fully confirmed, which can only be 

achieved by meeting set targets such as the 55% reduction in carbon emissions by 2030, as 

defined by the European Climate Law (Council of the European Union, 2021) .  
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The broad endorsement of the CE concept coupled with limited implementation and evidence 

of success leaves it open to criticism. In fact, it is argued that the CE concept is not new, and 

just a reconstituted version of sustainable growth and development to reconcile economic and 

environmental issues (Corvellec et al., 2022). Furthermore, support for the CE may only come 

from its uncontroversial nature, as its promises many benefits with few burdens, often 

mitigating problems or conflicts that could emerge by leaving the linear economy (Corvellec et 

al., 2022). The proposed issues are evidenced by the current lack of agreement on defining a 

CE (Kirchherr et al., 2017; V Superti et al., 2021), resulting in opposed theoretical 

interpretations of circularity. This has led to inconsistent and misleading CE assessments, as 

there is no standardised way to distinguish between circular strategies (Blomsma and Brennan, 

2017). More worryingly, assessments have aligned material recirculation with environmental 

impact (Harris et al., 2021), risking decisions being made based solely on resource circularity 

without considering direct impacts to sustainability dimensions. From a technical perspective, 

thermodynamics (entropy) prevents complete material circularity as recirculation will always 

generate some waste and require energy consumption (Korhonen et al., 2018). Lastly, on a 

practical level the CE assumes that a new consumption culture will emerge (Corvellec et al., 

2022), where there is actually a possibility of greater impacts from more frequent production 

and distribution, quality degradation, and rebound effects boosting consumption (Figge et al., 

2022; Korhonen et al., 2018). Therefore, there is a need for more in depth academic inspection 

of CE science to create a more standardised conceptual understanding, or else the concept is at 

risk of perpetual contention and may fail altogether (Kirchherr et al., 2017).  

To achieve this, it is logical that scientific developments must prioritise sectors and resources 

that will expedite CE evolution and resultant benefits. Water is the only resource for which 

there is no alternative for sustaining life and maintaining a prosperous economy (Morseletto et 

al., 2022; Sauvé et al., 2021). Linear treatment of water resources has disrupted its natural 

hydrogeochemical cycle through intensive agricultural, industrial, and municipal activities, 

degrading water quality and resource availability, now resulting in widespread water scarcity 

(Morseletto et al., 2022; Voulvoulis, 2018). Fortunately, the CE aligns well with water resource 

management, as they both rely on the cyclical flow of resources and intersect multiple scales, 

levels of governance, and industrial sectors (Morseletto et al., 2022). The importance and 

interconnectivity of water for societal and environmental function mean that enhancing water 

resource circularity is key to unlocking a CE (Nika et al., 2020). Transformation of waste 

management systems is a cornerstone of the CE, to eliminate resource inputs and waste 
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production (Ellen MacArthur Foundation, 2015; Geissdoerfer et al., 2017). Therefore, the most 

obvious route to a circular water sector is targeting the treatment, use, and recovery of 

wastewater, facilitating better environmental and human protection, enhanced process 

efficiency, and resource valorisation. (Nika et al., 2020).  

Enhancing the circularity of wastewater treatment plants (WWTPs) is linked with many 

sustainable actions, such as process intensification, waste valorisation, energy efficiency, 

emissions mitigation (water and air), and reduction of costs. WWTPs have two main methods 

for improving their circularity performance; namely enhancing efficiency and resource 

recovery (Mo and Zhang, 2013). Efficiency improvements require strategies to optimise process 

performance, whether this be supporting decision making to select sets points that boost effluent 

quality and reduce energy consumption, or replace aging infrastructure with more intensive, 

lower impact technology (Mannina et al., 2019). Alternatively, there are many avenues for 

resource recovery from wastewater, including water itself, which has been implemented in 

many countries using membrane technology to supplement water demand (Kehrein et al., 

2020a). Wastewater also carries large amounts of chemical and thermal energy, and anaerobic 

digestion (AD) is already widely used to generate biogas as a source of renewable energy for 

WWTPs (Gherghel et al., 2019). Of the mineral fertilisers used for food production, 30 % of 

nitrogen and 20 % of phosphorus are excreted to wastewater, making them available for 

recovery using crystallisation and stripping technology (Kehrein et al., 2020a). Lastly, a range 

of other materials can be captured, such as cellulose (Ruiken et al., 2013), or generated using 

advanced processes including biopolymers and volatile fatty acids (Atasoy et al., 2018).  

The potential to transform the wastewater sector by implementing these strategies to replace 

aging infrastructure and outdated operating procedures has been recognised by the EU. Since 

1991, the Urban Wastewater Treatment Directive (UWWTD) (91/271/EEC) dictated the actions 

of the sector by setting pollutant limits on WWTP discharge and requirements for effluent 

monitoring. However, a recent proposal has been produced to bring the wastewater sector in 

line with the European Green Deal and new CEAP, by setting targets for the recovery of 

phosphorus, energy neutrality, and polluter payments (European Commission, 2022). 

Subsequently, as part of the CEAP, additional regulation has been developed that directly 

relates to the use of wastewater resources; namely Integrated Nutrient Management Plans 

(Radini et al., 2023), Water Reuse Regulation (2020/741) (European Parliament, 2020), and the 

European Hydrogen Strategy (European Commission, 2020c). Notwithstanding, there is still no 
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consensus on how optimal technologies and strategies should be selected, and consequently 

assessed, to ensure they achieve defined circularity and sustainability targets (Ahmed et al., 

2022; Åkerman et al., 2020).  

Circularity indicators and assessments have been developed to the extent there is now thought 

to be an overabundance, creating confusion and hindering standardisation (Corona et al., 2019). 

This lack of clarity, combined with no agreed CE definition, stops the development of bottom-

up approaches needed for the appraisal and certification of new circular value chains. Therefore, 

the certification landscape is fragmented, for a few specific products such as biopolymers 

(Rosenboom et al., 2022), and based on voluntary schemes so there is little legal basis to enforce 

circularity, facilitating malpractice (Kazancoglu et al., 2021). This encourages the creation of 

assessments that rely on predefined lists or cherry picking of indicators, resulting in either 

patchy or biased assessments (Harris et al., 2021; V Superti et al., 2021). Additionally, the 

indicators that have been developed are criticised for mitigating the multi-dimensional impacts 

and benefits of circularity (Corona et al., 2019), instead solely focusing on material circulation 

(Harris et al., 2021; Saidani et al., 2019). Without consideration of the wider aspects it is 

difficult to build business cases that encourage investment in circular alternatives (Nika et al., 

2021), meaning their competitive advantage in terms of enhanced sustainability cannot be 

measured (Lahti et al., 2018). This is particularly important when dealing with the water sector 

as it is historically risk adverse and slow to adopt new technologies (Mihelcic et al., 2017).  

Specific issues also exist for the circularity assessment of wastewater processes and resources, 

as currently most literature and subsequently indicators have been developed for technical 

manufacturing systems (Kirchherr et al., 2017), meaning they require either adjustment or 

displacement with a new discourse (Sauvé et al., 2021). This is evidenced by the mismatch of 

the popular 10R framework, as some of the actions included are not compatible for enhancing 

wastewater resource circularity (Morseletto et al., 2022). The circular use of wastewater relies 

on cascading of resources until they degrade in quality and require safe regeneration within the 

natural environment (Stegmann et al., 2020). In the case of technical systems, this is not seen 

as a circular method of waste management, as they are reliant on reverse logistics of technical 

resources (Chojnacka et al., 2020). Although, this relationship between wastewater resource 

management and the environment inevitably adds to the complexity of circularity assessments. 

Furthermore, wastewater production is dictated by upstream water users, who are unaware of 

the impacts they have on downstream processes, leading to asymmetry and hindering the ability 
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to assign responsibility for linear water usage (Savenije and van der Zaag, 2020). On top of this, 

the current definitions of waste rely on functionality- or value-based approaches (Iacovidou et 

al., 2017), or if an input is non-virgin (wbcsd, 2022). This creates a paradox during the 

circularity assessment of waste treatment facilities, as regardless of how waste is produced all 

waste inputs can be considered non-virgin and therefore circular. As a result, wastewater 

resources produced in a linear manner can be treated as circular if they reach a WWTP, meaning 

it is easy for WWTPs to have 100 % circularity, as meeting discharge permit limits enables their 

outlets to be considered circular. This results in WWTP circularity assessments of little value 

for decision making, that are unable to deter linear practices by investigating wastewater inflow 

and outflow characteristics. 

This highlights a significant gap in the development of CE science, as wastewater resources are 

currently inaccessible to circularity assessments. The critical nature of this resource means its 

mitigation has the potential disrupt the symbiotic relationships necessary to achieve a CE. 

Therefore, the aim of this thesis is to understand how indicator-based assessments are used by 

WWTP decision makers to select circular technologies and optimise performance, and develop 

methodologies for the selection and optimisation of WWTP technology, through the assessment 

of wastewater resources considering material circularity and wider impacts to sustainability. 

This will result in several beneficial outcomes including how to define assessment baselines to 

set realistic targets against a suitable benchmark, methods to select, prioritise, and optimise 

wastewater strategies at operational and strategic levels, and development of a more 

standardised methodology for the assessment of wastewater resource circularity. 

1.2 Overview of research programme 

1.2.1 Research questions addressed 

The primary research questions addressed in this thesis are: 

1. What is the current landscape of indicator-based decision making at WWTPs? 

Specifically, how are indicators selected and utilised in decision support tools for 

technology selection and process optimisation at WWTPs, and how are decisions 

aligned with the sustainability and circularity aims? Lastly, what progress has been 

made towards standardising these assessments and can recommendations be provided 

to expedite this process? (Chapter 2) 
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2. How can decision support tools developed for technology selection be applied to 

provide a consensus for CE strategies to enhance wastewater sector circularity? Can 

they be used as part of a structured approach to establish which resources have the 

greatest resource recovery potential at a regional level and quantify the potential benefits 

in terms of resource recovery? (Chapter 3) 

3. Can the circularity of wastewater be defined beyond just having no value or as ‘non-

virgin’ and be used to overcome the current assessment paradox for characterising the 

circularity of wastewater resources? Does tracing the source and destination of 

wastewater and its constituent resources enable responsibility to be assigned for linear 

water use? (Chapter 4) 

4. Can a methodology be developed that facilitates the standardisation of wastewater 

circularity assessments by systematically selecting indicators to quantify the sustainable 

value created by circular practices? How does altering the circularity of physical 

resource flows impact the sustainability of wastewater systems? (Chapter 5) 

1.2.2 Aims and objectives 

Research hypothesis: The current definitions, indicators, and methods used for circularity 

assessments are not applicable to wastewater technologies and resources. There is a significant 

gap when it comes to defining the circularity of waste streams that if not corrected will lead to 

wastewater system assessments of little value. Additionally, the use of material-based indicators 

as a proxy for the assessment of sustainability dimensions is not correct, and instead a method 

is needed to bridge the gap that exists between circularity and sustainability impacts. 

Combining these aspects will enable a holistic assessment of how the CE can create value for 

stakeholders from wastewater.  

The aim of the presented research is to develop methodologies that facilitate wastewater 

technology selection for resource recovery and a more standardised circularity assessment of 

wastewater resources for multiple levels of decision-making including technology selection and 

process optimisation. The method for resource recovery technology selection will examine how 

a multi-criteria decision-making (MCDM) tool is integrated within a structured approach for 

identifying resources with the greatest potential benefits for a region. In order to validate the 

technology selection approach, it should be applied to a regional wastewater scenario and used 

evaluate which resources must be prioritised for recovery, exploring how shared CE strategies 
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can be developed at a macro level. Following technology selection, a method is needed to 

directly assess and quantify potential impacts of their implementation on wastewater resource 

circularity, to validate performance and facilitate optimisation. This requires investigation of 

the currently accepted methods of circularity assessments and combination with novel 

approaches to overcome the gaps identified when dealing with wastewater resources. The 

developed methodology must be able to flexibly and systematically select indicators depending 

on the specific scenario of application, and be able to link how circular actions that alter the 

physical wastewater resources in a system impact sustainability dimensions. To examine the 

developed circularity assessment methodology, it must be applied to a WWTP example, 

highlighting the advantages of the method by revealing the direct impacts to circularity and 

sustainability when implementing circular strategies.  

To test the research hypothesis and achieve the defined aims, the specific objectives of this 

thesis are to: 

1. Review the existing literature on the topic of how decision support systems (DSS) are 

used for technology selection and process optimisation in WWTPs. Investigate how 

indicators are chosen and utilised in the DSSs to achieve outcomes that align with 

defined goals of water sector decision makers, whether this is to improve operational, 

circularity, or sustainability performance. Enhance understanding of indicator selection 

processes for WWTP decision making by summarising practices that should be avoided 

and providing a set of recommendations to improve practices as the water sectors goes 

through a period of transformation to meet regulatory and sustainability targets.  

2. Adapt and apply a MCDM tool for the selection of technologies that enhance the 

circularity of wastewater resources, considering wider impacts. Evaluate the approach 

by applying it to a case study, showing how DSSs can be used to build a shared CE 

strategy for wastewater at a macro level. Scrutinise which resources and technologies 

that should be prioritised for resource recovery and evaluate the expected returns in 

terms of quantities captured and market potential.  

3. Create definitions for the circularity of wastewater and the important resources carried 

that go beyond the fact it is ‘non-virgin’ to overcome the current assessment paradox. 

Investigate how the CE principle of resource traceability can be used to define 

circularity by understanding the source and destination of wastewater resources and 

combining it with the degree of harm they cause when interacting with the natural 
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environment. Use the approach to examine how changing upstream and downstream 

practices impacts the circularity of wastewater resources, enabling responsibility to be 

assigned for linear water use.  

4. Develop a method with an indicator taxonomy that is able to harmonise circularity and 

sustainability assessments using principles from relevant sustainability and CE 

literature. Evaluate how stakeholder inputs can be utilised during the indicator selection 

process to understand how circular actions implemented in wastewater systems create 

value for them. Scrutinise assessment decision-making capabilities by applying it to an 

example comparing a novel circular and conventional wastewater treatment technology, 

validating that it can directly quantify how changes in resource circularity impact 

sustainability dimensions.    

1.2.3 Methodological approach 

In the first phase of this thesis, a review of indicator selection and utilisation by WWTP DSSs 

is completed (Chapter 2) and combined with the application of a MCDM tool to support 

wastewater resource recovery technology selection (Chapter 3). A thorough review is 

completed on the available knowledge of WWTP DSS i) typology, ii) sector goals, iii) 

prioritised aims, iv) indicator categorisation, v) indicator selection procedures, vi) indicator 

weighting methods, vii) indicator scoring systems, viii) technology ranking, and ix) technology 

selection. The review focuses on DSSs for technology selection and process optimisation at 

WWTPs, concluding with the issues identified from current procedures and a set of 

recommendations for improving future indicator-based decision-making protocols. The next 

step utilises a multi-criteria (indicator) tool as part of a methodology for the selection of 

technologies for wastewater treatment plants that improve circularity performance through 

resource recovery. A MCDM tool is selected and integrated as part of a method for planning 

consensus strategies for resource recovery at a regional scale. This includes i) modelling of the 

current baseline scenario, ii) market potential calculations, iii) multi-criteria technology 

selection, iv) identification of priority technologies, v) developing resource recovery scenarios, 

and vi) quantifying expected benefits. The DSS chosen is adapted from one developed by UK 

Water Industry Research (UKWIR) for multi-criteria analysis (MCA) as it utilises six capitals 

indicators to consider wider impacts to sustainability. The approach is applied to an example of 

the UK wastewater sector as the necessary data is available as part of OFWAT’s PR19 reports. 
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It is identified that a method to assess the potential impacts to circularity and sustainability is 

required once technology selection is completed, to ensure desired benefits are produced and 

unwanted impacts are mitigated.  

Once the need for a holistic circularity assessment of wastewater is established, the second 

phase of work is to define a framework for classification of wastewater resource circularity. 

The basis of this work combines the CE principle of resource traceability with environmental 

science theory, enabling the disentanglement and circularity definition of wastewater water, 

carbon, nitrogen, and phosphorus resources. A wastewater resource assessment methodology is 

then formed combining the use of circularity indicators (including inflows and outflows, water, 

energy, and economic dimensions) and material flow analysis (MFA). To highlight the 

advantages of this novel classification approach it is applied to an example, with different 

scenarios tested to investigate their impacts on inflow and outflow resource circularity.  

Following validation of wastewater circularity definitions, a systematic and holistic circularity 

assessment method is developed. The methodology is created by defining several principles 

from relevant circularity and sustainability science literature, establishing the need to link 

circularity and sustainability using value creating actions of wastewater processes. The steps 

include i) wastewater system definition and modelling, iii) circular solution selection, 

modelling, action indicator selection, iii) resource classification, indicator calculation, 

circularity performance assessment, and iv) sustainability indicator selection and value creation 

analysis. This results in the necessary indicator taxonomy that combines resource flow, action, 

and sustainability analysis to link changes in physical resource circularity with sustainability 

impacts. The relevant indicators are identified using the perspectives of stakeholders to 

understand how the actions of circular wastewater systems create value. The methodology is 

trialled by applying it to a novel photobioreactor wastewater treatment technology and 

comparing it with a conventional process that acts as a benchmark.  

1.2.4 Thesis outline 

Chapter 2: Literature Review – Indicator based multi-criteria decision support systems for 

wastewater treatment plants 

In this chapter, a review of WWTP DSSs was conducted, to define how indicator based-decision 

making is currently conducted and provide a list of recommendations to improve practices that 
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will facilitate more standardised development of future protocols. It was established that the 

main function of MCDM tools are technology selection and the optimisation of process 

operation. The European Commission revealed their ambition for greater levels of 

sustainability, circularity, and environmental and human health protection in recent 

publications, which DSS application must align with to meet the defined targets in the water 

sector. Many differences in DSS procedures were found, including a large contrast regarding 

aims, as process optimisation tools clearly define their goals and indicators used, whilst 

technology selection procedures tend to use vague language, making it hard for decision makers 

to connect the selected indicators with their desired sustainability and circularity outcomes. 

Recommendations are made to improve DSS usage, including more rigorous indicator selection 

protocols, such as participatory approaches, and expansion of indicators sets as it was common 

to focus on economic aspects.  

Chapter 3: Where is the greatest potential for resource recovery in wastewater treatment 

plants?  

This chapter highlights how a MCDM can be adapted and integrated as part of a structured 

approach for prioritising resources and selecting recovery technologies to build shared CE 

wastewater strategies at a regional scale, and quantify the potential benefits of this in terms of 

nutrient recovery. It was identified that the water sector is poised to benefit from the CE 

transition, due to its intrinsic circularity and the critical resources handled by wastewater. 

Currently, the range of options for resource recovery married with few examples from industry 

hinders strategic decision making and technology uptake. Resource recovery on a regional scale 

improves market share and mitigates investment risk, therefore, a structured approach was 

developed for the selection of priority technologies to act as a guide for strategic planning. A 

representative UK wastewater model acted as the baseline, with MCA used to select resources 

and create an enhanced resource recovery scenario. It revealed the five ‘priority resources’ for 

this region and quantified the potential of the sector to increase nitrogen and phosphorus 

recovery by implementing the relevant technology. Lastly, the need for a cross-cutting approach 

for the holistic assessment of wastewater system circularity was discussed. 

Chapter 4: Tracing wastewater resources: unravelling the circularity of waste using source, 

destination, and quality analysis 

In this chapter, the principle of resource traceability was used to disentangle wastewater 

resources to define their circularity and investigate how wastewater producer actions impact 



12 

 

upstream and downstream circularity. Initially it was found that the current definitions of 

wastewater circularity lead to paradoxical assessments that generate results of little value for 

evidence-based decision-making. This led to the development of a classification approach 

which combines resource traceability with their ability to cause harm when released to the 

environment, adopting the attitude that not all waste is created equally. It revealed how upstream 

agricultural, industrial, and human practices impact downstream treatment and the effectiveness 

of resource cycling within the natural environment. The framework was validated by applying 

it to a WWTP and investigating scenarios that influence resource circularity, showing how it 

can educate and assign responsibility to water users for development of robust circular economy 

policy. 

Chapter 5: Systematic assessment of wastewater resource circularity and sustainable value 

creation 

The last chapter defines five principles from literature to create a circularity assessment 

methodology that uses participatory approaches as part of the systematic selection of indicators 

to determine how changes to physical resource circularity impact sustainable value creation.  

Firstly, a lack of universal definitions and measurement tools that are required to achieve the 

CE’s full potential was highlighted. Building on the work of Chapter 4, a holistic circularity 

assessment methodology was created that uses three indicator typologies, namely resource flow, 

action, and sustainability indicators. Stakeholder inputs were used to generate value 

propositions, which are used to systematically investigate the impacts of changing resource 

circularity on sustainable value creation. The assessment was exhibited by applying it to a 

small-scale WWTP, comparing conventional extended aeration and novel photobioreactor 

technologies. Resource flow indicator results highlight improved outflow circularity, renewable 

energy usage, and economic efficiency of the novel system. Action indicators revealed that the 

photobioreactor technology was successful at achieving its defined value creating goals. Lastly, 

sustainability indicators enabled the direct quantification of environmental, economic, and 

social value creation, confirming that stakeholder benefits result from the photobioreactor 

wastewater treatment technology.  

Figure 1.1 summarises the development of thesis logic which is separated into three phases of 

work. It shows how each phase and chapter are connected to one another (along with the main 

objectives), to create a collection of methods that can help facilitate the circular transition of 

the wastewater sector by selecting technologies and assessing their impact on resource 
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circularity and sustainability. The expected outcome of this research is to generate the indicator 

taxonomy required for a truly holistic circularity assessment, using stakeholder perspectives are 

used as part of the indicator selection process to understand how value is created for them by 

circular practices in the wastewater sector. It is hoped these methods will accelerate the CE 

transition of the water sector, by providing tools to implement circular practices across multiple 

levels of decision making from technology selection to implementation and monitoring.  

 

 

Figure 1.1. Connections between chapters and main objectives of each chapter in the thesis.  
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2 Literature Review   

2.1 Introduction 

The wastewater sector is faced with many challenges that result from ageing and inefficient 

processes, including substantial carbon emissions, high energy consumption, regulatory 

compliance failures, and loss of public trust (Borzooei et al., 2019). Unfortunately they are only 

being worsened by the impacts of climate change, urbanisation, and population growth (Haldar 

et al., 2022). Although a plethora of technologies have been developed in recent years to combat 

these issues at a wastewater treatment plant (WWTP) level by academia and industry (Kehrein 

et al., 2020a), water utilities are unable to make the required investment decisions to shift 

towards sustainable wastewater treatment. Decision support systems (DSSs) have been used to 

support complex decision making in the water sector, including WWTPs with the aim of 

optimising technology selection procedures or process control to improve operational 

performance (Wardropper and Brookfield, 2022).  

Wastewater decision makers have additional considerations compared with other industries, as 

on top of conventional technical, economic, and environmental issues, the social and regulatory 

implications of their actions must be considered (Ullah et al., 2020). Commonly public 

perception and social acceptance problems arise when utilising and recycling wastewater 

streams to generate resources (Kehrein et al., 2020a). Water provision and sanitation services 

are also highly regulated and must be protected due to their importance for society, industry, 

and the environment (Preisner et al., 2022). Additionally, it is proving difficult to create markets 

for new products recovered from wastewater, such as tackling the end-of-waste status for their 

use in the European Union (Palmeros Parada et al., 2022). Therefore, water utility and WWTP 

decision makers are facing stricter regulations to improve operation regarding human health 

protection, environmental preservation, and emissions reduction (Mannina et al., 2019), whilst 

simultaneously pursuing greater circularity and revenue generation through resource recovery 

strategies to improve business performance. This creates complex multi-objective problems 

when operating and selecting technologies for improving WWTPs, which are traditionally 

labour intensive, trial-and-error experiments that rely on the judgement of operators (Ntalaperas 

et al., 2022; Sucu et al., 2021). To ensure that all relevant information, performance trade-offs, 

and cause and effect relationships are taken into consideration when dealing with complex 
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problems, DSSs must be utilised by the water sector for more robust decision making (Ullah et 

al., 2020).  

A DSS is a computational system that assists the user in choosing an optimal or consistent 

solution to a particular problem in a reduced timeframe, particularly when the solution is 

unclear, by aggregating often conflicting values or preferences to examine the trade-offs 

between solution objectives (Giupponi and Sgobbi, 2013; Mannina et al., 2019; Wardropper 

and Brookfield, 2022). A review by Mannina et al. (2019) classified wastewater DSS intentions 

as; design, energy consumption, operational optimisation, improvement of effluent quality, or 

environmental sustainability. Of course, decision makers may want to investigate a combination 

of or all of these goals at once, which can often be contradictory (Eseoglu et al., 2022). For 

example, WWTP direct emissions and electricity consumption typically increase when 

improving effluent quality, however, this action negatively impacts any net zero targets. 

Therefore, when using DSSs to solve multi-objective problems the goal of the study must be 

defined with clear constraints for optimisation, and an adequate number of relevant key 

performance indicators (KPIs) chosen, to ensure the resulting decision is a true reflection of the 

defined goals.  

Multi-criteria decision-making (MCDM) tools for selecting the optimal technology for a 

specific scenario have been developed in literature (Eseoglu et al., 2022; Južnič-Zonta et al., 

2022; Sucu et al., 2021). Depending on MCDM application, the goals of the assessment will 

impact the KPIs used to constrain the decision-making process and final outcome. Conventional 

WWTP operation is monitored using effluent quality and consequently controlled with a few 

key parameters, meaning process control is often intuitive with operators unable to understand 

the real time impacts of their decisions (Ntalaperas et al., 2022). Another key area for DSS use 

in the water sector is online process optimisation, however, it has not been widely applied in 

WWTPs as improvements to sensors, mathematical models (soft sensors), and data visualisation 

are needed for precise operational monitoring and control. However, a combination of data-

driven models and artificial intelligence enables performance prediction that can be used to 

reduce energy demand, decrease costs, improve effluent quality, and lower emissions (Matheri 

et al., 2022). 

Considering the transformation that WWTPs face to improve performance by reducing 

emissions, energy consumption, and operating costs whilst meeting stricter regulatory targets, 

water utilities are expected to become ever more reliant on DSSs to solve multi-objective 
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problems for optimal selection and operation of sustainable technology. This study focuses on 

the use of multi-criteria DSSs to support these two functions for WWTP decision makers. 

Rather than focussing solely on their typology, analysis of the correct selection and utilisation 

of relevant KPIs during DSS application is prioritised, to ensure that outcomes fulfil decision 

maker requirements. This is a pertinent aspect of complex multi-objective decision-making and 

one which is often overlooked or undervalued by the methodologies in the literature. 

2.2 Methodology 

2.2.1 Wastewater sector goals 

Currently, there is a mismatch in terms of the decision maker goals and the KPIs selected when 

utilising DSSs at a WWTP level. Therefore, this section maps the wastewater ambitions of the 

European Commission which can be used to direct the utilisation of DSSs to meet water sector 

targets.  

The European Commission has directives which act as the framework for adequate wastewater 

treatment in the EU and are critical sources for understanding high-level water sector goals. 

However, in many cases they are decades old and do not reflect the regions recent sustainability 

ambitions (European Commission, 2022). The Urban Wastewater Treatment Directive 

(UWWTD) (91/271/EEC) published in 1991, acted as the basis for transforming European 

water systems by limiting pollutant levels in WWTP discharge. The Sewage Sludge Directive 

(86/278/EEC) was introduced for the correct use of sewage sludge in agriculture. It details the 

requirements in terms of heavy metal concentration, quantities of sludge applied per hectare, 

and the crops prohibited from application (Council of the European Union, 1986). Although the 

UWWTD and Sewage Sludge Directive have been successful in improving environmental and 

human health, as 92 % of wastewater is now treated satisfactorily (European Commission, 

2022), the next generation of wastewater treatment must go beyond this to achieve the EU’s 

sustainability goals, whilst ensuring this fundamental objective is still maintained.  

To instigate further change to WWTPs, a proposal to update the UWWTD was published in 

October 2022 with the aim of introducing new rules up to the year 2040 (European Commission, 

2022). This update will be key for delivering the European Green Deal’s zero pollution target 

and highlights many water sector goals that decision makers will need to adopt in Europe. It 

expands regulatory compliance to smaller plants and introduces binding energy neutrality 



17 

 

targets for the sector, polluter pays for the treatment of toxic micropollutants, and minimum 

recovery rates for phosphorus. Additionally, improved data monitoring and usage are required 

for measuring and mitigating greenhouse gas (GHG) emissions and micropollutants, and 

making KPIs public to improve benchmarking and transparency (European Commission, 2022).  

The European Commission is pursuing a CE to facilitate many of its sustainability targets, 

therefore, it published the CE Action Plan in 2020 (European Commission, 2020d). As part of 

this, the European Commission aims to intensify nutrient recovery from wastewater by 

establishing Integrated Nutrient Management Plans (Radini et al., 2023). Another key element 

is the development of Water Reuse Regulation (2020/741) to facilitate the circular use of 

wastewater effluents. The document provides a classification system regarding the technology 

required to achieve the contaminant levels for application to specific crop grades (European 

Parliament, 2020), relying on the use of Water Reuse Risk Management plans to ensure public 

and environmental health (Radini et al., 2023). WWTPs should improve effluent quality for the 

circular use of water, also reducing the quantity of raw water abstracted. Therefore, it is clear 

that for a sustainable and circular transition, WWTPs must focus on emissions reduction, 

resource recovery, and water reuse, and acknowledge the importance of proper data usage, to 

align with water sector goals at a European level.    

Analysis of regional government wastewater strategies is vital for creating useful DSSs. 

However, their it remains challenging to implement tangible decisions at WWTP level, as 

individual utilities have their own priorities based on local facets. Considering legislative 

constraints, sector-wide ambitions, and local factors can make the identification of priorities at 

a WWTP-scale challenging for decision makers. Therefore, rigorous indicator selection and 

usage is needed to ensure DSS KPIs align with stakeholder goals at every level of decision 

making, or else WWTPs are at risk of undesirable future impacts and events.  

2.2.2  Article collection 

2.2.2.1 Research question 

There have been recent publications which discuss multi-criteria analysis (MCA) DSSs for the 

wastewater sector (Ddiba et al., 2023; Mannina et al., 2019), however they allude to issues that 

exist for the assessment and selection of technologies. Mannina et al. (2019) states that 

‘sustainable aspects are incorporated in accordance to DSS developers, as there is no standard 
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that can be applied while developing the systems’, whilst Ddiba et al. (2023) concludes that 

some sustainability implications are not adequately covered by decision support tools. This 

shows that a lack of standardisation has resulted in the development of indicator-based 

methodologies that do not fully consider the sector’s sustainability goals. However, the 

wastewater sector must meet the requirements set out in Section 2.1 in the coming years, 

therefore, this review systematically analyses the specific indicators selected, and how they are 

used by DSSs, to understand the impact on WWTP outcomes. This results in the research 

question of how are indicators selected and utilised in decision support tools for technology 

selection and process optimisation at WWTPs, and to what extent are sustainability and 

circularity pillars harmonised to meet decision maker goals? Additionally, the need to construct 

standardised DSS procedures to facilitate sustainability outcomes is highlighted, thus following 

literature review recommendations are provided to act as the starting point for this. The types 

of MCA used to facilitate complex decision making have already been the subject of systematic 

reviews (Kozłowska, 2022), meaning the methods available in literature have already 

established. Therefore, they do not require further generalised study and is why the focus of this 

review is on DSSs implemented for wastewater technology assessment to understand current 

practices and provide recommendations for improvement. 

2.2.2.2 Search strategy 

The evaluation of WWTP DSSs was completed using systematic review, following the 

guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses 

(PRISMA) method (Page et al., 2021). Articles describing multi-criteria, indicator-based DSSs 

for WWTP technology selection and process optimisation were collected from Scopus 

(www.scopus.com) and Web of Science (www.webofscience.com) databases. The 

configuration of this review required two independent searches to collect data using a 

combination of Boolean connectors, and a previous review in the area by Mannina et al. (2019) 

established the time series of 2018-2022. MCDM technology selection DSSs were found using 

the search term (“wastewater treatment” OR WWT 

OR WWTP OR sludge) AND (DSS OR “decision support system” OR MCA OR “multi 

criteria” OR MCDM OR “multi-criteria”) AND (selection OR identification OR KPI). Whilst 

the multi-objective optimisation DSS search used (WWTP OR “wastewater treatment plant” 

OR “wastewater treatment process”) AND (control OR operation OR monitoring OR 

optimisation OR optimization) AND multi AND (criteria OR objective) terms. 

http://www.scopus.com/
http://www.webofscience.com/
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2.2.2.3 Selection of studies 

Figure 2.1 shows the steps taken to screen initial search results and collect articles used for 

review (Page et al., 2021). Results were exported to Mendeley reference management software 

for processing, and after removing duplicates 127 articles and 144 articles related to technology 

selection and process optimisation DSSs were identified respectively. They were then analysed 

to ensure the inclusion of only high-quality, peer-reviewed, original articles, thereby removing 

non-English, conference proceedings, book chapter, and review paper sources. Next, sources 

were primarily screened based on their title, and subsequently using the abstract and content in 

full, to establish the final list of articles. Technology selection DSSs were excluded if used for 

geographic location planning, source selection, resource allocation, performance assessment, or 

operation monitoring, and did not utilise multiple indicators for decision making. Process 

optimisation DSSs were excluded if only used for performance monitoring, fault-detection, 

visualisation tasks, load prediction, or sensor utilisation, and did not use multiple indicators to 

optimise control parameters. An additional six relevant articles were collected from a review 

paper by Mannina et al. (2019) investigating DSSs for WWTPs, to incorporate appropriate 

literature from outside the search time series. 
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Figure 2.1. Flowchart of the steps taken during the article selection procedure (Page et al., 2021). 

 

2.3 Technology selection DSSs 

The decision to invest in new technology at a WWTP is a complex and multi-faceted decision 

to fulfil business, sustainability, and regulatory targets. MCDM tools have been developed for 

this purpose, however, there is often little emphasis on linking the goals of the assessment with 

indicator selection, weighting, and scoring methods. This potentially leads to outcomes that do 

not truly satisfy all stakeholder and decision maker goals at regional, national, utility, 

community, or WWTP scales. The relevant literature collected in Section 2.2.2 is reviewed to 
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understand conventional methods and highlight good practices regarding alignment of MCDM 

KPIs with defined goals. Table 2.1 summarises the MCDM technology selection DSS tools for 

WWTPs collected from literature, resulting in a total of thirty-one articles.   
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Table 2.1. Summary of wastewater treatment MCDM technology selection DSSs.  

Author Year Group Aim Case Study Assessment Categories Weighting Method KPIs Selected 

Molinos-
Senante et al.  2014 WWT Assess the sustainability of WWT technologies 1,500 PE WWTP Economic, Environmental, 

Social AHP 

CAPEX, OPEX, removal efficiency, 
energy consumption, land use, sludge 
production, potential for RR and WR, 
reliability, odours, noise, visual impact, 
public acceptance, complexity  

Garrido-Baserba 
et al. 2015 SST Identification and assessment of the most 

appropriate sludge treatment technologies 1,000,000 PE WWTP Economic, Environmental Fixed Annual cash flow, annual income, total 
annual equivalent costs, GWP  

Castillo et al.  2016 WWT 
Analysis of the alternatives through a multi-
criteria approach, considering operational, 
economic, and environmental criteria 

Retrofit vs 
construction of 
WWTP in Italy 

Economic, Environmental, 
Operational User Defined 

Nitrogen removal, CAPEX, OPEX, 
CBA, LCA, noise, visual impact, need 
for specialised staff, flexibility 

Chhipi-Shrestha 
et al.  2017 WR 

Evaluating the potentiality of fit-for-purpose 
wastewater treatment and specific reuse for a 
community 

Comparing non-
potable water uses for 
10,000 PE 
community 

Economic, Environmental User Defined 

Microbial concentration, quantitative 
microbial risk assessment, development 
of alternative treatment trains, 
estimation of reclaimed water quantity 
and its distribution, LCC, energy use, 
carbon emissions 

An et al.  2018 SST 
Helping the decision- makers/stakeholders to 
select the most sustainable technology among 
multiple scenarios 

Three sludge 
management 
strategies 

Economic, Environmental, 
Social, Technical AHP  

CAPEX, OPEX, land use, 
environmental risk, resource utilisation 
efficiency, operability, site selection, 
applicability, and management level 
requirement  

Arroyo and 
Molinos-
Senante  

2018 WWT Choice of the most sustainable WWT alternative Seven small-scale 
WWT technologies 

Economic, Environmental, 
Social CBA 

CAPEX, OPEX, removal efficiency, 
energy consumption, land use, sludge 
production, potential for RR and WR, 
reliability, odours, noise, visual impact, 
public acceptance, complexity 

Sadr et al.  2018 WR Selection of WWT technologies for non-potable 
water reuse applications in different contexts 

Large WWTPs in 
Brazil and Greece 

Economic, Environmental, 
Social, Technical AHP  

CAPEX, OPEX, energy consumption, 
environmental impact, community 
acceptance, adaptability, ease of 
construction and deployment, land 
requirement, complexity, water quality 
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Oertlé et al.  
 

2019 WR Promote water reuse in regions where it is still an 
emerging concept 

Thirteen treatment 
trains in different 
locations 

Economic, Technical, 
Requirements and Impacts User Defined 

CAPEX, OPEX, distribution costs, 
energy demand, chemical demand, 
odour generation, sludge production, 
land required, groundwater impact, 
reliability, ease of upgrade, 
adaptability, ease of operation/ 
construction/ demonstration 

Đurđević et al.  2020 SST/RR Technology selection for sewage sludge energy 
recovery 

WWTP planned for 
Rijeka, Croatia 

Socio-economic, 
Environmental, Technical AHP  

Material stabilisation, energy reuse, 
nutrient recovery, commercial 
acceptance, product transport/storage, 
GHG reduction, pre-treatment 
requirements, hazardous by-products, 
heavy metal content, public acceptance, 
OPEX, CAPEX, labour requirements, 
energy savings, societal contribution 

Ali et al.  2020 WWT Evaluate and prioritize different wastewater 
treatment technologies used in Pakistan 

Five WWT 
alternatives in 
Pakistan 

Undefined VIKOR 

Cost, land requirement, processing 
time, manpower requirement, 
efficiency, environmental impact, 
energy consumption, sludge 
production, safety, chemical 
requirement 

Gherghel et al. 2020 WWT/SST Identify the most suitable treatment scheme for 
the management of wastewater and sludge 

Large WWTP of 
720,000 PE in Italy 

Economic, Environmental, 
Energy, Land Use AHP  

GHG emissions, running costs, service 
landfill surface, electricity 
consumption, planimetric size, 
biorefinery capabilities, landfill 
requirements 

Chrispim et al.  2020 RR 
Support decision-making on resource recovery 
strategies; to recommend operational and 
technological strategies 

WWTP in Sao Paulo 
serving 1.4 million 
PE 

Economic, Social, 
Environmental and Technical, 
Political 

N/A 

Recovery potential, maturity, resource 
utilisation, skilled labour requirements, 
product quality, positive environmental 
impact, CAPEX, OPEX, revenue, 
logistics, acceptance, accordance with 
policy and legislation 

Liu et al. 2020 WWT Optimize the sewage treatment technologies and 
their combination technologies 

Town in Liao River 
Basin, China 

Economic, Environmental, 
Social AHP  

Construction cost, land cost, OPEX, 
removal rate, life expectancy, stability, 
resource recovery, simplicity, 
ecological values, risk assessment 

Ullah et al.  2020 WWT Assist decision-makers to select suitable WWTTs 
from a set of alternatives 

Two sources of 
wastewater in 
Islamabad, Pakistan 

Undefined N/A 
Odour, removal efficiency, land use, 
manpower, financial resources, time 
availability, chemical availability, 
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oxygen requirement, sludge 
management and disposal 

Palma-Heredia 
et al.  2020 SST/RR Selection of the best-fitting sewage sludge 

valorisation strategies WWTP in Spain Regional Level, Plant Level, 
Process Level Fixed 

Viability, material circularity, self-
sufficiency, risk assessment, NPV, 
removal efficiency, sludge production, 
biogas production, efficiency, CAPEX, 
OPEX 

Ling et al.  2021 WWT Assess and compare the sustainability of different 
wastewater treatment options 

Seven WWT options 
in UK 

Economic, Environmental, 
Social, Resilience AHP 

Energy requirement, land use, pollutant 
removal, sludge production, RR 
potential, GHG emissions, public 
acceptance, odour, noise, visual impact, 
reliability, complexity, CAPEX, OPEX  

Fetanat et al.  
 

2021 WWT/RR Prioritize energy recovery from wastewater 
treatment technologies 

WW management in 
Behbahan City, Iran 

Water Security, Energy 
Security, Food Security LAM 

Water security (access, safety, and 
affordability), energy security 
(availability, accessibility, affordability, 
acceptability, applicability, and 
adaptability), food security 
(availability, access, utilisation, and 
stability) 

Büyüközkan and 
Tüfekçi 2021 WWT Evaluate the most suitable WWT decision system 

WWT selection for a 
company in Istanbul, 
Turkey 

Economic, Environmental, 
Technical, Administrative, 
Management 

AHP 

Water/energy/discharge/chemical costs, 
monitoring, waste production, 
environmental benefits, facility 
management, NPV, volumetric 
capacity, water quality, applicability 
and performance, reliability and 
sustainability  

Lizot et al.  2021 WWT 
Evaluation of WWT systems considering relevant 
economic, social, technical, and environmental 
criteria 

Twenty WWT 
options for a 
sanitation company in 
Brazil 

Economic, Environmental, 
Social, Technical AHP 

CAPEX, OPEX, NPV, Land, 
manpower, reliability, replicability, 
complexity, removal efficiency, sludge 
production, GWP, acceptance 

Sucu et al.  2021 RR 
Find the optimum treatment train consisting of 
compatible unit processes which can recover 
water, energy and/or nutrients 

Large and small 
WWTP recovering 
irrigation water 

Economic, Environmental, 
Social, Technical User Defined 

Annual cost, potential income, 
acceptability, affordability, land area, 
odour, noise, flexibility 

de Almeida et 
al.  2021 WWT Develop and apply a methodology for sewage 

treatment systems selection 
Benevente River 
watershed in Brazil 

Operational, Technical, 
Environmental, Social 

Multi Attribute Utility 
Theory 

Removal efficiency, energy demand, 
land use, CAPEX, OPEX, sludge 
treated, sludge disposed, reliability, 
simplicity, resistance, odour, noise, 
aerosol generation, insect attraction 
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Eseoglu et al.  2022 WWT 

Technology selection problem for wastewater 
treatment that integrates all aspects of 
sustainability with the behavioural characteristics 
of decision makers 

Four WWTPs greater 
than 100,000 m3/d 
Istanbul, Turkey 

Economic, Environmental, 
Social, Technical AHP 

Energy consumption, sludge 
production, reuse of treated water, 
capital cost, land required, OM cost, 
energy saving, sludge disposal cost, 
removal eff, maturity, simplicity, 
applicability, replicability, flexibility, 
reliability, odour, manpower needed, 
social acceptance, social benefit, 
aesthetic 

Leoneti et al.  2022 WWT Choosing a WWTP for a municipality 
Six 40,000 PE 
WWTP alternatives 
in Brazil 

Economic, Social, 
Environmental 

Game Theory (rank 
order centroid) 

Cost, effluent quality, land area, sludge 
production 

Liu and Ren 2022 SST/RR Promote the sustainable decision-making process 
of sludge management 

Four sludge-to-
energy options 

Economic, Environmental, 
Social, Technical BWM 

Climate change, acidification, 
eutrophication, net cost, social 
acceptance, governmental support, 
educational significance, odour, 
complexity, maturity, accessibility 

Attri et al.  2022 WWT Sustainability assessment of wastewater treatment 
technologies 

Six alternatives for 
secondary WWT 

Economic, Environmental, 
Social, Functional 

Fuzzy Stepwise 
Weighted Assignment 

Ratio Analysis 

Removal efficiency, effluent DO and 
coliform, NP removal capabilities, area, 
power requirement, OPEX, CPAEX, 
odour, noise, visual impact, flexibility, 
reliability, ease of operation, FOG 
tolerance, waste sludge production 

Renfrew et al.  2022 RR Identification of strategies for resource recovery 
from wastewater 

Priority resource 
identification for UK 
water sector 

Recovery, Market, Cost, 
Carbon, Treatment Impacts, 6 
Capitals 

User Defined RR potential, market, treatment, cost, 
carbon, 6 capitals 

Nkuna et al.  2022 SST/RR 
Selection of the most viable thermochemical 
technology to handle municipal WWS for energy 
recovery 

Three technologies 
converting WW 
sludge to energy 

Economic, Technical AHP 
Dependability, maturity, sludge use, 
energy production, energy 
consumption, CAPEX, OPEX 

Južnič-Zonta et 
al.   2022 RR 

Given a set of resource recovery and wastewater 
treatment process units, quickly determine the 
best plant configuration 

Medium size WWTP 
in Manresa, Spain 

Economic, Environmental, 
Technical User Defined Effluent quality, costs, maturity, GHG 

emissions, area 

Silva Junior et 
al.  2022 WWT Select the most appropriate technologies for 

wastewater treatment  

WWT in urban and 
rural municipalities in 
Brazil 

Economic, Socio-
Environmental, Technical User Defined 

Area demand, quality performance, 
mechanisation rates, electric power 
consumption, CAPEX, OPEX, 
operational complexity, BOD removal 
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Srivastava and 
Singh 2022 WR 

Selection of an appropriate wastewater treatment 
chain that produces effluent suitable for the 
defined reuse 

WWT technologies 
for water reuse in 
Kanpur, India 

Economic, Environmental, 
Technical 

Full Consistency 
Method 

CAPEX, OPEX, land use, energy 
consumption 

Salamirad et al.  2023 WWT Select the most appropriate municipal WWT 
technology 

Seven WWTP 
alternatives in Iran 

Economic, Social, 
Environmental BWM 

Investment cost, reliability, efficiency, 
volume dependency, requirement for 
additional treatment, energy 
consumption, sludge production, odour, 
workforce requirement, law and 
regulation compliance, salinity 
removal, bacteria removal 
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Table 2.1 summarises DSS properties namely the technologies selected, aim, case study of 

application, and categories used to group assessment indicators. The four main technology 

groups selected using MCDM DSSs are; wastewater treatment (WWT), sewage sludge 

treatment (SST), water reuse (WR) and resource recovery (RR), or a combination thereof. Since 

2018, the development of DSSs for the selection of RR technologies has emerged as a priority 

for decision makers. The aim of each DSS has been directly quoted from the source, as this is 

key to understanding specific goals of the DSS when selecting appropriate indicators to 

facilitate desired outcomes. Lastly, the categories as defined by authors when selecting 

indicators are provided, as this is the first step DSS users and/or developers take when relating 

their goals to selected KPIs for technology assessment. The assessment category column in 

Table 2.1 highlights the popularity of using the sustainability dimensions of economic, 

environmental, social, and technical categories to group indicators. Steps of the reviewed 

MCDM DSSs are summarised in Figure 2.2, including examples at each stage from the 

reviewed literature. 
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Figure 2.2. Generic steps of MCDM technology selection DSSs, including examples and techniques available for 

use at each stage. 

 

The thirty-one papers developing MCDM technology selection DSSs were categorised in Table 

2.1 based on the type of technology being assessed. Selection of WWT technologies is the most 

common with fifteen DSSs, as WWT decision making is complex so enhanced and efficient 

treatment methods are required to meet sector goals. RR is the second most common focus, 

which can be attributed to the emphasis placed on RR by many DSSs selecting sludge treatment 

technologies, usually for energy recovery. This highlights the desire of decision makers to make 

use of a resource that was previously considered a waste during WWT, reflecting modern 

objectives at a utility and government level to enhance the circularity of their practices. Four 

DSSs for WR technology selection have been developed, acknowledging that due to global 
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warming, water stress is being exacerbated for many people, requiring water to be utilised in a 

more efficient way by decision makers. Lastly, two DSSs focused solely on the selection of 

technologies for sewage sludge treatment, whilst only one was developed that combined 

technology selection for wastewater treatment and sewage sludge treatment. It is critical to list 

the type of technologies being selected by a DSS so that the correct assessment criteria or 

indicators can be integrated. This is reflected by the low number of WWT/SST DSSs, as it is 

difficult to find a list of selection criteria that are suitable for the assessment of both treatment 

technologies since their goals and expected outcomes differ.   

2.3.1 DSS goals 

To ensure that selected technologies will result in the benefits expected by stakeholders and 

decision makers, the aim of DSS application must be clearly defined. As shown in Table 2.1, 

the most common aims used vague and generic language for the selection of the most 

suitable/appropriate/viable/best-fitting technology in ten DSSs. Although this reveals the 

intention of the DSS, rarely are these terms explained in a way that enables the user to 

understand what these ‘suitable’ technologies may look like considering the scenario of 

application. This lack of direction limits wider utilisation of developed DSSs and could explain 

why most MCDM tools have not been used across multiple case studies. Next, nine DSSs aim 

for the identification/selection/prioritisation/recommendation of technologies for a specific 

function, including non-potable water reuse or resource recovery strategies. Although this 

instructs the user with regards to the expected function of selected technologies, it does not 

provide any justification as to the reasoning for their selection. Third, the aim of seven DSSs is 

to select sustainable or assess the sustainability of alternatives. This is not useful unless a vision 

of sustainable wastewater treatment is defined by the DSS developers, as users cannot fully 

understand how to assess and compare the sustainability of alternatives. Evaluation/analysis of 

technologies utilising specified criteria such as environmental or economic aspects is another 

common DSS aim, with three identified from the collated list. These highlight the assessment 

criteria used to select technologies but does not provide the user with adequate reasoning of 

why they should implement the technologies. Finally, two DSSs aim to optimise or find the 

optimum solution, which is difficult to comprehend unless the objectives being optimised are 

explicitly defined. Without a clear definition of DSS aims, there is a disconnect in user 

knowledge, as the aim is key for understanding why a DSS is implemented and selecting the 
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correct indicators to facilitate desired outcomes. Therefore, vague language must be mitigated, 

and complete definition of aims is encouraged from DSS developers to help users implement 

technology selection tools correctly.  

2.3.2 Indicator selection 

As discussed, selection of assessment indicators or criteria when using any WWTP DSS is 

crucial to ensure that the chosen technology fulfils decision maker and stakeholder goals. 

Therefore, the methodologies implemented for indicator selection by the reviewed MCDM 

tools are scrutinised and summarised in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Methods of indicator selection used by MCDM technology selection DSSs, with the number DSSs 

using each method in bold.    

 

Figure 2.3 shows that it is common for DSS developers to self-select indicators or provide a list 

to users from which they can choose indicators, with little methodological explanation given 

(An et al., 2018; Castillo et al., 2016; Chhipi-Shrestha et al., 2017; Chrispim et al., 2020; Fetanat 

et al., 2021; Garrido-Baserba et al., 2015; Gherghel et al., 2020; Južnič-Zonta et al., 2022; 

Renfrew et al., 2022; Srivastava and Singh, 2022; Sucu et al., 2021). This results in a significant 

gap in DSS user knowledge, as they are unable to reason whether the selected indicators are 
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relevant to their scenario of application. In these cases, data availability can be used to guide 

indicator selection, as users should rely on primary data where possible or secondary data that 

can be acquired through reasonable effort, such as modelling, whilst meeting data quality 

requirements. To improve the robustness of indictor selection, some authors define criteria or 

provide additional justifications that can be used to choose appropriate indicators from literature 

(Arroyo and Molinos-Senante, 2018; Attri et al., 2022; Liu and Ren, 2022; Molinos-Senante et 

al., 2014; Nkuna et al., 2022; Palma-Heredia et al., 2020; Sadr et al., 2018). For example, 

Molinos-Senante et al. (2014) reasons indicators selection using transparent, representative, 

relevant and quantifiable evaluation criteria, however, definitions of these terms are not 

provided potentially resulting in ambiguity for the user.   

More complete approaches conducted structured literature reviews for indicator selection (da 

Silva Junior et al., 2022; Leoneti et al., 2022; Lizot et al., 2021). Lizot et al. (2021) describes 

the terms entered into literature search engines to collect assessment criteria utilised by other 

WWT MCDM tools, and then lists specific information and data availability requirements 

applied to create indicator shortlists. However, only a short description of shortlisting steps is 

given which focuses on technical aspects (such as plant load, location, or size), rather than 

sustainability goals. Alternatively authors used knowledge of local factors to select appropriate 

DSS indicators from literature (de Almeida et al., 2022; Oertlé et al., 2019). Đurđević et al. 

(2020) utilised their own judgement to select DSS indicators considering the state of wastewater 

and sewage sludge management, socio-economic standards, and available data (from national 

databases) in the local area. Liu et al. (2020) provides an explanation of the local context for 

each indicator provided, such as using economic costs as the project may need some financial 

support from the community or process simplicity due to the lack of professionals for operation. 

This strategy encourages the DSS user to consider local factors during decision making, 

however, a more robust approach is to use local stakeholder perspectives as well.  

Some DSS developers recognise the importance of rigorous indicator selection to achieve 

desired outcomes by utilising external expert or stakeholder opinions, for example to screen 

assessment criteria from a longlist identified during literature review (Ali et al., 2020; Salamirad 

et al., 2023). Ling et al. (2021) developed a method starting with a round of literature review to 

collate indicators previously used to evaluate WWT performance. The list is then refined based 

on key terminology mentioned during interviews (thematic analysis using Nviva software) with 

water company employees utilising the DSS. Eseoglu et al. (2022) employs the use of a 
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questionnaire study by experts from across many roles in WWTPs from design to operation, 

and combines this with other information including effluent discharge regulation, 

environmental impacts, and design parameters. These DSSs acknowledge that indicator 

selection is an important part of strategic MCDM, and the combination of stakeholder views 

with technical appraisal of local factors enables the user to select indicators which adequately 

reflect their goals. Figure 2.3 highlights that these more robust indicator selection methods are 

less popular, helping to answer the research question by reporting a lack of robust methods for 

indicator selection in most of the DSSs developed for WWTPs. 

The specific indictors selected showed that only two DSSs did not utilise economic indicators 

(Chrispim et al., 2020; Fetanat et al., 2021), with most the common being capital and operating 

expenditure, whilst others chose life cycle costing (LCC) (Chhipi-Shrestha et al., 2017) and net 

present value analysis (Lizot et al., 2021). Removal efficiencies of regulated wastewater 

constituents, including total suspended solids (TSS), chemical oxygen demand (COD), 

biological oxygen demand (BOD), nitrogen, and phosphorus, were commonly selected to 

determine treatment performance (Arroyo and Molinos-Senante, 2018; Eseoglu et al., 2022; J 

Ling et al., 2021; Liu et al., 2020; Molinos-Senante et al., 2015; Silva Junior et al., 2022). 

Indicators of environmental performance covered GHG emission (Gherghel et al., 2020; Južnič-

Zonta et al., 2022; Jiean Ling et al., 2021), carbon footprint (Chhipi-Shrestha et al., 2017; 

Renfrew et al., 2022), and life cycle assessment (LCA) (usually eutrophication, climate change, 

and acidification) impacts (Castillo et al., 2016; Lizot et al., 2021). Effort was made to consider 

the social impacts of technologies, commonly their odour and noise aspects (Eseoglu et al., 

2022; Oertlé et al., 2019; Sucu et al., 2021), whilst some quantified microbial (Chhipi-Shrestha 

et al., 2017) and ecological risks (Liu et al., 2020). In most cases, circularity indicators were 

combined with environmental KPI sets, including water reuse (Eseoglu et al., 2022; Lizot et al., 

2021), resource or product recovery potential (Chrispim et al., 2020; Renfrew et al., 2022), and 

material circularity (Palma-Heredia et al., 2020). Lastly, technology energy consumption was 

one of the most commonly selected indicators, however, only a few DSSs consider renewable 

energy (Lizot et al., 2021), energy reduction (Durdević et al., 2020), or self-sufficiency (Palma-

Heredia et al., 2020) dimensions.  

From this it is clear that DSS developers select indicators from across the triple bottom line to 

support sustainable performance, but there is a gap in terms of facilitating sustainability targets 

and circularity assessments. Few KPIs are explicitly selected to quantify progress towards the 
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high-level water sector targets of Section 2.2.1 by failing to link indicator selection with targets 

such as GHG reduction, phosphorus recovery, or energy neutrality. This even includes those 

DSSs with the aim of selecting technologies for sustainable and circular actions, such as water 

reuse or energy recovery.   

2.3.3 Indicator categorisation 

Often criteria or indicators are categorised to show user assessment priorities and indicate 

potential benefits or impacts of selected technologies. Table 2.1 defines the DSSs categories 

employed to separate indicators and shows that twenty of the thirty-one DSSs utilise discrete 

sustainability pillars. The most popular combination uses four environmental, economic, social, 

and technical (assumed interchangeable with functional, operational, or resilience) categories. 

Nine DSSs used a combination of other categories defined by the developers, and some did use 

sustainability pillars, however, they were combined to create hybrid socio-economic or -

environmental categories. Many DSSs also utilise circularity KPIs, however, as mentioned in 

Section 2.3.2 they are categorised as environmental indicators. This is worrying as enhancing 

the circularity of wastewater resources does not directly correspond to improved environmental 

performance. This leads to a significant gap in decision maker knowledge as circularity 

indicators are being used to as a substitute for sustainability impacts. Therefore, DSSs with 

circularity objectives, such as resource recovery, need standardised assessments that use CE 

indicators to evidence enhanced resource circularity, supported by sustainability analysis to 

quantify wider benefits. This will facilitate technology selection that simultaneously meet the 

water sector sustainability and circularity targets detailed in the European Green Deal and 

CEAP. 

Some DSS developers created hybrid categories including socio-economic (Đurđević et al. 

2020) and socio-environmental (Silva Junior et al., 2022), or combined environmental and 

technical categories together (Chrispim et al., 2020). This suggests authors may be unsure as to 

which categories some indicators belong. This is further perpetuated by authors placing the 

same indicators in different sustainability pillar categories. For example, WWT technology 

removal efficiencies have been placed in environmental sustainability (Liu et al., 2020; Lizot et 

al., 2021; Molinos-Senante et al., 2014) and technical categories (Eseoglu et al., 2022; Silva 

Junior et al., 2022). This may explain the increase in popularity of using the four pillars of 

sustainability for categorisation in recent years, as it enables delineation of operational and 



34 

 

environmental KPIs, highlighting the desire of decision makers to understand the environmental 

impacts of potential technologies more clearly. However, this seems to result in some confusion 

regarding the objectives of certain indicators, such as GHG/carbon footprint, as Đurđević et al. 

(2020) defines this as a technical indicator, whereas Lizot et al. (2021) utilises it as an indicator 

of environmental performance. Similarly, odour and noise indicators are placed in both 

environmental (Sucu et al., 2021) and more commonly social categories (Eseoglu et al., 2022; 

Lizot et al., 2021; Molinos-Senante et al., 2014). These differences evidence the need to 

enhance sustainability/circularity assessment knowledge and develop standardised methods for 

KPI selection and categorisation. 

The popularity of indicator categorisation using sustainability pillars has led to some DSS 

developers using this method even when their defined aims do not refer to sustainable 

technology selection. To combat this, some authors generated their own indicator categorisation 

strategies. Fetanat et al. (2021) developed indicator categories using the water-energy-food 

nexus framework to view wastewater as a renewable energy source, which aligns with the DSS 

goal to prioritise energy recovery from WWT. Palma-Heredia et al. (2020) created an indicator 

hierarchy depending on the scale of the application, therefore allowing decision makers at 

regional, WWTP, and operational levels to prioritise certain indicators. Although these 

categorisation methods are not as established in literature as sustainability pillars, developing 

indicator categories which consider DSS goals may be a more effective way for users to 

understand the indicators required to achieve their aims, especially whenever sustainable 

technology selection is not the objective. However, it can be concluded there is confusion when 

categorising selected indicators and how this activity aligns DSS outcomes with decision maker 

goals.   

2.3.4 Indicator weighting 

Weighting of MCDM indicators is a critical stage for DSS users, as it enables them to prioritise 

or mitigate specific criteria that may align or conflict with their objectives. Therefore, the 

frequency of each technique implemented by DSS developers for indicator weighting is 

provided in Figure 2.4. The MCA discussed are those currently employed by water sector DSSs 

and does not reflect best practices for multi-attribute decision making. 
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Figure 2.4. Methods used to weight indicators for MCDM technology selection DSSs. 

 

It is common for indicators to be weighted according to the DSS user, and then a weighted 

summation is simply calculated to create a composite indicator used to analyse technologies. 

Garrido-Baserba et al. (2015) and Palma-Heredia et al. (2020) develop DSS weights for 

indicators that are predetermined and fixed, and given equal weighting respectively. Although 

this simplifies DSS usage, this weighting system is not recommended as it does not provide 

users with the ability to tailor KPI impacts to reflect their goals, which can be viewed as 

undermining the principles of MCDM. Another method commonly employed by DSS 

developers is to allow users to define weights themselves, (Castillo et al., 2016; Chhipi-Shrestha 

et al., 2017; Južnič-Zonta et al., 2022; Oertlé et al., 2019; Renfrew et al., 2022; Silva Junior et 

al., 2022; Sucu et al., 2021), however, DSS users can be faced with more than 20 indicators so 

assigning weights without a structured methodology of comparing indicators can lead to 

inconsistencies during analysis. This can result in indicator weightings that do not align 

adequately with aims and lead to bias in the assessment. Therefore, techniques are employed 

by DSS developers enabling structured analysis of indicators using opinions of experts and 

stakeholders.  

The analytical hierarchy process (AHP) is the most common weighting method used by 

reviewed DSSs with eleven. AHP was proposed by Saaty (1987) for decision making influenced 

by multiple independent factors (Liu et al., 2020). It investigates the relationship between 

criteria to create a hierarchy from which they can be prioritised (Eseoglu et al., 2022), often 
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utilising external experts and stakeholders to create pair-wise comparisons. Therefore, many 

DSSs reviewed use standard AHP for weighting indicators (Đurđević et al., 2020; Gherghel et 

al., 2020; Jiean Ling et al., 2021; Lizot et al., 2021; Molinos-Senante et al., 2014; Nkuna et al., 

2022). However, Ling et al. (2021) reported rarely seeing extreme scores on the judgement 

scale, and when the full scale was used the threshold consistency ratio (compares the weighting 

matrix against a random matrix, acceptable value of ≤0.1) is often not achieved. To overcome 

the uncertainty due to imprecise human judgements or ambiguity, fuzzy logic is implemented 

(Eseoglu et al., 2022). Many DSSs employ fuzzy-AHP weighting (An et al., 2018; Büyüközkan 

and Tüfekçi, 2021; Eseoglu et al., 2022; Liu et al., 2020; Sadr et al., 2018), providing a 

structured method of indicator weighting whilst mitigating inconsistencies of human thinking.  

Apart from AHP, DSS developers integrated a variety of weighting methods (Ali et al., 2020; 

Attri et al., 2022; de Almeida et al., 2022; Fetanat et al., 2021; Leoneti et al., 2022). Arroyo and 

Molinos-Senante (2018) implement Choosing-By-Advantages (CBA), citing several 

improvements over AHP including that it does not assume linear trade-offs between criteria. 

CBA encourages DSS users to understand the differences between criteria and assesses the 

importance of these differences, as supposed to AHP which can create conflicting questions. 

The Best-Worst Method (BWM) used by Liu and Ren (2022) and Salamirad et al. (2023) 

provides a simpler weighting step for decision makers as the number of comparisons is reduced, 

improving the consistency ratio of results and removing much of the uncertainty during pairwise 

comparisons. Srivastava and Singh (2022) simplify weighting even further by employing the 

Full Consistency Method, minimising the number of comparisons to achieve consistent results.  

Lastly, some DSS developers recommend the use of ‘experts’ without actually defining whom 

this might include (Attri et al., 2022; Liu et al., 2020), collecting opinions from stakeholders 

with little knowledge of the investigated system or local area, leading to inconsistent results. 

Whereas Eseoglu et al. (2022) utilises expert opinions from every stage of WWT including 

design, construction and operation engineers, and Gherghel et al. (2020) acknowledges the 

viewpoints of stakeholders from six different specialities, such as political, environmental, and 

plant operator stakeholders to ensure the holistic collection of viewpoints. Therefore, 

stakeholders with a range of expertise that understand local factors for indicator weighting 

should be used to reduce bias and inconsistency. 

Generally, the majority of DSSs in this study rely on AHP to weight criteria, which is 

corroborated by other reviews in the area (Kozłowska, 2022; Zolghadr-Asli et al., 2021), 
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potentially incorporating high levels of uncertainty. Therefore, to ensure better indicator 

utilisation fuzzification and consultation of relevant experts can be used to reduce uncertainty. 

Additionally, methods recommended in literature, not utilised by the water sector DSSs 

reviewed, to mitigate weighting procedure errors are the entropy method for objective weight 

assignment or analytical network process (ANP) to account for correlations between criteria 

(Zolghadr-Asli et al., 2021).  

2.3.5 Indicator scoring 

A range of methods to score assessment indicators have been utilised due to the variety of scales 

and units of indicator results, and often the mix of quantitative and qualitative indicators 

selected. Linguistic (such as very bad to very good) or numerical (can be from 0 up to 10) series 

are commonly integrated to normalise results enabling their combination. Several DSSs rely on 

the experts used for indicator weighting to assign numerical ratings directly based on their 

opinion (Đurđević et al., 2020; Jiean Ling et al., 2021; Renfrew et al., 2022), usually when there 

is lack of empirical data (Jiean Ling et al., 2021). Alternatively, Fetanat et al. (2021) relied on 

linguistic terms to rate technology alternatives as the indicators selected were immeasurable 

(such as energy security availability).  

Literature searches were used to establish numeric ranges of indicator results for each 

technology assessed (Attri et al., 2022). Silva Junior et al. (2022) collected data from technical-

scientific literature relevant to case study location and assigned the final result by calculating 

the mean of the data range found. Before combination of indicator results, they were normalised 

to a value between 0-1 using the lowest and highest value observed for each parameter. Rather 

than quantitatively normalising values collected from literature, Liu and Ren (2022) utilised a 

linguistic scale of five from very good to very poor, whilst Lizot et al. (2021) created ranges for 

each indicator to assign a numeric value to normalise quantitative indicator scores.  

Lastly, a common method for assigning scores to indicators is to directly quantify results 

(except for the indicators which are inherently qualitative). It was observed that most 

environmental and economic indicators were quantifiable, whilst technical and social indicators 

were qualitatively scored (Castillo et al., 2016; Leoneti et al., 2022; Liu and Ren, 2022; 

Molinos-Senante et al., 2014). Quantitative calculation of each indicator investigating 

technology performance is recommended, as it incorporates specific details and local factors of 

the case study. Relying on the judgement of DSS users or external experts enables uncertainty 
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through the ambiguity or bias of human decision making to incorrectly score technologies. 

Furthermore, the use of values extracted from literature can mitigate the influence of local 

factors which can be pertinent for economic and technical indicators. Of course, when using 

qualitative indicators to investigate social aspects, local stakeholder views should be used to 

score technologies, due to their greater understanding of potential impacts in a given region.  

2.3.6 Ranking 

The final step is to rank technologies for selecting the technology which supposedly best meets 

user requirements. Palma-Heredia et al. (2020) presents KPI results and recommends the DSS 

user to complete pairwise comparisons for technology selection. Although this is a simple 

method of completing the final ranking, extensive indicator lists create complexity and 

inconsistencies in user judgement. Therefore, the most common method of technology ranking 

employed by DSS developers is to create a composite indicator using the weighted sum method 

(Castillo et al., 2016; de Almeida et al., 2022; Garrido-Baserba et al., 2015; Gherghel et al., 

2020; Liu and Ren, 2022; Molinos-Senante et al., 2014). This synthesises indicator scores and 

their corresponding weights into a single performance index used to rank and select 

technologies (Jiean Ling et al., 2021). 

In the cases where multiple experts or stakeholders are used to weight or score assessment 

indicators, systematic analysis of results is needed to rank and select technologies. The 

technique for order of preference by similarity to ideal solution (TOPSIS) is commonly coupled 

with AHP. TOPSIS selects the best alternative based on the shortest distance to the ideal 

solution and the farthest distance from the negative-ideal solution in geometric terms (Južnič-

Zonta et al., 2022), to intensify the correctness and validate selection of the most appropriate 

technology (Nkuna et al., 2022). When fuzzification of data has occurred during indicator 

weighting, to improve the robustness of outcomes, this can be continued to complete fuzzy-

TOPSIS (Attri et al., 2022; Büyüközkan and Tüfekçi, 2021; Eseoglu et al., 2022; Liu et al., 

2020; Sadr et al., 2018). Another method employed to overcome the uncertainty of comparative 

analysis, is fuzzy-VIKOR as used by Ali et al. (2020), which utilises positive and negative 

characteristics to define compromises when conflicting views cause issues with decision 

making. This is achieved by calculating three variables to establish the summation and 

maximum distance from the best value, which are then combined to calculate an overall score.  
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Alternatively, Leoneti et al. (2022) implements game theory to determine the preferred option 

from the list of acceptable outcomes, selecting the technology that maximises the Nash 

equilibria social welfare function. Lastly, Fetanat et al. (2021) utilised the linear assignment 

method (LAM) to rank technologies for energy recovery from WWTs. This method is chosen 

as it ranks alternatives according to conflicting criteria, by analysing the trade-offs between the 

ranking of each indicator for each technology. Therefore, LAM may be beneficial as wastewater 

and sewage sludge treatment shifts to prioritise other functions, such as resource recovery or 

water reuse. Studies in this area agree that TOPSIS is the most common ranking procedure 

(Štilić and Puška, 2023), however, best practice depends on the scenario of application. 

Methods such as the preference ranking organization method for enrichment evaluation 

(PROMETHEE) and elimination and choice expressing the reality (ELECTRE) methods are 

suited to handle conflicting stakeholder priorities (Štilić and Puška, 2023), whereas fuzzy logic 

and use of experts from as many specialities as possible should be used to tackle subjective 

ranking issues (Garcia-Garcia, 2022).  

2.3.7 Uncertainty 

There are various types of uncertainty that exist in MCDM that can arise at each step of DSS 

utilisation resulting from: variation, ambiguity, and incomplete preferences of human inputs; 

lack of system, parameter, data, external factor, or model knowledge; and prediction of 

outcomes or future events (climatic or socio-economic changes) (Walling and Vaneeckhaute, 

2020). There are many methods to deal with MCDM uncertainty, one being fuzzification of 

scoring, weighting, and ranking procedures reliant on human judgement, as previously 

discussed in Section 2.3.4, 2.3.5, and 2.3.6. Alternatively, sensitivity analysis is able to provide 

decision makers with insights into the uncertainty resulting from erroneous modelling of the 

assessed system or potential/future scenarios. 

Scenario investigation is a widely applied method of sensitivity analysis, in which MCDM 

indicator weighting is altered to reflect different viewpoints or future situations. For example, 

Molinos-Senante et al. (2014) and Salamirad et al. (2023) conducted scenario analysis by 

favourably weighting environmental, economic, and social KPIs in turn, validating the selected 

technology (constructed wetlands and integrated fixed-film activated sludge respectively) still 

ranked highest under alternative weighting schemes. Alternatively, Renfrew et al. (2022) 

improved the robustness of technology selection by weighting KPIs based on potential future 
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scenarios, including legislative changes for emissions compliance and carbon footprint 

reduction, and selecting technologies based on their average performance across the scenarios. 

Furthermore, global sensitivity analysis (GSA) was utilised to verify that technology ranking is 

robust to fluctuating inputs over a +/-10 % range and investigate which parameter’s uncertainty 

have the largest impact on MCDM outcomes, educating future assessments (Renfrew et al., 

2022). Lastly, Južnič-Zonta et al. (2022) aimed to use Monte-Carlo (MC) simulations to 

overcome probabilistic uncertainty of bio-chemical modelling processes to configure design 

parameters, before technology ranking is calculated and verified over each iteration (however 

this was not included in case study). Therefore, if potential errors are likely to be introduced by 

MCDM structure or case study that impact outcomes, then sensitivity analysis (scenario or 

global) should be used to validate the robustness of DSS results. 

2.3.8 Recommendations 

As discussed, there are already many reviews of DSS typologies in the literature, therefore, the 

review focuses on how indicator usage can be improved based on the methods currently 

implemented for WWTP technology selection. Therefore, following the review of thirty-one 

MCDM DSSs final recommendations and comments are provided in Table 2.2. Unfortunately, 

Sections 2.3.2 and 2.3.3 highlight the significant gap related to the utilisation of circularity and 

sustainability indicators, mainly that circularity aspects are used to investigate environmental 

performance and the lack of alignment with water sector goals reported as part of European 

Green Deal and CEAP. Additionally, WWTP DSSs still rely on user defined weighting, scoring, 

and ranking procedures, or structured methods, such as AHP and TOPSIS, which have issues 

with introducing uncertainty to the assessment. Generally, decision making in the water sector 

is still some distance from standardisation and harmonisation of sustainability and circularity 

assessments.  
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Table 2.2. Summary of issues, recommendations, and beneficial outcomes related to the reviewed wastewater 

treatment MCDM technology selection DSSs.  

Issue Recommendation Outcome 

Few DSSs provide a clear definition of aims 
or goals 

Defining the goal and scope of the assessment 
should become common practice, as the first 
step of DSS development or application 

Help decision makers understand the desired 
outcome of DSS utilisation 

Rigorous indicator selection is often 
overlooked by DSS developers and do not 
consider high level water sector goals 

Utilise participatory methods to incorporate 
local stakeholder, business (water utility), and 
regional/governmental objectives 

Technology selection using KPIs that 
adequately reflects desired results and 
facilitate sector transformation 

Indicator categorisation is often unclear 
resulting in inconsistencies across DSSs, 
mitigating circularity objectives 

Use categorises that reflect the intentions of 
the DSS, helping to create more robust 
weighting strategies and consider CE targets 
of the water sector 

Help to select and group relevant indicators, 
such as using sustainability pillars when 
selecting sustainable technologies, and 
mitigate the alignment of CE metrics with 
sustainability impacts  

Expert or user defined weighting schemes can 
lead to a lack of local factor consideration  

Stakeholders with an understanding of the 
local area from a range of job roles should be 
used for indicator weighting 

Ensures that DSSs select technology that will 
meet the local demands in each scenario of 
application and reduce uncertainty of results 

Unstructured or subjective weighting and 
ranking methods can lead to uncertain 
outcomes 

Consider the specific issues of each DSS 
application to decide which method should be 
used to reduce uncertainty, such as entropy 
methods to enhance the objectivity of 
weighting, and either fuzzy logic to reduce 
human error or PROMETHEE/ELECTRE to 
overcome conflicting priorities during ranking 

Remove the inconsistency and reduce 
uncertainty that can arise when human inputs 
are used to weight and rank indicators 

There is little critical analysis of final 
technology selection in relation to decision 
maker goals 

Techniques such as sensitivity analysis should 
be applied to investigate DSS outcomes 

Ensure that the method is consistent across 
alternative scenarios, enhancing robustness of 
final technology selection 

 

It is worth noting that analysis of DSS case studies showed that economic indicators were 

commonly prioritised during the weighting stages (Eseoglu et al., 2022; Liu et al., 2020; Lizot 

et al., 2021; Sadr et al., 2018). The CBA method employed by Arroyo and Molinos-Senante 

(2018) excluded economic indicators during the initial assessment, prioritising environmental 

and social factors, as monetary resources available are usually the constraint for any project. 

Environmental and social indicator results are then plotted against cost to facilitate the selection 

of the best technology option. Authors highlight the impacts of this by comparing AHP with 

CBA and showed that by considering economic factors alongside environmental and social 

indicators, unfavourable impacts were offset by low capital and operating costs. Therefore, as 

governments demand improved environmental and social performance of WWT in the coming 

years, to achieve targets such as net zero, the exclusion of economic indicators from initial 

assessment may be favoured.   
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2.4 Multi-objective optimisation control 

Following the selection of technologies, another type of DSS is needed for multi-objective 

optimisation of WWTP process operation and control. It is necessary to conduct distinct 

analysis of these DSS types as they are utilised differently by decision makers. Therefore, 

alternative methods and indicators are required, as it was seen that technology selection DSSs 

focus on sustainability KPIs whereas operational optimisation DSSs target cost and regulatory 

(effluent quality) aspects. Table 2.3 summarises the multi-objective process optimisation 

WWTP DSSs collected from literature, resulting in the review of twenty-six articles.  
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Table 2.3. Summary of multi-objective control DSSs for optimisation of WWTP operation.  

Author Year Control Aim Application Objective Function 

Qiao et al. 2018 Dynamic Achieving the effluent quality (EQ) 
requirements and minimizing the EC BSM1 Energy consumption (EC) and 

EQI 

Díaz-Madroñero 
et al. 2018 Static Develop more sustainable water 

systems 
2,500 PE WWTP in 
Alicante, Spain 

Total connections costs, total 
freshwater use, and total 
regenerated freshwater use 

Han et al. 2018 Dynamic Optimal control operation with EC 
reduction while retaining standard EQ BSM1 EC and EQI 

Qiao and Zhou 2018 Dynamic 
Acquire the balance between EC and 
EQ with the usage of the best set 
points 

BSM1 EC and EQI 

Qiao et al. 2019 Dynamic 
Suitable set-points to balance the 
treatment performance and the 
operational costs 

BSM1 EQI and EC 

Zhou and Qiao 2019 Dynamic 
Optimal control strategy is designed 
to reduce EC without violating 
effluent standards 

BSM1 EQI and OCI 

Pisa et al. 2019 Dynamic 
Reduction of the number of violations 
as well as the improvement of 
WWTP’s EQI and OCI metrics 

BSM2 EQI and OCI 

Dai et al.  2019 Dynamic 
Optimal modification of an 
anaerobic–anoxic/nitrifying/ induced 
crystallization (A2N-IC) process 

ASM-2D EQ, operating cost, and total 
volume 

Borzooei et al. 2019 Static 
Evaluate and improve existing process 
performance in addition to optimize 
the production of renewable energy  

2 million PE 
Castiglione Torinese 
WWTP, Italy 

EQI and ECI 

Mannina et al. 2020 Static 
Optimization ... in terms of 
operational costs and direct 
greenhouse gases emissions. 

Pilot plant MBR 

Effluent Fine, EQI (liquid and 
gas), oxygen-to-total-Kjeldahl-
nitrogen ratio, ratio nitrate-
ammonia, CO2 and N2O 
emissions, and direct and 
indirect GHG emissions. 

Revollar et al. 2021 Static Improving the eco-efficiency of 
WWTPs BSM2 

EQI, OCI, Net energy, Excess 
heating energy, Electricity 
consumption, Energy/Pollution 
removed, Energy net/Pollution 
removed, Violations of the 
permit limits of effluent N, NH4 
and COD 

Heo et al. 2021 Dynamic Operate at cost-efficient and 
sustainable WWTP BSM2 EQI, OCI, CH4 reutilised as 

energy source 

Ortiz-Martínez et 
al. 2021 Dynamic Optimize an economic cost term and 

an effluent quality index BSM1 EQI and economic cost 

Han et al. 2021 Dynamic Achieve excellent treatment 
performance for a WWTP 

BSM1 and 10,000 
m3/d WWTP Beijing, 
China 

EC and EQI 

Tejaswini et al. 2021 Dynamic 
Enhance the performance of the 
WWTP by optimizing the parameters 
of the default control strategy 

BSM1 EQI and OCI 
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Chen et al. 2021 Static Obtain sustainable control strategies 
10,000 PE WWTP 
Jiangsu Province, 
China 

LCC and three LCA impact 
indicators (energy consumption, 
eutrophication, GHGs) 

Campana et al.  2021 Dynamic 
Reduce WWTP operating costs, 
improving at the same time treated 
effluent quality 

86,400 PE WWTP, 
Italy 

Self-sufficiency ratio and net 
present cost 

Li et al.   2021 Dynamic 
Meet the requirements of effluent 
quality and maintain sustainable 
operation with the lowest energy cost 

BSM1 EC and EQI 

Fox et al. 2022 Dynamic 
Best setup that can enable optimal 
operational, environmental and 
energy performance 

Residential 
development SBR 

NH4 removal, prediction error, 
treatment time reduction 

Xie et al.   2022 Dynamic Achieve tracking control of the main 
operating variables of the WWTP BSM1 EC and EQI 

Niu et al. 2022 Dynamic Optimize EQ and EC in wastewater 
treatment process BSM1 EC and EQI 

Han et al. 2022 Dynamic Optimal control strategy is proposed 
to improve the performance of WWTP BSM1 EQI, pumping energy, aeration 

energy 

Caligan et al. 2022 Static 
Minimize the system’s overall 
economic costs and environmental 
greenhouse gas emissions 

Wastewater sludge to 
bioenergy park Cost and GHG emissions 

F. Li et al. 2022 Dynamic Optimize the control of WWTPs BSM1 EC and EQI 

Han et al. 2022 Dynamic 
Guarantee satisfactory EQ and EC 
with the excellent control accuracy of 
WWTP 

BSM1 EC and EQI 

Du and Peng 2023 Dynamic Optimal control of wastewater 
treatment process BSM1 EC and EQI 

 

Table 2.3 shows that there has been an increase in the number of publications in this area, 

growing from four in 2018 to seven in 2022 which coincides with the availability of Benchmark 

Simulation Model (BSM) 1 and BSM2 (IWA, 2018) for testing WWTP control strategies. It 

was noted that some authors have published multiple papers in this area in recent years, testing 

different algorithms to find the optimal control strategy on the same simulation platform. DSSs 

were then categorised depending on their ability to optimise the control of process operation 

dynamically or statically. They were classified as dynamic if they could respond to changes in 

real-time to find the optimal control parameters, whereas static systems relied on user defined 

values and then calculated KPIs utilising model results. Most DSSs were dynamic, which 

corresponds with use of BSMs as time series data across three weather conditions is available 

for simulation testing (IWA, 2018). Generally, DSS aims were stated in clearer terms than those 

for MCDM technology selection, often stating which performance parameters or KPIs are being 

targeted for optimisation. Most DSSs were not applied to real case studies and applied to BSMs 



45 

 

instead due to the complexity and non-linearity of WWTP modelling. This reliance results in 

little variation of the type or number of KPIs selected to optimise systems, as BSMs have 

predefined KPIs related to effluent quality and energy consumption/cost. 

As shown in Figure 2.5, the BSM1 plant is a 5-compartment activated sludge reactor modelled 

using Activated Sludge Model (ASM) 1, with configuration facilitating nitrification-

denitrification for biological nitrogen removal. The model utilises proportional-integral (PI) 

controllers to control the dissolved oxygen (DO) level by manipulating the oxygen transfer 

coefficient, and nitrate level setpoints by changing the internal recycle rate in the fifth and 

second compartments respectively (IWA, 2018). The performance assessment of the plant is 

based on two main KPIs; the effluent quality index (EQI) and overall cost index (OCI). The 

EQI is the weighted sum (weightings from literature) of effluent contaminant TSS, COD, BOD, 

Kjeldahl nitrogen (TKN), and nitrate (NO3-). The other indicator is the OCI which combines 

cost factors of sludge production, aeration energy, pumping energy, mixing energy, and external 

carbon consumption (Alex et al., 2018). BSM2 utilises the same wastewater treatment process, 

with the addition of sludge anaerobic digestion. Therefore, the OCI is updated to balance heat 

energy required and energy generated from methane production. It is also stated that the number 

of effluent limit violations and amount of time limits are not met must be reported, meaning 

operation is constrained by discharge limits of NH4 ≤ 4 mg/l; total nitrogen (TN) ≤ 18 mg/l; 

TSS ≤ 30 mg/l; BOD≤ 10 mg/l; COD ≤ 100 mg/l (Alex et al., 2018).  

Figure 2.5. BSM1 process flow diagram and control systems based on figure from IWA (2018) where Q is the 

flowrate, S is the set point, PI is the controller, and KLa is the transfer coefficient. 
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2.4.1 DSS goals 

In Section 2.3 it was revealed that MCDM technology selection DSS aims are too generic, 

meaning it is difficult to relate indicator selection to desired outcomes. Many of the multi-

objective process optimisation DSSs reviewed in Table 2.3 take the opposite approach, as 

twelve stated the KPIs targeted for optimisation in their aims. This definition enables users to 

clearly understand the outcomes that can be expected when implementing this optimisation 

technique, however, many of these DSSs relied on BSMs meaning there is little flexibility in 

the indicators utilised. Another helpful method of defining DSS aims for the user is to identify 

its specific function. For example, Borzooei et al., (2019) and Revollar et al. (2021) aimed to 

optimise the production of renewable energy and improve the eco-efficiency of WWTPs 

respectively, making it clear to users the reasons for implementing this DSS and selecting 

indicators for optimisation. Still, a significant number of multi-objective optimisation DSS 

developers use vague language when stating their aims. Eight DSSs aim to either optimise or 

improve performance of WWTPs, whilst three DSSs aim for sustainable operation or control 

of WWTPs, without explicitly stating which areas are targeted. Therefore, DSSs clearly define 

their aims, but few explicitly relate this to sustainability or circularity objectives, aiming to 

generally ‘optimise WWTP performance’ or improve conventional operation KPIs.   

2.4.2 Static vs dynamic control 

Of the twenty-six DSSs reviewed in Table 2.3, six provided users with static control strategies 

for improving the operation of WWTPs, meaning the results are used by operators to make 

decisions rather than the DSS dynamically altering operation. Borzooei et al., (2019) created a 

simulation of a large-scale WWTP and altered the SRT between 10-40 days, then plots the EQI 

and EC results to establish the optimal SRT for process operation. Mannina et al. (2020) goes 

a step further by using TOPSIS to optimise five operational parameters using ten KPIs and 

combining this with E-FAST sensitivity analysis to understand the influence of operating 

parameters on performance. These static DSSs allow users to observe and understand what an 

optimised system may look like, enabling them to derive and implement the WWTP control 

strategy. The remaining twenty DSSs are able to dynamically alter operation parameters without 

user interference. For example, Heo et al. (2021) uses the fuzzy c-mean algorithm to process 

and cluster influent data to predict initial BSM2 setpoints, a deep neural network then completes 
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the multi-objective optimisation calculation for EQI, OCI, and biogas generation performance 

indicators, and finally the NSGA-II algorithm searches for the optimal setpoint of each 

controller. Therefore, the WWTP can maintain optimal performance and respond to fluctuations 

in influent composition. The use of DSSs for dynamic optimisation means that indicator 

selection must focus on KPIs that are calculated from data that is easily and reliably monitored 

over a given period.  

2.4.3 Modelling platform 

Of the nineteen DSSs that dynamically control WWTP operation, fourteen are implemented in 

BSM1 without being tested on real processes. In most cases these DSSs are made up of two 

algorithms, one responsible for the multi-objective optimisation of KPIs (commonly a neural 

network) and another for determining the set point of controllers (such as a NSGA-II or 

AMODE algorithm (Heo et al., 2021; Ortiz-Martínez et al., 2021; Qiao et al., 2019, 2018; 

Tejaswini et al., 2021)). The repeated investigation of different algorithm combinations is 

necessary to which results in the best EQI and OCI outcomes, and lowest controller error (Du 

and Peng, 2023). Two DSSs are used to control the operation of BSM2, enabling users to 

optimise operation considering biogas production as part of the OCI. Two DSSs are utilised for 

the dynamic control of actual processes including the work of Han et al. (2021) which runs 

initial tests on BSM1 then uses data extracted from the SCADA system of a 10,000 m3/d plant 

in Beijing, China to run experimental tests. Lastly, Dai et al. (2019) developed their own 

optimisation models, using ASM-2D to optimise a WWTP for inducing crystallisation. 

Therefore, few DSSs have been tested on real systems so may not perform as expected when 

applied at different scales or locations, especially under unexpected influent loadings. It is 

recommended that users test DSSs in real systems or on models that represent the specific 

process it will be applied to, ensuring optimisation reflects the operational expectations of 

decision makers. 

In the cases of static control, the DSSs developed usually rely on simulation software or the 

development of process models. Four DSSs used their own models which facilitated the 

selection and utilisation of less conventional KPIs, including regenerated water usage (Díaz-

Madroñero et al., 2018), energetic self-sufficiency (Campana et al., 2021), and environmental 

impact (kg CO2eq) (Caligan et al., 2022). Two DSSs simulated WWTPs in Hydromantis’s GPS-

X software, with configurations based on real-world processes (Chen et al., 2021) and fed with 
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historic data taken from plant SCADA systems (Borzooei et al., 2019). Lastly, Revollar et al. 

(2021) specify four scenarios (fluctuating DO, NH4, and internal recycle setpoints) in BSM2, 

which enables the calculation of eco-efficiency indicators for comparing control strategies. 

Therefore, static control systems are able to optimise a greater variety of KPIs, like the EQI and 

OCI, and operational parameters, including solids retention time (Borzooei et al., 2019; 

Mannina et al., 2020) or process flowrates (Caligan et al., 2022; Revollar et al., 2021).  

2.4.4 Indicators selected 

The reliance of DSS developers on BSM platforms results in little variability of selected 

indicators. In fact, Table 2.3 shows eighteen reviewed DSSs used only the inbuilt indicators of 

BSMs, including EQI, OCI, or its sub indicators (pumping, aeration, and total energy 

consumption). Although indicators are fixed in the platform, little justification or reasoning for 

selecting these indicators is given by DSS or BSM sources, except that they cover both 

economic and environmental impacts (Li et al., 2021), reflect the operational state of the 

WWTP, and can evaluate process performance (Han et al., 2022a). EQI and OCI indicators 

reflect the traditional goals of water related literature and regulations, such as for human health 

protection and cost functions, that will always be important to maintain WWTP performance.  

However, modern water sector targets relate to areas such as GHG emissions and resource 

recovery, therefore, expansion to include KPIs that reflect these goals is recommended for 

further development of BSMs. This is needed as inclusion of sustainability and circularity 

dimensions would enable users to optimise WWTP operation considering the wider impacts to 

stakeholders and achieve targets defined in Section 2.2.1, such as those defined in the CEAP.  

Subsequently, the eight remaining DSSs developed integrated other indicators to optimise 

process operation considering impacts other than cost and effluent quality. Three DSSs 

calculate process GHGs, including Mannina et al. (2020) that consider a combination of CO2 

and N2O emissions, direct and indirect GHGs, and air-EQI to understand how MBR operational 

parameters impact emissions. Caligan et al. (2022) also considered GHGs emissions and 

compared this with cost functions, whilst Chen et al. (2021) conducted full LCC and LCA to 

investigate the impact of indicator prioritisation on a 10,000 PE WWTP. Other DSSs selected 

indicators to investigate a specific function of a WWTP, namely freshwater and regenerated 

water use (Díaz-Madroñero et al., 2018), eco-efficiency (Revollar et al., 2021), treatment time 

reduction (Fox et al., 2022), and energetic self-sufficiency (Campana et al., 2021). These 
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indicators align better with modern water sector sustainability goals compared with EQI and 

OCI indicators. However, they all employed self-selection methods and generally circularity 

indicators were mitigated from optimisation DSSs, showing this is yet to become a priority of 

WWTP operators.  

2.4.5 Indicator prioritisation 

Again, there is a difference between static and dynamic DSS indicators in how they are analysed 

to produce the optimal solution. The majority of dynamic calculations aim to minimise the 

performance indicators selected, including BSMs trying to minimise both EQI and OCI (or 

energy consumption). This results in an optimisation problem (Heo et al., 2021) since 

decreasing one of these KPIs increases the other, for example greater removal efficiency 

requires additional energy consumption from aeration and recirculation pumping. Therefore, 

DSS algorithms must cope with KPI trade-offs, known Pareto sets, which derives a sub-optimal 

solution for the chosen KPIs but establishes that both results are better than the rest of the 

potential outcomes in the search space (Qiao et al., 2018). Fox et al. (2022) developed one of 

the only dynamic optimisation DSSs to employ a weighting method, with the hope of 

considering site-specific requirements. Local plant operators assigned weights, which were 

combined with KPI result rankings to decide on the soft sensors that produces the best control 

strategy. In previous years it was common to weight KPIs to create a single objective 

optimisation (Niu et al., 2022), however, this necessitates real-time supervision by plant 

operators to achieve optimal control (Han et al., 2014).   

Of the static DSSs, three utilise KPI weighting to achieve the optimal solution. Díaz-Madroñero 

et al. (2018) used fuzzy goal programming to incorporate decision maker preferences and trade-

offs between objective functions. Alternatively, Chen et al. (2021) normalises LCA impact 

indicator results and uses weights defined in literature, whilst Mannina et al. (2020) weights all 

ten objective functions selected equally. The use of decision maker weighting strategies is 

recommended, as it enables the goals of local stakeholders to be integrated within optimisation 

outcomes. Lastly, some DSS developers did not provide a method for selecting the optimal 

strategy, leaving it to the interpretation of the user to compare KPI results (Revollar et al., 2021), 

such as Borzooei et al. (2019) which relies on optimisation curves showing EQI vs OCI to select 

the best operational SRT parameter. Although weighting strategies are useful, the dynamic 

optimisation of KPIs is now accepted as best practice to enable automatic, supervisory control 
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of plants, placing greater emphasis on proper selection of KPIs to reflect decision maker needs 

during WWTP operation.  

2.4.6 Error and uncertainty 

These DSSs aim to provide an optimised control strategy for the operation of WWTPs, however, 

alternative controllers, KPIs, or conditions may result in differing performance. Therefore, it is 

critical to test the sensitivity of DSS performance on results. One of the main strategies 

employed was to compare the optimised KPI results with alternative controller algorithms, to 

ensure the adopted method achieves the best performance. Controller performance metrics 

including the Integral of Absolute Error (IAE) (no error weighting), Integral of Squared Error 

(ISE) (penalises larger errors), and Root Mean Square Error (RMSE) were utilised. In fact, six 

DSSs compare the controller algorithm deployed using the IAE with other algorithms (Han et 

al., 2022a, 2021; Li et al., 2022; Qiao et al., 2019, 2018; Xie et al., 2022), one utilised both ISE 

and IAE for comparison (Han et al., 2018), and another implemented RSME (Qiao and Zhou, 

2018) to investigate whether the method used results in the lowest error. Additionally, six DSSs 

compared controller algorithms using KPI results only (Han et al., 2022b; Li et al., 2021; 

Mannina et al., 2020; Niu et al., 2022; Pisa et al., 2019; Zhou and Qiao, 2019), which is a useful 

exercise to reassure the user their DSS will produce the best outcomes. However, investigating 

errors is important as it indicates the size and longevity of potential disruptions to system 

performance.  

Multi-objective optimisation DSSs utilise similar approaches to those discussed in Section 2.3.7 

for MCDM for uncertainty analysis. For example, the DSS developed by Caligan et al. (2022) 

formulated scenarios to investigate the impacts of events that WWTP operators may face, 

including how the fluctuation of biofuel prices, inlet wastewater quality, and requirements for 

wastewater and sludge disposal, impact on cost and GHG emission KPIs. Ortiz-Martínez et al. 

(2021) created scenarios simulating lack of aeration due to process error and mitigation of flow 

recirculation due to maintenance, to investigate the effect on process optimisation. 

Alternatively, some authors investigated optimisation strategies through prioritisation of certain 

indicators to see how the system responds. DSSs were tested by optimising either the 

environmental (i.e. EQI) or economic (i.e. OCI) KPI, and comparing this with when both are 

optimised (Chen et al., 2021; Tejaswini et al., 2021).  
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Mult-objective optimisation DSSs have other inherent uncertainties to deal with when 

modelling WWTP systems, such as climatic changes and fluctuating wastewater concentration 

(Chen et al., 2018). DSS developers tackled this uncertainty by investigating the effects of the 

wastewater influent on performance using fluctuation of the TKN/COD inlet ratio (Heo et al., 

2021) and fuzzification of inlet composition (Díaz-Madroñero et al., 2018). However, further 

uncertainty analysis is recommended to test how WWTP optimisation models respond to 

external factors. MC simulations are commonly used for modelling input uncertainty as 

different probability distributions (normal, parametric etc.) can be selected depending on error 

attributes and case study characteristics (Haag et al., 2019). Testing the uncertainty of DSS 

performance is critical and for a complete study it is recommended to make comparisons in KPI 

performance and controller error with other systems, and investigate fluctuations to influent 

load and process operation to ensure the DSS will meet all user expectations when deployed at 

a real WWTP. 

2.4.7 Recommendations 

Following the review of twenty-six multi-objective DSSs for optimisation of WWTP process 

operation, some final recommendations and comments are provided in Table 2.4. However, it 

can again be concluded that although these DSSs aim to optimise WWTP performance there is 

little attention given to how this results in the indicators selected for optimisation, nor an 

explanation of how subsequent operation aligns with sustainability aims, and mitigate 

circularity dimensions entirely. 
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Table 2.4. Summary of issues, recommendations, and beneficial outcomes related to the reviewed wastewater 

treatment multi-objective process optimisation DSSs.  

Issue Recommendation Outcome 

Few DSSs are applied to real WWTP 
systems, mitigating the impacts of local 
climate and influent composition 

Test DSSs in realistic process models or trial 
them in real-world systems 

User achieves the expected performance when 
DSS is applied to their system 

Although KPI selection is fixed for many of 
the DSSs reviewed, rigorous indicator 
selection is often overlooked 

Develop process models that utilise KPIs 
considering local stakeholder and business 
objectives for WWTP optimisation, rather 
than depending on those integrated within 
BSMs 

DSS will optimise WWTP in a way that 
generates desired benefits for stakeholders  

Focussing on EQI and OCI (or energy 
consumption) KPIs provides a narrow view of 
‘optimal’ or ‘sustainable’ WWTP 
performance 

Expansion of indicators to include 
environmental, social, circularity, and 
technical aspects 

Align WWTP operation with modern 
sustainability and circularity aims of the water 
sector 

Dynamic control and optimisation of WWTPs 
aligns better with the water sector’s 
digitisation goals, mitigating plant operator 
decision making capabilities 

Implement robust indicator selection to ensure 
optimal performance facilitates decision 
maker goals at a plant level 

Responsive systems that optimise 
performance in terms of selected KPIs, rather 
than relying on intuitive decision making of 
operators 

Many DSSs did not investigate the 
performance of controller algorithms using 
appropriate metrics 

IAE and ISE are recommended for 
understanding the response of the selected 
algorithm to process alterations, especially as 
dynamic operation of WWTPs evolves 

Better understanding of how the investigated 
WWTP will respond to external stressors 

 

2.5 Summary of main findings 

• The European Commission is pursuing a CE to facilitate many of its sustainability 

targets and according to publications, such as the CEAP in 2020, WWTPs must focus 

on emissions reduction, resource recovery, and water reuse, and acknowledge the 

importance of proper data usage, to align with water sector goals at a European level.  

• For MCDM technology selection DSSs, selection of WWT technologies is the most 

common and RR is the second most common focus to improve the efficiency and 

circularity of WWTP performance.  

• Generally, MCDM technology selection aims are vague or use generic language, 

meaning there is a disconnect in user knowledge which hinders selecting the correct 

indicators to facilitate desired outcomes. Additionally, common methods of indicator 
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selection and weighting were user defined with little explanation, meaning they are 

unable to reason whether indicator sets consider the scenario of application.  

• To overcome this, it is recommended to clearly define DSS aims before the assessment, 

and use structured, participatory approaches for indicator selection and utilisation, such 

as fuzzy-AHP and -TOPSIS, that consider stakeholder inputs.  

• For multi-objective optimisation control DSSs aims were defined much more clearly, 

usually improving cost and effluent quality indices. However, most DSSs relied on the 

use of BSM platforms, meaning indicators were fixed and of limited scope (effluent 

quality and cost), and were not usually tested on real WWTPs.  

• Therefore, it is recommended to undertake more rigorous indicator selection procedures 

to expand the scope of the assessment and test the resultant DSSs in operational 

processes. Additionally, the systematic use of controller performance investigation (IAE 

and ISE) is advised to understand the dynamic response of the system to different 

situations.  

• Lastly, considering the issues with both DSS typologies it is clear that the wastewater 

sector is still some distance from standardised decision-making processes. However, it 

is hoped the recommendations provided can act as a basis to expedite this for indicator-

based DSSs. 
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3 Where is the Greatest Potential for Resource Recovery in 

Wastewater Treatment Plants?  

3.1  Introduction 

As governments implement ambitious targets to curb the anthropogenic impact of climate 

change, industrial practices must change in tandem. It has been recognised that further action is 

needed to ensure planetary health, which has led to the rapid growth of the circular economy 

(CE) concept over the past decade (Kirchherr et al., 2017). The Ellen MacArthur Foundation 

define the CE as “one that is restorative and regenerative by design and aims to keep products, 

components, and materials at their highest utility and value at all times, distinguishing between 

technical and biological cycles” (Ellen MacArthur Foundation, 2015). CE practices are linked 

with achieving many Sustainable Development Goals (SDGs), facilitating sustainable 

development (Panchal et al., 2021) and beyond, by actively restoring and regenerating material 

and energy cycles  (Jazbec et al., 2020). The water sector is uniquely poised for this transition, 

due to its intrinsic circularity and the environmental, economic and social value of capturing 

the resources it handles (Mihelcic et al., 2017).  

The water sector handles an array of resources, predominantly found in wastewater, that are 

valuable and critical, bestowing opportunities for revenue generation and diversification.  

Resources recovered from wastewater fall into many categories such as water, energy, biofuels, 

fertilisers, and biopolymers (Kehrein et al., 2020a), some of which are becoming increasingly 

scarce due to growing global population and urbanisation (Dagilienė et al., 2021). Investment 

in resource recovery infrastructure enables water utilities to realise benefits that reach far 

beyond revenue generation. Resource recovery is intrinsically linked to sustainable and circular 

practices such as process intensification, resource circularity, and waste valorisation, which can 

reduce plant footprint, improve operating costs, increase energy efficiency, reduce negative 

externalities, and offset the carbon footprint of wastewater treatment facilities (Coma et al., 

2017; Gherghel et al., 2019; Kehrein et al., 2020a; Ruiken et al., 2013).  

These prospective benefits have resulted in extensive work in recent decades, by both academia 

and industry, to develop technologies that shift the focus of wastewater treatment plants 

(WWTPs) from pollutant removal to resource recovery facilities (Kehrein et al., 2020a). This 
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has resulted in a multitude of technological options for the extraction of resources from 

wastewater, providing water utilities with ample choice along the entire treatment pathway for 

plant design and process retrofitting (Kehrein et al., 2020c). However, decision makers must 

consider trade-offs between the benefits of selected technologies and the potential impacts when 

identifying which resources to target for recovery. Furthermore, on a practical level plant 

operators have limited experience in innovative resource recovery technologies, with few full-

scale examples of evidence-based assessments for process optimisation. The latter, creates 

challenges for selection of priority resource recovery technologies and strategic planning, 

especially whenever necessary factors such as cost, risk, and market potential need to be 

incorporated into decision making. 

With the current emphasis placed on resource recovery and circularity, there seems to be 

disproportionately few methods, or examples of evaluating the resource recovery alternatives 

in WWTPs to support decision making (Chrispim et al., 2020).  Efforts to systematically 

investigate the resource recovery potential of WWTPs focus on site-specific assessments. For 

instance, Kehrein et al. (2020c) developed a framework for strategic planning and process 

design of water resource factories (SPPD-WRF). The SPPD-WRF aims to integrate resource 

recovery metrics in the site-specific design of treatment processes, thereby making resource 

recovery a measurable process design objective on a plant scale (Kehrein et al., 2020c). 

Similarly, the framework developed and implemented by Chrispim et al. (2020) at a large 

WWTP in Sao Paulo, focused on site-specific evaluation of resource recovery technologies 

through energy, water and nutrient recovery analysis, whilst considering the broader influences 

of market demand, legislation, technological options, and stakeholders. 

The identification of resource recovery alternatives on a regional/sectoral level gives water 

utilities the ability to improve market share, mitigating some investment risk, and enables 

strategic planning of circular solutions by the water sector. A study in Scotland aimed to 

quantify available resources and estimate their commercial value in wastewater (CREW, 2018). 

The authors achieved this valuation, alongside estimations of potential carbon savings, but 

provided no methodology to support decision making for optimising resource recovery 

strategies on this scale, whilst considering wider impacts. There are studies which advocate for 

the wider assessment of resource recovery scenarios; however, poor data availability, costs, and 

design complexity is restricting the use of integrated approaches for effective decision making 

(Kehrein et al., 2020a, 2020c; van der Hoek et al., 2018). Therefore, there is a need for a 
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structured approach to support decision-making by assessing resource recovery potential from 

wastewater on a regional scale, to select appropriate technologies for a given scenario.  

Given that water utilities monitor material and energy flows, there is data available for 

measuring their current position within the CE, and monitoring and/or estimating the potential 

of the water sector’s transition as circular strategies are adopted, such as resource recovery. This 

work aims to detail an approach for supporting water utility companies through planning and 

identification of strategies for resource recovery from wastewater on a regional scale. 

3.2  Methodology  

The structured approach proposed for the identification of resource recovery strategies on a 

regional scale is detailed in Figure 3.1. It starts with understanding the baseline scenario through 

construction of a system model, which is crucial as it enables performance improvements to be 

benchmarked. This is achieved through material flow analysis (MFA) and substance flow 

analysis (SFA). Next, a combination of market analysis and multi-criteria analysis (MCA) are 

used to rank and select resource recovery options. A long list of resources (with associated 

technology pathways) has been developed based on previous studies in literature UK Water 

Industry Research (UKWIR) (Aunon et al., 2015) and Centre of Expertise for Waters (CREW) 

(CREW, 2018)), and shortlisted using technology readiness level (TRL). The ‘priority 

resources’ are identified by scoring shortlisted resources using a range of criteria such as cost, 

carbon, and treatment impacts. Altering criteria weighting, permits the investigation of how 

future scenarios (i.e. prioritising carbon impacts) can affect the priority resources. The selected 

resource recovery options are implemented within the model to create an updated ‘resource 

recovery scenario’ to understand the improvements achieved by retrofitting the technologies. 

Lastly, a six capitals approach is discussed as part of the need for a holistic value assessment, 

for strategic planning of resource recovery technologies. 
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Figure 3.1. Steps of the structured approach developed for selecting regional resource recovery strategies. 

3.2.1 Baseline scenario model 

The first step is to establish a baseline scenario model for benchmarking purposes, to allow the 

gains made by implementation of resource recovery technologies to be investigated. MFA and 

SFA are conducted to identify unnecessary waste of natural resources, energy, and materials 

along process chains as suggested by the Organisation for Economic Co-operation and 

Development (OECD) (2008). This information is used for the investigation of resource 

recovery strategies.   

To improve understanding of the approach presented in this work, the UK wastewater sector 

was used as an example. A mass balance to represent the UK wastewater sector was constructed 

together with MFA (chemical oxygen demand (COD), biological oxygen demand (BOD), total 

suspended solids (TSS), volatile suspended solids (VSS), water) and SFA (nitrogen (N), 

phosphorus (P), organic carbon (OC)). Input data for the mass balance model was taken from 

publicly available databases and literature for the year 2018/19 for England and Wales 

including: population equivalent (PE) served, flow handled (facilities PE > 25,000), sludge 
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composition, type of wastewater treatment and sludge management processes (European 

Environmental Agency, 2018; OFWAT, 2019; Smyth et al., 2021) (Northern Irish and Scottish 

flows were calculated from reported PE and typical wastewater production per capita from 

literature). The 2018/19 operating year was chosen as this is the most recent price reporting 

year for OFWAT (PR19). Standard wastewater loadings were used, with removal efficiencies 

and kinetic parameters taken from literature (Tchobanoglous et al., 2014).  

This information was combined to produce a representation of the UK wastewater sector, which 

is visualised in Figure 3.2 and displays system boundaries. The UK wastewater treatment sector 

was represented using eight wastewater treatment methods, six sludge treatment options and 

three types of solids disposal. The wastewater pathways are as follows: conventional activated 

sludge (CAS) with preanoxic zone (A), trickling filter (TF) (B), phosphorus removal (assumed 

to be chemical) (C), disinfection (D), postanoxic denitrification (E) and phosphorus removal 

and postanoxic denitrification (F). The fraction of influent wastewater handled by each 

treatment pathway is: A 44 %, B 4 %, A+C 31 %, A+D 13 %, B+C 3 %, B+D 3%, B+E 1 %, 

and B+F 1 %. Finally, 99.2 % of influent wastewater is discharged from the process. The sludge 

treatment and disposal pathways are as follows: primary sludge (1), waste activated sludge (2), 

advanced anaerobic digestion (AAD) (assumed thermal hydrolysis (TH) pretreatment) (3), 

anaerobic digestion (AD) (4), liming (5), incineration (ash landfilled) (6), composting (7), land 

reclamation (8), farmland application (9) and landfill (10). Sludge production is split: 61 % 

primary and 39 % waste activated sludge. The fractions of sludge sent to each treatment system 

are: 52 % AAD, 34 % AD, 3 % liming, 7 % incineration, and 0.1 % composting (the remaining 

4 % is untreated). Finally, sludge disposal fractions for each method are: 3 % land reclamation, 

95 % farmland application, and 2 % landfill. The values and parameters used for the 

construction of the mass balance model are summarised in Tables A.1-A.3 of Appendix A.  
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Figure 3.2. Representation of the UK wastewater system mass balance model. The wastewater line is coloured 

blue and treatment systems are labelled A-F with flowrates in Mm3/d. The sludge line is coloured brown, and 

treatment and disposal systems labelled 1-10 with sludge flowrates in ktDS/a. 

 

3.2.2 Market potential analysis 

This section describes the methodology followed for the estimation of the market potential of 

recovered resources for the UK market. The market potential of a product reveals the extent to 

which it can fulfil the current market needs. It therefore indicates the potential demand for 

recovered resources, and in the context of this work, highlights the position of wastewater 

resources within the circular economy on a regional scale. If the potential market penetration is 

low, then the potential uptake of a new product or feedstock is less likely. Thereby, it is 

important to understand the market potential of resources available in wastewater before 

significant investments are made. Kehrein et al. (2020a) published a critical review of 

technologies available to recover resources from municipal WWTPs and calculated the market 

potentials for the Netherlands and Flanders (Belgium). Each resource was considered 

independently, so the market potential represents the maximum resource recovery that could be 

achieved under ideal circumstances using appropriate technologies. This includes the 
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calculation of the absolute market potentials, meaning additional aspects such as market 

viability, incentives, and regulations were not considered. The market potential calculation by 

Kehrein et al. (2020a) was performed, alongside a review of recovery technologies and 

bottlenecks, to inform decision makers on the resources in wastewater. Here it is used as the 

basis to analyse the attractiveness of UK wastewater resources in terms of their potential market 

demand and goes further by integrating the results in a category of the MCA for the selection 

of priority resources.  

The market potential is found by calculating the total amount of a product that can be recovered 

from wastewater compared to the total market demand for that product. The market demand for 

each resource was taken from relevant governmental and industrial reports, with values chosen 

as close to the modelled time period as possible (2018/19) (Agricultural Industries 

Confederation, 2021; AHDB, 2019; Alberici et al., 2017; Baumann and Westermann, 2016; 

Department for Business Energy and Industrial Strategy, 2020; Department for Environment 

Food and Rural Affairs, 2018; Department for Transport, 2020; Eurostat, 2019; Grand View 

Research, 2021; Mineral Products Association, 2018). The resources chosen for this analysis 

were a combination of those shortlisted for MCA (based on TRL) and those from the assessment 

by Kehrein et al. (2020a) to enable comparisons between the UK and Netherlands/Belgium for 

validation of results. The next stage was to establish the amount of recoverable resources from 

UK wastewater streams. The total resources handled were calculated utilising the wastewater 

loads from the mass balance model and reported sludge production (OFWAT, 2019). Removal 

efficiencies from literature were applied to calculate the fraction of each resource that could 

potentially be recovered (Kehrein et al., 2020a; Mills, 2016; Organics Group, 2020; Palmieri et 

al., 2019; Soares et al., 2021; Tchobanoglous et al., 2014) and are summarised in Table A.5 of 

Appendix A. 

3.2.3 Multi-criteria technology selection 

This section explains the approach followed in the MCA for the identification of the ‘priority 

resources’ considering different scenarios. The MCA methodology was developed as part of a 

project commissioned by UKWIR to understand the greatest sustainable economic benefit for 

resource recovery from the water cycle (UKWIR, 2021). The MCA was used to assess the 

resource recovery opportunities in the UK wastewater sector.  
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Initially the selected categories for the MCA were recovery potential, market potential, 

treatment impacts, cost, and carbon impacts. The criteria were chosen to establish how 

technologies would impact business goals of water utility companies. Additional criteria were 

also included in the MCA to align with UK water utilities who are increasingly adopting the 

capitals concept for holistic value assessment of their systems to maximise stakeholder benefits, 

as evidenced by their inclusion in the total value and impact assessment by Yorkshire Water 

(2018). Capitals are used to broaden the scope of assessments for decision making, by 

recognising the effects businesses have on a system and monetising their impacts. 

Environmental, human, social, natural, intellectual, financial, and relationship capitals have 

been linked with, and can be seen as an extension of sustainability pillars by water utilities. To 

reflect this, and provide a holistic assessment of recovered resources, the MCA incorporates the 

6 capitals listed, alongside the initial assessment categories. 

3.2.3.1 Scoring  

A long list of resources was drawn from previous work by UKWIR (Aunon et al., 2015) and 

CREW (CREW, 2018). A discussion on the resource recovery technologies analysed in this 

study is provided in Section 3 of Appendix A. The resource recovery technologies were 

shortlisted by assessing the TRL. The in-house experience and industrial knowledge of Jacobs 

Engineering Group Inc. was used to evaluate resource recovery technologies and determine a 

near term resources shortlist (and technology pathway), by screening opportunities with TRL > 

7 (system prototype demonstration in operational environment) (UKWIR, 2021). Some 

longlisted resources were considered unlikely to be near term despite their associated processes 

attaining TRL 7 or above, and not included in the shortlisted resources. This resulted in a 

shortlist of 13 relevant resource recovery opportunities and associated technology pathways 

which are provided in Table 3.1.   

Once shortlisted, a semi-quantitative scoring system between 1 (lowest) and 5 (highest) was 

applied to the chosen criteria which evaluate aspects of economically sustainable resource 

recovery (scoring criteria guidance provided in Table A.6 of Appendix A. Scores for each 

technology were decided using in-house expertise of Jacobs Engineering Group Inc. (UKWIR, 

2021) with exception of the market potential, which utilises the results calculated using the 

method of Section 3.2.2. 
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Table 3.1. Shortlisted resources and associated recovery technologies. 

Shortlisted Resource Recovery Technology 

Biochar  Advanced Thermal Treatment (AAT) – pyrolysis or gasification 

Biogas  AAD – enzymatic or thermal hydrolysis 

Biogas  Co-digestion 

Biosolids  AAD, Advanced Dewatering, Biodrying 

Biomethane  Membrane/Water Scrubbing 

Biopolymers  Aerobic Granular Sludge (AGS) Extracellular Polymeric Substances (EPS) 

Fats, Oils, Grease (FOG)  Dissolved Air Flotation 

Grit  Pretreatment Removal 

Heat  Effluent Heat Pumps 

Hydrogen  Reverse Osmosis (RO) and Effluent Electrolysis 

Nitrogen  Air/Thermal Stripping of Sludge Liquors 

Phosphorus  Struvite Precipitation 

Syngas  AAT – pyrolysis or gasification 

 

3.2.3.2 Scenario analysis 

To investigate the sensitivity of the recovery options to future scenarios, criteria weightings 

were applied to reflect the possibility of short-term changes to the status quo in areas of 

compliance, carbon, and resource efficiency legislation (UKWIR, 2021). The results were used 

to calculate a final average score (and ranking) for resource recovery strategies by considering 

sensitivity to the following scenarios: 

• Status quo – business as usual which focuses on viable markets for recovered resources, 

cost of implementation, impacts on treatment capacity, and resulting compliance. 
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• Emissions compliance – focuses on water and air emissions which drives treatment of 

final effluent and intermittent discharges to more stringent standards and improved 

environmental/social outcomes.  

• Carbon reduction – assumes companies have carbon related targets for operational and 

embodied carbon which mandate reduction in carbon sources and creation of carbon 

sinks (increased sequestration). 

• Resource max – assumes numerical targets and metrics aligned with resource recovery; 

resource efficiency and principles of the waste hierarchy and circular economy are 

applied with focus on sustainable resource recovery, minimisation of waste and keeping 

resources in use at maximum value.  

The scenarios and weightings presented have been constructed by industrial experts. Full 

explanation of technology scoring and scenario weighting can be found in Tables A.7-A.9 of 

Appendix A. 

3.2.3.3 Global sensitivity analysis 

Global sensitivity analysis (GSA) is needed to improve the understanding of which criteria and 

scenario weights have the most significant influence on the final scores achieved, and therefore 

the final resource ranking. GSA assesses the impact that varying model inputs, within a 

specified range, has on output results. For GSA the range of variable inputs are all considered 

simultaneously (Sarrazin et al., 2016). Sobol’ sensitivity analysis was applied; the Sobol 

sequence is a quasi-random, low-discrepancy sequence used to generate uniform samples of 

parameter space (Sobol′, 2001). The Sobol’ scheme is extended with Saltelli’s sampling scheme 

(Saltelli, 2002) from SAlib Python package (Herman and Usher, 2017) to reduce error in the 

resulting sensitivities. Sobol (variance based) GSA was run for 414,000 iterations on each 

resource, with bounds allowing input fluctuations of ±10 % to calculate the sensitivity of input 

parameters (MCA criteria scores and scenario weightings) on MCA output results (Sobol′, 

2001). The sensitivity of resources to each criterion is presented as the sensitivity index, with 

the sum of indices equalling 1. The greater the sensitivity index of a given criterion, the greater 

influence it has on the final score of each resource and therefore ranking. 
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3.2.3.4 Priority resource selection 

The average score achieved across the 4 investigated scenarios was used to create a final 

ranking, with the top 5 identified as ‘priority resources’. An interaction matrix was constructed 

to show how each of the priority resources can be combined with the other shortlisted 

technologies to create integrated resource recovery strategies (example given in Table 3.3). 

Case studies focusing on the recovery of priority resources were used to understand additional 

resource recovery opportunities that could be exploited. These were divided into technologies 

which are required as part of the process for priority resource capture (x), as well as other 

strategies with the potential to enhance system performance (xx). This produces integrated 

resource recovery schemes that focus on the best performing resources for a given scenario, 

additional resources that can be captured, and potential process enhancements. To decide the 

final strategy, treatment methods from the original mass balance model are compared with 

resource recovery schemes to evaluate potential performance.  

3.2.4 Evaluation of resource recovery scenario 

Following the provision of five priority resources (and their associated technology pathway) to 

target within the studied UK example, the baseline scenario was updated accordingly to estimate 

the potential gains in nutrient recovery. MFA and SFA of the updated resource recovery 

scenario model show how nutrients flow around the new system, enabling comparisons to be 

drawn in terms of nutrient recovery and revealing the enhancements of implementing resource 

recovery technologies. When creating the resource recovery scenario, it is important to remain 

realistic in terms of application of the priority resources and technologies. For example, even 

though AGS systems may improve resource recovery (EPS and struvite recovery), it is not 

reasonable to consider that all WWTPs will utilise this technology. Therefore, a more pragmatic 

and representative approach is to target systems that already have P removal, due to the 

phosphorus accumulating properties of AGS systems. 
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3.3 Results and discussion 

3.3.1 Baseline scenario material and substance flow analysis 

This section shows the results of the baseline UK model. In the UK, 5,946 Mm3/a of wastewater 

is handled, 1.38 Mt Dry Solids(DS)/a  of sludge is produced, and 0.77 MtDS/a of treated solids 

are disposed. The results of the MFA and SFA were used to construct Sankey diagrams, which 

are shown in Figure 3.3. Sankey diagrams are commonly utilised to summarise flow analysis as 

they enable the viewer to be exposed to not only how materials flow around a system but also 

the magnitude of these flows, as the width of the flow is proportional to its magnitude. Sankey 

diagrams were generated using Microsoft Power BI software (Microsoft Corporation, 2014).  

Secondary/tertiary treatment nutrient assimilation and effluent discharge are significant 

hotspots of the system, where large fractions of nutrients are lost. Of the total influent N and P, 

it was calculated that 8 % and 25 % are currently recycled through farmland application 

respectively, as 95 % of biosolids were recycled to farmland during the year studied. This high 

fraction is due to the fact that all of the reported sludge treatment methods comply with the 

Biosolids Assurance Scheme (BAS). The BAS aligns practices with government strategies for 

beneficial use of sludge (Biosolids Assurance Scheme 2020). Although, low nutrient recovery 

rates suggest that using biosolids in this way might not be the optimal method for recovery in 

the current scenario. Of influent OC, 26 % was recovered through farmland application and 

biogas production. It should be noted that the percentages quoted, are the total quantity of 

nutrients applied to farmland, as the availability of N and P to the next crop yield are 15 % and 

50 % respectively for biosolids application (AHDB, 2019). This means that not all nutrients 

will be usefully recycled during the year of application. The modelling of N recovery in 

Amsterdam-West WWTP (1,014,000 PE) estimates that 11 % is recovered when 100 % of 

digested sludge is applied to land (van der Hoek et al., 2018). This is comparable with the 

model’s estimate, considering that not all sludge is digested or applied to land. MFA and SFA 

of the UK example reveal that a large fraction of nutrients in wastewater nutrients are not 

recovered; this does mean there is significant scope for improvement through implementation 

of resource recovery technologies. 
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Figure 3.3. Sankey diagrams representing the flow of substances through a model of the UK wastewater system. 

The results of SFA are shown here for nitrogen (red), phosphorus (purple), organic carbon (grey) and total 

suspended solids (yellow). The percentage of influent nutrients present in each flow are given, any flows with 

<1 % are not labelled. 

 

3.3.2 Market potential analysis 

Market potentials for UK wastewater resources are summarised in Table 3.2. The market 

potential reveals the UK market demand for the resources studied, the quantity of resources that 

are potentially recoverable, and the ratio of these values.   
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Table 3.2. Summary of UK resource market demand, recoverable quantity of resources and resource market 

potential. 

UK Market Potential of UK Water Resources 

Resource Demand Demand Unit 
Resource 

Recovered Recovery Unit 
Market 

Potential 

Water (total 
abstraction) 12,341.9 M m3/a 

Water (total 
content) 5,887.0 M m3/a 47.7% 

  
  

Water (MF-UF) 5,004.0 M m3/a 40.5% 

  
  

Water (MF-UF/RO) 3,753.0 M m3/a 30.4% 

Water (public supply) 5,639.1 M m3/a 
Water (total 
content) 5,887.0 M m3/a 104.4% 

  
  

Water (MF-UF) 5,004.0 M m3/a 88.7% 

      Water (MF-UF/RO) 3,753.0 M m3/a 66.6% 

Energy (Natural Gas) 3,158.0 PJ/a 
CH4 (from COD 
AD) 32.5 PJ/a 1.0% 

Electricity 
Consumption 1,244.1 PJ/a 

Electricity CH4 
(CHP) 12.3 PJ/a 1.0% 

  
  

Electricity (sludge 
co-combustion) 3.9 PJ/a 0.3% 

Derived Heat 
Consumption 150.1 PJ/a Heat CH4 (CHP) 13.0 PJ/a 8.7% 

      
Effluent Heat (heat 
pump) 123.0 PJ/a 82.0% 

Cellulose (paper 
production) 3,851.0 kt/a Influent Cellulose 567.5 kt/a 14.7% 

  
  

Co-combustion 
Energy 7.8 PJ/a 0.2% 

  
  

Electricity 
(cellulose co-
combustion) 2.3 PJ/a 0.2% 

      
Heat (cellulose co-
combustion) 3.9 PJ/a 2.6% 

CO2 consumption 450.0 kt/a 
CO2 from Biogas 
(sludge AD) 178.1 kt/a 39.6% 
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CO2 from Biogas 
(influent COD) 964.5 kt/a 214.3% 

Nitrogen (Mineral 
Fertiliser - farm 
application) 1,038.0 kt/a Influent N 236.9 kt/a 22.8% 

  
  

Raw Sludge N 53.2 kt/a 5.1% 

  
  

Raw Sludge 
Biodrying 37.3 kt/a 3.6% 

      Biosolids N 42.1 kt/a 4.1% 

Ammonia     N Fertiliser 10.9 kt/a 1.1% 

Phosphorus (Mineral 
Fertiliser - farm 
application) 81.3 kt/a Influent P 45.2 kt/a 55.6% 

  
  

Struvite P 15.8 kt/a 19.5% 

  
  

Raw Sludge P 26.2 kt/a 32.2% 

  
  

Recoverable P (Wet 
Chem) 23.6 kt/a 29.0% 

  
  

Biosolids P 18.4 kt/a 22.6% 

AnMBR 
  

CH4 (AnMBR + 
AAD) 16.2 PJ/a 0.5% 

  
  

Electricity from 
CH4 (CHP) 6.1 PJ/a 0.5% 

  
  

Heat from CH4 
(CHP) 6.5 PJ/a 4.3% 

Gasification (Syngas) 
  

Energy (Syngas) 24.5 PJ/a 0.8% 

  
  

Electricity (CHP) 9.3 PJ/a 0.7% 

  
  

Heat (CHP) 9.8 PJ/a 6.5% 

Soil Conditioner 1,805.0 kt/a Biochar (pyrolysis) 319.1 kt/a 17.7% 

Grit 61,700.0 kt/a Grit Removal 307.3 kt/a 0.5% 

UK HGV Transport 17.4 bvm 
Electrolysis of 0.32 
% Effluent 17.4 bvm 100% 

UK HGV Sludge 
Transport 5.9 mvm 

Electrolysis of 
0.00011% Effluent 5.9 mvm 100% 

Animal Feed N 222.1 kt/a Influent N 236.9 kt/a 106.7% 



69 

 

      SCP (AD digestate) 53.2 kt/a 24.0% 

Global Market Potential of UK Water Resources 

Resource Demand Demand Unit 
Resource 

Recovered Recovery Unit 
Market 

Potential 

VFA (Acetate)  16,000.0 kt/a Acetate Recovery  483.8 kt/a 3.0% 

VFA (Propionate) 380.0 kt/a 
Propionate 
Recovery  219.9 kt/a 57.9% 

VFA (Butyrate) 500.0 kt/a Butyrate Recovery  100.0 kt/a 20.0% 

PHA 35.9 kt/a PHA Recovery 319.8 kt/a 891.3% 

Alginate  43.0 kt/a EPS (from sludge) 226.2 kt/a 525.6% 

 

Table 3.2 shows that technology for the production of fuels and subsequent energy and 

electricity generation (whether gasification, AAD or anaerobic membrane bioreactors 

(AnMBR) and the use of combined heat and power (CHP) systems) can substitute little more 

than 1 % of UK demand. However, the water sector consumes approximately 3 % of UK energy 

so there is potential to move towards improved sector self-sufficiency (Majid et al., 2020). Grit 

recovery has limited market potential, meaning sustainable disposal (e.g. land reclamation) may 

be more appropriate rather than marketing it as a valuable product.  

Cellulose, single cell proteins (SCP), biochar, volatile fatty acids (VFAs), struvite and biosolids 

(NP) have theoretical market potentials between 4 % and 24 %. Therefore, it has been shown 

that these resources can substitute a significant fraction of the current market, meaning there 

should be a demand from businesses to utilise them as feedstocks.  

Water reuse (ultrafiltration (UF), micro filtration (MF) and RO), CO2 generation, heat recovery, 

phosphorus recovery (sludge), propionate and hydrogen production have market potentials 

greater than 25 %. This shows that wastewater can provide a significant fraction of the current 

market demand, creating attractive opportunities to improve the sustainability of some 

industrially useful feedstocks. It was shown that large scale polyhydroxyalkanoates (PHA) and 

EPS production may in fact saturate markets, however, demand for these biopolymers is 

growing (Grand View Research, 2021). Due to its energy density the market potential of 

hydrogen was studied by calculating the fraction of wastewater effluent that must be 

electrolysed to fulfil fuel demands of heavy goods vehicles (HGV). It was shown that only 
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0.0001% of effluent should undergo electrolysis to supply all HGV miles, 5.9 mvm (million 

vehicle miles), required for sludge transportation.  

The market potentials calculated in Table 3.2 are in agreement with those calculated by Kehrein 

et al. (2020a), as the trends and magnitudes are similar to those seen for the Netherlands and 

Belgium. The calculation of UK market potentials in this study gives an example of how to 

provide quantitative results to feed the MCA scoring whenever data is readily available, rather 

than relying exclusively on qualitative criteria. The results can also be used as a validation of 

selected priority resources as they have been calculated considering data that is specific to the 

UK scenario. 

3.3.3 Multi-criteria analysis 

3.3.3.1 Scoring and investigation of future scenarios 

This section discusses the results from the MCA considering both the unweighted scores and 

the weighted scores for the investigation of potential future scenarios. The unweighted scores 

for each resource are highlighted in Figure 3.4, revealing the individual scoring for each 

category. When each category is given equal weighting, the total scores range from the lowest 

of 19 (FOG) to the highest of 32 (heat from heat pumps), out of a maximum of 40. 
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Figure 3.4. Unweighted assessment criteria scores for shortlisted, near-term resource recovery opportunities from 

UK wastewater. 

 

Results from the application of criteria weightings to study the impact of potential future 

scenarios to the ranking of technologies are summarised in Figure 3.5. The final scores were 

calculated by averaging the weighted scores for each resource across the four scenarios. This 

revealed after weighting, that again heat recovery through utilisation of heat pumps was ranked 

highest, and FOG recovery the lowest. The resources that experienced the greatest range over 

the scenarios were hydrogen, syngas (AAT), and biogas (co-digestion). Currently hydrogen 

generation requires large inputs of electrical energy so may be limited if strict emissions limits 

were implemented, but it performs strongly in terms of recovery and market potential. Although 

the carbon benefits and recovery potential for syngas are high, undesirable cost and market 

potential (for energy generation) results in large fluctuations between scenarios. At present co-

digestion is not a viable recovery option in the UK due to regulatory limits, however, any 

updates to facilitate its implementation would result in enhanced generation of biogas, meaning 

its use is uncertain. 
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Figure 3.5. Sensitivity analysis results from the application of 4 potential future scenarios through assessment 

criteria weighting: status quo, emissions reduction, resource max and carbon reduction (based on the figure in 

report by UKWIR (2021)). 

 

3.3.3.2 Global sensitivity analysis 

This section summarises the results of the GSA completed for the scoring of shortlisted 

resources, to investigate the impact of uncertainties in the scenario weightings and criteria 
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carbon reduction measures, which may be due to the fact that circular solutions are seen as an 

important route to carbon neutrality for the water sector. The final score of the technologies had 

the lowest sensitivity to human and intellectual capital, shown to have the lowest influence for 

ten of the thirteen shortlisted resources. This criterion had the lowest weighting for all four 

scenarios investigated and there was little variation in awarded scores. As more emphasis is 

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Bioc
har

Biog
as 

(A
AD)

Biog
as 

(C
o-d

ige
stio

n)

Bios
oli

ds

Biom
eth

an
e

Biop
oly

mers FOG
Grit

Heat
 (H

eat
 Pum

p)

Hyd
rog

en

NH3 S
trip

pin
g

Stru
vit

e

Syn
ga

s (
AAT)

W
ei

gh
te

d 
Re

so
ur

ce
 S

co
re

s

Status quo Emissions compliance Carbon reduction Resource max Average



73 

 

placed on maximising the 6 capitals, it is likely that greater focus will be placed on these criteria 

by businesses in the future.  

Box plots have been drawn in Figure 3.6B to reveal the variance exhibited by each resource and 

its associated technology across all iterations of the GSA. The resources are ordered in terms of 

median scores, and heat recovery is the top performer, as even the minimum score recorded for 

heat is higher than the median score of any other. After heat recovery, the scores plateau 

somewhat, until biomethane where there is a decline which reveals that selection of methods 

for the recovery of chemical energy may not be favourable. Comparing resources by applying 

this method helps to ensure robust selection of resources, as it confirms the top ranked options 

perform well over a range of conditions and should be resilient to system changes and scoring 

uncertainty.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. a: Results of the global sensitivity analysis conducted on MCA inputs (criteria scoring and scenario 

weightings) showing their influence on resource ranking scores. b: Box plots of the final scores over the 414,000 

iterations completed during GSA. 
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3.3.3.3 Priority resource selection 

The investigation of different scenarios and GSA enabled the ranking of the different 

technologies. The final average values were used to rank wastewater resources and the top 5 

are highlighted as ‘priority resources’, which are heat (heat pumps), ammonia (stripping), 

biopolymers (EPS), struvite, and biosolids. These are deemed priority resources as they have 

performed best across the multiple objectives of the MCA, as well as showing resilience and 

consistency to potential future influences, and are summarised in Figure 3.7. Three of the 

priority resources align with the five resources with the greatest market potentials calculated by 

Kehrein et al. (2020), which are EPS, heat and biosolids (Kehrein et al., 2020a). A report for 

Scotland also names heat recovery via heat pumps as a resource with significant potential and 

concludes that biopolymer resources are promising in terms of recovery and market value  

(CREW, 2018). The comparison in Figure 3.5 provides confidence that even if the analysed 

system experiences changes, then selected resources should still perform effectively, therefore, 

supporting the robustness of priority resource selection. Figure 3.6B further supports this 

selection by revealing the extent to which uncertainty in scoring influences technology ranking, 

as priority resources still outperform the others over the range investigated during GSA. 

 

Figure 3.7. Wastewater resources score ranking with the 5 top performing resources highlighted in red. 

3.3.4 Resource recovery scenario results 

This section discusses the results from the implementation of the integrated resource recovery 

scenario within the UK wastewater example. The resource recovery scenario is developed from 
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the selected priority resources and the results of MFA indicate the gains in terms of nutrient 

recovery compared with the baseline scenario.  

3.3.4.1 Resource recovery scenario development 

Potential integrated resource recovery scenarios are discussed in this section and shown in the 

interaction matrix (Table 3.3). Realistic scenarios for integration of resource recovery solutions 

were identified based on the results of the MCA, revealing how recovering priority resources 

can be coupled with technologies for co-production of other shortlisted resources (maximizing 

resource recovery efficiency) based on case studies (Biosys, 2021a; CENTRISYS-CNP, 2021; 

Kehrein et al., 2020b; Severn Trent, 2021; The Royal Borough of Kingston Upon Thames, 

2021) and literature (Gherghel et al., 2019; Kehrein et al., 2020a).  

The combination of priority resource recovery with additional technologies for the creation of 

an integrated scenario is discussed in the following paragraphs. This part of the assessment is 

necessary as it enables the construction of an appropriate integrated system of technologies that 

is representative of specific cases. 
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Table 3.3. Matrix identifying which resources are currently integrated in case studies of priority resource 

recovery (x), and others that enhance recovery in terms of yield or energy efficiency (xx). 

 Priority Resource Recovery Schemes 

Resources Heat (Heat Pump) NH3 Stripping Biopolymers Struvite Biosolids 

Heat (Heat Pump) x xx xx xx xx 

Hydrogen 
     

NH3 (Stripping) 
 

x 
   

Biopolymers 
  

x 
  

Biochar 
     

Biosolids xx x x x x 

Struvite 
  

x x 
 

Grit  
     

Biogas (Co-digestion) 
 

xx 
 

xx xx 

Biomethane 
     

Syngas (AAT) 
     

Biogas (AAD) xx x x x x 

FOG 
    

xx 

 

Heat pumps that capture heat from effluent streams have highly generic applications, so could 

be potentially integrated with most shortlisted resources. Processes for biogas and biosolids 

have been highlighted to potentially enhance heat recovery efficiency as they can be exploited 

for on-site heating. This is due to barriers such as heat losses encountered by exporting heat and 

the infrastructure costs associated, so usage on site is preferred to maximise recovery (Nagpal 

et al., 2021). On-site recovery could be used for heating process units (biological treatment, AD 

processes for biogas generation) or applied for advanced biosolids treatment, including 

biodrying and dewatering applications (Kehrein et al., 2020a).  

Ammonia stripping has been shown to be more efficient (in terms of energy and recovery) 

when conducted on digestate or digester reject liquors, as they are highly concentrated with 

nitrogen (van der Hoek et al., 2018). Therefore, systems that employ this ammonia recovery 
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strategy will have anaerobic digestion on site, producing biogas and biosolids. Additionally, to 

enhance performance of the ammonia recovery system, co-digestion could be considered to 

increase the nutrient concentration of digester streams (Montusiewicz and Lebiocka, 2011) 

(although co-digestion is currently prohibited in UK). Ammonia can be directly combusted to 

generate energy or used to produce fertiliser and although processes that utilise it for energy 

recovery tend to consume more energy than is recovered, and barriers such as low production 

rates and high cost compared with industrial fertilisers limit uptake (Kehrein et al., 2020a).  

Biopolymers (EPS) are present in the solid fraction produced from AGS systems. Enhanced 

biological nutrient removal occurs due to the presence of phosphate accumulating organisms in 

AGS systems, therefore, after EPS extraction phosphorus can be recovered as struvite (Kehrein 

et al., 2020b). Controlled release of the accumulated phosphorus requires subjecting sludge to 

anaerobic conditions, so AD can be used to simultaneously produce biogas and biosolids. TH 

may help disrupt the large flocs/granules produced during AGS treatment enhancing yields. 

Establishing an integrated scenario will improve the viability of this resource recovery scheme 

as currently the EPS market still needs to be fully established due to the high cost of production  

(Tavares Ferreira et al., 2021).  

Struvite recovery, via controlled precipitation, captures phosphorus and nitrogen from 

concentrated streams after sludge digestion where nutrients have been solubilised. Therefore, 

biogas and biosolids production is a prerequisite of this recovery scheme. Struvite production 

is limited compared with industrial fertilisers due to the scale of viable plants, maintenance 

costs, and issues with product quality (Ghosh et al., 2019). To enhance the degree of struvite 

recovery, co-digestion could be utilised to increase nutrient load of digester streams, and 

renewable heat recovered via heat pumps employed for various on-site applications.  

Biosolids are produced from AD systems and this resource is currently widely adopted by the 

UK water sector. However in the UK, The Sludge (Use in Agriculture) Regulations must be 

adhered to before application of sewage sludge to land, which specifies the of type of activity 

and contaminant limits that must be met (Public Health England and Wales and Public Health 

Scotland, 1989). Additionally, the introduction of new legislation may impact the practicalities 

of spreading biosolids produced from sewage sludge (Severn Trent, 2021). There are many 

ways to integrate other resource recovery practices to enhance biosolids generation, such as 

using heat pumps to generate renewable energy to support heating required for sludge digestion. 
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Co-digestion of sewage sludge and municipal solid waste has been successfully exploited across 

Europe, in countries including Denmark, Germany, and Switzerland, to improve biosolids 

nutrient loading and biogas yields (Cavinato et al., 2013). Regulatory issues prohibit co-

digestion in the UK as it makes the process complex and expensive, specifically around the use 

of food waste where Animal By-Product Regulations mitigate the digestates scope within The 

Sludge (Use in Agriculture) Regulations (CIWEM, 2011). In Europe there are no such issues, 

with slaughtered animals that were fit for consumption requiring only a simple, thermal 

sanitation step before AD (Holm-Nielsen et al., 2009). 

Based on this analysis, an integrated system for the recovery of priority resources, and co-

production of additional resources, can be created using appropriate technologies for the 

specific case analysed. Treatment trains representative of the existing UK asset base from the 

baseline model were compared with technologies required for the recovery of priority resources 

to decide on the final integrated resource recovery scenario. It was shown that the priority 

resource recovery pathways require, and are even enhanced by, the integration of AAD for the 

production of biosolids and biogas, therefore the scenario integrated within the baseline model 

is as follows: 

• Treatment trains with P removal are replaced with AGS processes for EPS and struvite 

recovery  

• Addition of NH3 stripping to remaining (non-AGS sludge treatment) AD systems  

• Addition of TH pretreatment to remaining (non-AGS sludge treatment) AD systems  

• Resultant biosolids utilised for farmland application  

• Thermal energy generation from heat pumps on effluent streams is compared with 

chemical energy from biogas 
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3.3.4.2 Resource recovery material and substance flow analysis 

In this section, the resultant scenario provided in Section 3.3.4.1 is implemented within the 

baseline model to quantify the impacts of the implementing resource recovery technologies. 

The CAS and TF treatment schemes with P removal (34 % of total flow) were replaced by AGS 

systems, which produce additional EPS and struvite resources. Reported data from a full scale 

NeredaÒ granular sludge plant in Garmerwolde, Netherlands (Pronk et al., 2015) was used to 

model the AGS process. Sludge, struvite, EPS, and biogas production rates were taken from 

literature (Guo et al., 2020; Kehrein et al., 2020b). TH units were integrated with AD processes 

used to treat the sludge produced by the remaining system to enhance biogas production and 

bioavailability of nutrients (Morgan-Sagastume et al., 2011). Thermally driven ammonia 

stripping was implemented on the concentrated liquor streams of the AAD systems to enhance 

nitrogen recovery (Organics Group, 2020). The quantity of energy from biogas production is 

compared with the potential of heat pumps on effluent streams for energy recovery. The 

parameters used for these calculations are summarised in Table A.4 of Appendix A.  

The reconfigured model favouring resource recovery practices was used to conduct MFA and 

SFA to investigate the degree to which nutrient recovery is improved. This resulted in decreased 

sludge (1.13 MtDS/a) and biosolids (0.66 MtDS/a) production, which is influenced by the 

relatively low generation by AGS systems. Figure 3.8 shows the results of the MFA and SFA 

for the updated resource recovery scenario. The influence of focussing on resource recovery is 

shown in Figure 3.8 by the greater variety of product streams generated, such as EPS, struvite, 

and ammonia.  
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Figure 3.8. Sankey diagrams representing the flow of substances for the updated resource recovery scenario. The 

results of SFA are shown here for nitrogen (red), phosphorus (purple), organic carbon (grey) and total suspended 

solids (yellow). The percentage of influent nutrients present in each flow are given, any flows with <1 % are not 

labelled. 

 

The results from Figure 3.8 were used to calculate the nutrients recovered in the resource 

recovery scenario and then compared with the baseline values to calculate gains achieved, 

which are summarised in Figure 3.9. Although biosolids production decreased by 

approximately 0.1 MtDS/a, the effect of TH meant that the nitrogen content was consistent 

between scenarios (50.5 tN/d and 50.2 tN/d in baseline and resource recovery scenarios 

respectively). Thermal stripping of digestion liquors recovered 21.2 tN/d, and additionally 12.1 

tN/d and 1.5 tN/d was captured in EPS and struvite respectively. This increased the recovery of 
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nitrogen by 68 % compared with the baseline. Enhanced P recovery was mainly influenced by 

the phosphorus accumulating properties of AGS systems, which resulted in a greater fraction 

being applied as biosolids (46.0 tP/d). Struvite and EPS further supplemented this by recovering 

3.4 tP/d and 4.5 tP/d respectively, resulting in an increase of 71 % compared with the baseline 

scenario for P recovery through the existing mix of biological and physio-chemical treatment 

processes. There was minimal impact on the recovery of OC, due to the balance of reduced 

sludge production of AGS systems, increased biogas generation of AAD processes, and the 

recovery of EPS. These results demonstrate the potential to achieve significant advances in 

recovery of N and P from UK wastewater. Energy recovery yields were compared for biogas 

generation and effluent heat pump strategies. The energy stored in biogas generated by the 

system is equivalent to 4.6 PJ/a; however, 6.4 MJ/m3 of energy can be captured from effluent 

wastewater.  Therefore, it was calculated that heat pumps are required on approximately 12 % 

of the total flow to match energy recovery from biogas.  

 

 

 

 

 

 

Figure 3.9. The recovery rate of N, P, and OC as a percentage of the influent comparing the resource recovery 

scenario with the baseline scenario. 

 

Even in the updated resource recovery scenario, large quantities of nitrogen are assimilated 

during wastewater treatment, but the low N concentration of wastewater influent limits 

efficiency of pretreatment recovery. However, 80 % of influent N (van der Hoek et al., 2018) 

(and 50 % of influent P (Mo and Zhang, 2013)) is in the form of urine; thus, potentially 

warranting an investigation into investment in separate collection infrastructure to enhance 

nutrient recovery in this scenario. For example, it was shown that adding urine to the stripper 

inlet stream equivalent to 10 % of sludge liquor volume translates to approximately 40 % 
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increase in ammonia concentration (Morales et al., 2013). When assessing the use of heat pumps 

for the recovery of thermal energy, it was shown to be approximately 8 times greater than the 

chemical energy from biogas, which is in agreement with the values of Hao et al. (2019).  

The recommended technologies provided by the regional assessment are required to act as the 

foundation for further analysis by individual water utilities or treatment sites. For the UK 

example, it was recommended that heat, ammonia, biopolymers, struvite and biosolids should 

be priority resources. However, it is beneficial for local factors to be considered during selection 

in these specific cases as there are many alternative methods, technologies, drivers, and barriers 

to consider at this scale, which could be accounted for in a quantitative capitals assessment. 

Therefore, there is a need for the development of a holistic value assessment to enable the 

conclusive appraisal of implementing circular solutions. 

3.4 Summary of main findings 

• It was seen there are disproportionately few methods, or examples of evaluating the 

resource recovery alternatives in WWTPs to support decision making. Efforts to 

systematically investigate their resource recovery potential tend to focus on site-specific 

assessments, whilst the identification of resource recovery alternatives on a 

regional/sectoral level has the advantage of improved market share, mitigating some 

investment risk  

• To enable strategic planning of circular solutions by the water sector, an MCA tool 

developed by UKWIR for technology selection was integrated within a framework to 

create resource recovery strategies at a regional level. The approach was validated by 

applying it to an example of the UK wastewater sector using data taken from PR19 

reports.  

•  Market potential analysis showed that technology produces fuels, and subsequent 

energy and electricity generation, can substitute little more than 1 % of UK demand. 

Whilst water reuse, CO2 generation, heat recovery, phosphorus recovery (sludge), 
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propionate and hydrogen production have market potentials greater than 25 %, and PHA 

and EPS production may even saturate markets. 

• By applying the MCA tool and testing performance across four potential future 

scenarios, the UK’s ‘priority resources’ were found to be heat (heat pumps), ammonia 

(stripping), biopolymers (EPS), struvite, and biosolids.  

• By selecting technologies to facilitate the capture of priority resources, recovery of 

nitrogen and phosphorus increased by 68 % and 71 % respectively compared with the 

baseline recovery using the existing mix of biological and physio-chemical treatment 

processes. 

• Large quantities of nitrogen are assimilated still during wastewater treatment in the 

‘resource recovery scenario’ potentially warranting an investigation into investment in 

separate collection infrastructure to enhance nutrient recovery in this scenario.   
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4 Tracing Wastewater Resources: Unravelling the Circularity of 

Waste using Source, Destination, and Quality Analysis 

4.1  Introduction 

Transitioning towards a circular economy (CE) means decoupling economic growth from the 

consumption of finite resources (Kjaer et al., 2019), providing a pathway to operationalise the 

sustainability of economic systems through specific activities that close and extend resource 

loops (Kirchherr et al., 2017). The attention given to the CE concept by industry in recent years 

has generated such momentum that it is becoming integrated within environmental policy (EU, 

China, US) (Moraga et al., 2019). However, it is argued the vagueness and uncontroversial 

nature of a CE has resulted in its popularity, by promising multiple benefits with few burdens 

(Corvellec et al., 2022). This ambiguity is signified by the lack of universal definitions (Moraga 

et al., 2019) and standardised metrics required for evidence-based decision making (Åkerman 

et al., 2020), meaning this trait now hinders the CE transition.      

Currently, the most commonly exhibited circular strategies are more appropriate for technical 

processes (Kirchherr et al., 2017), which correlates to a lack of assessment methodologies for 

biological systems, as the terminology used and indicators selected cannot be directly utilised 

across both paradigms (Navare et al., 2021). This also applies to water systems as many 

technical CE strategies are not appropriate, including repairing, refurbishing, and 

remanufacturing actions (Morseletto et al., 2022), due to the nature of resources carried and 

biological treatment processes utilised. Subsequently, the assessment of biotic and water 

resource circularity must acknowledge the differences with technical materials, such as 

investigating the sustainability of their extraction (harvesting or abstraction) to validate resource 

circularity, as circular technical processes aim to mitigate natural resource extraction entirely 

(Navare et al., 2021). Additionally, these resources must be cascaded as they degrade in quality, 

until they are regenerated to their original state by the environment (Stegmann et al., 2020), 

whilst technical systems focus on reverse logistics to maintain resource value (Morseletto et al., 

2022).  
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The recovery of value from wastewater is pertinent for realising a fully CE (Smol et al., 2020), 

however, in wastewater treatment plants (WWTP) the provision of service is dictated by 

upstream water user habits and the local climate, whereas most other production processes have 

choice of upstream materials and feedstocks. This leads to water asymmetry, where downstream 

users are dependent on upstream water use, whilst upstream users are mostly unaware or 

unimpacted by their own usage (Savenije and van der Zaag, 2020). Currently, it is difficult to 

pass responsibility on to water users to alter wastewater composition or production volumes, as 

this is a very sensitive area in terms of regulation and human rights protection (Gleick, 1998). 

Therefore, this is a pertinent area of development as it is currently difficult to define physical 

water resources as sustainable or unsustainable (Sauvé et al., 2021); it is how they are used 

along with the resultant impacts of usage. In technical systems, similar problems have been 

overcome by using the CE principle of traceability to enhance the sustainability of consumer 

practices. However, the technology is reliant on physically tagging products (Hoosain et al., 

2023), thus this method is inappropriate for wastewater resources and requires an alternative 

strategy.  

Wastewater production rate and composition is highly complex and case specific but it is 

ultimately dictated by water users (Sauvé et al., 2021), so generation that goes against CE 

principles should be penalised during circularity assessments. To address the resource 

imbalance caused by linear consumption, several methods have been trialled to facilitate the 

enhancement of circularity, including footprint calculators, material flow analysis (MFA), and 

life cycle assessments (LCA) (Metson et al., 2020). However, footprint calculations mitigate 

the spaciotemporal aspect needed to fully appreciate resource circularity (Metson et al., 2020; 

Sauvé et al., 2021), MFA neglects the resultant impacts of resources interacting with the natural 

environment, and LCA commonly assumes zero burden of waste streams utilised as feedstocks, 

ignoring the effect of upstream decision making on circularity (Pradel et al., 2016). Therefore, 

no currently available methodology can provide a holistic approach to mend water and nutrient 

balances, hindering evidence-based decision making for the CE. 

To realise this, traceability principles are needed to develop assessments that go beyond the 

current blanket definitions of waste, to show how water usage impacts circularity. However, 

understanding and standardising waste circularity becomes challenging when reviewing the 

definitions currently available in literature. Strategy- (Moraga et al., 2019), functionality-, and 

value-based (Iacovidou et al., 2017) classifications have been developed, but these consider 
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technical manufacturing systems, meaning they cannot be applied to wastewater resources as 

wastes are deemed to have no value to the holder. More worryingly, a prominent industrial CE 

advocate defines an incoming waste stream as being non-virgin and therefore circular (wbcsd, 

2022). This creates a paradox during the assessment of waste and wastewater treatment 

facilities, as intentional or preventable generation of waste is against many CE principles, yet it 

would be considered a circular inflow within these system boundaries, leading to errors during 

quantitative circularity assessments.  

To overcome this, traceability principles should be applied to adopt the attitude that not all 

waste is created equally (Girard, 2022). The actions of wastewater producers across different 

sectors must be used to assign responsibility for linear utilisation of resources, shifting the 

current paradigm of policy instruments that only promote circularity to actively discourage 

linear practices (Corvellec et al., 2022). This is needed as it is currently difficult to construct 

economically feasible circular business models as disposal of materials to environmental sinks 

is relatively cheap (Åkerman et al., 2020). This means an approach is needed to assign 

responsibility for unsustainable water usage and wastewater production. Therefore, the aim of 

this work is to develop a method that measures and assesses the circularity of the main inflow 

and outflow wastewater resources (i.e. water, carbon, nitrogen, and phosphorus) based on CE 

principles for biobased systems (specifically traceability), to understand the consequences of 

upstream actions on downstream treatment processes. This characterisation will act as the 

foundation for developing holistic circularity assessments, enabling the incorporation of wider 

impacts such as environmental and human health dimensions. 

4.2 Methodology 

4.2.1 Overview 

The framework developed by Harder et al. (2021b, 2021a) is one of the only examples in 

literature analysing the traceability of nutrients in biological systems, aiming for nutrient 

circularity ‘disentanglement’. However, it presents a simplified nutrient end-of-life scenario, 

ignoring nutrient interactions with the atmosphere and water bodies for resource cycling. 

Therefore, this work builds upon the Harder et al. (2021b, 2021a) framework by considering 

nutrient and water resources, to understand how they are cycled to supplement air, water, and 
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soil in biological systems or as materials in technical systems, and lost to the environment in a 

harmful, dissipative manner during wastewater treatment. This model is illustrated in Figure 

4.1, highlighting the interconnectivity of wastewater resources with other sectors and how they 

disrupt natural water cycles through unsustainable water usage. This is needed as the economic 

and environmental burden of treatment is usually shared by stakeholders regardless of their 

individual consumption, making it challenging to develop policy that discourages unsustainable 

water use. Traceability of wastewater resources using this model enables assessors to 

understand the purpose behind water use, its alignment with CE principles, and the subsequent 

impact on water quality. Therefore, the approach can be used to assign responsibility to water 

users, helping to guide policy and regulatory frameworks that address sector-specific goals. 

 

Figure 4.1. Expansion of a figure from Harder et al. (2021b) to show resource flows related to wastewater 

treatment through the human system. Flows are divided into technical (black), virgin water (dark blue), circular 

nutrient (green), circular water (light blue), losses (red), and waste treatment (brown) resources. 

 

Utilising resource disentanglement, the current work aims to detail the origin and nature of 

wastewater resources to ensure they are not mistakenly labelled as circular during assessments. 

Firstly, influent water is classified based on source and recoverability from Kakwani and Kalbar 
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(2022), whilst outflow circularity is defined by water quality and intended use to supplement 

fresh water abstraction. Nitrogen and phosphorus inflow circularity is based on nutrient sources 

from the work of Comber et al. (2013), whereas outflows must contribute to natural nutrient 

cycling or substitute virgin nutrient consumption to be classed as circular. Lastly, properties of 

biogenic or fossil carbon are used to differentiate circularity according to Law et al. (2013), as 

the former is part of natural cycling and release of the latter has detrimental impacts on the 

environment. Adding the interactions of wastewater treatment with environmental and human 

systems in this way will shed light on the previously neglected elements of waste resource 

circularity, by establishing which practices facilitate resource renewability, restoration, and 

substitution, as well as those that impede natural cycling.  

4.2.2 Resource flow classification  

The characteristics of waste streams cause confusion when defining and assigning circular 

properties. Terms such as raw material, virgin, biogenic, by-product, and renewable are often 

used in CE literature to describe resources, some of which reveal intrinsic circular properties 

whilst others require further investigation of resource characteristics. Korhonen et al. (2018) 

discusses the problem of distinguishing between wastes and by-products, concluding that 

without proper definition of materials it is difficult to intentionally support their utilisation. 

Using the principle of traceability, it is possible to assume that a waste feedstock may not be 

circular or contains non-circular components. This may not align with the common ‘zero 

burden’ burden assumption but without this classification it is easy to assume that as long as a 

WWTP operates as expected (meeting discharge permit limits), 100 % of wastewater inflows 

and 100 % of wastewater outflows are circular, meaning the assessment is of little value to 

decision makers.  

The developed method utilises the principles of the Do No Significant Harm (DNSH) 

framework (Italia Domani, 2021), to reason whether resource flows that interact with 

environmental (soil, water, and air) and human systems should be considered linear, and 

combines it with an understanding of resource source and destination. By applying this method 

to critically analyse wastewater, the different resources that make up this complex stream can 

be disentangled. Therefore, not only can all resource inputs and outputs be characterised, but 

also the different fractions and components of each nutrient considering their individual 
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properties using the selected criteria and developed definitions from Sections 4.2.2.1 to 4.2.2.3. 

This is necessary due to the complexity of wastewater so definitions for the circularity 

classification of water, carbon, nitrogen, and phosphorus resources are provided, along with 

common wastewater treatment examples in Tables 4.1-4.7 to facilitate indicator calculation.  

4.2.2.1 Water 

According to Kakwani and Kalbar (2022) improving water circularity should focus on distinct 

water collection for water restoration, recycling, reuse, and reclamation. Whereas the definition 

of outflow circularity requires understanding of the quality of the water flow and its destination. 

Inflow circularity 

This starts by defining a WWTP’s primary aim, which is to collect wastewater and treat 

contaminants so that it can be discharged to restore a water body, recognising the potential of 

WWTPs to possess advanced technologies for water recycling, reuse, or reclamation. Next, the 

circular inflow fraction is defined as the recoverable water that flows into a WWTP which has 

the potential to be upgraded for restoration of a water body or other recycling, reuse, and 

reclamation purposes. Then the non-circular inflow requires an estimation of the quantity of 

water that is lost upstream, which is defined as the unrecoverable water that is lost between 

water provision and WWTP, such as human consumption losses, distribution losses, spillages, 

or evaporation, all of which reduce the amount of water a facility can treat. Lastly, a final 

category of water inflows is defined, for the water fraction in materials required for WWTP 

operation, such as ferric chloride (FeCl3) solution. These fractions are usually recoverable but 

from virgin sources, so are considered linear (although the scale of wastewater treatment means 

they can usually be neglected). The values used in this study are summarised in Table 4.1 and 

are taken from Kakwani and Kalbar (2022).  

Table 4.1. Circularity fractionation of water inflows. 

Stream Input Fractions Status 

WWTP inlet 80% Circular (recoverable) 

Losses  
(Consumption - WWTP Inlet) 20% Linear (unrecoverable) 

FeCl3 (40 % solution) <1 % (negligible) Linear (virgin) 
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Outflow circularity 

Firstly, an outflow is defined as circular if it is discharged at the required regulatory quality 

used for restoration of a freshwater body (in the same catchment) or upgraded for purposes 

that reduce virgin water abstraction (recycling, reuse, reclamation) by supplementing the needs 

of other processes. This step requires regulatory limits to be established that confirm the 

restorative abilities of wastewater discharges, such as the DSNH criteria (2021/C58/01) for ‘the 

sustainable use and protection of water and marine resources’. This is appropriate for assessing 

European WWTPs and states to follow requirements of the Water Framework Directive (WFD) 

(2000/60/EC) to assess environmental degradation risks (European Commission, 2021c). The 

WFD uses the Urban Wastewater Treatment Directive (UWWTD) (91/271/EEC) for classifying 

discharges to water bodies (European Parliament, 2000) and can be used to guide quality 

requirements (Council of the European Union, 1991). However, an additional action is needed 

when the receiving water body is reaching its allowable limit of pollution (according to the 

WFD). In these cases the grey-water footprint is used to calculate the critical load of discharges, 

to ensure the freshwater flow sufficiently dilutes contaminants, according to the method of 

Aldaya et al. (2011). If not, then the discharge of treated wastewater by a WWTP cannot be 

seen as a regenerative action and will receive a linear classification until water body quality or 

effluent concentrations are improved to satisfy the critical load. Lastly, the linear outflows are 

defined as water that is discharged at a level of contamination that does not meet regulatory 

limits and is therefore harmful to environmental and human health, not returned in a controlled 

manner for freshwater body restoration, or is used in a way that does not result in the reduction 

of virgin water abstraction. Table 4.2 summarises common outflows and destinations, with the 

expected fraction of water in each stream taken from literature (Tchobanoglous et al., 2014), 

showing how this influences the circularity classification.   
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Table 4.2. Circularity fractionation of water outflows. 

Stream Water Content Destination Status 

Screenings 50-90% Landfill Linear 

Fats, Oils, Grease (FOG) 15-95% Landfill Linear 

Grit 13-65% Landfill Linear 

Effluent >99.9% 

Restoration  

(groundwater, lake, river) 
Circular 

Recycling  
(irrigation or further upgrading) Circular 

Sea Water Linear 

Discharge Fails to Meet Permit Limits Linear 

Overflow Discharge  Linear 

Biosolids  65-85%  

Landfill Linear 

Incineration Linear 

Land Application Circular/Linear  

 

Additional considerations - biosolids 

In the case of biosolids application to land, their moisture must be compared with that of the 

receiving soil. Data is collected from appropriate literature, as European soil moisture can 

fluctuate between 5 % and 44 % in arid and cold climates respectively (Almendra-Martín et al., 

2022), whereas biosolids solids content can be approximately 25 % when dewatered, 50 % 

when composted, and >75 % when dried (Tchobanoglous et al., 2014). Therefore, it is possible 

for soil to have greater moisture content than the applied solids, meaning application will not 

improve soil water deficit. Finally, the water fraction is considered circular when high water 

content biosolids or sludge is applied to dry soils that reduce the water deficit, resulting in the 

reduction of raw water abstraction. 

4.2.2.2 Phosphorus and Nitrogen 

Comber et al. (2013) completed substance flow analysis (SFA) of domestic wastewater 

nutrients entering sewage treatment works and is used to divide nutrient fractions based on their 
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origin, and categorised by whether they originate from human waste or unnatural sources. MFA 

and SFA allow the inflows to be tracked through the system, and outflow streams quantified, 

which enables the degree of harm to be established. 

Inflow circularity 

The objective of defining nitrogen and phosphorus (NP) nutrient circularity relies on 

understanding their renewability within biological systems. Firstly, NP inflows are defined as 

circular if it is from a source that contributed to the natural human diet and cycling of nitrogen 

or phosphorus, such as human excreta. Next, any farming or animal wastes entering the system 

are classified as linear, as these nutrients should be kept within the farming/food system and 

applied to crops. Then NP is considered to have non-circular properties when sourced from 

preventable or non-natural sources and is part of the non-natural and unnecessary use of 

nitrogen or phosphorus. Table 4.3 provides a summary of the fractions of domestic wastewater, 

with the data for the fractionation of inflows taken from studies by Comber et al. (2013) and 

van der Hoek et al. (2018).  

Table 4.3. Circularity fractionation of NP inflows. 

Phosphorus Nitrogen 

Stream Input Fraction Status Stream Input Fraction Status 

Urine 30% 
Circular 

Urine 80% 
Circular 

Faeces 10% Faeces 14% 

Food Scraps 1% 

Linear Greywater (kitchen, 
laundry, or bathroom) 6% Linear 

Food Additives 29% 

Automatic Dishwashing 9% 

Laundry Detergents 14% 

Tap Water Dosing 6% 

Personal Care product 1% 

 

Outflow circularity 

The first step is to define circular outflows as being effectively recovered for controlled release 

to soil (for fertilisation or conditioning) or safe return to the atmosphere, or are utilised in 
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products to extend the life of nutrients in the human system, substituting the use of virgin 

resources. Then linear flows are the opposite as they are not recovered effectively and are 

released to the environment (atmosphere, water, and soil) in a way that is harmful to the natural 

functioning of ecosystems. During classification of linear flows, it is critical to consider 

atmospheric emissions, especially N2O as it is a reactive form of nitrogen produced during 

nitrification-denitrification processes and is a powerful greenhouse gas (GHG) making it 

harmful to the environment. Additionally, the eutrophic properties of NP mean that any release 

of these nutrients in wastewater discharge is assumed to be potentially harmful following the 

DNSH principles, as well as being a loss of useful resources from the human system, so are 

deemed linear.  

Table 4.4 provides a summary of the properties of WWTP NP resource outflows, with typical 

concentrations taken from Tchobanoglous et al. (2014). It is worth noting that some streams 

have the potential to be linear or circular depending on their destination, for example if water 

is recycled to be used in agriculture, then NP nutrients are used in a circular manner in cases 

such as fertigation. The phosphorus in incineration ash can be leached and collected before 

landfill to be used in a circular manner, and the circularity of ‘Other’ uses of biosolids depends 

on the scenario, including composting or land reclamation processes. Therefore, the circular 

properties of nutrient outflows are dependent on the specific scenario and how resource 

outflows are used. 
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Table 4.4. Circularity fractionation of NP outflows. 

Phosphorus Nitrogen 

Stream Nutrient 
fraction Destination Status Stream Nutrient 

fraction Destination Status 

Effluent 

1-2 mg/L 

Sea Water Linear 

Effluent 

5-15 mg/L 

Sea Water Linear 

Freshwater 
Body Linear Freshwater Body Linear 

Water 
Upgrading/ 

Recycling e.g. 
fertigation 

Circular
/ Linear 

Water Upgrading/ 
Recycling e.g. 

fertigation 

Circular
/ Linear 

>2 mg/L 
Discharge 

Fails to Meet 
Permit Limits 

Linear >15 mg/L 
Discharge Fails to 

Meet Permit 
Limits 

Linear 

3.7-11 
mg/L 

Overflow 
Discharge Linear 23-69 mg/L Overflow 

Discharge Linear 

Biosolids 

approx.  
1.9 % Dry 

Solids 
(DS) 

Landfill Linear 

Biosolids approx.  
4.4 %DS 

Landfill Linear 

Incineration Circular
/ Linear Incineration Linear 

Land 
Application 

Circular
/ Linear  Land Application Circular

/ Linear  

Other Circular
/ Linear 

Other Circular
/ Linear 

Gas 
Emissions  

*in the case of 
nitrification-

denitrification 

1.6 % Influent 
N (0.016 - 4.5 

%)  

(Doorn et al., 
2019) 

N2O  Linear 

29 % of Total 
N removed 
minus N2O 

N2 (from organic 
fertilisers and 

biological 
fixation) 

Circular 

65 % of Total 
N removed 
minus N2O 

N2 (from synthetic 
fertilisers and 
atmospheric 
deposition) 

Neutral 

6 % of Total 
N removed 
minus N2O 

N2 (from 
greywater) Neutral 
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Additional considerations – N2 emissions 

For nitrogen gas (N2) emissions, a unique classification of ‘neutral’ is defined and used in 

combination with circular fractions. Initially, the circular allowance of N2 is calculated as the 

fraction of nitrogen in human excreta (94 % of inlet) from organic fertilisers (manure) and 

nitrogen fixation, as this facilitates the extended life of nutrients in the human system and 

natural cycling. Then the remaining fraction is calculated from synthetic fertiliser application 

and atmospheric deposition of nitrogen, and whilst the N2 gas generated from this does not 

cause environmental harm, it is not part of natural nitrogen cycling, nor does it contribute to the 

replenishment of atmospheric nitrogen sinks, so it is considered neutral. The other neutral 

fraction is calculated from the greywater inlet (6 %), as this is not part of natural nitrogen 

cycling. The N2 fractions in Table 4.4 are collected from values in the Food and Agriculture 

Organization database (Food and Agriculture Organization of the United Nations, 2020) for 

nitrogen applied to cropland in EU-27 countries (year 2020) and are provided in Table 4.5. 

Lastly, in the cases of nitrification-denitrification it is recommended to calculate an additional 

indicator for the fraction of ‘non-harmful’ nitrogen outflow, so that linear, neutral, and circular 

resource flows are compared. This ensures that true nitrogen cycling is rewarded whilst good 

practices of biological nutrient removal (BNR) are not penalised by the assessment.   

Table 4.5. Nitrogen applied to cropland in EU-27 countries in 2020. 

Total Mass to Crops Status 

14,241,375 tonnes Neutral/Circular 

Total fractions Mass  

Synthetic Fertilisers 62% 8,796,622 tonnes Neutral 

Manure Applied to Soils 28% 3,979,757 tonnes Circular 

Atmospheric Deposition 7% 1,031,166 tonnes Neutral 

Biological Fixation 3% 433,829 tonnes Circular 

 

Additional considerations – NP release 

The mechanism of release is important for NP classification, which is why land application has 

been defined as potentially circular or linear. The first step is to consider the efficiency of NP 
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application to farmland, as the particularities of each case, the amount applied, the time of year, 

and the method used can impact the utilisation of nutrients by cropland. For example, nutrients 

returned to an ecosystem at a rate higher than it is able absorb them can negatively impact 

nutrient cycling (Navare et al., 2021). Poor practice has the potential for serious environmental 

and health risks, such as the downstream generation of ammonia emissions from biosolids, 

which poses a threat to air quality and can cause respiratory issues, as well as contributing to 

nitrogen deposition. Therefore, land application can be classified as circular if applied to 

croplands in an efficient manner considering the NP needs of crops, such that crop growth is 

enhanced and synthetic NP fertiliser requirements are reduced. For example, WWTPs that use 

FeCl3 dosing to enhance phosphorus removal produces a fraction of biosolids nutrients that are 

unavailable to the soil and are considered linear.  

4.2.2.3 Carbon 

Organic carbon (OC) plays a key role in wastewater treatment performance but is also critical 

in many resource recovery strategies. When completing GHG accounting of WWTPs, there is 

already an emphasis placed on understanding the emissions that occur due to fossil OC in the 

influent (Tseng et al., 2016). Therefore, a similar approach is followed when assigning 

circularity to OC flows. It is important to distinguish that biogenic carbon is absorbed and 

emitted by organic matter as part of the natural carbon cycle, whilst fossil carbon is created over 

very long timescales from dead organic matter, meaning its release disturbs the natural 

equilibrium which increases atmospheric concentrations. Thus, fossil carbon release causes 

environmental harm, substantiating its inclusion in GHG accounting protocols and 

classification as a linear action in this work.  

Inflow Circularity 

OC classification is different to the NP definitions of circularity but aligns the methodology 

with GHG accounting principles, as this is a priority of many sustainability targets. Therefore, 

OC is defined as circular if it contributes to the natural cycling of biogenic carbon, whereas it 

is considered linear if it contributes to the unnatural use of avoidable fossil carbon. For 

domestic wastewater, approximately 94.5 % of influent OC is biogenic, and therefore circular, 

whilst the remaining 5.5 % is fossil and linear (Law et al., 2013). When applying the 

classification framework to define OC circularity, it is recommended to start by understanding 

influent carbon composition of the WWTP in question as fossil and biogenic fractions are 
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variable, especially if the plant is treating a proportion of wastewater from industrial sources, 

before SFA is completed.  

Outflow Circularity 

Determining the circular fraction of OC outflows requires SFA of this resource through 

WWTPs, to determine the quantity in each outflow as well as the fraction that is fossil carbon. 

Therefore, the first step is to collect data for quantifying the fraction of fossil carbon in each 

outflow stream, for example Table 4.6 summarises those for activated sludge plants (Law et al., 

2013).  

Table 4.6. Fractionation of fossil carbon in wastewater system outflows. 

Outputs Notes 

Effluent  5.0 %   

Sludge (no 
anaerobic digestion 
(AD)) 

64.5 %  

Sludge (post AD) 56.8 % 88% of fossil carbon to sludge  

and 12% to biogas Biogas (from AD) 7.7 % 

Direct Gas 
Emissions 30.5 %  

 

Then OC outflows are considered circular if there is controlled release of biogenic carbon 

dioxide to the atmosphere or biogenic carbon to soil (for fertilisation or conditioning), or is 

utilised in products to extend the life of carbon in the human system, substituting the use of 

fossil resources. This step requires the important distinction types of carbon emissions, as only 

biogenic CO2 released to the atmosphere can be considered circular as this contributes to natural 

carbon cycling, whereas fossil CO2 or other GHGs do not. The difference in timescales of fossil 

and present-day biogenic carbon cycling must be considered to assess the circularity of 

biosolids application to land. Fossil fuel CO2 emissions release carbon that has been stored for 

millions of years, whereas biogenic feedstock consumption and CO2 production is balanced by 

uptake during growth of new biomass on a timescale of years to decades. Therefore, biogenic 

carbon output as biosolids is considered circular. In contrast, the fossil carbon fraction in 

biosolids is considered linear, as it has been shown that only 35-60 % of carbon is retained in 
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soils over 20 years (McLeod and Lake, 2021), with the rest lost to the atmosphere before fossil 

carbon stocks are replenished. Lastly, linear organic carbon outflows are defined as being not 

effectively recovered for controlled release back to natural cycles, including fossil carbon 

dioxide or other powerful GHGs released to the atmosphere or fossil carbon to soil, with the 

potential to harm the environment. This classification aligns with the wastewater sector’s 

current carbon accounting rules (U.S. Environmental Protection Agency, 2011) and Table 4.7 

summaries the characteristics of OC outflows of interest. 
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Table 4.7. Circularity fractionation of OC outflows. 

Stream  OC fraction Destination Status 

FOG 77 % TS Landfill Linear 

Screenings 41.3 % TS Landfill Linear 

Effluent 

  

approx. 10 mg/L 
 

Sea Water Linear 

Fresh Water Body Linear 

Water Upgrading/Recycling Circular/Linear 

109-328 mg/L Overflow Discharge Linear 

Biosolids  

  

19-35 %DS 

 
 

Landfill Linear 

Incineration   

Fossil Emissions Linear 

Biogenic Emissions Circular (CO2)/Linear 
(CO and CH4) 

Ash (landfill) Linear 

Land Application  

Fossil Linear 

Biogenic Circular 

Other Circular/Linear 

Direct Gas Emissions 

*in the case centralised 
aerobic processes 

Total carbon removal minus 
CH4 emissions 

 

CO2   

Fossil Linear 

Biogenic Circular 

Emission factor of 0.0075  
kgCH4/kgCOD  

(Doorn et al., 2019) 
CH4 Linear 

Biogas  
approx. 65 % CH4  

(remainder assumed CO2)  

Biogas Combustion   

Fossil CO2 and Fugitive CH4 Linear 

Biogenic CO2 Circular 
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Additional considerations - outflows 

Carbon emissions in effluent discharge do not have the same harmful eutrophic properties as 

nitrogen and phosphorus, but this represents a useful resource that is lost to the environment, 

has potential to be released as GHGs downstream, and the ability to negatively alter river carbon 

dynamics (Lee et al., 2023), meaning it is classified as linear. Additionally, a caveat is needed 

when biochar is generated and applied to soil, as this carbon has a turnover time of hundreds to 

thousands of years making both biogenic and fossil carbon fractions circular, as OC is 

adequately sequestered compared with conventional biosolids (McLeod and Lake, 2021). 

Lastly, for the case of advanced resource recovery, fossil carbon that is stored usefully within a 

product for the human system, replacing the need for fossil carbon extraction (such as paint 

production) would be considered circular using the definition of outflow circularity provided. 

To conclude, it is not possible for all flows to be classified as fully linear or circular, for example 

there are losses during many circular recovery processes. Therefore, to collect data with a 

sufficient level of detail when applying the framework to real-world WWTPs it is critical to 

engage with local process operators and environmental scientists to understand downstream 

processing steps and environmental interactions. 

4.2.3 Assessment  

The development of process models is required for SFA and MFA of resources to complete the 

circularity characterisation approach described in Section 4.2.2, enabling the calculation of 

indicators for assessment of WWTP resource circularity. The circularity indicators selected 

cover the key areas of material inflows and outflows, water, energy, and economics, following 

a similar structure to the Circular Transition Indicator framework (wbcsd, 2022). Using the 

classification of Section 4.2.2 to assign circularity facilitates more standardised and robust 

analysis of key resources during the assessment, enabling the comparison of results across 

different wastewater systems (plant location, technology, or size). The selected resource flow 

indicators are summarised in Table 4.8.  
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Table 4.8. Indicators selected for resource flow analysis.  

Category Indicator Equation 

Materials 

Circular Inflow (as defined by classification 
approach) (%) 

𝑀𝑎𝑠𝑠	𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟	𝐼𝑛𝑓𝑙𝑜𝑤
𝑇𝑜𝑡𝑎𝑙	𝑀𝑎𝑠𝑠	𝑜𝑓	𝐼𝑛𝑓𝑙𝑜𝑤 

Renewable Recirculation Outflow (%) 
𝑀𝑎𝑠𝑠	𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒	𝑂𝑢𝑓𝑙𝑜𝑤
𝑇𝑜𝑡𝑎𝑙	𝑀𝑎𝑠𝑠	𝑜𝑓	𝑂𝑢𝑡𝑓𝑙𝑜𝑤  

Circular Outflow (as defined by classification 
approach) (%) 

𝑀𝑎𝑠𝑠	𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟	𝑂𝑢𝑡𝑓𝑙𝑜𝑤
𝑇𝑜𝑡𝑎𝑙	𝑀𝑎𝑠𝑠	𝑜𝑓	𝑂𝑢𝑡𝑓𝑙𝑜𝑤 

Circular Flow (%) 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟	𝐼𝑛𝑓𝑙𝑜𝑤 + 	𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟	𝑂𝑢𝑡𝑓𝑙𝑜𝑤
2  

Wastewater Nutrient Removal Efficiency (%) 1 −
𝑂𝑢𝑡𝑝𝑢𝑡	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝐼𝑛𝑝𝑢𝑡	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  

Water 

Water Discharged in Accordance with CE 
Principles (%) 

𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟	𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒	
𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑊𝑎𝑡𝑒𝑟	𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙  

Water Use from Circular Sources (%) 
𝑉𝑜𝑙𝑢𝑚𝑒	𝑊𝑎𝑡𝑒𝑟	𝑈𝑠𝑒𝑑	𝑓𝑟𝑜𝑚	𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟	𝑆𝑜𝑢𝑟𝑐𝑒𝑠
𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑊𝑎𝑡𝑒𝑟	𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑏𝑦	𝑡ℎ𝑒	𝑃𝑟𝑜𝑐𝑒𝑠𝑠  

Energy Energy Consumed from Renewable Sources (%) 
𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒	𝐸𝑛𝑒𝑟𝑔𝑦	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  

Value 

Circular Material Productivity (€/kg) 
𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒

𝑀𝑎𝑠𝑠	𝑜𝑓	𝐿𝑖𝑛𝑒𝑎𝑟	𝐼𝑛𝑓𝑙𝑜𝑤 

Value-based Resource Efficiency (€/€) 
𝐺𝑟𝑜𝑠𝑠	𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙	𝑎𝑛𝑑	𝑆𝑒𝑟𝑣𝑖𝑐𝑒	𝐶𝑜𝑠𝑡𝑠	

𝐼𝑛𝑝𝑢𝑡	𝐸𝑛𝑒𝑟𝑔𝑦	𝑎𝑛𝑑	𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑉𝑎𝑙𝑢𝑒 − 1 

Product Value per Mass (€/kg) 
𝑃𝑟𝑜𝑑𝑢𝑐𝑡	𝑅𝑒𝑣𝑒𝑛𝑢𝑒

𝑀𝑎𝑠𝑠	𝑜𝑓	𝑉𝑖𝑟𝑔𝑖𝑛	𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

 

Table 4.8 includes the circular inflow and outflow indicators, calculated using the scheme 

developed in Section 4.2.2, and the fraction of renewable resources as useful insights are 

provided when comparing results of these indicators. The removal efficiency of the treatment 

process is a common indicator of WWTP operational performance (von Sperling et al., 2020), 

as the most important result is the treatment of wastewater to a satisfactory standard. The Value-

based Resource Efficiency (VRE) shows the economic efficiency of the WWTP (Di Maio et 

al., 2017), revealing how the gross output (revenue) compares to the cost of energy and 

materials. The product value per mass indicator is included as the recovery of high value 

products from wastewater will become more popular, enabling the impacts to revenue streams 

to be understood and analysis of product revenue separately from service fees. However, in 

conventional WWTPs this will often be zero as there is little market for the low value resources 
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recovered, such as biosolids. This indicator is useful in cases when comparing alternate resource 

recovery technologies or strategies to determine the economic efficiency of value-added 

product generation.   

To interpret assessment outcomes, a combination of Sankey diagrams and indicator results from 

Table 4.8 are then used to complete hotspot analysis of the WWTP. Sankey diagrams visualise 

the results of MFA, showing the viewer both the pathway and magnitude of resource flows in 

the system, as the width of each stream is proportional to its magnitude (Renfrew et al., 2022). 

Indicator results build upon this, showing how the size and destination of these streams impact 

the circularity of resource flows in the WWTP. The same analysis must then be applied for the 

investigation of potential scenarios that alter the circularity of WWTP resource flows, validating 

how any decision maker actions will impact the upstream and downstream, or for comparing 

alternate systems to identify better practices in terms of circularity (Section 4.3).  

4.3 Results 

This section demonstrates implementation of the classification approach developed in Section 

4.2 to assess a conventional WWTP. Potential scenarios impacting process upstream and 

downstream are utilised to elucidate how the approach can be used for evidence-based decision 

making considering the actions of water users.   

4.3.1 System definition 

A centralised, conventional, activated sludge WWTP at a scale of 270,000 population 

equivalents, with an average load of 12,000 m3/d in Estiviel, Spain was selected for the 

assessment (Rodríguez-Chueca et al., 2019). This is a common treatment process across Europe 

so is an interesting case to test the capabilities of the resource classification approach.  

4.3.2 System boundaries 

The WWTP is assumed to operate with conventional pretreatment to remove grit, screenings, 

and FOG, followed by primary clarification. From the effluent quality quoted in literature 

(Rodríguez-Chueca et al., 2019), it was assumed secondary treatment consists of aerobic and 

anoxic zones to facilitate nitrification-denitrification, with ferric dosing to chemically remove 
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phosphorus. Primary and waste activated sludge (WAS) are stabilised using anaerobic digestion 

(AD) with the generated biogas utilised for energy recovery to heat digesters and supply 

electricity to the plant. System boundaries are drawn from when wastewater leaves the water 

user and flows into the WWTP (meaning the impacts of leakages are considered), until 

wastewater effluent is discharged from the plant and biosolids are applied to land as shown in 

Figure 4.2.  

 

Figure 4.2. Process stages of the assessed WWTP. 

 

4.3.3 System modelling 

A model of the WWTP was constructed for the physical, chemical, and biological treatment 

units using parameters taken from literature provided in Tables B1-B4 of Appendix B, enabling 

MFA for each wastewater resource to be completed. The wastewater influent and effluent 

loadings were taken from literature describing a WWTP of this size in Estiviel, Spain 

(Rodríguez-Chueca et al., 2019).  

4.3.4 Resource flow characterisation 

The circularity assessment was completed using the tables and definitions from Section 4.2.2 

to characterise the water, nitrogen, phosphorus, and carbon resource flows, and a summary is 

provided in Tables B5-B8 of Appendix B. Combining MFA results with the assigned circular 

properties enables the calculation of assessment indicators in Table 4.8.  
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4.3.5 Scenario investigation 

As stated previously, one of the main goals of this approach is to support CE policy by 

investigating the impacts of water user behaviour and upstream decisions on WWTP circularity 

and the downstream environment. Therefore, once MFA and resource classification has been 

completed, assessors should use this information combined with water related policy 

(UWWTD) or regional goals (CE Action Plan) to create alternate scenarios for quantifying 

potential changes to WWTP circularity. To reveal the value of the resource classification 

approach, targeted scenarios impacting WWTP inlet and outlet have been generated reflecting 

plausible real-world changes to the system that influence process upstream and downstream 

circularity: 

1. A company starts operating in the municipality, producing an additional 400 m3/d 

of wastewater for treatment containing 1000 mgC/l of fossil carbon.  

2. Due to local farmers changing fertiliser application practices and more intensive 

rainfall due to climate change, runoff from local farmland entering the sewage 

system increases NP concentration by an average of 5 %. 

3. A local campaign in the region has raised consumer awareness regarding the 

negative environmental impacts of dishwashing and washing machine detergents, 

reducing consumption by 50 %. 

4. The local water utility decides to invest in biogas upgrading for biomethane 

production to directly inject it into the grid, generating additional revenue and excess 

CO2 as a by-product.  

5. Improved nutrient management plans from European Commission regulation result 

in a 50 % reduction of synthetic fertiliser use by local farmers, with demand 

matched by an increase in organic fertilisers application.    
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4.3.6 Assessment 

4.3.6.1 Material flow analysis 

Figure 4.3 provides the Sankey diagrams for water (3A) and nutrients (3B) flowing through the 

WWTP, revealing the circular and linear resources in the system. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. MFA of the WWTP system with circular flows in green and linear flows in red, and other flows that 

stay within the system boundaries. b; water resources a; nutrient resources. 

 

The MFA is usually applied for identifying hotspots in terms of material losses, but further 

insights can be found by integrating the classification approach for use as a tool to highlight 

which resource flows must be targeted to improve WWTP circularity. Figure 4.3A shows that 

the majority of water resources are lost to the environment as effluent discharge, however, 

UWWTD requirements are met and effluent is below the critical load of the receiving water 
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body, so this can be considered a regenerative and therefore circular action. Still a significant 

proportion of influent water is lost during collection (from user to WWTP), warranting further 

investigation into leakage reduction measures as this would result in the greatest benefits to 

water circularity. The water in biosolids is seen as a loss of resources, as in its current form the 

water balance of the soil is not improved. By diluting biosolids this could be reversed to reduce 

water abstraction for irrigation and be seen as a circular water flow, however, this must be 

considered against potential impacts such as additional transportation.  

The impacts of losses during wastewater collection are also shown for nutrient resources in 

Figure 4.3B, therefore, investments in leakage reduction would be of benefit for improving 

overall process circularity. There is also a large loss of carbon from FOG removal during 

pretreatment, which could be overcome by adding this resource to AD units to improve WWTP 

circularity. Additionally, there are losses of nitrogen and carbon gaseous emissions to the 

atmosphere in a harmful manner, meaning better WWTP control is needed to reduce N2O 

production, as well as strategies to reduce inlet fossil carbon and investments in technology to 

sequester these emissions. There is also a significant fraction of N2 emissions from secondary 

treatment (41.6 % of total resources directly emitted) that have a ‘neutral’ classification, 

evidencing that a high proportion of nutrient inflow comes from synthetic nitrogen sources. 

Lastly, it is shown that a fraction of biosolids nutrients are linear as they are unavailable to the 

soil due to the use of chemical phosphorus removal, meaning a biological treatment process that 

removes phosphorus is needed improve resource circularity.  

Ultimately, MFA quantified that only approximately 75 % and 50 % of water and nutrients 

resource outflows are circular in the assessed WWTP respectively, showing there is still 

significant scope for improvement. It also highlights the importance of boundary selection 

during the assessment, as here the collection losses are considered before WWTP inlet, limiting 

outflow circularity indicators, as 20 % of all resources are lost from the system, emphasising 

the impacts of leakage on circularity. However, decision makers may wish to define boundaries 

of the WWTP itself to investigate the circularity of process operation only. 

4.3.6.2 Resource flow indicators 

Figure 4.4 provides the resource flow indicator results for material inflows and outflows. Using 

the classification framework, indicator results provide more detailed resource analysis than 

MFA alone or using the alterative definitions of circularity from literature.  
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Figure 4.4. a; renewable (R) and circular (C) outflow, b; circular inflow, c; total circularity, and d; WWTP 

removal efficiency indicator results for carbon, nitrogen, and phosphorus nutrients. 

 

Figure 4.4A shows outflow renewability and circularity are equal for phosphorus (42.2 %), as 

renewability is taken to be the material safely returned to soil for nutrient cycling. As biosolids 

are the only product containing phosphorus generated by the process (only other outflow is the 

effluent), renewability is also equal to the quantity circular resource outflows. This poor 

performance is related to the phosphate compound generated during chemical phosphorus 

removal, meaning that 43.8 % of biosolids phosphorus is unavailable to the soil. The production 

of N2 emissions sourced from natural nitrogen cycling during secondary treatment is a circular 

outflow, thus it can be added to biosolids nitrogen, so outflow circularity reaches 29.3 % 

compared with renewability of 11.4 %. Outflow circularity is low for nitrogen, as 53.8 % of 

resources leaving the system is N2 produced during nitrification-denitrification, which is neutral 

in terms of circularity and should be targeted by decision-makers. For carbon outflows, there is 

a large difference between renewability (25.8 %) and circularity (64.2 %), as the biogenic CO2 

produced during secondary treatment and biogas combustion are considered circular outflows, 

whilst the remining linear fraction is from fossil CO2 and methane emissions generated during 

secondary treatment, AD, and biogas combustion. Therefore, biogenic gaseous emissions make 

0%

20%

40%

60%

80%

100%

P N C

a 

P N C

b c d 

0%
20%
40%
60%
80%

100%

RP CP RN CN RC CC

P N C



108 

 

up a larger proportion of circular carbon outflows than those applied as biosolids to land for soil 

restoration.  

Figure 4.4B highlights that phosphorus is the resource with the lowest inlet circularity (40.0 %), 

meaning it should be prioritised for enhancement by changing water user habits, especially as 

it is the most finite and critical resource of those analysed. This is also evidenced in Figure 

4.4C, as phosphorus is the lowest performing resource for overall circularity (41.1 %). 

However, nitrogen’s total circularity of 61.5 % shows inconsistency between its inflow and 

outflow performance, as it achieves the lowest outflow renewability and circularity ratings of 

the nutrients analysed, so these resource flows have the largest potential for improvement. 

Lastly, WWTP operational performance is assessed in Figure 4.4D, which confirms that it 

performs well at removing all nutrient resources from wastewater (>90 %). Therefore, gaseous 

and solid outflows should be prioritised to see the most significant improvements to outflow 

circularity. 

Table 4.9 summarises the results for water, energy, and economic resource flow indicators. The 

circular discharge indicator shows the fraction of wastewater effluent that is discharged within 

permit limits and recharges water sources, with the remaining water fraction coming from 

wastewater collection losses and solids production (pretreatment and biosolids), again 

highlighting the need to reduce leakages to improve circularity. The renewable energy fraction 

shows the WWTP performs well, however this comes from energy recovery from biogas 

combustion and the fact that 67 % of Spain’s electricity is already generated from renewable 

sources (IEA, 2021). Therefore, the energy recovery system only results in a 20 % gain of 

renewables consumption, meaning higher value recovery strategies should be investigated. 

Material productivity reveals WWTP economic efficiency in terms of linear resource 

consumption, as gate fees (revenues) are relatively fixed so the linear fractions of wastewater 

inlets or virgin material consumption (polyelectrolyte or ferric chloride) should be mitigated to 

see the largest benefit to this indicator. Similarly, the VRE shows the WWTP operates in an 

economically favourable manner, but revenue is stationary so OPEX must be targeted by 

reducing material or energy consumption to leverage significant improvements. Lastly, circular 

water use and value per mass are zero, as it is assumed this municipality utilises water abstracted 

from virgin sources and the WWTP does not generate revenue from product sales respectively, 

emphasising aspects that are easily exploitable to see circularity enhancements.  
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Table 4.9. Water, energy, and economic resource flow indicator results. 

Water 

Circular Discharge 78.8 % 

Water Use from Circular Sources 0 % 

Energy 

Renewable Fraction 86.8 % 

Economic 

Material Productivity (€/kg) 4.8 

Value-based Resource Efficiency (€/€) 2.7 

Value per Mass (€/kg) 0 

 

4.3.6.3 Scenario analysis 

Now considering the scenarios posed in Section 4.3.5 and outcomes in Table 4.10, the value of 

the classification framework is clear as it enables impacts of changing water user habits (at 

regulatory, regional, or human scales) to be quantified in terms of circularity, by connecting 

upstream and downstream impacts. A summary of the material indicator results for all scenarios 

investigated is provided in Table B9 of Appendix B.  
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Table 4.10. Impacts to resource circularity when WWTP is subjected to potential scenarios. 

Scenario Circularity Impacts 

 Description Quantitative Change  

1 

Linear inflow of carbon increases 5.5 % to 21.5 % 

Circular outflow of carbon decreases 64.2 % to 53.6 % 

Fossil CO2 emissions increase by 370 % 

Total effluent carbon increases by 33 % 

2 

Linear inflow of N increases 6.4 % to 10.9 % 

Linear inflow of P increases 60 % to 62 % 

Circular outflow of P decreases 42.2 % to 40.9 % 

Unavailable biosolids P increases by 10.6 % 

3 

Circular inflow of P increases 40 % to 45.2 % 

Circular outflow of P decreases 42.2 % to 41.0 % 

Biosolids P decreases by 13.5 % 

4 Circular outflow of carbon increases 64.2 % to 64.6 % 

5 
Circular outflow of N increases  29.3 % to 49.4 % 

Total circular flow of N increases 61.5 % to 71.5 % 

 

Scenario 1 

An additional 400 kg/d of non-renewable, fossil carbon discharged to wastewater from 

upstream production not only increases the linear influent by 16.0 % but also reduces outflow 

circularity by 10.6 %. The reduction in outflow circularity is due to the significant increase of 

fossil CO2 emissions production during secondary treatment and biogas combustion, and large 

quantities of fossil carbon in biosolids (four times greater). However, the additional fossil 

carbon inlet also increases nitrogen outflow circularity by 0.4 %, due to enhanced biomass 

production, reducing the emissions generated during secondary treatment required to achieve 

the same effluent quality. This quantifies both the direct impacts of the company on municipal 

wastewater and indirect impacts of their practices on the environment downstream, providing 
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decision makers with the knowledge to lobby them to reduce wastewater production, pay greater 

fees for remediation, or utilise biogenic carbon sources.  

Scenario 2 

The effects of poor farming practice that results in greater runoff are quantified in terms of 

reducing inflow circularity of nitrogen and phosphorus by 4.5 % and 2 % respectively. Although 

the WWTP is modelled so that effluent quality remains the same, the principle of traceability is 

used to directly show the impacts on to the wider process. Outflow phosphorus circularity 

reduces by 1.3 % as a greater quantity of ferric chloride is needed to maintain the desired 

effluent quality, meaning that the proportion of biologically unavailable phosphorus in biosolids 

increases by 10.6 %. These results are useful to educate both local governments and farmers to 

highlight the negative impacts of their choices, and change either regulation or behaviour 

through incentivising good or penalising poor practice.  

Scenario 3 

As the public become more environmentally conscientious, it could lead to changes in water 

use habits such as reduction in washing detergent use. These stakeholders will be aware that 

reducing material consumption has benefits, but now they can be educated upon the downstream 

consequences of this on wastewater circularity. It was shown that a reduction of 50 % improves 

the circularity of influent phosphorus by 5.2 %. However, phosphorus outflow circularity 

decreases by 1.2 % as the same effluent quality is maintained using chemical removal processes, 

reducing the quantity of biosolids phosphorus by 13.5 %. This emphasises the potential benefits 

of biological removal to simultaneously improve the circularity of wastewater effluent and 

biosolids, as in this case reducing ferric chloride dosage would have no impact on circularity as 

this action would only increase the quantity of effluent phosphorus.  

Scenario 4 

Upgrading biogas to biomethane generates a higher value product and useful by-product, which 

are positive actions when viewed through a CE lens. However, this scenario actually produced 

few benefits in terms of resource circularity, only increasing carbon outflow circularity by 0.4 

% as biogas created from fossil carbon was not combusted and released to the atmosphere, and 

fugitive emissions are still generated. Therefore, in cases such as these, wider assessments of 

the process are needed to justify investment decisions, including economic analysis as 
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biomethane prices range from 26-78 €/MWh (Legrand et al., 2022) and environmental 

assessments to investigate changes to air quality and emissions production in the local area.  

Scenario 5 

Improving the management of wastewater nutrients is a priority of the proposal to update the 

UWWTD and CEAP (European Commission, 2022), meaning it is important that assessment 

methods can account for these changes. Subsequently, reducing synthetic fertiliser usage by 50 

% resulted in an increase of nitrogen outflow circularity by 20.1% as these N2 emissions, 

previously considered neutral, now receive a circular classification. Emitting this form of N2 is 

seen as a regenerative action for the natural cycling of nitrogen, which increases from 29 % to 

61.5 % of N2 in this scenario. This increases nitrogen total circularity by 10 %, highlighting the 

benefits in terms of WWTP circularity resulting from regenerative emissions production. 

Therefore, the classification approach is able to investigate how nutrient utilisation in a specific 

geographical area meets new regulatory goals and targets, by monitoring the circularity 

performance of its WWTPs.   

It is worth noting that although these results are useful for decision makers to understand the 

circularity of resource flows, wider assessments are needed to prioritise actions that will result 

in the greatest benefits or mitigation of impacts to sustainability. For example, Figure 4A 

highlights that nitrogen outflows are a large hotspot that should be improved, however, this 

could result in other impacts such as increased energy consumption, meaning it is economically 

or environmentally unfavourable. Therefore, the classification approach should act as the basis 

for the holistic assessment of WWTP systems, linking how physical changes to resource flow 

circularity impacts the sustainable value generated for stakeholders. 

4.4 Discussion 

4.4.1 Resource flow characterisation 

Using the definitions of waste circularity described in Section 4.1 results in the overinflation of 

waste treatment process circularity performance, with little variation between systems, meaning 

the utility of CE assessments is limited for decision making. For example, a treatment plant that 

accepts mishandled, preventable, or contaminated waste, and sends it to landfill, would achieve 

an overall circularity of 50 %. When compared to an economic system that minimises waste 
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production and applies circular principles to cascade resource use and extend its life, and sends 

50 % to both landfill and recycling, only to gain 25 % in overall circularity, even though it is 

applying CE principles in the upstream and downstream, it emphasises current circularity 

assessment issues. The classification framework presented in this work enables the circularity 

of each wastewater resource to be scrutinised, resulting in more robust and detailed circularity 

analysis to enhance decision making capabilities from WWTP circularity assessments.  

4.4.2 Carbon emissions 

The decision to award particular resources a circular status may be subject to debate, one of 

those being biogenic CO2. A circular classification was given as this is in line with the EPA’s 

current carbon accounting protocol, as it is reasoned that biogenic CO2 emissions have no net 

atmospheric impact, so biogenic processes sequester CO2 during feedstock production 

equivalent to the direct biogenic CO2 emissions from a stationary source such as waste 

management. Therefore, the chosen classification aligns with the common assumption that 

biogenic carbon emissions are carbon neutral (Navare et al., 2021). However, the European 

Chemical Industry Council (Cefic, 2022) argues that this justification does not incentivise the 

use of bio-based materials and suggests that carbon removal credits should be assigned when 

biomass is produced and penalise all CO2 emissions, whether biogenic or fossil when released 

back to the atmosphere. Therefore, the classification of biogenic carbon developed here is not 

able to explicitly conclude whether climate neutrality is achieved, as this must consider time-

dependent fluxes of carbon to verify that the production rate is lower than sequestration (Navare 

et al., 2021). Development of this approach for carbon accounting would enable more 

transparent analysis, remove the issues with assessment timelines, and avoid double counting 

of carbon credits.  

This also highlights a larger issue with the current carbon accounting procedures of WWTPs, 

as influent carbon is usually assumed to be biogenic and ignores fossil carbon during 

assessments (Maktabifard et al., 2023). This is corroborated by the 2019 IPCC refinement, 

which encourages countries to evaluate these emissions during GHG inventory development 

and stating that 4-14 % of WWTP influent carbon is fossil (Doorn et al., 2019). However, this 

has not been followed as there is no standardised method for quantifying fossil carbon in 

WWTP outflows (IWA, 2023). The WWTP assessment example in this work showed the large 
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impact that fossil carbon can have on circularity using this classification. Therefore, a similar 

approach, utilising resource traceability, could be implemented as the omission of potentially 

significant fossil carbon WWTP emissions puts the net-zero and carbon neutrality ambitions of 

the water sector at risk. 

4.4.3 Local considerations 

Another issue with the resource classification examples provided is that the fractionation was 

completed using values from literature. The composition of wastewater will change with 

geography depending on the local water users, whereas leakage and amount of water lost is 

impacted by local water infrastructure. Similarly, regulatory limits and the preferred method of 

wastewater treatment of a region will impact resource outflow concentration, production rates, 

and destination. Therefore, when a technology is being investigated for implementation in a 

real-world process, it is recommended to conduct a study to quantify missing information, such 

as the sources of wastewater nutrients and fraction of water loss. For better understanding of 

resource outflows, wastewater process operators should be consulted to validate the 

concentration and production rates of gaseous emissions, effluents, and waste streams. There 

are also several sources that detail how to test the fossil fraction of OC along each stage of a 

WWTP (Law et al., 2013; Tseng et al., 2016). This ensures that local factors are incorporated 

to accurately calculate circularity indicators when investigating the selection of technologies 

for integration within real-world processes. 

4.4.4 Resource recovery prioritisation 

This framework aims to enhance the circularity of wastewater processes, with a key aspect of 

this transition being resource recovery. Examples could not be provided for all potential 

resource recovery scenarios, so in the cases where certain resources or destinations are not 

covered in Tables 4.1-4.7, the definitions provided should be used for classification. Authors 

are aware that the definitions taken for some nutrient classifications may induce favourable 

resource flow indicator results for activities that may be perceived as ‘less circular’. For 

example, in the framework provided, certain N2 fractions and biogenic CO2 emissions are 

classified as circular, which could result in greater circular outflows for a process employing 

nitrification-denitrification, than one investigating advanced nutrient recovery (due to process 
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inefficiency losses). However, prioritisation of different wastewater solutions is case specific, 

for instance in many areas upgrading WWTPs with BNR secondary treatment will result in a 

more sustainable process, compared to some traditional or conventional processes. On the other 

hand, employing resource recovery technologies might result in additional wider benefits for 

stakeholders and therefore greater added value. To quantify the benefits of these value creating 

actions, alternative sustainability indicators are required, for example, eco-efficiency and LCA 

impact indicators can be selected to quantify changes in economic and environmental 

performance (Smol and Koneczna, 2021).  

4.5  Summary of main findings 

• Current definitions of waste create a paradox during the circularity assessment of 

wastewater treatment facilities, as intentional or preventable generation of waste is 

against many CE principles, yet it would be considered a circular inflow within these 

system boundaries due to its non-virgin status. 

• To overcome this, the CE principle of resource traceability is used understand 

wastewater resource source and destination, and is combined with their ability to cause 

harm when interacting with various parts of the natural environment to disentangle 

WWTP input and output circularity 

• This led to the creation of a framework of definitions to assign circularity to wastewater 

water, nitrogen, carbon, and phosphorus resources, as well as some examples for 

common WWTPs.  

• The methodology was validated by using it to assess the circularity of a Spanish WWTP, 

using MFA and a taxonomy of resource flow indicators divided into the key areas of 

materials (inflows and outflows), water, economics, and energy analysis. This enabled 

a more detailed assessment of wastewater resource circularity than if current definitions 

had been used, also showing how the actions of wastewater producers impact resource 

circularity. 
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• Five scenarios were investigated to show the value of the classification framework as it 

enables the effect of changing water user habits (at regulatory, regional, or human 

scales) to be quantified in terms of circularity, by connecting upstream and downstream 

impacts. 

• Industrial action increasing fossil carbon concentration (400 m3/d effluent at 1000 

mgC/l) reduced inflow and outflow circularity by 16 % and 10.6 % respectively, as 

secondary and sludge treatment fossil emissions increase significantly. Additionally, 

changes to human habits reducing detergent use by 50 % improved phosphorus inflow 

circularity by 5.2 % and better agricultural practices reducing synthetic fertiliser usage 

by 50 % increased nitrogen outflow circularity by 20.1 %.   

• The classification approach facilitates robust circularity indicator calculation, acting as 

the basis for standardising the circularity assessment of wastewater systems to assign 

responsibility to different wastewater producers. This approach should be used to 

develop common and consistent policy and regulatory frameworks, not only rewarding 

circularity but impeding or penalising linear practices.  

  



117 

 

5 Systematic Assessment of Wastewater Resource Circularity 

and Sustainable Value Creation  

5.1  Introduction 

The water sector is key to the circular economy (CE) transition due to the direct reliance 

industry and society has on clean water supply and adequate wastewater management (Smol et 

al., 2020). Recent efforts to develop specialised tools to facilitate circularity, such as KWR’s 

dashboard for a circular water sector (KWR, 2021) and The World Bank’s Water in Circular 

Economy and Resilience framework (The World Bank, 2021), highlights the CE’s potential to 

improve water sector practices. Although this shows water utilities have a desire to enhance 

their circularity, it has not translated into the universal definitions and standardised 

measurement tools required for ubiquitous understanding of CE benefits for stakeholders 

(Ahmed et al., 2022).  

It has been shown that engineering and technological aspects are no longer barriers that inhibit 

the circular transition, in fact it is a lack of planning and performance analysis (Smol and 

Koneczna, 2021), and hesitant company culture viewing circular investments as economically 

unfavourable in the short term (Kirchherr et al., 2018). Without a dedicated methodology for 

measuring the value creation of wastewater processes, it is difficult to build business cases and 

convince companies to invest in circular solutions (product, technology, process, service, or 

strategy) (Nika et al., 2021).This is compounded by the fact that there is limited research on 

how the CE provides this competitive advantage (Lahti et al., 2018), emphasising the need for 

assessments that can prove economic feasibility of circular solutions and quantify their multi-

dimensional benefits. 

CE monitoring frameworks focus on measuring material flows, where aligning resource 

focused indicators with triple bottom line (TBL) dimensions has been used as evidence for the 

assessment of sustainability (Harris et al., 2021). This results in patchy assessments, rebound 

effects, and impact leakage (Chen, 2021), leading to insufficient consideration of wider 

sustainability impacts and the attitude of circularity for circularity’s sake (Harris et al., 2021). 

Concurrently, environmental impact indicators, including life cycle assessment (LCA) impacts, 

have been used to assess the circularity of products and services (Corona et al., 2019). Although 
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these indicators validate CE effectiveness, they cannot quantify changes to resource circularity, 

even though this is needed to differentiate the CE from the vague goal of sustainable 

development. Therefore, a significant gap exists in CE assessments to systematically understand 

how changes in physical resource flows impact sustainability dimensions.  

This is pertinent for the assessment of water systems as water utilities’ strategic circular aims 

focus on societal-level sustainability issues such as carbon neutrality, water provision, and 

energy security, the majority of which are realised by exploiting the value of wastewater. 

Tapaninaho and Heikkinen (2022) found that sustainability value is created when societal-level 

sustainability aims are addressed by circular business models, and that the traditional focus of 

value creation on profitability is insufficient to capture the breath of CE benefits. Therefore, 

sustainable value creation should be used as a holistic indicator of circular performance for 

wastewater systems, which uses stakeholder collaboration to understand value creation across 

the TBL (Tapaninaho and Heikkinen, 2022). This is critical to showcase the validity and societal 

relevance of the CE, or else the concept is at risk of being thought of as unachievable or 

discredited as a new form of greenwashing (Calisto Friant et al., 2020).  

In this work, an assessment method is constructed which combines a detailed understanding of 

wastewater process circularity with the support of explicit sustainability analysis. It shows how 

the actions of decision makers alter physical wastewater resource flows and the resultant 

impacts of this on sustainable value creation. Therefore, the method is able to distinguish 

between and assess intrinsic circularity, following the three CE principles of designing out 

negative externalities, regeneration of natural capital, and keeping products and materials in use 

(using resource flow and action indicator sets) (Ellen MacArthur Foundation, 2015), and 

consequential circularity impacting sustainability dimensions (using complementary analysis 

techniques). This requires systematic indicator selection and calculation, and it is hoped the 

methodology provided implements this to act as the basis for standardising holistic wastewater 

resource circularity assessments. 

5.2 Methodology 

The CE concept serves as a key facilitator of sustainable development, therefore, the assessment 

method is based on five principles developed from relevant sustainability science, sustainability 

assessment, and CE literature (Sala et al., 2015; Valeria Superti et al., 2021; Tapaninaho and 
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Heikkinen, 2022; Troullaki et al., 2021). The methodology developed provides solutions to the 

gaps identified in current circularity assessments (Section 5.1).  

5.2.1 Methodological principles 

Principle 1: Circularity performance assessments should consider both intrinsic circularity and 

consequential circularity in line with the definitions provided by Saidani et al. (2019). As a 

result, the developed method is concept specific (assessment of circular performance without 

excessively opening scope), yet multi-dimensional (simultaneously highlights impacts of 

circularity on sustainability dimensions). This is achieved by selecting a taxonomy of indicators 

which demand a detailed assessment of resource circularity and efficiency, and are then used to 

identify relevant sustainability impacts. Thereby, circularity and sustainability indicators are 

used to support each other, validating outcomes to strengthen decision making capabilities, 

facilitating circularity assessments that are normative and valid. This mitigates the current 

approach of excessively opening the scope of indicator sets, in which circularity and 

sustainability assessments are used as fragmented pillars or as a substitute for the other 

(Troullaki et al., 2021), diluting analysis of both dimensions (Valeria Superti et al., 2021).  

Principle 2: Circular actions are used as a foundation for the selection of relevant circularity 

performance indicators and to guide complementary sustainability analysis. Therefore, 

systematic selection of indicators considering the scenario of application has been integrated in 

the assessment methodology, using project specific data and models. This means indicator 

selection is flexible and dynamic, depending on individual project targets, directed by the 

proposed ‘circular actions’ of the investigated system (Coenen et al., 2020; Moraga et al., 2019). 

This facilitates a pertinent aspect of sustainability science, linking science to actions through 

solution-oriented assessments (Sala et al., 2015; Troullaki et al., 2021). 

Principle 3: It is necessary to understand and quantify the impacts the investigated system has 

on sustainable value creation considering environmental, social, and economic dimensions. 

This enables users to holistically understand how the consequential circularity impacts of the 

investigated system contribute to sustainable development. For the assessment of wastewater 

processes this is particularly important, as in the CE, waste valorisation must be prioritised to 

transform these streams, previously considered as burdens in the linear economy, into valuable 

resources and products (Leder et al., 2020).  
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Principle 4: Resource traceability is a key element of circularity measurement and assessment 

as it provides an enhanced understanding of circularity by tracking the source and destinations 

of flows. Resource traceability of biotic/water resources is not commonly employed (Harder et 

al., 2021b), but the developed methodology evidences its utility using characterisation from 

Chapter 4 to trace key wastewater resources, enabling robust circularity indicator calculation.  

Principle 5: Stakeholder participation is vital for the assessment to increase CE acceptance and 

credibility by providing context specific insights. In the method developed, stakeholder 

perspectives are key for understanding the goals of circular actions, to select relevant 

performance indicators and assess sustainable value creation.  

5.2.2 Methodological explanation 

By combining the principles summarised in Section 5.2.1 a method was developed for the 

systematic assessment of wastewater resource circularity, as shown in Figure 5.1. The steps in 

Figure 5.1 result in a taxonomy of indicators that, when calculated using the resource 

classification approach of Renfrew et al. (2023), can act as the basis for standardising the 

circularity assessment of wastewater resources. The method provides i) a detailed analysis of 

inflow and outflow (materials/nutrients), energy, water, and economic resource circularity, ii) 

a performance evaluation of the circular actions implemented, as well as iii) analysis of the 

sustainability impacts and sustainable value generated by the targeted system of interest (SOI). 
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Figure 5.1. Framework for the circularity assessment of wastewater systems. 

 

5.2.2.1 Definition of wastewater system and boundaries  

The first phase of the methodology involves defining assessment goal and scope. Overall it is 

recommended to align the goal and scope definition with both the intrinsic and consequential 

circularity following the requirements of standardised performance assessments such as ISO 

14040 guidelines (British Standards Institute, 2020). In line with ISO 14040, the goal includes 

explaining the reason, intended application, and interested audience of the assessment, whilst 

assessment scope illustrates the system being studied, boundaries, and assumptions. This may 

also include the functional unit, allocation methods, limitations, and data requirements if 

necessary.  
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This phase of the methodology also includes the definition of SOI circularity goals. Strategic 

goals are commonly defined as quantitative targets that are calculated using key performance 

indicators (KPIs) which guides the selection of relevant circular action indicators and facilitates 

the assessment of sustainable value creation impacts and trade-offs. There are many sources in 

the literature defining the strategic goals of the CE transition for wastewater, such as the work 

of Smol et al. (2020) that developed a framework based on the six actions of reduction, 

reclamation, reuse, recycling, recovery, and rethink. Furthermore, the strategic goals of the 

European wastewater sector are mapped out in the proposed update to the Urban Wastewater 

Treatment Directive, including net zero and resource recovery targets (European Commission, 

2022). Additionally, it is recommended to use project publications (such as websites, 

deliverables, or industrial reports) to consider the specific goals for each targeted SOI and 

scenario of application.   

Comprehensive understanding of the goal and scope facilitates the definition of the benchmark 

system, which acts as a baseline with which the targeted SOI can be compared against during 

the assessment. Establishing a representative benchmark is required for robust performance 

assessment and is dependent on the scenario of application. To develop a suitable benchmark, 

it is recommended to use either a real-world case study (such as the technology the SOI is 

replacing) or a model of a conventional industrial technology developed with process experts.  

System boundaries are pertinent when assessing circular systems as they must be able to account 

for resource loops and the multiple life cycles of resources or products that can be recovered 

(Çapa et al., 2022). Furthermore, the temporal boundaries of circular systems may also require 

definition. An appropriate temporal scale is needed to account for the cascading uses of 

secondary resources captured from wastewater. Therefore, it is important to understand and 

define spatial and temporal boundaries in detail.  

5.2.2.2 System mapping and modelling 

Detailed description of the process(es) being investigated is required for modelling and data 

collection. Important aspects to describe are the location, loading, treatment process units, or 

operational constraints to establish necessary information about the wastewater system 

(Zawartka et al., 2020).  Additionally, if temporal boundaries are established, the process data 

needs to be updated accordingly for each different resource cycle, including the variations of 
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all flows described when prospective or forecast data is utilised (Beloin-Saint-Pierre et al., 

2020). 

The effectiveness of the circularity assessment is dependent on the accuracy of process 

modelling, for both the SOI and benchmark system. Creation of the process inventories requires 

modelling or simulation of wastewater treatment units of varying complexity, which can be 

physical, chemical, or biological processes (Zawartka et al., 2020). It is recommended to use 

primary data when available, and whilst secondary data or modelling can be used, the impact 

on result reliability must be considered. 

The development of process models enables MFA and substance flow analysis (SFA) to 

understand how resources flow around the benchmark system and targeted SOI. These models 

are combined with the resource classification approach from Chapter 4 (Renfrew et al., 2023) 

that defines their source and destination, which improves resource traceability. This helps to 

assign circular characteristics to resource flows, which is required for robust calculation of 

assessment indicators. 

5.2.2.3 Resource flow classification 

To facilitate indicator calculation, circular properties must be assigned to all resource flows in 

the modelled systems.  Defining the circularity of resource inputs and outputs enhances the 

traceability and transparency of indicator calculation, facilitating principle 4 of the 

methodology and more robust assessment of wastewater resources. This information enables 

the calculation of the resource flow and selected action indicators to complete the intrinsic 

circularity assessment. 

However, according to Renfrew et al. (2023), current definitions of waste circularity are 

inadequate, resulting in errors during quantitative assessments. Therefore, it is recommended to 

use the framework presented in Chapter 4 and by Renfrew et al. (2023) for wastewater resource 

classification. The approach uses an environmental science perspective to simply define a 

resource’s circularity by considering a combination of its source and destination, and its ability 

to cause harm, to reason whether outflows to the environment (soil, water, and air) should be 

considered linear, utilising the principles of the Do No Significant Harm (DNSH) framework 

(Italia Domani, 2021). This facilitates the calculation of circularity indicators for key 

wastewater resources. 
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5.2.2.4 Resource flow indicator selection and calculation 

Resource flow circularity indicators are the first indicator taxonomy which assess the intrinsic 

circularity performance of the SOI. They should cover the key areas of material inflow and 

outflow, water, energy, and economic resource circularity, following a similar structure to those 

utilised by the wbcsd (2022). This aims to provide a more standardised analysis of key resources 

during the assessment and is useful for activities such as hotspot analysis. It should also enable 

comparison of results across different wastewater systems (plant location, technology, or size) 

as the indicators are sourced and calculated using similar methods. The indicators recommended 

for resource circularity assessment are summarised in Table 4.8 and are taken from the 

framework proposed by Renfrew et al. (2023) in Chapter 4. 

5.2.2.5 Action indicator selection and calculation 

In order to identify the indicators required for the second intrinsic circularity indicator 

taxonomy, circular actions need to be defined. Circular actions are the measures implemented 

which contribute to CE goals, thereby facilitating the three CE principles. Utilising these 

indicators ensures that the performance of the SOI’s circular actions can be assessed and verify 

that they achieve CE goals, as defined in principle 2. To do this stakeholder inputs are crucial 

for understanding how the SOI circular actions satisfy expectations compared with the 

benchmark system (facilitating principle 5) and meet strategic circularity goals. The strategic 

goals defined by the goal and scope are used to align stakeholder and project targets before 

indicators are selected, ensuring they are able to assess necessary aspects of circularity for 

decision making.  

The development of VPCs with project stakeholders is recommended for this step, and the 

method of da Luz Peralta et al. (2020) is employed for the example in Section 5.3. This requires 

the views of stakeholders to understand the desires and obstacles for implementation, and 

linking them with ‘gain creators’ and ‘pain relievers’ to show how a technology aims achieve 

stakeholder expectations i.e., identifying SOI circular goals. To create the VPC, workshops with 

relevant stakeholders are required to create a Lean Canvas, revealing  SOI circular actions that 

satisfy expectations, and an Empathy Map of what stakeholders wish to accomplish (da Luz 

Peralta et al., 2020).  
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To link the goals identified from VPCs with appropriate indicators, the first step is to group 

them based on strategic goals of the SOI. These are used to create generic CE actions that are 

initiated in the SOI, for example recycling or renewable energy generation. Simultaneously, 

VPC development recognises how the SOI aims to meet stakeholder expectations, by using 

‘gain creators’ to highlight the technology goals. These are combined with the generic CE 

actions to develop circular actions of the specific SOI being assessed, in terms of stakeholder 

requirements. Lastly, the specific circular actions are used to select appropriate indicators from 

literature for the assessment of circular action performance, to understand if the defined goals 

are achieved. These steps are illustrated in Figure 5.2 and an example is provided in Section 

5.3.5. 

 

 

 

 

 

 

 

 

Figure 5.2. Steps for selecting indicators to assess the value creating actions of circular solutions. 

 

These indicators reveal the success of SOI actions, as they will be tailored to each scenario 

considering technological, stakeholder, and local context aspects. The action indicators differ 

from those analysing resource flows, as they can communicate how the relationships between 

sustainability pillars and CE principles are impacted by the SOI using the VPC developed, 

instead of just reporting information on resource properties. For example, improving the 

renewability of resource flows only reveals information about physical materials, whereas an 

indicator such as the eco-efficiency shows how circular actions affect greenhouse gas (GHG) 

emissions and revenue. The identification of circular actions to select indicators follows a 

similar approach to that of Nika et al. (2022), however, this method goes a step further by using 
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VPCs to understand the performance of the SOI’s circular actions for more systematic and 

targeted indicator selection. 

Circular action indicator calculation may require a combination of resource flow 

characterisation with additional analysis or modelling to quantify wider impacts, such as 

environmental and economic dimensions for eco-efficiency indicators. However, this is 

dependent on the indicators selected to assess circular actions. Thereby, the action indicator 

taxonomy can be combined with the resource flow indicator taxonomy to provide a complete 

assessment of intrinsic circularity performance.  

5.2.2.6 Intrinsic circularity performance assessment 

The results provided by the resource flow and circular action indicator taxonomies show 

whether the SOI has been successful at improving the circularity of physical resource loops in 

the defined system and whether the performance of SOI circular actions meets stakeholder 

expectations and CE goals. Improvements can be directly quantified by comparing SOI results 

with those of the benchmark system. This step of the methodology fulfils principle 1, facilitating 

decision making based on intrinsic system circularity, ensuring assessment validity.  

5.2.2.7 Sustainability indicator selection and calculation 

To investigate the impacts that result from the implementing SOI’s intrinsic circularity (both 

resource flows alterations and circular actions), a third complementary sustainability indicator 

taxonomy must be selected to quantify the value created for stakeholders and understand the 

SOI’s consequential circularity. If indicators have been selected with adequate scope, then all 

dimensions of the TBL should be represented; if not, then at least one indicator should be 

selected and calculated for the missing dimension(s) to ensure a holistic assessment of 

sustainable value. Strategic goals highlighted during goal and scope definition can be used to 

guide indicator selection for any missing TBL dimensions.  

To understand the impacts of consequential circularity, it is recommended to use the data 

requirements of the circular action indicators for identification of the required areas for 

sustainability analysis. This avoids pre-selection of complementary analysis techniques, 

enhancing assessment flexibility, mitigating the omission of sustainability impacts which are 

pertinent to the assessment. For example, eco-efficiency indicator calculation requires both 

environmental and economic inputs, highlighting that more detailed LCA or life cycle costing 
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would be suitable as complementary analysis. Process inventories derived from benchmark and 

SOI models can be used to complete the required complementary assessment techniques. This 

indicator taxonomy reveals wider impacts of SOI implementation not captured during the 

intrinsic circularity analysis. Once sustainability indicators have been calculated, the results are 

utilised to quantify the sustainable value creation that results from SOI implementation, to see 

if it is able to satisfy the value proposition for stakeholders.  

5.2.2.8 Consequential circularity performance assessment 

The final step of the method requires examination of the SOI sustainability indicator taxonomy 

results against the benchmark process. This facilitates direct measurement of the environmental, 

economic, and social sustainable value generated by the SOI, as required in principle 3, and 

shows whether the SOI satisfies the value proposition developed with stakeholders. Therefore, 

sustainable value creation is used to determine SOI consequential circularity performance. If 

the SOI improves both intrinsic and consequential circularity of the investigated wastewater 

system, then it can move to the next phase of design as it is able to generate value for 

stakeholders by improving system circularity. If not then the project goals, technology, or 

design can be iterated to update models and indicators until a suitable SOI is selected. 

To enhance decision making capabilities and result communication, interpretation of results 

should consistent with the goal and scope of the assessment to make appropriate conclusions, 

explain limitations, and provide recommendations for wastewater system circularity 

performance (British Standards Institute, 2020). Results should be readily understandable and 

easily communicated to the intended audience, therefore, it is recommended that sustainable 

value creation is used to verify whether the defined circular goals of the system have been 

successfully achieved (as shown in Section 5.3).  

5.3 Results 

This section demonstrates implementation of the method developed in Section 5.2 for the 

assessment of a novel technology integrated within a WWTP. In this case, the SOI is an 

anaerobic purple phototrophic bacteria (PPB) photobioreactor (PBR) technology for wastewater 

treatment, known commercially as ANPHORA® (includes clarifiers, PBRs, sludge treatment), 

and was selected as it claims many benefits over conventional treatment processes.   
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5.3.1 Define wastewater system and boundaries 

The goal of the assessment is to quantify circularity improvements and the sustainable value 

created by implementing ANPHORA® technology for wastewater treatment. It will be used to 

evidence the advantages of this system compared with conventional technology and results will 

be shared with water sector stakeholders to expedite technology uptake. 

Strategic goals of the project are mapped using publications and communications to define the 

expected advantages of the system (Deep Purple, 2019):  

1. Produce high value products from waste streams of sewage sludge  

2. Recover resources contaminated in wastewater 

3. Minimise waste  

4. Minimise energy demand of the plant trending towards self-sufficiency or energy 

positivity 

5. Reduce GHG emissions of value chains by 20% 

6. Generate revenue from the recovery of waste resources 

7. Establish economic feasibility 

8. Evaluate environmental impacts  

These statements clearly show that considered technologies wish to enhance value recovery 

from waste streams to facilitate the CE. From the statements, generic CE actions are identified 

and will be used as themes to categorise the technology gains creators. The terminology of 

minimising, maximising, and reducing several operational constraints such as economics, 

waste, GHG emissions, and energy demand are facilitated by developing disruptive 

technologies to optimise process performance. The emphasis on generating economic value 

from bioproducts and recovering energy from waste streams means that the technology must 

have the ability to cascade biomaterials. Lastly, recovering the organic and nutrient 

contaminants in wastewater and reducing waste production is achieved through the action of 

recycling and waste minimisation for wastewater resources.  
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As the SOI being assessed is known, a benchmark technology must be chosen to establish a 

baseline for results comparison. By consulting industrial experts, it was decided to use a 

conventional extended aeration system as a benchmark, which is an activated sludge process 

with high solid retention times between 20 and 40 days. Primary clarifiers are not required, 

therefore, the conventional process was assumed to operate with pretreatment of screenings and 

grit removal, aeration tank (nitrification) with clarifiers, and sludge is stabilised by liming. 

System boundaries are drawn from when wastewater leaves the water user and flows into the 

WWTP (meaning losses are accounted for), until wastewater effluent is discharged from the 

plant and biosolids are applied to land, as shown in Figure 5.3. The ANPHORA® technology 

demonstration site is located in Spain, so processes were modelled considering local factors.  

 

Figure 5.3. Process stages of the conventional extended aeration WWTP. 

 

5.3.2 System mapping and modelling  

Advantages of the ANPHORA® technology are highlighted when used to treat wastewater for 

small, rural populations; thus a scale of 10,000 population equivalents (PE) (design load of 

3,000 m3/d) was selected. Wastewater treatment on this scale in Spain regulates chemical 

oxygen demand (COD) removal and discharge limits. Due to limitations in data availability for 

a 10,000 PE WWTP case study, a model for the conventional process of prolonged aeration was 

constructed using parameters taken from literature for the physical and biological treatment 

units. The influent loadings were taken from literature for a wastewater treatment plant in the 
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same area as the ANPHORA® demonstration facility (Rodríguez-Chueca et al., 2019). The data 

utilised to construct process models is provided in Tables C.1-C.4 of Appendix C.  

The PBR was chosen for assessment as it operates anaerobically resulting in significant energy 

demand and emissions generation reduction compared with conventional aerobic treatment. The 

nutrient content of the PPB biomass means it can be used as a biofertiliser and sold to generate 

revenue. The biomass also has greater biomethane potential compared with conventional 

activated sludge, therefore it is economically viable to anaerobically digest sludge and produce 

biogas for energy recovery. The project is currently at the demonstration phase; however, these 

real-world scenarios have been agreed with experts for application of the circularity assessment 

method to a full-scale system. 

Figure 5.4 summarises the PBR process boundaries, which operates with screenings, grit, and 

fats, oils, grease (FOG) removal pretreatment, primary settling, anaerobic raceway PBRs, and 

clarifiers before wastewater discharge. Sludge is thickened, anaerobically digested, and 

dewatered before it can be sold as a high-quality biomass fertiliser for land application. 

 

 

 

 

 

 

Figure 5.4. Process stages of the photobioreactor system. 

 

The PBR has only operated at a demo scale, and therefore required scale up calculations to 

ensure accuracy for the energy consumption and cost parameters. It was assumed that the 

removal efficiencies and nutrient content of the PPB biomass would be unaffected by scale up 

of the system. The circular PBR system was modelled using data provided in Tables C.5-C.8 of 

Appendix C. 

€ 
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5.3.3 Resource flow characterisation 

The circularity assessment was completed using the approach developed in Section 4.2 to 

characterise the water, nitrogen, phosphorus, and carbon resources from the benchmark and 

SOI process models. Tables C.9-C.16 in Appendix C provide the circularity classifications of 

resource inflows and outflows.  

5.3.4 Resource flow indicator selection and calculation 

The taxonomy of resource flow indicators selected is provided in Table 4.8. Results of the 

outflow, nutrient extraction, and renewable energy indicators are provided in Figure 5.5. 

WWTP removal efficiency was assessed and showed there was a reduction in carbon removal 

of 9.2 %, however, COD discharge limits are still met. This results in lower carbon outflow 

circularity for the PBR process, but due to the composition of PPB biomass greater renewability 

is achieved. Nitrogen and phosphorus removal are improved by 148 % and 32 % respectively, 

due to the accumulation of nutrients by the PPB biomass meaning greater outflow circularity 

and renewability are achieved for NP by ANPHORA®. Whilst there are no NP consent limits 

for this type of small-scale treatment, performance is better in terms of both environmental 

protection and circularity. However, if this process was applied in an area with NP discharge 

limits, then tertiary treatment or polishing of the effluent would be required. Lastly, renewable 

energy usage grows from 67 % to 85 % due to the recovery of energy from biogas, which 

increases the renewable fraction above that of the Spanish electricity grid mix (including 

nuclear and biofuels) (IEA, 2021).  
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Figure 5.5. Resource flow indicator results, where the lighter colour is the conventional process and darker 

colour indicates the PBR process. a: outflow circularity, b: outflow renewability, c: wastewater nutrient 

extraction, and d: renewable energy usage. 

 

There was negligible change between conventional and PBR scenario influent resources, and 

therefore inflow and water indicators, when comparing systems so these results are not 

presented. Additionally, material productivity increased by approximately 300 % as greater 

revenue from the sale of PPB biofertiliser is coupled with a reduction of linear inputs, namely 

lime for sludge treatment. Value per mass of the systems increased from 0 €/kg for the 

conventional system to 40.8 €/kg for the PBR, and this high value is achieved as the only virgin 

or primary material input is the polymer required for sludge thickening. The value of zero for 

the benchmark system occurs as only revenue from product sales is included in the calculation, 

excluding the service fee of wastewater treatment.    

5.3.5 Action indicator selection and calculation 

To ensure appropriate indicators are selected for evaluating the performance of PBR circular 

actions, the strategic goals must be understood and combined with the outcomes from 

sustainable VPC development. As explained in Section 5.2.2, the participatory method is 

utilised to link the generic, high level CE actions identified from the strategic goals of the 

project with the unique circular actions of the SOI for indicator selection. In this case study, the 

technology developers were used to generate the VPC, and the resultant Lean Canvas is 

presented in Figure 5.6.  
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Figure 5.6. Lean Canvas developed for the PBR technology based on that of da Luz Peralta et al. (2020). 

 

The ‘gain creators’ category identifies how the ANPHORA® technology is expected meet 

stakeholder expectations and the four gains creators were combined with CE actions identified 

in Section 5.3.1 to generate specific circular actions of the PBR process. The steps to select 

indicators for evaluating the circular actions are summarised in Table 5.1, starting with the gains 

creators in the left hand column. Indicator results show the performance of ANPHORA’s® 

circular actions at meeting stakeholder expectations and project CE strategic goals, compared 

with the conventional extended aeration process. Table 5.1 summarises the second indicator 

taxonomy selected for the assessment of intrinsic circularity. 
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Table 5.1. Steps to select indicators for assessing actions of the PBR technology. 

Gains 
Creators  CE Action Value Creating Action 

of Circular Solution 
Indicators 
Associated Equation 

Lower Energy  
Consumption 

Development 
of New 

Processes for 
Value Chain 
Optimisation 

Reduction of Energy 
Intensity 

Circular Process 
Energy Intensity  

(Lokesh et al., 2020) 

𝐸𝑛𝑒𝑟𝑔𝑦	𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑙𝑦	𝐷𝑒𝑟𝑖𝑣𝑒𝑑	𝐸𝑛𝑒𝑟𝑔𝑦
𝑀𝑎𝑠𝑠	𝑜𝑓	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠	(𝑖𝑛𝑐𝑙. 𝑐𝑜	𝑎𝑛𝑑	𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑)  

Self-sufficiency  

(Agudelo-Vera et al., 
2012) 

𝑇𝑜𝑡𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦	𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
𝑇𝑜𝑡𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦	𝐷𝑒𝑚𝑎𝑛𝑑  

Electricity Grid 
Demand Minimisation   

(Agudelo-Vera et al., 
2012) 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐷𝑒𝑚𝑎𝑛𝑑 −𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝑑	𝐷𝑒𝑚𝑎𝑛𝑑	
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐷𝑒𝑚𝑎𝑛𝑑  

Lower Carbon  
Footprint 

Achieving 
Decarbonisation 

Carbon footprint  

Emissions Eco-
efficiency  

(Walker et al., 2009) 

𝑉𝑎𝑙𝑢𝑒	𝐺𝑎𝑖𝑛𝑒𝑑	(𝑅𝑒𝑣𝑛𝑒𝑢𝑒)
𝑀𝑎𝑠𝑠	𝑜𝑓	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	(𝐴𝑖𝑟	𝑎𝑛𝑑	𝑊𝑎𝑡𝑒𝑟) 

Savings on 
Logistics and 
Infrastructure 

Reducing Capital Costs 
(CAPEX) and 

Operating Costs 
(OPEX) 

Yearly Reduction in 
Cost vs Conventional 

Treatment 
 

Valorisation 
of Sludge 

Cascading of 
Biomaterials 

Extraction/Generation 
of Value Added 

Bioproducts 

Waste Eco-efficiency  

(Walker et al., 2009) 
𝑉𝑎𝑙𝑢𝑒	𝐺𝑎𝑖𝑛𝑒𝑑	(𝑅𝑒𝑣𝑛𝑒𝑢𝑒)
𝑀𝑎𝑠𝑠	𝑜𝑓	𝑊𝑎𝑠𝑡𝑒	(𝑆𝑜𝑙𝑖𝑑)  

Value Added per 
Functional Unit  

(Medina-Mijangos 
and Seguí-Amórtegui, 

2021) 

𝑇𝑜𝑡𝑎𝑙	𝑉𝑎𝑙𝑢𝑒	𝐶𝑟𝑒𝑎𝑡𝑒𝑑
𝑉𝑜𝑙𝑢𝑚𝑒	𝑊𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟	𝑇𝑟𝑒𝑎𝑡𝑒𝑑 

Renewable Resource 
Use (nutrients from 

fertilisation) 

Substitution Factor of 
Virgin Materials  

(Jander and 
Grundmann, 2019) – 

Biosolids N  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑝𝑒𝑟	𝑘𝑔	𝑜𝑓	𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑝𝑒𝑟	𝑘𝑔	𝑜𝑓	𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙	𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

Recycling 

Retain Nutrients in 
Wastewater for 

Fertiliser Production 
and Safe Return to Soil 

Recovery Rate of 
WWTP - Nutrients 

NPC  

(Institut de la 
statistique du Québec, 

2020) 

𝑀𝑎𝑠𝑠	𝑜𝑓	𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	(𝑁𝑃𝐶)	𝑖𝑛	𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑇𝑜𝑡𝑎𝑙	𝑀𝑎𝑠𝑠	𝑜𝑓	𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝐼𝑛𝑓𝑙𝑜𝑤	𝑡𝑜	𝑊𝑊𝑇𝑃  
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Results from the circularity assessment of project actions are summarised in Table 5.2 and are 

presented as the percentage change against the benchmark conventional process measurement, 

to reveal the performance of SOI circular actions.  

Table 5.2. Results from circularity action indicators shown as the percentage change between conventional and 

PBR processes. 

 

The energy reduction indicators show that not only is the demand for electricity from the grid 

reduced, but self-sufficiency increases to almost 60 % (from a baseline of 0) and circular energy 

intensity is more than halved. This trend can be attributed to the reduced energy requirement 

from mitigation of aeration processes, the amount of carbon available in waste sludge 

increasing, and energy recovery from combustion of biogas produced by AD. Carbon footprint 

reduction is achieved mostly through the mitigation of direct process emissions from anaerobic 

operation of ANPHORA®. Carbon footprint is a proxy for emissions to air and water, therefore, 

the emissions eco-efficiency result is almost doubled due to the decrease in the mass of 

emissions to air and nutrient concentration in the effluent, and increased revenue from 

Action Indicator % Change 

Reduce Energy Intensity 

Circular Energy Intensity (kWh/kg Carbon) - 67.6 % 

Self-Sufficiency  58.5 % (vs 0)    

Electricity Grid Demand Minimisation (kWh/d) + 13.4 % 

Achieving Decarbonisation 
Carbon Footprint (kgCO2 eq) - 66.3 % 

Emissions Eco-efficiency (€/kg) + 97.7 % 

Reduce CAPEX/OPEX Yearly Cost (€) - 44.6 % 

Extraction/Generation of Value-Added Products 
Waste Eco-efficiency (€/kg) - 34.5 % 

Value added per m3 Wastewater Treated (€/ m3) + 1152.6 % 

Renewable Resource Use Substitution Factor N fertiliser (kg/kg) + 345.0 % 

Retain Nutrients 

Carbon Recovery Rate + 165.3 % 

Nitrogen Recovery Rate + 195.0 % 

Phosphorus Recovery Rate + 15.5 % 
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biofertiliser sales. The yearly costs of the process, amortised CAPEX and OPEX, are also 

reduced due to the mitigation of aeration and chemicals required for sludge treatment.  

Waste eco-efficiency is shown to decrease for the PBR process, as even though revenue is 

increased, there is greater removal of pretreatment solids that are landfilled. However, this has 

potential to be improved through addition of captured FOG to AD reactors. The largest increase 

is the value added per m3 of wastewater treated, which can be attributed to a reduction in total 

costs and increased revenue from biofertiliser sales. The substitution factor of conventional 

biosolids compared with PPB biomass shows why this can be marketed as a higher quality 

fertiliser. Lastly, there was an increase in recovery for all nutrients analysed by the process, due 

the recovery of biogas and the high nutrient content of PPB biomass compared with 

conventional biosolids. 

5.3.6 Intrinsic circularity performance assessment 

Resource flow indicators showed that the PBR system had negligible impact on resource inflow 

circularity, but was successful as improving the outflow circularity and removal efficiency of 

nitrogen and phosphorous. Action indicator results highlighted an improvement in performance 

of the PBR process versus conventional treatment (except waste eco-efficiency), ranging from 

13 % to greater than 1,000 %. Therefore, the ANPHORA® technology improves intrinsic 

circularity of the WWTP system as it achieves the circular action performance requirements 

and enhances the circularity of wastewater resource loops.  

5.3.7 Sustainability indicator selection and calculation 

One of the key outcomes of this assessment is to understand the sustainable value generated by, 

or consequential circularity of, SOI circular actions. The indicators selected to evaluate circular 

actions are used as a guide for directing sustainability indicator taxonomy selection. The circular 

action indicators utilised, including eco-efficiency, carbon footprint, and value added per mass, 

highlight the expected environmental and economic impacts of the SOI. Therefore, LCA and 

more detailed analysis of carbon footprint are required to understand environmental value 

creation, as well as total value-added inspection for economic impact investigation. Although 

the circular action indicators do not directly reveal which social indicators are needed to 

investigate the PBR process impacts, it is important that all TBL dimensions are considered. 
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Due to the ANPHORA’s® potential to reduce emissions and pollution, and generate revenue 

from waste streams, social indicators were selected to reflect these impacts. Those chosen were 

endpoint impacts, including disability-adjusted life years (DALY), employment, and economic 

contribution to the local community indicators.  

Carbon Footprint 

Carbon footprint analysis was completed following the method defined by the IPCC for 

wastewater treatment facilities (Doorn et al., 2019). Emission factors for wastewater treatment 

were taken from the IPCC method, whilst those for other resources such as electricity and 

chemicals were extracted from ecoinvent databases. A description of the method and parameters 

used is found in Section C.4.1 of Appendix C.  

Life Cycle Assessment 

The LCA was completed using the same boundaries as the MFA and a functional unit of 1 m3 

of wastewater treated, following ISO 14040 and 14044 (British Standards Institute, 2020). The 

inventory used to complete the analysis is the same as that constructed for MFA and indicator 

calculation. SimaPro v9.4 was used to conduct the calculation of seven Environmental Product 

Declaration (2018) impact indicators; acidification, eutrophication, photochemical oxidation, 

abiotic depletion (elements), abiotic depletion (fossil fuels), water consumption, and ozone 

layer depletion.  

Economic Value Added  

Determining the operational and economic profitability of the investment in ANPHORA® was 

achieved by assessing the economic value added of the system. Figure 5.7 explains the 

economic relationship between the water user and wastewater utility (Faragò et al., 2021). The 

water user pays an expected fee for the provision of the wastewater treatment services by the 

wastewater utility, however, investment in technologies can disrupt this flow by creating a 

surplus (revenue greater than expenditure) or deficit of value (revenue lower than expenditure), 

resulting in savings or increasing fees. Therefore, to understand the economic value generated 

by the water utility, the expected difference between WWTP operator revenue and costs were 

calculated for the conventional and biorefinery processes.  
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Figure 5.7. Economic relationship between stakeholders in wastewater systems (adapted from Faragò et al. 

(2021)) 

 

A method was followed similar to that of Medina-Mijangos and Seguí-Amórtegui (2021) for 

the assessment and is calculated using Equation 5.1:  

 

																			𝑉𝐶 = (𝑊𝑊𝑇! × 𝐺𝐹) − (𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 + 𝑆𝑇) + 𝐼𝑛             (5.1) 

 

Where, WWTV is the volume of wastewater treated (m3), GF are the gate fees of the WWTP 

(€/m3), ST are state taxes for landfill and discharge (€), In is income from sales of products (€), 

and CAPEX is amortised. The steps and data used for economic value-added analysis are 

summarised Section C.4.2.  

Social Value Analysis 

The social assessment comprises of three indicator groups targeting endpoint impacts, 

employment, and economic development of the local community. The damage to human health, 

ecosystems, and resources indicators were calculated using the ReCiPe Endpoint (H) model 

(Huijbregts et al., 2017), and included the production of chemicals and electricity consumed, 

direct emissions, and emissions from application of generated sludge to soil as fertiliser 

(European Commission, 2018). The inventory of material and energy flows, as well as 

environmental releases, can be found in Tables C.21 and C.22 of Appendix C.  

Employment and economic development indicators were calculated using information for the 

municipality of Soria. This area has a population of 10,445, which is similar to the 10,000 PE 
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WWTP example, therefore it was used to investigate the social impacts that a WWTP of this 

size can have on a community (INE, 2022). Employment growth resulting from investment in 

PBR technology was calculated based on discussions with local experts regarding expectations 

compared to conventional technologies. Employment of the conventional plant was estimated 

based on the total employees that work in the wastewater treatment sector in the autonomous 

community Castile and León (where Soria is located), to calculate an employment factor of 

workers per population (Santos et al., 2021). Then the population of Soria was used to calculate 

the number of workers in an urban WWTP of a similar size. Lastly, the effect on the economic 

development of the local community was calculated according to the expected economic value 

generated by both WWTPs. The impact on economic development was calculated based on the 

economic value added relative to the gross domestic product of the municipality (INE, 2022). 

Revenues and costs of suppliers were excluded because consumables were assumed to not be 

locally sourced.  

5.3.8  Consequential circularity performance assessment 

Figure 5.8 summarises the results of the complementary sustainability analysis required to 

quantify the sustainable value creation of the PBR process. LCA results in Figure 5.8B show 

that PBR operation performs better in six out of the seven impact categories investigated, 

ranging from 15 % to 41 % reduction. Eutrophication sees the largest decrease of 41 %, 

attributed to the reduction of NP emissions in wastewater effluents. Ozone depletion, 

photochemical oxidation and acidification decrease by 34 %, 20 % and 15 % respectively which 

occurs due to the reduction of emissions to air during wastewater and sludge treatment. The 

cost-benefit analysis of Figure 5.8C shows that as the gate fees are constant the increase in 

revenue for the PBR system is a result of biofertiliser sales, adding approximately 0.1 M€/y. 

There is also reduction in OPEX due to the lower energy demand associated with the mitigation 

of aeration during biological treatment and energy recovery from biogas, as well as the removal 

of lime requirements for sludge treatment. Combining this results in an economic value added 

of almost M€ 0.5 per year for water the utility. Therefore, the PBR system facilitates better 

environmental and economic performance which are key for establishing project viability (a 

more detailed description of results is provided in Section C.5 of Appendix C).  
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Figure 5.8. Conventional extended aeration process results in blue, and PBR process results in purple. a: Carbon 

footprint results divided into direct, electricity, and indirect emissions, and offsets, b: LCA impact indicator 

results, c: economic value added visualised as the difference between revenue and costs of the PBR and 

conventional systems, and d: social endpoint (H) impact indicator results. 

 

This methodology aims to quantify the sustainable value creation that is generated from circular 

actions implemented by the SOI that change physical resource flows. Therefore, once analysis 

is complete it is important to relate the sustainability analysis results with the gains creators 

identified during VPC construction. Lowering energy consumption creates value across all TBL 

dimensions as it reduces the harmful emissions produced during electricity generation, reducing 

electricity emissions by 13.4 % and other related LCA impacts categories, such as acidification 

and abiotic depletion of fossil fuels by 15 % and 19 % respectively, to create value for the 

environment. Reducing harmful emissions also provides social value by decreasing DALY by 

58 % and lower electricity demand contributes to the reduction in OPEX, creating economic 

value for utilities. Lowering the carbon footprint creates significant environmental value by 

mitigating two thirds of emissions, increasing to 75 % when considering offsets of chemical 
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fertilisers. Economic value added is the main indicator of the value created from savings on 

logistics and infrastructure, shown by the reduction of OPEX and CAPEX of 0.28 M€/y and 

0.09 M€/y respectively which results in savings for the water utility. Valorisation of sludge 

creates economic value as shown by the increase in revenue of 0.11 M€/y, but also impacts 

social value by increasing the contribution to the local economy by almost 12 times. Lastly, the 

result of improved wastewater treatment performance has a strong influence on carbon footprint 

and other LCA categories by decreasing direct emissions by more than 90 %, and related LCA 

impacts such as eutrophication by 41 %, to generate significant value for the environment. 

Additionally, greater reduction of emissions to air, water, and soil as a result of wastewater 

treatment reflects the lessening of DALY (by 58 %), thereby generating social value through 

enhanced WWTP performance from the ANPHORA® technology. Therefore, the SOI results in 

consequential circularity improvements for stakeholders across economic, environmental, and 

social TBL dimensions. 

This example highlights the main benefit of the developed method, namely the systematic 

selection and calculation of indicators to determine how changes in the circularity of physical 

resources impact sustainability dimensions. This development is critical to the success of the 

CE transition as recent policy relies on enhanced resource circularity to meet many 

sustainability targets. For example, the new CE Action Plan is one of the main building blocks 

of the European Green Deal, which targets a 55 % reduction of GHG emissions by 2030 

(compared with 1990) (European Commission, 2021a). However, it has been shown that the 

water sector is unable to implement circular strategies as decision makers cannot assess how 

their investments will facilitate sustainability objectives (Renfrew et al., 2022). Therefore, this 

method provides an integrated approach to support decision making by using pertinent, well-

established metrics, including LCA and cost benefit analysis, to validate that investments which 

improve resource circularity also enhance sustainability performance. Assessment of the PBR 

provides a detailed example of how impacts can be directly quantified across the TBL including 

carbon footprint reduction to satisfy Green Deal targets, economic prosperity to justify the 

investment to businesses, and societal health and wealth benefits to reassure citizens about 

changes to the local area. Therefore, this method presents an important step in CE science, 

enabling industry decision makers to quantify how their circular actions leads to progress 

towards sustainability targets and business objectives, accelerating CE progress. 
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5.4 Discussion 

Current assessment methodologies mainly rely on providing a list of preselected indicators from 

which users can choose, however, this runs the risk of facilitating cherry-picking to highlight 

specific interests of decision makers (Harris et al., 2021; V Superti et al., 2021). Here a 

participatory approach to select a tailored set of indicators in a flexible yet replicable way, to 

ensure holistic assessment of the impacts that circular actions have on sustainable development. 

Papageorgiou et al. (2021) showed that CE assessment frameworks lack indicators which 

measure reduction of emissions, value creation, and social dimensions. Therefore, these aspects 

which are heavily relied upon for policy related decisions and industrial investment are often 

neglected during assessments. Here, an emphasis is placed on understanding the value added 

by circular interventions compared with conventional technologies, as this is one of the key 

metrics for evidencing business investment  

This methodology provides decision makers with the information to satisfy a range of activities 

including performance comparison of their process with other WWTPs, selecting circular 

technologies that fulfil desired circularity and sustainability goals, and selecting indicators for 

optimising of process operation and sustainability. Selecting technologies can be a challenge 

for wastewater decision makers, due to trade-offs that must be considered for each technological 

option. Many multi-criteria decision making (MCDM) tools have been developed specifically 

for wastewater systems, that can rationalise options according to the user’s priorities (Renfrew 

et al., 2022; Sucu et al., 2021). This assessment methodology can investigate and validate the 

outcomes from MCDM analysis for selecting circular technologies, as evidence for investment 

by water utility companies. Alternatively, the resource flow and circular action indicators 

selected could facilitate WWTP optimisation, whether it be hotspot analysis of a static system 

or integration of indicators within the control strategy of a process, to ensure more sustainable 

and circular operational performance. Therefore, this method can be used for multiple levels of 

decision making from plant optimisation to strategic planning.  

5.5  Summary of main findings 

• Current CE monitoring frameworks focus on measuring material flows, and align 

resource focussed circularity indicators with TBL dimensions to evidence that 
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sustainability is adequately measured, therefore, there is a significant gap in CE 

assessments to systematically understand how changes in physical resource flows 

impacts sustainability of wastewater systems.  

• The societal level aims of the wastewater sector make sustainable value creation suitable 

for use as a holistic indicator of circular performance for wastewater systems, which 

incorporates stakeholder collaboration to understand value creation across the TBL, 

meaning an assessment methodology was constructed from five principles developed 

from relevant sustainability and circularity literature.  

• This resulted in a taxonomy of indicators that provide a detailed analysis of 

materials/nutrients, energy, water, and economic resource circularity, the success of 

value generating circular actions, and the resultant sustainable value created for 

stakeholders. 

• An important aspect of the methodology is to create and utilise suitable benchmarks for 

the assessment, so the method was validated by implementing it for the assessment of a 

PBR wastewater treatment system and comparing this against a conventional extended 

aeration process, to directly quantify benefits in terms of circularity and sustainability.  

• Using the resource classification approach developed in Chapter 4 and inputs from 

technology developers to generate a VPC for indicator selection, the assessment showed 

that the PBR system is able to improve resource outflow circularity, achieve its desired 

value creating goals, and create value across the TBL for stakeholders.  

• Therefore, the developed method is able to facilitate robust indicator calculation and 

systematically assess how changes to a physical system in terms of resource circularity 

alter sustainability dimensions, and it is hoped this can be used as the basis for 

standardising the holistic assessment of wastewater systems.   
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6 Conclusions and Recommendations for Future Research 

6.1 Conclusions 

The importance of water provision and wastewater management for societal, environmental, 

and industrial prosperity has established the water sector as a priority area to facilitate a circular 

economy (CE). Unfortunately, the sector is risk averse and there is an absence of the expertise 

needed to select appropriate circular technologies, hindering CE adoption. Additionally, a lack 

of coherence in defining and assessing wastewater resource circularity means potential benefits 

cannot be fully quantified or monitored. This led to creating the research hypothesis: The 

current definitions, indicators, and methods used for circularity assessments are not applicable 

to wastewater technologies and resources. There is a significant gap when it comes to defining 

the circularity of waste streams that if not corrected will lead to wastewater system assessments 

of little value. Additionally, the use of material-based indicators as a proxy for the assessment 

of sustainability dimensions is not correct, and instead a method is needed to bridge the gap 

that exists between circularity and sustainability impacts. Combining these aspects will enable 

a holistic assessment of how the CE can create value for stakeholders from wastewater.  

This thesis demonstrates the specificities that must be considered when dealing with wastewater 

circularity, and provides methods for the systematic selection and assessment of circular 

wastewater solutions, whilst ensuring the holistic impacts on sustainability dimensions are 

included. The research follows a logical path, starting with a detailed understanding of 

indicator-based decision making at a wastewater treatment plant (WWTP) level, and developing 

a framework for integrating a decision support system (DSS) to define shared resource recovery 

strategies to improve sector circularity. This review highlighted the need for a more rigorous 

wastewater circularity assessment, starting with the creation of new definitions and a 

classification system for wastewater resource circularity. This enables the disentanglement and 

tracing of wastewater resources to facilitate the assessment of previously hidden and 

inaccessible resources, overcoming the assessment paradox that currently exists. The 

wastewater circularity classification then formed the basis of a holistic assessment 

methodology, that uses systematic indicator selection to combine resource circularity and 

sustainable value creation analysis. Importantly, participatory methods are used for indicator 

selection to logically integrate circularity and sustainability dimensions within the assessment. 
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The method was validated by applying it to an example of a novel wastewater treatment 

technology, showing how a benchmark can be defined to directly quantify changes to circularity 

and sustainability indicators. This provides a robust scientific foundation for practitioners to use 

the methods developed for a range of decision-making purposes to enhance the circular 

transformation of the water sector. 

6.1.1 Research question 1  

What is the current landscape of indicator-based decision making at WWTPs? 

In Chapter 2, the reviewed literature established the complex nature of decision making at 

WWTPs, highlighting the need for indicator-based DSS tools, and the importance of this in 

achieving national level (European Union and UK) CE and sustainability objectives. The review 

emphasised a division in WWTP DSS utilisation, which is primarily split into two groups, 

namely multi-criteria decision-making (MCDM) for technology selection and multi-objective 

process optimisation tools. For MCDM technology selection, eight commons steps were 

identified as being aim definition, technology identification, indicator categorisation, indicator 

selection, indicator weighting, indicator scoring, technology ranking, and technology selection. 

For multi-objective process optimisation, there was a reliance on Benchmark Simulation 

Models (BSMs) to conduct decision making meaning that goals, key performance indicators 

(KPIs), and outcomes are similar across these types of DSSs. Therefore, critical analysis of 

WWTP DSSs followed a similar structure.  

Specifically, how are indicators selected and utilised in decision support tools for technology 

selection and process optimisation at WWTPs, and how are decisions aligned with the 

sustainability and circularity aims? 

The primary focus of each DSS typology was to select technology that enhances wastewater 

treatment performance and optimisation of set points to improve costs and effluent quality. The 

review details the lack of consensus regarding the selection and utilisation of indicators for 

decision making in the wastewater sector. Unfortunately, it is clear that many MCDM 

technology selection DSSs still rely on user defined weighting, scoring, and ranking procedures 

which introduces high degrees of uncertainty into the assessment. These DSSs often rely on 

predetermined list of indicators that do not reflect the desired goals or ignore wider benefits of 

innovative technologies. Alternatively, multi-objective optimisation DSSs are over reliant on 
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BSM models, meaning decision makers are not able to select KPIs altogether, and their 

sustainability and circularity aims are ignored. DSS issues are highlighted by the focus on 

economic performance for both technology selection and process optimisation DSSs, meaning 

decision making does not consider the modern goals of the wastewater sector to improve 

circularity and sustainability.  

Lastly, what progress has been made towards standardising these assessments and can 

recommendations be provided to expedite this process? 

Following critical review, problems with DSS methodologies in terms of indicator selection 

and utilisation were highlighted and recommendations provided. The main issues with MCDM 

technology selection DSSs are i) a lack of clear goal definition, ii) mitigation of rigorous 

indicator selection procedures, iii) unclear definitions for indicator categorisation, iv) users 

deciding indicator weighting (excluding local expert inputs), v) unstructured ranking methods 

leading to uncertain outcomes, and vi) rarely are selected technologies critically analysed 

against defined goals. These were used to develop a list of recommendations including the use 

of participatory methods to include local stakeholder perspectives, structured approaches (such 

as fuzzy-Analytical Hierarchy Process and -Technique for Order of Preference by Similarity to 

Ideal Solution) for robust indicator weighting and ranking, and sensitivity analysis to validate 

DSS outcomes. Similarly for multi-objective optimisation DSSs, the identified issues are i) a 

lack of DSS application to real WWTP systems (focus on BSM control), ii) often indicators are 

fixed within the model and more rigorous selection procedures are overlooked, iii) focus on 

Overall Cost Index and Effluent Quality Index indicators which provides a narrow view of what 

‘optimal’ performance is, iv) dynamic control mitigates plant operator decision making 

capabilities, and v) many DSSs mitigated performance analysis. Therefore, recommendations 

are provided including testing of DSSs on real WWTPs, expansion of indicator sets to include 

wider impacts (triple bottom line dimensions), and use of Integral of Absolute Error and Integral 

of Squared Error calculations to investigate DSS error and response. Therefore, many 

recommendations could be provided for future DSS development that is more standardised for 

aligning aims with outcomes that facilitate water sector decision maker goals.  
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6.1.2 Research question 2 

How can decision support tools developed for technology selection be applied to provide a 

consensus for CE strategies to enhance wastewater sector circularity? 

The problems identified in Chapter 2 emphasise the need for structured approaches to facilitate 

practical decision making in the wastewater sector to its transition towards a CE. This is 

addressed in Chapter 3 by developing an approach that integrates a DSS for wastewater 

technology selection to create a collective resource recovery strategy for improving nutrient 

circularity at a regional scale. The framework starts with development of the baseline scenario, 

and then uses a combination of market potential analysis and a semi-quantitative DSS 

developed by UK Water Industry Research for technology selection. This DSS was selected as 

it incorporates the 6 capitals for a wider benefits assessment, as well as a range of more 

conventional criteria such as cost, carbon, and treatment impacts, which were scored using 

expert inputs. This was used to identify ‘priority’ resources for a given region, with 

corresponding recovery technologies integrated within a baseline model of the specified region, 

to generate a ‘resource recovery scenario’. An important step was to alter criteria weighting, to 

investigate how future scenarios (such as prioritising carbon impacts) impacts resource scores, 

with the average across the scenarios used to decide the final resource ranking. Material flow 

analysis (MFA) and the quantity of key wastewater resources recovered (nitrogen and 

phosphorus) were used to analyse both scenarios, identify hotspots, and directly quantify 

improvements.  

Can they be used as part of a structured approach to establish which resources have the greatest 

resource recovery potential at a regional level and quantify the potential benefits in terms of 

resource recovery? 

To corroborate the effectiveness and understanding of the approach, it was applied to the UK 

wastewater sector as the necessary data was available as part of the OFWAT’s PR19 reports. 

MFA and recovery rate indicators revealed that in the baseline scenario a large fraction of 

nutrients is currently lost through assimilation during secondary/tertiary treatment, showing 

there is significant scope for improvement. Market potential analysis highlighted the resource 

with the lowest demand would be chemical electricity generation, demonstrating that 

investment in higher value resources may provide greater benefits. In fact, water reuse, CO2, 
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hydrogen, and phosphorus resources had market potentials above 25 %, whilst 

polyhydroxyalkanoates and extracellular polymeric substances (EPS) recovery even had 

potential to saturate the market. The average score across the four potential scenarios 

established the top five ‘priority resources’ as heat (heat pumps), ammonia (stripping), 

biopolymers (EPS), struvite, and biosolids. A resource recovery scenario that integrated 

technologies for recovery of these resources, such as aerobic granular sludge, advanced 

anaerobic digestion (AD), and struvite precipitation, quantified that nitrogen and phosphorus 

recovery could both be increased by approximately 70 %. However, a large proportion of 

nitrogen is still assimilated during wastewater treatment, potentially warranting an investigation 

into investment for separate collection infrastructure to enhance nutrient recovery. However, it 

was discussed that the recommended technologies provided by the regional assessment must 

act as the foundation for further analysis by individual water utilities or treatment sites. 

Therefore, there is a need for the development of a holistic assessment that enables conclusive 

appraisal of implementing circular solutions.   

6.1.3 Research question 3  

Can the circularity of wastewater be defined beyond just having no value or as ‘non-virgin’ 

and be used to overcome the current assessment paradox for characterising the circularity of 

wastewater resources?  

To facilitate the construction of a wastewater assessment methodology, Chapter 4 focuses on 

redefining waste resource circularity to ensure assessment outcomes are of value for evidence-

based decision making. Currently, it is difficult to define physical water resources as sustainable 

or unsustainable, as it is how water resources are used and the resultant impacts that defines its 

sustainability and circularity, by understanding the source, destination, and how quality changes 

on the journey between them. Therefore, the actions and intent of wastewater producers across 

different sectors must be used to assign responsibility for linear utilisation of resources, shifting 

the current paradigm of policy instruments that are only used to promote circularity. To realise 

this, traceability principles were combined with an understanding of wastewater resources’ 

potential to cause harm when released to the environment, to go beyond the blanket definition 

of waste and show how water usage impacts its circularity. This was challenging considering 

current definitions of circularity but through disentanglement of resource flows, all wastewater 
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system inputs and outputs can be characterised, and used for assigning circular properties prior 

to indicator calculation. An explanation and definitions for the circularity classification of 

wastewater water, carbon, nitrogen, and phosphorus resources were developed, along with 

examples for some of the most common wastewater treatment scenarios. This unlocked the 

circularity of previous hidden wastewater resources to overcome the current assessment 

paradox for waste streams.  

Does tracing the source and destination of wastewater and its constituent resources enable 

responsibility to be assigned for linear water use? 

To show the advantages of the methodology, an assessment of wastewater resource flows that 

combines the classification framework, MFA, and circularity indicators was developed and 

applied to a WWTP example (12,000 m3/d). The indicators selected to assess WWTP resource 

flows covered the key areas of material inflows and outflows, water, energy, and economics, 

and were used to investigate how potential water user actions impact circularity in WWTP 

upstream and downstream. For example, it was shown that industrial action increasing fossil 

carbon concentration (400 m3/d effluent at 1000 mgC/l) reduced inflow and outflow circularity 

by 16 % and 10.6 % respectively, as secondary and sludge treatment fossil emissions increase 

significantly. Additionally, changes to water user habits that reduce detergent use by 50 % 

improved phosphorus inflow circularity by 5.2 % and better agricultural practices reducing 

synthetic fertiliser usage by 50 % increased nitrogen outflow circularity by 20.1 %. This 

analysis provides an answer to RQ3 but the issue of changing geography, local water user 

habits, local regulatory limits, and the preferred method of treatment of a region impacting 

wastewater composition, production rates, and destination was raised. Therefore, additional 

studies may be needed to quantify missing information for a specific WWTP system requiring 

local wastewater process operators to validate assumptions. Lastly, the need to expand the scope 

of the assessment beyond just resource flow analysis, by incorporating wider sustainability 

analysis to quantify the sustainable environmental, social, and economic stakeholder value was 

discussed.  
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6.1.4 Research question 4 

Can a methodology be developed that facilitates the standardisation of wastewater circularity 

assessments by systematically selecting indicators to quantify the sustainable value created by 

circular practices? 

The need for a holistic wastewater circularity assessment is met by the work of Chapter 5. 

Initially, the significant gap between current circularity and sustainability assessments which 

must be overcome to build business cases and convince companies to invest in circular solutions 

was highlighted. However, current CE monitoring frameworks focus on measuring material 

flows and align resource focussed circularity indicators with triple bottom line resulting in 

patchy assessments and consequences such as rebound effects and impact leakage. Therefore, 

a methodology was developed to systematically link changes in physical resource circularity 

with resultant sustainable value creation, to harmonise the assessment of wastewater processes 

and resources. The method was based on several principles defined from relevant sustainability 

science and CE literature such as using circular actions, quantifying value creation, and 

stakeholder participation. This resulted in an eleven-step framework, which utilises a taxonomy 

of indicators with three indicator typologies, namely resource flow, circular action, and 

sustainability indicators. The resource classification approach of Chapter 4 is used for robust 

indicator calculation, with stakeholder inputs utilised to develop value propositions which 

enables indicators to be systematically selected. This facilitates flexible indicator selection 

considering specific aspects of each scenario of application, meaning it can be applied across 

multiple levels of decision making, including static assessments for comparing technologies, 

hotspot identification for improving circularity, or performance monitoring for process 

optimisation.  

How does altering the circularity of physical resource flows impact the sustainability of 

wastewater systems? 

The assessment relies on the establishment of a benchmark conventional process so that direct 

changes to resource circularity and sustainability impacts can be quantified. Therefore, to show 

assessment method capabilities, and enhance understanding of its application, it was 

implemented to assess an example comparing novel photobioreactor (PBR) and conventional 

extended aeration technologies at a scale of 10,000 population equivalents. It was shown how 
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strategic project goals are combined with value creating goals of the circular technology to 

select relevant action indicators, with the data requirements feeding complementary 

sustainability indicator selection. Resource flow indicators were calculated using the resource 

classification approach and results highlighted improved outflow circularity (specifically for 

nitrogen and phosphorus nutrients), renewable energy usage, and economic performance for the 

PBR system. Action indicators revealed that the PBR technology was successful at achieving 

the defined value creating goals as all indicators revealed improvements, except for waste eco-

efficiency, however this highlights how addition of captured solids to anaerobic digesters would 

enhance circularity. Lastly, sustainability indicators (carbon footprint, life cycle assessment 

(LCA), economic value added, and social LCA) enabled the direct quantification of 

environmental, economic, and social value creation, confirming the benefits of PBR wastewater 

treatment technology for stakeholders. The results of this assessment should be used to expedite 

uptake of the PBR technology at this scale, by providing evidence of its holistic benefits in 

terms of circularity and sustainability.  

Evolution of the work throughout this thesis adds a valuable contribution to the current 

paradigm of CE science by providing a scientific basis for measuring, assessing, and 

implementing circular wastewater solutions. By understanding the current landscape of 

indicator-based decision making in the wastewater sector, and combining this with the 

necessary redefinition of wastewater circularity, this investigation was able to unlock a new 

area of circularity assessment, by tracing wastewater resources that were previously hidden 

using the current definition of waste streams. Following this development of CE theory, this 

body of work culminated in the creation of a logical and holistic assessment of wastewater 

circularity and sustainability. By using stakeholder participation to understand the value 

creating actions of circular technologies, the relationship between circularity and sustainability 

can be fully appreciated and quantified. Proper utilisation of the method will enable it to be 

implemented for decision making at an operational and strategic level, facilitating the circular 

transition of the water sector. It is also hoped that by integrating the resource classification 

approach within the holistic assessment it will help to strengthen its symbiotic relationships for 

achieving a CE by highlighting the importance of wastewater treatment. In fact, this approach 

could be expanded and used as a tool for assigning responsibility for linear production of waste, 

acting as a foundation to move away from current policy which mostly acts to encourage 

circular practice rather than hindering linear actions.  
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6.2 Recommendations for future research 

Although this thesis is structured in a way that the main questions raised by a chapter are 

answered by the subsequent one, there are aspects of WWTP DSSs and circularity assessments 

that could not be covered in the current body of work but require further exploration and 

development. The first, follows the review of WWTP DSSs and how the digitisation of the 

water sector will facilitate more structured and detailed data usage to provide greater insights 

for decision making. Inefficient use of data is one of the main problems in plant management 

which many WWTPs currently struggle to solve. The wastewater treatment (WWT) process is 

complicated and decentralised, so data is scattered, and managers can struggle to supervise the 

whole plant leading to poor performance. The water industry is still developing data collection, 

management, analytics, and controls to more effectively use data to inform decision making 

across all operational functions (Corominas et al., 2018). As a result, most data are relatively 

untapped to support decisions that would enable higher levels of performance and control. 

Subsequently, online optimisation of WWTP control has not been widely applied to real-world 

systems, due to the complex, non-linear behaviour of biological WWT (increasing the 

computational requirements), lack of visualisation techniques, and low-quality sensor 

measurements (Matheri et al., 2022). Types of advanced control known as model predictive 

controllers, use data-driven techniques for early correction of process operation to reduce 

process faults and therefore costly downtime, effluent violations, and resource consumption 

(Ntalaperas et al., 2022). The combination of this with effectively constructed multi-objective 

optimisation DSSs results in powerful and desirable tools for the water sector to achieve its 

environmental targets and sustainability goals. Finally, the use of data-driven techniques can 

also be extended to improve the selection of indicators, including the use of techniques 

combined with expert knowledge, to find precise KPIs for monitoring specific strategic goals. 

This would enable the differentiation between performance (lead) and result (lag) indicators, 

and create numeric thresholds and benchmarks (del Mar Roldán-García et al., 2021), providing 

more knowledge for decision making purposes. This provides direction for the next phase of 

automatic WWTP control, therefore DSSs can be used to remove human judgement from 

decision making, minimising errors for performance optimisation.  

The next development is required after the inclusion of the 6 capitals in the multi-criteria 

technology selection approach of Chapter 3. Using the 6 capitals enables the assessment to go 
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further than the typical focus on financial and manufactured capital, resulting in a more holistic 

selection process. The use of a capitals assessment is seen as a way to maximise value creation 

in a more inclusive way, which is evidenced by their incorporation within national water 

strategic plans, including the UK 2050 Water Innovation Strategy (2020) and Water Services 

Association of Australia circular economy transition (Jazbec et al., 2020). Their inclusion in the 

developed approach aims to identify technologies that generate greater net sustainability of the 

entire system. However, the assessment of capitals relied on expert judgement scoring 

(UKWIR, 2021), so to fully understand the value of capturing resources, the next phase of the 

assessment should be to quantify the capitals to act as the final validation of selected 

technologies. The method developed by Yorkshire Water (2018) could act as a starting point 

for this, as it places value on circular resource flows and a cost on negative externalities. This 

will require more detailed analysis of the studied system to expand the assessment for 

incorporation of other sustainability aspects (environmental, social, economic dimensions).  

The main requirement for further study realised by Chapter 4 was expansion of the work to 

harmonise the assessment of resource circularity and sustainability impacts, thereby being 

answered by Chapter 5. However, utility of the developed holistic assessment methodology 

could be increased by evolving certain aspects. Firstly, it was defined that the flexibility of the 

assessment method would enable multiple levels of decision making, but currently it has only 

been applied to the static assessment of a WWTP to quantify the benefits of a novel technology. 

Therefore, to justify this statement, work must be put into showcasing a variety of decision-

making capabilities and be tested in a range of different environments to also prove its value at 

an operational level. This would be achieved by using the methodology to select indicators, 

then integrating them within the DSS of a WWTP to optimise performance based not only on 

conventional parameters (such as effluent quality) but also circularity and sustainability KPIs. 

This would require enhancement of current data monitoring and analysis procedures, as 

described in the first paragraph of this section, for dynamic indicator calculation and 

assessment. There are currently few examples of performance optimisation DSSs considering 

wider impacts in the literature, however, Chen et al. (2021) dynamically optimises dissolved 

oxygen and chemical dosage at a 10,000 PE WWTP in China, using life cycle costing and LCA 

impact indicators as a reward function, showing this is possible.  

As many circular intervention technologies are still being developed at low technology 

readiness level (TRL), their assessment requires additional consideration to expedite 
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development and uptake. To elucidate the advantages of these technologies, circularity 

assessments, and other sustainability analysis techniques (LCA, technoeconomic assessment, 

or social LCA) need to be completed. However, low TRL technologies (pilot and demo scale) 

cannot compete in terms of economics, often due to higher energy and material consumption, 

with industrial scale processes. Therefore, technologies should be modelled at the full scale of 

implementation, requiring scale up calculations to build the models necessary for circularity 

assessments. Although, caution must be taken when building models and inventories of scaled 

up or future systems, as this introduces possibilities for high levels of uncertainty during the 

assessment. To overcome the issues of uncertainty when modelling scaled-up technologies, the 

principles of prospective LCAs can be utilised. van der Giesen et al. (2020) recommends the 

use of responsive evaluations by technology designers and other relevant stakeholders to 

provide insights on the design choices and contextual factors which have larger influences on 

the outcomes of assessments, and therefore require greater attention when being modelled. The 

insights from technology designers can be combined with learning curves and upscaling 

analysis from experts in the fields of chemical and process engineering to create representative 

and realistic models of full-scale technologies. For example, Tecchio et al. (2016) provides a 

systematic method for the scale up of biorefinery processes, utilising primary data from pilot 

scale systems and combining it with knowledge of thermo-chemical processes, to estimate the 

environmental impact at an industrial scale. Ex-ante and prospective LCA approaches provide 

many insights required for developing accurate models for full scale processes. This is pertinent, 

as to elucidate the advantages of circular technologies they must be modelled and compared at 

an industrial scale, even though many are still at low TRL. Therefore, an additional 

development to the proposed circularity assessment method should focus on the integration of 

a systematic process for constructing full scale models for low TRL circular technologies, and 

investigation of uncertainty to mitigate calculation errors and improve assessment transparency. 

In response to the demand for a standardised way to measure circularity, the International 

Standards Organisation (ISO) is currently drafting a family of documents related to the circular 

economy (International Standards Organization, 2022). However, they are horizontal standards 

that can be used by all sectors following a principles-based approach to act as a guidance for 

circularity assessments; so understandably it is impossible to cover the individual barriers of 

application to all potential scenarios and sectors. Therefore, work must be done to translate the 

guidance into application for each sector. Current terminology and definitions will lead to 
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inconsistencies when utilising the ISO to assess the circularity of WWTPs, specifically during 

the calculation of indicators. The classification approach and method of indicator selection 

would enable users of the ISO to systematically characterise resource circularity, select 

indicators, and quantify value creation, ending the ambiguity that currently surrounds these 

areas and facilitating standardisation of indicator calculation. Standardisation is needed to 

facilitate the comparison of assessment results across different case studies, enabling decision 

makers to compare the impacts of alternate WWTP operation, technology, and location with 

their own in a robust manner. Therefore, it is hoped this work can provide tools to act as starting 

point for translating ISO 59020 to standardise the assessment of wastewater systems.  

Lastly, application of the current example to a static assessment of a WWTP resulted in the 

selection and utilisation of more than 30 indicators. This number of indicators is required to 

holistically assess circularity and sustainability, however, the variety of indicators across 

multiple dimensions adds to the complexity when interpreting results for decision making. To 

provide more simplistic outcomes, indicators can be aggregated into a single output that is able 

to demonstrate overall circularity. Without this it may be difficult for inexperienced decision 

makers to extract the required information from assessment results, hindering acceptance and 

uptake of the methodology. There are several methods for indicator aggregation including 

structured approaches requiring the inputs of experts, such as Choosing-By-Advantages 

(Arroyo and Molinos-Senante, 2018), Analytical Hierarchy Process (Gherghel et al., 2020), 

Best-Worst Method (Liu and Ren, 2022), Full-Consistency Method (Srivastava and Singh, 

2022), and Interpretive Structural Modelling (Nika et al., 2021). Statistical approaches are also 

able to objectively rank and assign weights to indicators using methods including Principal 

Component Analysis (Teixeira de Souza et al., 2021), Correlation Analysis (Pearson’s, 

Hierarchical Clustering, and Random Forests) (Pacheco-Romero et al., 2022), and MICMAC 

Analysis (Nika et al., 2021). Utilising these methods would enhance communication of results 

by summarising assessment outcomes into a form that is simple for stakeholders to understand. 

A single circularity score could even form the basis of a rating scale, facilitating comparison 

across different technologies in terms of circularity performance.   
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Appendix A 

A.1 Model description and parameters 

The flow of nutrient components in wastewater, from influent to sludge disposal, were analysed 

as these are the important fractions when investigating resource recovery. MFA describes and 

quantifies the material flows through a system, making it an important tool for understanding 

industrial ecology and metabolism. Therefore, it was chosen as a starting point for the 

identification of resource recovery opportunities as it encourages understanding and 

visualisation of the current landscape. A mass balance model was created to represent the main 

flows in UK wastewater treatment.  

Input data for the mass balance model was collected from PR19 databases for England and 

Wales for the latest reporting period. This provides data for WWTP with PE > 25,000, 

including the PE served, flow passed to full treatment, sewage sludge treatment and disposal 

pathways (data for Northern Ireland and Scotland was calculated from reported PE and 

standard assumption of 200 L wastewater per capita per day produced). Wastewater 

composition was calculated using reported water PE loadings (grams per capita per day), which 

were divided into soluble and suspended fractions. The model was constrained using untreated 

primary and waste activated sludge compositions reported in literature for the UK. Model input 

data is summarised in Table A.1. 

 

 

 

 

 

 



186 

 

Table A.1. Input data used to model baseline scenario for UK wastewater sector. 

 

To make the model more realistic, it was aligned with current UK wastewater network practices 

by incorporating multiple treatment pathways. These were chosen using the European 

Environmental Agency’s Urban Wastewater Treatment database which records the PE served 

by WWTPs equipped with secondary and tertiary (P, N, NP, disinfection) treatment (European 

Environmental Agency, 2018). This was coupled with additional PR19 data that indicates 

whether UK WWTPs implement activated sludge (AS) or TF biological treatment processes. 

This resulted in eight different treatment pathways for UK wastewater and are summarised in 

Table A.2. The activated sludge process was modelled with pre-anoxic zones, for 

denitrification-nitrification, therefore it was assumed that only trickling filter processes 

required tertiary N removal. Tertiary P removal was achieved using ferric dosing (with 

additional solids production calculated) followed by tertiary solids removal. One assumption 

that must be noted is that chemical P sludge is not combined with raw sludge streams, due to 

the fact that P salts have limited bioavailability what applied to land (Parliamentary Office of 

Science and Technology, 2014). Since the databases used for constructing the model do not 

PE 
(OFWAT, 

2019) 
59,009,151  Primary Sludge (Smyth et 

al., 2021) 
Sludge Treatment 
(OFWAT, 2019) 

Sludge Disposal 
(OFWAT, 2019) 

Total 
Flow 

(OFWAT, 
2019) 

16,291,689.1 m3/d Dry Solids 6 % Untreated 1.8 % Land 
Reclamation 3.5 % 

Total load (Tchobanoglous et al., 

2014) 
 

Volatile Fraction 70 % Raw Sludge 
Liming 3.4 % Farmland 

Application 94.8 % 

 COD 8,851.4 t/d Nitrogen 2.50 % AD 33.5 % Other 1.7 % 

BOD 3,540.5 t/d Phosphorus 0.70 % Advanced 
AD 51.7 % 

 

N 649.1 t/d WAS (Smyth et al., 2021) Incineration 7.0 %  

P 123.9 t/d Dry Solids 1.50 % Composting 0.1 % 

TSS 3,835.6 t/d Volatile Fraction 80 % Other 2.4 % 

VSS 2,876.7 t/d Nitrogen 5 % 
 

OC 2,671.8 t/d Phosphorus 2.20 % 



187 

 

provide information, such as the compound used or the dosage rate for precipitation, the P in 

this stream was modelled to be collected during tertiary solids removal to account for the 

phosphorus in the system. This ensured that the total P in the conventional system was 

accounted for (in terms of total mass in WW and current bioavailability for land application of 

P) and that there was potential to recover better quality P in the updated resource recovery 

scenario. 

Table A.2. Fraction of wastewater sent to each secondary/tertiary treatment train after primary treatment. 

 

 

 

 

 

 

 

 

The primary and waste activated sludge (WAS) raw sludge streams were combined before 

undergoing the sludge treatment pathways described in Table 1. AD and advanced AD were 

modelled using standard kinetic parameters, with the AAD process assumed to operate a 

thermal hydrolysis system to enhance volatile destruction and biogas yield. Biogas generated 

by AD was assumed to have a methane content of 65 % (Tchobanoglous et al., 2014). 

Dewatering systems employing polymer addition were assumed to achieve solids recovery 

rates of 98 % and cake DS of 25 % before sludge disposal (Tchobanoglous et al., 2014) 

(AHDB, 2019). Treatment parameters are summarised in Table A.3.   

 

 

 

Treatment Pathway AS TF 

Secondary Only 44.0% 3.7% 

Tertiary/Additional 

P removal 30.6% 3.4% 

N Removal 0 1.3% 

NP removal 0 2.8% 

Other (disinfection) 12.6% 1.4% 
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Table A.3. Parameters used to model wastewater and sludge treatment for baseline UK scenario. 

Baseline Model Parameters 

Screening – 6 mm bar screen (Tchobanoglous et al., 2014) 

Removal 67 L/1000 m3 Moisture 75 %  

Density 750  kg/ m3 Volatiles 75 %  

Grit (Tchobanoglous et al., 2014) 

Removal 0.3 m3/1000 m3 Moisture 60 %  

Density 1660 kg/ m3 Volatiles 28.5 %  

Primary Clarifier (Tchobanoglous et al., 2014) 

Solids Removal 60 %     

Activated Sludge (Tchobanoglous et al., 2014) 

bCOD:BOD 1.6 TSS:VSS 0.85 VSS:BOD 0.85 

Yh 0.45 gVSS/gCOD  SRT 17 days 

baob 0.135 g/g d Yn 0.15 gVSS/gNOX 

bh 0.12 gVSS/gVSS d fd 0.15  

NOX effluent 6.0 g/m3 P removal 25 %  

Trickling Filter (Tchobanoglous et al., 2014) (Burgos et al., 2015) 

BOD removal 85 %  NH4-N effluent 5 g/m3 

Nitrification 80 %  Sludge 
production 

0.5 kg/kgBOD 

TSS removal 50 %  P removal 20 %  

Post anoxic N removal (Tchobanoglous et al., 2014) 

Nitrate removal 90 %  Methanol  1.5 gCOD/g 

Yield 0.15 gVSS/gCOD     

P removal (Tchobanoglous et al., 2014) 

Soluble effluent 
achieved 

0.1 g/m3 Solids 
Removal 

85 %  

Anaerobic Digestion (Tchobanoglous et al., 2014) 

Y 0.08 gVSS/gCOD 𝜇m 0.35 g/g day 
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bH 0.03 g/g day Ks 120 mgCOD/L 

fd 0.1  SRT 15 days 

VSS removal 44%  Biogas 
generation 

370  m3/tDS 

Advanced AD  

VSS removal 60 %  Biogas 
generation 

410  m3/tDS 

Thermal Hydrolysis (Morgan-Sagastume et al., 2011)  

Soluble COD 817 % Increase VSS 55 % Decrease 

Soluble N 167 % Increase TSS 52 % Decrease  

Soluble P 17 % Increase    

Composting (Tchobanoglous et al., 2014) (Poulsen and Hansen, 2003) 

VSS removal 25 %  P removal 6 %  

N removal  33 %     

Incineration (de Azevedo Basto et al., 2019) 

P2O5 ash fraction 8 %  Volatile 
Removal 

100 %  

 

After the application of MCA, a scenario that focused on resource recovery was decided. This 

involved the integration of aerobic granular sludge treatment systems, which produce struvite 

and EPS. Thermal ammonia stripping from AAD liquors streams was also implemented and 

the energy recovery from heat pumps investigated. The parameters used to model the updated 

resource recovery scenario are presented in Table A.4. 
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Table A.4. Parameters used to model updated resource recovery scenario with selected technologies from MCA. 

Resource Recovery Model Updates 

AGS Removal Efficiency (Pronk et al., 2015) 

COD  87 % PO4 removal 91 % TP removal 87 % 

BOD  96 % TN removal 86 %   

TSS  92 % NH4-N removal 97 %   

AGS Production (Kehrein et al., 2020b) (Guo et al., 2020) 

Sludge  0.14 kg/m3 influent Sludge COD 71.3 g/L 

Sludge DS 6 %  Sludge VS 5 %  

EPS to sludge 20 %  EPS N fraction 8 wt%  

EPS C fraction 47 wt%  EPS P fraction 3 wt%  

COD to biogas 50 %  VS AD removal 25.4 %  

Influent P in 
digestate 

85 %  Struvite 
crystallisation 

80 %  

Ammonia Stripping (Organics Group, 2020) 

N recovery 98.5 %     

Heat Pump (Hao et al., 2019) 

c 4.18 kJ/kg CoP 3.5  

dT 4 ℃  Q 1.77 kWh/m3 

 

When it came to the collection of information to construct models for MFA, parameters were 

taken from the Wastewater Engineering textbook of Tchobanoglous et al. (2014) as a basis for 

the calculations. This textbook is regarded the gold standard for wastewater design, therefore, 

where possible typical parameter values were extracted from this source. When ranges were 

given, the average value within the range was used. In cases where no data was provided for 

specific technologies, other literature sources were utilised (as referenced in Tables A.3 and 

A.4), and care was taken to ensure they were representative of the system analysed in this work. 

For example, the work of Morgan-Sagastume et al. (2014) shows the performance efficiency 

of a full-scale CAMBIÔ process for a mixture of primary sludge and WAS from domestic 
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wastewater in Denmark, meaning it is similar to this study in terms of process operation, 

feedstock and climate conditions. Furthermore, the example of AGS operation by Pronk et al. 

(2015) was used as the example for removal efficiencies as it operates at full scale in a similar 

climate (Netherlands) to this system, for the treatment of domestic sewage.   

A.2 Market potential vs market demand 

The interest in resource recovery from wastewater has led to the development of an extensive 

list of potential products and technological options for their extraction. Figure A.1 provides a 

simplified diagram of the water flowing through an urban system, summarising attractive 

opportunities when focus is shifted from wastewater treatment to resource recovery. 

Figure A.1. Simplified version of the urban water cycle, highlighting potential opportunities for resource 

recovery from wastewater (green), along with other sustainable activities that should be implemented by water 

companies (blue). 

 

One of the first chances to capture resources is during WW influent pre-treatment. Grit from 

screening can supplement virgin feedstocks for construction aggregates with a circular 

alternative and sieving processes with certain mesh size (<0.35 mm) capture cellulose fibres 

(Ruiken et al., 2013). Primary and secondary treatment yield sewage sludge that has the 

potential to generate a range of valuable resources. AD is the current method of sludge 
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treatment implemented by water utilities to generate biogas for energy recovery, however, a 

two-stage process isolates VFAs which have inherent value or can be used to synthesis PHAs 

(Coma et al., 2017). Upgrading biogas will yield a higher-grade fuel and valuable by-product 

stream of CO2. AnMBRs have the potential to generate biogas whilst simultaneously treating 

WW, resulting in reduction of facility capital and operating expenditures (Soares et al., 2021). 

Co-digestion practices incorporate other solid municipal waste streams to amplify the 

concentration of nutrients in AD processes, resulting in greater product yields (Cavinato et al., 

2013).  

The sewage sludge is the concentrated solid stream removed from wastewater which is has a 

high nutrient content and is very versatile in terms of the resource recovery opportunities it 

presents. Incineration of raw sludge provides a method of energy recovery, resulting in ash 

which rich in phosphorus that be extracted using acid and base leaching (Gherghel et al., 2019). 

Gasification of sewage sludge yields a hydrogen rich fuel (syngas), which can be used to 

recover energy or as a feedstock for chemical production (Gherghel et al., 2019). Treated 

biosolids (AD, liming etc.) produces a nutritious matrix that can be applied to farmland, 

substituting the need for mineral fertilisers with a sustainable and circular alternative. 

Solubilisation of the nitrogen in sludge occurs during AD treatment, application of air or 

thermal stripping will remove ammonia from dewatering liquors (Kehrein et al., 2020a). 

Nitrogen in sludge can be used to generate single cell proteins which replace animal fodder, 

such as soybeans, that have a high carbon footprint. EPSs are used by microorganisms for cell 

adhesion during granular sludge processes, employing chemical extraction methods produces 

alginate-like gels (Kehrein et al., 2020b).  

The treated effluent stream leaving a WWTP contains residual soluble fractions of nutrients, 

making it attractive for reuse for agricultural irrigation purposes. Electrolysis of wastewater 

effluents yields hydrogen to hopefully power vehicles in the future, due to its clean burning 

and high energy density. Lastly, integrating heat pumps on effluent streams result in the 

recovery of thermal energy, which is preferred due to the risk of fouling with influent streams 

(Kehrein et al., 2020b). It is worth noting that as well as resource recovery there is significant 

effort required to implement other sustainable practices such as leakage detection/reduction, 

water recycling, sustainable urban drainage, N2O monitoring and rainwater harvesting. All of 

which are required for the sustainable development of the water industry (Jazbec et al., 2020).  
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The product recovery calculations utilised the flow handled, raw sludge produced, biosolids 

disposed and transportation requirements reported from PR19 data tables, with wastewater load 

concentration taken from literature. Each resource was considered independently, so the market 

potential represents the maximum resource recovery that could be achieved under ideal 

circumstances using correct technologies. The resource availability and recovery efficiencies 

were taken from the review paper by Kehrein et al. (2020a), and literature reported for UK case 

studies and pilot plants. Market demands were taken from UK centric sources, namely 

government and industrial reports. Some additional resources were considered to reflect those 

shortlisted by the implementation of the MCA framework including, grit, ammonia, syngas, 

hydrogen and AnMBR biogas.  
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Table A.5. Market potential calculation parameters given as UK market demand and recovery efficiencies. 

Market Demands  Recovery Potential  

Water 

Total Water Abstraction 
(Department for Environment 
Food and Rural Affairs, 2019) 

10,400 Mm3/a UF/MF Efficiency (Verstraete 
et al., 2009) 

85 %  

   RO Efficiency (Verstraete et 
al., 2009) 

75 %  

Energy 

Natural Gas Demand 
(Department for Business 
Energy and Industrial Strategy, 
2020) 

3,158 PJ/a COD Capture (Kehrein et al., 
2020a) 

80 %  

Electricity Demand 
(Department for Business 
Energy and Industrial Strategy, 
2020) 

1,244 PJ/a Methane Generation (Kehrein 
et al., 2020a) 

0.35 m3/kgCOD 

Heat Demand (Department for 
Business Energy and Industrial 
Strategy, 2020) 

150 PJ/a Methane Energy Density 
(Kehrein et al., 2020a) 

35.9 MJ/m3 

   CHP efficiency (Verstraete et 
al., 2009) 

38 % Electricity  

   CHP efficiency (Verstraete et 
al., 2009) 

40 % Heat 

   Co-combustion energy 
(Kehrein et al., 2020a) 

0.4 TJ/t 

Hydrogen 

HGV Demand (Department for 
Transport, 2020) 

17.4 bvm Hydrogen generation (CREW, 
2018) 

0.119 tH2/m3 

Sludge Transport Demand 
(OFWAT, 2019) 

5.9 mvm H2 requirement 
(FuelCellsWorks, 2020) 

12.5 HGVkm/kg 

AnMBR 

   COD removal (Soares et al., 
2021) 

65 %  

   Methane biogas content 
(Soares et al., 2021) 

80 %  

   Methane generation (Soares et 
al., 2021) 

0.26 m3/kgCOD 

Syngas 
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   Energy generation (Mills, 
2016) 

4,028 kWh/tDS 

Cellulose 

Paper Production (Eurostat, 
2019) 

3,815,000 t/a Availability (Palmieri et al., 
2019) 

31 g/d.PE 

   Removal Efficiency (Palmieri 
et al., 2019) 

85 %  

   COD fraction of inlet (Kehrein 
et al., 2020a) 

31 %  

   Pellet Energy Density 
(Kehrein et al., 2020a) 

13.8 MJ/kg 

CO2 

CO2 Demand (Alberici et al., 
2017) 

450,000 t/a    

VFAs 

Acetate Demand (Kehrein et al., 
2020a) 

16,000,000  t/a COD up-concentration 
(Kehrein et al., 2020a) 

75 %  

Propionate Demand (Kehrein et 
al., 2020a) 

380,000  t/a VFA yield (Kehrein et al., 
2020a) 

33 %  

Butyrate Demand (Kehrein et 
al., 2020a) 

500,000 t/a PHA yield 19 40 %  

EPS 

Alginate Market (Grand View 
Research, 2021) 

43,028 t/a Sludge production (Kehrein et 
al., 2020a) 

0.4 kg/kgCOD 

   EPS content (Kehrein et al., 
2020a) 

17.5 %  

Nitrogen 

Mineral Fertiliser Demand 
(Agricultural Industries 
Confederation, 2021) 

1,038,000 t/a Sludge Content (AHDB, 
2019) 

3.15 %  

   Biodrying Efficiency (Kehrein 
et al., 2020a) 

70 %  

Biochar 

Soil Conditioner Demand (Staff 
and Phetmanh, 2016) 

1,805,000 t/a    

Ammonia 
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   Stripping Efficiency 
(Organics Group, 2020) 

98.5 %  

   Energy Density (Lan and Tao, 
2014) 

22.5 MJ/kg 

Phosphorus 

Mineral Fertiliser Demand 
(Agricultural Industries 
Confederation, 2021) 

81,282 t/a Sludge P2O5 Content (AHDB, 
2019) 

3.55 %  

   Struvite P Recovery (Kehrein 
et al., 2020a) 

35 %  

Grit 

Sand and Gravel Demand 
(Mineral Products Association, 
2018) 

61.7 Mt/a Removal (Kehrein et al., 
2020a) 

0.3 m3/1000 m3 

SCP 

Animal Feed Demand 
(Department for Environment 
Food and Rural Affairs, 2018 

222,128 t/a Protein Conversion 100 % Assumed 

 

A.3 Review of wastewater resource recovery technologies  

Wastewater that has undergone secondary treatment and then subjected to further contaminant 

removal permits its consideration for reuse applications. These tertiary treatment steps are 

commonly membrane filtration or advanced oxidation processes. Reused water is either potable 

(directly or indirectly) or non-potable, where it is more commonly applied for irrigation or 

industrial cooling (Yang et al., 2020). MF and UF are used to remove suspended particles and 

pathogens, while NF and RO are able to remove dissolved substances, such as di- and 

monovalent ions. A combination of membrane filtration and ultraviolet (UV) treatment or 

ozonation can produce potable water, with one of the most successful water reuse case studies 

being the NEWater process in Singapore. NEWater utilises a combination of MF/UF, RO and 

UV disinfection to produce both potable and non-potable water, accounting for approximately 

40 % of the country’s water demand (Tortajada and Nambiar, 2019). Although these water 

reuse technologies have been widely implemented, application is usually driven by necessity 



197 

 

in water stressed countries including the USA, Australia and South Africa (Tortajada and 

Nambiar, 2019).  

The emergence of AnMBR enables effective implementation of water reuse strategies in more 

variable climates (Robles et al., 2020). It has been demonstrated that AnMBRs simultaneously 

produce high quality effluent (> 90 % chemical oxygen demand (COD) removal) and biogas 

(> 75 % methane) from wastewater (Kong et al., 2021). This facilitates the reduction of energy 

consumption, water reuse and renewable energy production. The Spernal WWTP (UK) 

demonstrates this system, which aims to produce pathogen and solid free effluent, whilst 

reducing sludge generation, improving energy efficiency, and producing biogas (NextGen, 

2020). This combination of benefits makes AnMBRs an attractive, cost-effective opportunity 

for enhancing water security as water stress becomes a more pertinent issue for regions such 

as the UK.  

There are numerous methods to convert the volatile fraction of wastewater sludge into gaseous 

fuels through biological and physio-chemical processes (Gherghel et al., 2019). AD of sludge 

is currently employed by many facilities to recover energy in the form of biogas, which is 

typically combusted within CHP units to generate electricity and heat (van Loosdrecht and 

Brdjanovic, 2014). Frequently AD systems are improved using advanced processes, such as 

thermal hydrolysis TH which utilises heat and pressure to rupture cell walls, enhancing nutrient 

bioavailability. In turn, TH results in greater volatile destruction, biogas production and 

pathogen removal, whilst reducing sludge production, transportation and dewatering (Pilli et 

al., 2015).  Membrane filtration and water/chemical scrubbing are utilised to clean biogas 

which is then upgraded to produce biomethane, permitting its injection into national energy 

infrastructure (Ardolino et al., 2021).  

Gasification and pyrolysis of sewage sludge yields valuable syngas, and biochar as a by-

product that can be applied as a soil conditioner. Biochar has a range of benefits including soil 

pollutant remediation, carbon sequestration and enhanced microorganism activity (Wang and 

Wang, 2019). There are several examples across Europe where this has been implemented 

(Hrbek, 2019). In the UK, Yorkshire Water have demonstrated this on a commercial scale as a 

route towards energetic self-sufficiency. The consistent and reliable flow of water through 

WWTPs provides opportunities for further renewable energy generation. Hydropower can be 

harnessed from process effluents, while significant quantities of thermal energy are available 
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for recovery throughout the wastewater network using heat pumps (Llácer-Iglesias et al., 

2021).  

Raw wastewater and sludge streams are sources of nutrients that can be recycled to replace the 

demand of fossil-fuel derived fertilisers (Mo and Zhang, 2013), including nitrogen, 

phosphorus, potassium and magnesium (Nancharaiah et al., 2016).  Presently, strict discharge 

limits are placed on effluent NP concentrations, due to their eutrophic properties, meaning 

practices are focussed on contaminant removal. Artificial fertiliser production is responsible 

for a significant fraction of global GHGs (ammonia production emits 1.2 % of anthropogenic 

CO2 emissions (Smith et al., 2020)) and the finite reserves of phosphate rock have been well 

documented in recent times (Geissler et al., 2019). Of the mineral fertiliser utilised for food 

production it is estimated that 30 % of nitrogen (Verstraete et al., 2009) and 20 % of phosphorus 

(Batstone et al., 2015) are excreted, meaning that wastewater represents a significant fraction 

of global nutrient stocks.  Therefore, it is counter intuitive to assimilate these critical resources 

during wastewater treatment, so maximising their recovery is paramount.  

Current practice utilises NP remaining after treatment through direct application of sewage 

sludge/biosolids to farmland. Uptake of this practice is limited in some regions due to low 

nutrient concentration compared to artificial fertilisers, high transportation cost, potential for 

contamination (pathogens, heavy metals, organics), and social acceptance (Collivignarelli et 

al., 2019; Ma and Rosen, 2021).  Struvite crystallisation is a method of recovering NP from 

wastewater sludge and reject streams, requiring stoichiometric amounts of ammonium, 

phosphorus and magnesium (Cieślik and Konieczka, 2017). This produces a high-grade, slow-

release fertiliser and mitigates the problem of pipe clogging caused by spontaneous struvite 

precipitation (Nancharaiah et al., 2016). Many companies, including Ostara PearlÒ and 

AirPrexÒ, have developed technology for the controlled precipitation of struvite. Although 

recovery rates of greater than 90 % of phosphorus from sludge processing streams are reported, 

this translates to only approximately 20 % recovery of influent phosphorus (Ghosh et al., 2019). 

It was estimated that 24 % of wastewater nitrogen could be recovered by utilising air stripping 

technology on digester reject streams of the Amsterdam-West WWTP (van der Hoek et al., 

2018). Air stripping is a promising method of nutrient recovery, that has been successfully 

exploited in the UK using Biosys systems to treat ammonia rich AD streams. Nitrogen is then 
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recovered through scrubbing of the ammonia gas and utilised as green fertiliser (Biosys, 

2021b).   

A variety of alternative products have been harnessed from other components in wastewater. 

Cellulose represents a large fraction of wastewater COD (35 %) and is easily recovered during 

primary treatment, enabling the intensification of downstream processes (Ruiken et al., 2013). 

The CellvationÒ system, developed by SMART-Plant, recovers cellulose from influent 

wastewater streams by implementing Salnes fine mesh sieves achieving >40 % suspended 

solids removal (Ros et al., 2020). The recovered fibres present a range of options including 

paper pulp feedstock, composite manufacture and 2G sugar generation. Volatile fatty acids 

(VFAs) are favourably synthesised by isolating acidogenic biomass populations during AD, 

which are used to derive further valuable products. One such product are PHA biopolyesters, 

which accumulate intracellularly in biomass. PHA is promising as it shows similar properties 

to fossil-based thermosets, but mitigates many environmental burdens due to their 

biodegradability and derivation from renewable feedstocks (Valentino et al., 2017). There are 

several European projects demonstrating these processes on a commercial scale, which achieve 

recovery rates that represent up to 17.5 % of influent COD (Conca et al., 2020).  

A.4 Multi-criteria analysis 

The MCA methodology utilised was developed as part of a project commissioned by UK Water 

Industry Research (UKWIR) to understand the greatest sustainable economic benefit for 

resource recovery from the water cycle (UKWIR, 2021). In this work, the MCA method has 

been used as part of the approach to assess the resource recovery opportunities in the UK 

wastewater sector. 
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A.4.1 Scoring criteria guidance 

Table A.6. Scoring criteria guidance on how scores are assigned for each of the MCA categories taken from UKWIR (2021). 

 Score guidance 

Category 1 2 3 4 5 

Recovery potential Less than 20% of material 
likely recoverable and in 
limiting circumstances.  

Recovery is inefficient and 
would be better achieved 
through other means of waste 
management hierarchy – e.g. 
reduced inputs.  
 

Less than 50% may be 
recoverable.  

Recovery is unlikely to be 
efficient relative to other 
means of waste management 
hierarchy – e.g. reduced 
inputs.  

 
 

About half of material may be 
recoverable in a moderate 
number of cases.  

Recovery efficiency is neutral 
relative to other management 
measures within waste 
management hierarchy.  
 

About half of material may 
be recoverable in most 
circumstances.  

Resource recovery of this 
nature is likely to be 
efficient within waste 
management hierarchy.  
 

Greater than 80% of material 
may be recoverable in most 
circumstances.  

Recovery location is 
extremely efficient with 
respect to waste management 
hierarchy.  

 

Market potential 
(UK) 

Recovered product can 
substitute <1% of established 
products. 

 

Recovered product can 
substitute <10% of established 
products. 
 

Recovered product can 
substitute 10-25 % of 
established products. 
 

Recovered product can 
substitute 25-50% 
established products. 
 

Recovered product can 
substitute >50% of 
established products. 
 

Treatment Recovery offers no material 
benefit to established 
treatments or introduces new 
treatment challenges 

Major adaptation of 
established treatment trains 

Recovery has neutral impact 
on established treatments  

Moderate adaption of 
established treatment trains 

Recovery removes modest load 
(e.g. <50%) from established 
treatments or provides other 
treatment benefits (e.g. 
operational benefits). 

Some adaption of established 
treatment trains. 

Recovery removes 
significant load (e.g. 
>50%) from established 
treatments 

Minor adaption of 
established treatment 
trains  

Recovery can completely 
replace established 
treatments 

Minor adaption of 
established treatment trains 
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Cost Total cost anticipated to be 
much higher versus established 
equivalent processes 

Exacerbates existing costs 
elsewhere 

Total cost likely to be much 
higher versus established 
equivalent processes.  

Cost likely to be neutral – 
neither higher nor lower for the 
resource recovery.  

Similar or lower cost to 
established comparable 
treatments.  

Similar or lower cost to 
established comparable 
treatments 

May offset significant 
existing cost elsewhere 

Carbon Greater net emissions versus 
established equivalent 
processes 

No potential to reduce 
emissions elsewhere on or off 
site (e.g. Scopes 1, 2 and 3).  

Greater net emissions from 
recovered product versus 
established equivalent 
products.  

 

  

Greater emissions likely 
versus established processes.  

Limited potential to reduce 
emissions elsewhere on or off 
site (e.g. Scopes 1, 2 and 3).  

 

Carbon impact likely to be no 
different to existing 
product/technology pathway.  

Lower emissions likely 
versus established 
processes.  

Opportunity to reduce 
emissions on or off site as 
a result of resource 
recovery.  

Some potential to 
sequester carbon.  

Significantly lower net 
emissions versus established 
processes.  

Likely to reduce emissions 
elsewhere from established 
equivalent processes. 
Opportunity to sequester 
carbon.  

Net negative emissions from 
recovered product versus 
established equivalent 
products 

Environment and 
Natural capital 

Evidence of detriment to 
natural capital assets across the 
catchment. 

Likely to be less sustainable 
alternative.  

Evidence of high risk arising 
from emerging contaminants 
above that of established 
equivalent products 

No evidence of improved 
nature-based systems and 
processes including 
contribution to natural capital, 
ecosystem services and 
biodiversity.  

There are no opportunities 
identified for the restoration of 
the natural environment 
and/or opportunities to limit 
extraction and use of natural 
capital assets.  

Limited/some evidence of 
improved nature-based systems 
and processes including 
contribution to natural capital, 
ecosystem services and 
biodiversity.  

Opportunities for the 
restoration of the natural 
environment are limited.  

Opportunities to limit 
extraction and use of natural 
capital assets is limited.  

Evidence of improved 
nature-based systems and 
processes including 
contribution to natural 
capital, ecosystem services 
and biodiversity.  

Opportunities for the 
restoration of the natural 
environment are present. 

Limits extraction and use 
of natural capital assets.   

 

Evidence of significantly 
improved nature-based 
systems and processes 
including contribution to 
natural capital, ecosystem 
services and biodiversity. 

Significant opportunities for 
the restoration of the natural 
environment are present. 

Significantly limits 
extraction and use of natural 
capital assets.   
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Evidence of less-sustainable 
option.  

Evidence of some risk arising 
from emerging contaminants 
above that of established 
equivalent products 

No clear sustainability benefit 
from high level consideration.  

Limited evidence of some risk 
arising from emerging 
contaminants but limited 
relative to established 
equivalent products  

As to be expected, many 
resource recovery options have 
associated benefits and 
disbenefits (trade-offs) in 
relation to natural capital and 
environmental considerations. 
This requires to be considered 
in the analysis.   

Sustainability benefit from 
high level consideration.  

 

Limited evidence of some 
risk arising from emerging 
contaminants but limited 
relative to established 
equivalent products. 

Clear sustainability benefit 
from high level 
consideration.  

 

No evidence of risk arising 
from emerging contaminants. 

Human and 
intellectual capital 

Negative impact on employee 
knowledge and wellbeing.  

Potential for higher H&S risks 
which are likely to require to 
be managed.   

May have detrimental impact 
on intellectual capital of 
organisation.  

Potential for negative impact 
on human capital through 
enhanced wellbeing and 
learning opportunity.  

Potential for some increased 
H&S risks. 

Potential for detrimental 
impact on intellectual capital 
of organisation.  

No positive or impact on human 
or intellectual capital. 

No expected change to H&S 
risks.   

 

Positive impact on human 
capital through enhanced 
wellbeing and/or learning 
opportunity.  

Potential for neutral or 
reduced H&S risks. 

Positive impact on human 
capital through enhanced 
wellbeing and/or learning 
opportunity.  

Reduced H&S risks.  

Social and 
Relationship capital 

Considered to contribute 
detrimentally to customer 
relationships and trust.  

Reduces existing societal and 
stakeholder relationships.   

May provide detrimental 
impact on existing customer 
relationships and trust.  

May decrease/constrain 
existing societal and 
stakeholder relationships.  

Does not provide opportunity to 
strengthen nor weaken existing 
relationships and trust with 
customers.  

Does not provide opportunity to 
build relationships with 
stakeholders beyond present.  

Offers some opportunity to 
strengthen relationships 
and build trust with 
customers.  

Provides opportunity to 
build relationships with 
existing and multiple new 
stakeholders including 

Offers opportunity to 
strengthen relationships and 
build trust with customers.  

Provides significant 
opportunity to build 
relationships with existing 
and multiple new 
stakeholders including 
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supply chain, academia 
and wider society. 

supply chain, academia and 
wider society.  
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A.4.2 Resource recovery technology scoring 

Table A.7. Scores achieved by each of the shortlisted resource recovery technologies. All were assigned by experts at Jacobs Engineering Ltd. (taken from UKWIR (2021)) 

except the market potential which utilised calculated values (justification for each score given is provided below). These scores were used as inputs to the MCA to rank the 

technologies for the given scenario.  

WW 
Resource 

Recovery 
Potential 

Market 
Potential 

Treatment 
Impacts Cost Carbon Environment and 

Natural Capital 

Human and 
Intellectual 

Capital 

Social and 
Relationship 

Capital 
Total 

Biochar 

4 3 3 1 4 3 4 4 

26 
Maximum energy 
generation from 
sludge but 
significant energy 
required for 
sludge drying 

Market 
potential of 18 
% 

Emerging 
contaminant 
destruction in 
biosolids 

High capital 
investment 
required for AAT 
technology 

Carbon 
sequestration 
benefits. Reduced 
carbon emissions 
vs incineration.  

Considerable new 
infrastructure 
required for 
significant 
resource impact 

Learning 
opportunity due 
to technology 
novelty in sector 

Customers 
perceived benefit 
from end of 
biosolids for land 
application 

Biogas (AAD) 

4 1 2 3 4 2 3 3 

22 Increased biogas 
production but 
additional energy 
input required 

Market 
potential of 
<1 % 

Increased 
nutrient load to 
AD liquor 

Neutral due to 
balanced biogas 
production and 
energy demand/ 
infrastructure 

Increased yield of 
renewable energy 
source 

Limited impact on 
food and water 

Already 
established, so 
BAU 

Already 
established, so 
BAU 

4 1 2 3 4 2 3 4 23 
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Biogas (Co-
digestion) 

High potential for 
recovery of 
energy but source 
reduction of 
waste preferable 

Market 
potential of 
<1 % 

Generation of 
additional AD 
liquors and will 
require site 
intervention for 
food waste 
supplements 

Neutral due to 
enhanced biogas 
yield with 
increased liquors 
treatment 

Carbon benefit 
from avoided 
landfilling of 
food waste 

 

Opportunity to 
increased 
knowledge base 
of co-digestion 
AD process 

Can strengthen 
customer and 
local community 
relationship 
through treatment 
of food waste 

Biosolids 

3 2.5 3 3 4 3 3 3 

24.5 
BAU 

Market 
potential of 4 
% (N) and 23 
% (P) 

BAU BAU 

Soil carbon 
sequestration and 
substitution of 
artificial 
fertilisers 

Low-cost nutrient 
cycling balanced 
by risk of 
contaminants 

BAU BAU 

Biomethane 

4 1 3 3 4 2 3 3 

23 

High potential for 
energy generation 
but additional 
process steps and 
energy required 
for biogas 
upgrading 

Market 
potential of 
<1 % 

BAU in many 
places 

Added cost is 
balanced by 
economic 
subsidies 

Substitution of 
fossil-based fuels 
in national grid 

Limited impact of 
water and food 

BAU in many 
places 

BAU in many 
places 

Biopolymers 

3 5 3 2 3 3 4 3 

26 Requirement of 
Nereda facility 
for EPS recovery 

Market 
potential of 
>100 % 

Removes 
approx. 1/3 of 
sludge treatment 
load 

Requires 
installation of 
AGS 
infrastructure but 
balanced by 
process 
intensification 

Little impact 
compared to 
existing product 

Potential to limit 
production of 
fossil-based 
plastics 

Learning 
opportunity 
with new 
processes and 
products 

Potential to 
benefit local 
supply chain 



206 

 

FOG 

2 1 3 2 3 2 4 2 

19 Marginal 
additional 
recovery vs 
existing practice 

Market 
potential of 
<1 % 

Minimal 
downstream 
capacity 
improve1ment 

Additional 
infrastructure or 
chemicals 
required 

Additional biogas 
yield balanced by 
additional energy/ 
chemical 
requirement 

May reduce 
leaching to water 
sources from 
landfill 

Potential for 
increased 
wellbeing due to 
preventative 
maintenance 
approach 

May risk 
customer 
confusion around 
FOG use at home 

Grit 

3 1 4 3 3 3 4 3 

24 Existing grit 
removal removes 
moderate 
quantities 

Market 
potential of 
<1 % 

Enhanced grit 
recovery would 
result in 
downstream 
process benefits 

Balance between 
investment and 
reduced 
downstream 
maintenance cost 

Evidence of 
carbon benefits vs 
landfill disposal 

Virgin sand or 
aggregate 
replacement 

Potential for 
increased 
wellbeing due to 
preventative 
maintenance 
approach 
reducing high 
pressure 
environments 

Potential for 
company to 
upcycle and reuse 
locally 

Heat (Heat 
Pump) 

4 5 3 3 4 4 4 5 

32 
Needs alignment 
for better use in 
community, 
onsite heat can be 
used for building 
heating 

Market 
potential of 82 
% 

Use on final 
effluent should 
not have 
adverse effects 

Balance of cost of 
infrastructure with 
grid energy saving 

Substitution with 
fossil-based fuels 
from grid 

Cooler effluent 
returned to surface 
water 

Knowledge and 
skills 
development for 
heat pumps 

Opportunity to 
provide renewable 
source of heating 
to local 
communities 

Hydrogen 

4 5 2 2 3 2 4 5 

27 Feedstock is 
abundant but 
limited by 

Market 
potential of 
>100 % 

New 
infrastructure 
required (RO 

Capital and 
operating costs of 
RO and 

Potential to 
decarbonise 
transport but 
currently 

Reduced volume 
to surface water 

Knowledge and 
skills 
development for 

Use of hydrogen 
that is visible and 
beneficial to local 
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renewable energy 
requirement 

and 
electrolyser) 

electrolyser 
systems  

significant energy 
needed for 
generation 

hydrogen 
generation 

community, such 
as bus services 

NH3 
Stripping 

4 2 3 3 4 3 4 4 

27 
Limited to liquor 
stream but 
enhances 
recovery vs 
biosolids use only 

Market 
potential of 1 
% 

Added process 
complexity but 
balanced by 
reduced 
treatment load 

Infrastructure 
required but 
balanced by load 
reduction/ 
increased capacity 

N2O reduction of 
secondary 
treatment 

Potential to 
improve effluent 
quality/reduce 
liquor loads and 
substitute artificial 
fertiliser 

New learning 
and potential 
skills through 
technology 
adoption 

Fertiliser and/or 
energy 
substitution likely 
build value with 
supply chains and 
across sectors 

Struvite 

2 3 3 3 3 4 3 4 

25 Limited to liquor 
stream, also low 
flow to biological 
P works 

Market 
potential of 19 
% 

Increased 
process 
complexity 
balanced by 
reduced 
maintenance 

Value of fertiliser 
and reduced 
maintenance 
balanced by 
chemical 
requirement and 
additional 
infrastructure 

Chemical 
requirement 
balanced through 
substitution of 
mined P 

Extend 
infrastructure 
lifetime and 
substitute mined 
fertiliser 

New learning 
and potential 
skills through 
technology 
adoption, 
although sites 
have already 
adopted 

Potential use of 
sustainable 
fertiliser in local 
community 

Syngas 
(AAT) 

4 1 3 1 4 2 4 3 

22 High energy 
production but 
energy required 
for drying 

Market 
potential of 
<1 % 

Required scale 
of AAT facility 
would mean this 
would take 
place off site 

Very high cost of 
large-scale facility 

High potential to 
substitute fossil 
fuels but 
significant capital 
carbon from 
infrastructure 

Potential to 
substitute fossil 
fuels but high 
energy 
requirement for 
operation and 
materials for 
construction 

New learning 
and potential 
skills through 
AAT 
technology 
adoption 
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A.4.3 Weighting for sensitivity to future scenarios 

Table A.8. These are the weighting criteria assigned to categories used to score RR technologies which were decided using Jacobs Engineering Group Inc. inhouse expertise, 

taken from UKWIR (2021). 

Scenario Recovery 
potential Market Treatment Cost Carbon 

Environment 
& Natural 

Capital 

Human & 
Intellectual 

Capital 

Social & 
Relationship 

Capital 
Maximum 

Status quo 10% 20% 20% 20% 15% 10% 3% 3% 5 

Emissions compliance 8% 10% 25% 15% 11% 21% 3% 8% 5 

Carbon reduction 10% 8% 20% 15% 20% 16% 4% 8% 5 

Resource max 15% 15% 15% 15% 15% 12% 5% 8% 5 
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A.4.4 Scenario and consensus scores 

Table A.9. Final scores achieved after scoring and weighting for each scenario investigated. The final score was used to create the final rank order of RR technologies to 

create the updated RR scenario. 

WW Resource Unweighted Status quo Emissions 
compliance 

Carbon 
reduction 

Resource 
max Consensus 

Heat (Heat Pump) 0.8 0.765 0.756 0.762 0.786 0.76725 

NH3 Stripping 0.675 0.62 0.639 0.667 0.656 0.6455 

Biopolymers 0.65 0.645 0.615 0.609 0.64 0.62725 

Struvite 0.625 0.605 0.641 0.627 0.61 0.62075 

Biosolids 0.6125 0.61 0.612 0.632 0.615 0.61725 

Biochar 0.65 0.58 0.599 0.623 0.626 0.607 

Hydrogen 0.675 0.615 0.572 0.59 0.648 0.60625 

Grit  0.6 0.565 0.615 0.615 0.58 0.59375 

Biomethane 0.575 0.55 0.557 0.597 0.576 0.57 

Biogas (Co-digestion) 0.575 0.515 0.523 0.573 0.562 0.54325 

Biogas (AAD) 0.55 0.51 0.507 0.557 0.546 0.53 

Syngas (AAT) 0.55 0.475 0.502 0.544 0.526 0.51175 
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FOG 0.475 0.44 0.462 0.478 0.45 0.4575 
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Appendix B 

B.1 Conventional process model 

In this section, the data provided was used to create the mass balance model enabling MFA of 

the conventional 270,000 PE WWTP process. The wastewater influent and effluent loadings 

were taken from literature and are provide in Table B.1 (Rodríguez-Chueca et al., 2019). 

Table B.1. Influent loading reported for the WWTP. 

Parameter Value Unit 

COD 640 g/m3 

BOD 340 g/m3 

TN 80 g/m3 

NH3 63 g/m3 

NO3
- 0.99 g/m3 

TP 12 g/m3 

TSS 320 g/m3 

 

Quantities of solids removed during pretreatment stages were calculated using parameters in 

Table B.2 taken from literature, and mass balancing across process units was used to calculate 

resultant effluent quality (Tchobanoglous et al., 2014). Primary clarifier performance was taken 

from literature for a WWTP in Estiviel for each component listed in Table B.1 (Rodríguez-

Chueca et al., 2019). 
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Table B.2. Pretreatment process solids removal parameters. 

Screening – 6 mm bar screen 

Removal 90 L/1000 m3 Moisture 75 %  

Density 750 kg/ m3 Volatiles 75 %  

Grit  

Removal 0.01 m3/1000 m3 Moisture 40 %  

Bulk Density 1,660 kg/ m3 Volatiles 28.5 %  

FOG 

Concentration 57  mg/l Removal 50 %  

Moisture 55 %     

 

Kinetic parameters used to calculate removal efficiencies and biomass production during 

secondary treatment are shown in Table B.3 (Tchobanoglous et al., 2014).  
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Table B.3. Kinetic and removal parameters for secondary treatment. 

Activated Sludge (Tchobanoglous et al., 2014) 

bCOD:BOD 1.6 TSS:VSS 0.85 VSS:BOD 0.85 

Yh 0.45 gVSS/gCOD  SRT 18 days 

baob 0.135 g/g d Yn 0.15 gVSS/gNOX 

bh 0.12 gVSS/gVSS d fd 0.15  

NOX effluent 6.0 g/m3 P removal 25 %  

Nutrient Removal (Tchobanoglous et al., 2014) 

Nitrate removal 90 %  Methanol  1.5 gCOD/g 

Yield 0.15 gVSS/gCOD     

P removal (Tchobanoglous et al., 2014) 

Soluble effluent achieved 0.1 g/m3 Solids Removal 85 %  

 

Sludge is thickened, stabilised with anaerobic digestion AD, then the resultant biosolids are 

dewatered before land application and biogas is combusted in a CHP unit for energy 

generation. The parameters used are shown in Table B.4 for the stoichiometric method used 

for AD modelling (Alvarado et al., 2019) and then subsequent dewatering and energy balance 

(do Amaral et al., 2018; Tchobanoglous et al., 2014).  
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Table B.4. Parameters required for sludge treatment model. 

Anaerobic Digestion (Alvarado et al., 2019) 

Primary Sludge Composition WAS Composition Kinetic Parameters 

C 29.8 % C 40.1 % fso 0.11 

H 5.4 % H 6.6 % fd 0.8 

N 20.9 % N 26.4 % b 0.05 d-1 

O 2.2 % O 8.3 % fe 0.934 

Sludge Thickening (Tchobanoglous et al., 2014) 

Primary Sludge WAS Dewatering 

DS 2.7 % 

DS 3.7 % DS  22 % 

Polyelectrolyte 

Requirement 
22 kg/t 

Dewatering 

Efficiency 
98 % 

Polyelectrolyte 

Requirement 
7.3 kg/t 

AD Heat Transfer (Tchobanoglous et al., 2014) 

Wall (above round)  1 W/m2 C Roof (not insulated) 4.5 W/m2 C 

Floor (dry) 1.25 W/m2 C Wall (below ground) 0.625 W/m2 C 

CHP Performance 

Electric Efficiency  30 % Heat Efficiency 35 % 

 

Lastly, the energy requirement for the process was calculated using values taken from 

literature, based on kWh/m3 for a range of wastewater treatment plant sizes (Longo et al., 

2016). 
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B.2 Resource flow characterisation of the process 

The resource flow characterisation of the WWTP is presented in Tables B.5-B.8.  

Table B.5. Water resource flow characterisation for the assessed WWTP. 

Influent 

Stream Fraction Status 

WWTP inlet 80 % Circular 

Losses (Consumed - WWT Inlet) 20 % Linear 

FeCl3 (40 % solution) negligible Linear 

Outlets 

Stream 
Water Fraction of 

the Stream 
Destination Status 

Screenings 75 % Landfill Linear 

Grit 40 % Landfill Linear 

FOG 55 % Landfill Linear 

Effluent >99.9 % Restoration (river) Circular 

Biosolids 78 % Land application 
Linear *assumed not to 

reduce water abstraction 

 

 

 

 

 

 



221 

 

Table B.6. Phosphorus resource flow characterisation for the assessed WWTP. 

Influent 

Stream Fraction Status 

Urine 30 % 
Circular  

Faeces 10 % 

Food scraps 1 % 

Linear 

Food additives 29 % 

Auto dishwashing 9 % 

Laundry Detergents 14 % 

Tap water dosing 6 % 

Personal Care product 1 % 

Outlets 

Stream P fraction Destination Status 

Effluent 0.79 mg/L Fresh water body Linear 

Biosolids 3.9 %DS 
Land application Circular 

Land application Linear (low bioavailability) 
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Table B.7. Nitrogen resource flow characterisation for the assessed WWTP. 

Influent 

Stream Fraction Status 

Urine 80 % 
Circular  

Faeces 14 % 

Greywater 

(kitchen/laundry/bathroom) 
6 % Linear 

Outlets 

Stream N fraction Destination Status 

Effluent 7.03 mg/L Fresh water body Linear 

Biosolids 4.2 %DS Land application Circular 

N Emissions 

N2O (1.6 % of 

inlet N) 
Atmosphere Linear 

N2 (71 %) Atmosphere Neutral  

N2 (29 %) Atmosphere Circular 
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Table B.8. Carbon resource flow characterisation for the assessed WWTP. 

Influent 

Stream Fraction Status 

Fossil 5.5 % Linear 

Biogenic 94.5 % Circular 

Outlets 

Stream OC fraction Destination Status 

Screenings 41.3 % of TS 
Landfill 

Linear 

FOG 77 % of TS Linear 

Effluent 
3.16 mg/L 

Fresh water body 
Linear (biogenic) 

5 % of total fossil OC Linear (fossil) 

Biosolids 
20 % of TS 

Land application 
Circular (biogenic) 

56.76 % of total fossil OC Linear (fossil) 

CAS Emissions 

30.5 % of total fossil OC 

Atmosphere 

Linear (fossil) 

Remaining CO2 Circular (biogenic) 

CH4 (0.0075 kgCH4/kgCOD) Linear 

Biogas Emissions 

(7.74 % of total fossil OC) 

Fugitive CH4 

Atmosphere 

Linear 

Fugitive fossil CO2 (approx. 1 %) Linear (fossil) 

Fugitive CO2 remaining Circular (biogenic) 

Fossil combustion emissions (approx. 1 %) Linear (fossil) 

Combustion emissions remaining Circular (biogenic) 
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B.3 Scenario analysis 

Table B.9 summarises outcomes of scenario analysis, providing the indicators results for those 

utilised in Figure 4.4. Therefore, all changes to resource circularity can be compared for the 

conventional WWTP and each scenario investigated. 

 

Table B.9. Summary of indictor results for each scenario analysed. 

Scenario Indicator P N OC 

Original 

Circular Inflow 40.0 % 93.6 % 94.5 % 

Renewable Outflow 42.2 % 11.4 % 25.8 % 

Circular Outflow 42.2 % 29.3 % 64.2 % 

Total Circularity 41.1 % 61.5 % 79.4 % 

Removal Efficiency 93.9 % 91.8 % 99.0 % 

1 

Circular Inflow 40.0 % 93.6 % 78.5 % 

Renewable Outflow 41.9 % 12.2 % 28.7 % 

Circular Outflow 41.9 % 29.7 % 53.6 % 

Total Circularity 40.9 % 61.7 % 66.1 % 

Removal Efficiency 93.7 % 91.5 % 98.9 % 

2 

Circular Inflow 38.0 % 89.1 % 94.5 % 

Renewable Outflow 40.9 % 11.3 % 25.9 % 

Circular Outflow 40.9 % 29.3 % 64.3 % 

Total Circularity 39.4 % 59.2 % 79.4 % 

Removal Efficiency 94.2 % 92.2 % 99.0 % 

3 Circular Inflow 45.2 % 93.6 % 94.5 % 
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Renewable Outflow 41.0 % 11.4 % 25.8 % 

Circular Outflow 41.0 % 29.3 % 64.2 % 

Total Circularity 43.1 % 61.5 % 79.4 % 

Removal Efficiency 93.1 % 91.8 % 99.0 % 

4 

Circular Inflow 40.0 % 93.6 % 94.5 % 

Renewable Outflow 42.2 % 11.4 % 25.8 % 

Circular Outflow 42.2 % 29.3 % 64.6 % 

Total Circularity 41.1 % 61.5 % 79.5 % 

Removal Efficiency 93.9 % 91.8 % 99.0 % 

5 

Circular Inflow 40.0 % 93.6 % 94.5 % 

Renewable Outflow 42.2 % 11.4 % 25.8 % 

Circular Outflow 42.2 % 49.4 % 64.2 % 

Total Circularity 41.1 % 71.5 % 79.4 % 

Removal Efficiency 93.9 % 91.8 % 99.0 % 
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Appendix C 

C.1 Convention extended aeration model 

In this section, the data provided was used to create the mass balance model enabling MFA of 

the conventional 10,000 PE WWTP process. The wastewater influent loadings were taken from 

literature and are provided in Table C.1 (Rodríguez-Chueca et al., 2019). The wastewater 

loading is assumed to have the same loading as the example from Chapter 4.  

Table C.1. Influent loading for the PBR WWTP. 

 

 

 

 

 

 

 

 

Quantities of solids removed during pretreatment stages were calculated using parameters in 

Table C.2 taken from literature, and mass balancing across process units was used to calculate 

resultant effluent quality (Tchobanoglous et al., 2014). 

 

 

 

 

 

Parameter Value Unit 

COD 640 g/m3 

BOD 340 g/m3 

TN 80 g/m3 

NH3 63 g/m3 

NO3
- 0.99 g/m3 

TP 12 g/m3 

TSS 320 g/m3 
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Table C.2. Pretreatment process solids removal parameters. 

 

Extended aeration is an activated sludge process, with kinetic parameters used to calculate 

removal efficiencies and biomass production shown in Table C.3 (Tchobanoglous et al., 2014). 

Only nitrification occurs and there is no enhanced chemical or biological phosphorus removal, 

meaning soluble nutrient concentrations in the effluent are high, however, chemical COD limits 

are met before discharge. 

Table C.3. Kinetic parameters for extended aeration. 

 

Sludge is thickened, stabilised with liming, then dewatered and the parameters used are shown 

in Table C.4 (do Amaral et al., 2018; Tchobanoglous et al., 2014). 

 

 

 

 

Screening – 6 mm bar screen 

Removal 90 L/1000 m3 Moisture 75 %  

Density 750 kg/ m3 Volatiles 75 %  

Grit  

Removal 0.01 m3/1000 m3 Moisture 40 %  

Bulk Density 1,660 kg/ m3 Volatiles 28.5 %  

Extended Aeration  

bCOD:BOD 1.6  bh 0.12 gVSS/gVSS d 

TSS:VSS 0.85  baob 0.135 g/g d 

VSS: BOD 0.85  Yn 0.15 gVSS/gNOX 

Yh 0.45 gVSS/gCOD  fd 0.15  
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Table C.4. Parameters required for liming sludge treatment calculations. 

 

Lastly, the energy requirement for the process was calculated using values taken from 

literature, based on kWh/m3 for a range of wastewater treatment plant sizes (Longo et al., 

2016). 

C.2 Circular solution model 

In this section, the data provided was used to update the conventional process mass balance 

model enabling MFA of the circular intervention technology. Table C.5 provides the 

parameters for the updated pretreatment process that includes FOG removal (Collin et al., 

2020; Tchobanoglous et al., 2014; Williams et al., 2012). 

Table C.5. FOG removal pretreatment operation parameters. 

 

The effluent quality of the primary settler was taken from literature (Rodríguez-Chueca et al., 

2019) and used to calculate the removal efficiencies of wastewater components shown in Table 

C.6. 

 

Sludge Treatment 

Thickened WAS  3.7 % DS Dewatered Cake  22 % DS 

Thickener Efficiency 98 %  Dewatering Efficiency 98 %  

Polyelectrolyte 
Requirement 22 kg/t Polyelectrolyte Requirement 7.3 kg/t 

Liming Carbon Loss 15% As CO2 
emissions Sludge Lime Dose 300 kgCa(OH)2/tDS 

Liming Nitrogen Loss 2.8% As NH3 
emissions    

FOG Removal  

Concentration 57 mg/L Removal  50%  

DS 45 %     
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Table C.6. Removal efficiencies of primary settler. 

 

 

 

 

 

 

The PBR operation was modelled using parameters reported by project partners, which are 

summarised in Table C.7.  

Table C.7. PBR and clarifier operation parameters. 

 

For sludge treatment, thickeners were assumed to operate as reported for the conventional 

process. A stoichiometric method was used to complete the mass balance for the AD and biogas 

production calculations (Alvarado et al., 2019). A heat balance was completed across the 

digester, showing the heat requirements could be covered by biogas combustion in a boiler 

(with the excess sent to a generator for electricity production). The digestate is then dewatered 

before being sold for land application. The parameters required for these calculations are 

provided in Table C.8 (Tchobanoglous et al., 2014).  

 

 

 

 

Component Primary Clarifier Removal Efficiency 

Suspended Solids (SS) 63 % 

Biological Oxygen Demand (BOD) 18 % 

COD  20 % 

Nitrogen 11 % 

Phosphorus 25 % 

Soluble COD removal 80 %  Nitrogen removal 40 %  

COD removal 80 %  Phosphorus removal 70 %  

BOD removal 90 %  TSS removal 80 %  

Biomass Yield 0.21 gVSS/gCOD Recycle Ratio 0.1  

Settler Efficiency 97 %  Sludge DS 0.40 %  
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Table C.8. Sludge treatment and energy balance parameters. 

 

The thermal hydrolysis is assumed to perform as reported (Morgan-Sagastume et al., 2011). 

Lastly, the energy balance was completed using the values reported for conventional equipment 

(Longo et al., 2016), whilst energy consumption by the PBR at this scale was provided by 

project partners.  

 

C.3 Resource flow characterisation of the analysed processes 

Here the resource flow characterisation tables used for conventional extended aeration WWTP 

indicator calculation are presented in Tables C.9-C.12. 

 

 

 

AD Kinetic Parameters 

fs0 0.11  b 0.05 d-1 

fd 0.8  SRT 20 D 

Heat Balance 

Generator Efficiency 30 % Electricity Methane Energy Density 38.8 MJ/m3 

Boiler Efficiency 86 % Heat    

Heat Transfer Coefficients of Digester (Tchobanoglous et al., 2014) 

Wall 1 W/ m2 C Roof 4.5 W/ m2 C 

Floor 1.25 W/ m2 C Air Temperature 15.2 ℃ 

Inlet Temperature 15 ℃ Digester Temperature 37 ℃ 

Dewatering 

Cake 22 % Dry solids Polyelectrolyte Dose 0.05 L/m3 

Efficiency 98 %     
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Table C.9. Water resource flow characterisation for conventional process. 

 

 

 

 

 

 

 

 

 

 

 

Influent 

Stream Fraction Status 

WWTP inlet 80 % Circular 

Losses  
(Consumption - WWT Inlet) 20 % Linear 

Outlets 

Stream Water Fraction of the 
Stream Destination Status 

Screenings 75 % Landfill Linear 

Grit 40 % Landfill Linear 

Effluent >99.9 % Restoration (groundwater,  
lake, river) Circular 

Biosolids 78 % Land application 

Linear  

*assumed it does not 
reduce the raw water 
abstraction 
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Table C.10. Phosphorus resource flow characterisation for conventional process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Influent 

Stream Fraction Status 

Urine 30 % 
Circular  

Faeces 10 % 

Food scraps 1 % 

Linear 

Food additives 29 % 

Auto dishwashing 9 % 

Laundry Detergents 14 % 

Tap water dosing 6 % 

Personal Care product 1 % 

Outlets 

Stream P fraction Destination Status 

Effluent 4.98 mg/L Fresh water body Linear 

Biosolids 2.96 %DS Land application Circular 
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Table C.11. Nitrogen resource flow characterisation for conventional process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Influent 

Stream Fraction Status 

Urine 80 % 
Circular  

Faeces 14 % 

Greywater 
(kitchen/laundry/bathroom) 6 % Linear 

Outlets 

Stream N fraction Destination Status 

Effluent 67.31 mg/L Fresh water body Linear 

Biosolids 5 %DS Land application Circular 

Emissions 
NH3 Atmosphere Linear 

N2O Atmosphere Linear 
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Table C.12. Carbon resource flow characterisation for conventional process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here the resource flow characterisation tables used for the PBR WWTP with circular 

interventions indicator calculations are presented in Tables C.13-C.16. 

 

 

 

 

 

Influent 

Stream Fraction Status 

Fossil 5.5 % Linear 

Biogenic 94.5 % Circular 

Outlets 

Stream OC fraction Destination Status 

Screenings 41.3 % TS Landfill Linear 

Effluent 
3.87 mg/L 

Fresh water body 
Linear (biogenic) 

5 % of total fossil OC Linear (fossil) 

Biosolids 
20 % 

Land application 
Circular (biogenic) 

56.76 % of total fossil OC Linear (fossil) 

Gas Emissions 

>99% CO2 Atmosphere Circular (Biogenic) 

30.5 % of total fossil OC Atmosphere Linear (Fossil) 

CH4 (0.0075  
kgCH4/kgCOD) Atmosphere Linear 

Liming Emissions 
CO2 Atmosphere Circular (biogenic) 

7.74 % of total fossil OC Atmosphere Linear fossil 
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Table C.13. Water resource flow characterisation for the circular process. 

 

 

 

 

 

 

 

 

 

 

 

Influent 

Stream Fraction Status 

WWTP inlet 80 % Circular 

Losses  
(Consumption - WWT Inlet) 20 % Linear 

Outlets 

Stream Water Fraction of the 
stream Destination Status 

Screenings 75 % Landfill Linear 

FOG 55 % Landfill Linear 

Grit 40 % Landfill Linear 

Effluent >99.9 % Restoration (groundwater, lake, river) Circular 

Biosolids 78 % Land application 

Linear  

*assumed it does 
not reduce the raw 
water abstraction 
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Table C.14. Phosphorus resource flow characterisation for the circular process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C.15. Nitrogen resource flow characterisation for the circular process. 

 

 

 

 

 

 

 

 

 

Influent 

Stream Fraction Status 

Urine 30 % 
Circular  

Faeces 10 % 

Food scraps 1 % 

Linear 

Food additives 29 % 

Auto dishwashing 9 % 

Laundry Detergents 14 % 

Tap water dosing 6 % 

Personal Care product 1 % 

Outlets 

Stream P fraction Destination Status 

Effluent 2.49 mg/L Fresh water body Linear 

Biosolids 5 %DS Land application Circular 

Influent 

Stream Fraction Status 

Urine 80 % 
Circular  

Faeces 14 % 

Greywater (kitchen/ 
laundry bathroom) 6 % Linear 

Outlets 

Stream N fraction Destination Status 

Effluent 40.9 mg/L Fresh Water Linear 

Biosolids 22 %DS Land application Circular 
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Table C.16. Carbon resource flow characterisation for the circular process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.4 Methods of sustainability analysis 

C.4.1 Carbon footprint 

Scope 1 emissions consider direct emissions from the system including, gases produced during 

wastewater treatment, transportation, and sludge treatment (fugitive emissions). These 

emission factors were taken from the IPCC report and ecoinvent 3 database, with transport 

factors taken from literature (Lorenzo-Toja et al., 2016). Scope 2 emissions are those indirectly 

produced by the production of energy and parameters are summarised in Table C.17.  

 

 

Influent 

Stream Fraction Status 

Fossil 5.5 % Linear 

Biogenic 94.5 % Circular 

Outlets 

Stream C fraction Destination Status 

FOG 77 % TS Landfill Linear 

Screenings 41.3 % TS Landfill Linear 

Effluent 
19.6 mg/L 

Fresh water body 
Linear (biogenic) 

7.1 % of total fossil OC Linear (fossil) 

Biosolids 
43 % 

Land application 
Circular (biogenic) 

81.7 % of total fossil OC Linear (fossil) 

Biogas 

45 wt% C Used Biogas Circular (biogenic) 

11.1 % of total fossil OC Used Biogas  Linear (Fossil) 

1.4 % of biogas Biogas fugitive Linear 
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Table C.17. Parameters required to calculate scope 1 and 2 emissions from processes. 

 

Scope 3 emissions are indirect emissions resulting from effluent discharge, sludge application 

to land and chemical consumption. Emission factors were taken from IPCC documentation for 

effluent and sludge application, whilst chemical emission factors were taken from the 

ecoinvent 3 database and are summarised in Table C.18. 

 

Table C.18. Parameters required to calculate scope 3 emissions from processes. 

  

 

 

 

 

Additionally, the offsets from application of biofertiliser and biosolids were calculated by 

mitigating the production and application of industrial fertilisers. The information was 

collected from the ecoinvent 3 database and literature (Heimersson et al., 2017), and is 

summarised in Table C.19. 

 

Transportation 

Grit 0.195 kgkm/m3 Chemicals 0.755 kgkm/m3 

Grease 0.009405 kgkm/m3 Sludge 156.515 kgkm/m3 

Emission factors 

N2O Direct Emissions 
(conventional process) 0.016 kgN2O/kgN Transport 0.168 kgCO2/tkm 

CH4 Direct Emissions 

(conventional process) 
0.0075 kgCH4/kg/COD Fugitive AD Emissions 1.40% 

 
Scope 2 

Grid Electricity  0.403 kgCO2/kWh    

N2O Effluent 0.005 kgN2O/kgN CH4 Effluent 0.028 kgCH4/kgCOD 

Limed sludge to land 20 kgCH4/tDS Polyelectrolyte 2.83 kgCO2/kg 

AD sludge to land 5 kgCH4/tDS Lime 0.95 kgCO2eq/kg 

Sludge to land 0.01 kgN/kgN  
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Table C.19. Parameters required to calculate carbon offsets from biosolids application to land. 

 

 

 

C.4.2 Economic value  

The value added method of Medina-Mijango et al. (Medina-Mijangos and Seguí-Amórtegui, 

2021) was followed and is calculated using Equation C1: 

 

																																												𝑉𝐶 = (𝑊𝑊𝑇K × 𝐺𝐹) − (𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 + 𝑆𝑇) + 𝐼𝑛                                (C1) 

 

Where, WWTV is the volume of wastewater treated (m3), GF are the gate fees of the WWTP 

(€/m3), ST are state taxes for landfill and discharge (€), and In is income from sales of products 

(€). For economic calculations, it was assumed that both the conventional and biorefinery 

facilitates were constructed in Spain in the year 2021. The CAPEX for the construction of a 

conventional wastewater treatment plant of this size and type was calculated using a method 

provided by the OCED (OECD, 2004). The expenditure in EUR/PE for a Mechanical-

Biological-Nitrification process between 2,000-10,000 PE is given by Equation C2: 

 

𝐶𝐴𝑃𝐸𝑋 = LM
N.PP

QM.RSLR TUV(XY)[P.RS
                                                     (C2) 

 

Equation S2 provides the CAPEX for the year 1990, therefore, Construction Cost Indices (CCI) 

were used to scale the results accordingly (Eurostat, 2005). The construction costs for the 

biorefinery facility were provided by the project consortium partners, based on scale up of the 

demonstration site CAPEX (load 3,000 m3/d). Amortisation was calculated using Equation C3: 

 

Ammonium Nitrate  

(as nitrogen) 
7.97 kgCO2 eq/kg 

Phosphate Fertiliser P2O5  

(as phosphorus) 
1.84 kgCO2 eq/kg 

Replacement ratio 0.5  Replacement Ratio 0.7  
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						𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡Y\]/_`ab = 𝐶𝐴𝑃𝐸𝑋 × b(L[b)
(L[b)!QL

c
                                          (C3) 

 

Where r is the discount rate (4 %) and n is the time horizon (15 years as recommended by 

project engineers). OPEX, revenue, and tax data for conventional and biorefinery plants were 

provided by wastewater operators for plants of this size: reported for conventional plant of this 

size and estimated from demonstration photobioreactor system scale up. Economic data used 

for the value-added calculations is summarised in Table C.20. 

Table C.20. Parameters required for economic value added calculations.  

 

 

 

 

 

 

 

C.4.3 Social assessment 

Parameters required for the calculation of social indicators are presented in Tables C.21 and 

C.22. 

Table C.21. Material and electricity inflows of urban WWTP systems. 

Consumables Unit Conventional Plant Novel Plant 

Lime  kg/m3 wastewater 0.0701 0 

Polyelectrolyte kg/m3 wastewater 0.00693 0.00253 

Electricity  kWh/m3 wastewater 0.382 0.331 

 

 

Parameter Unit Conventional 
Plant Biorefinery 

CAPEX € Estimated 3,200,000 

OPEX €/m3 0.4 0.135 

Landfill Cost €/t 42 

Discharge Cost €/m3 0.01751 

Gate Fee €/m3 0.8 

Fertiliser Sale €/t N/A 150 
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Table C.22. Environmental releases of urban WWTP systems to soil, water, and air. 

Substance Unit Conventional Plant PBR Plant 

Emissions to Soil 

Phosphorus  kg/m3 wastewater 0.00677 0.00782 

Emissions to Water 

COD kg/m3 wastewater 0.0192 0.0774 

Nitrogen kg/m3 wastewater 0.0633 0.0386 

Phosphorus kg/m3 wastewater 0.00468 0.00236 

Nitrate  

(includes fertiliser 
application to soil) 

kg/m3 wastewater 0.0149 0.0439 

Emissions to Air 

N2O kg/m3 wastewater 0.00268 0.000633 

CO2 (Fossil) kg/m3 wastewater 0.00974 0.00491 

CH4 kg/m3 wastewater 0.00991 0.00349 

 

C.5 Sustainability analysis results 

Carbon footprint 

Results of carbon footprint analysis are summarised in Figure 5.8A of the manuscript. Scope 1 

(direct) emissions have the greatest reduction between systems, as even though fugitive 

emissions from sludge treatment are approximately 10 times greater for the PBR system, direct 

emissions from wastewater treatment can be assumed negligible. Therefore, Scope 1 emissions 

are only 6 % of the conventional system. Scope 2 (electricity consumption) emissions 

decreased by more than 10 % due to the reduction in demand of grid electricity. Scope 3 

(indirect) emissions account for indirect process emissions and the PBR system achieves a 

reduction of a third, attributed to higher removal of nitrogen from the wastewater effluent and 

decreased emissions generation from digested biosolids when applied to land compared with 

limed sludge. Lastly, carbon offsets were measured by calculating emissions avoided by the 

process. Offsets of the PBR process are four times greater than for the conventional treatment 
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process, as the higher nutrient content of PPB biosolids means it is able to substitute a greater 

amount of industrial NP fertiliser applied to land than conventional biosolids. To summarise, 

the PBR process is much more efficient in terms of emissions release to air. Total emissions 

for the PBR system are almost a third of the emissions from conventional treatment. 

Additionally, whenever this is adjusted to incorporate offsets from application of biosolids to 

land this drops even further to approximately a quarter.  

LCA 

Results from LCA comparing each impact category for the conventional and PBR WWTPs are 

presented in Figure 5.8B of the manuscript. PBR operation performs better in six out of the 

seven impact categories investigated, ranging from 15 % to 41 % reduction. Eutrophication 

sees the largest decrease of 41 %, attributed to the reduction of NP emissions in wastewater 

effluents. Ozone depletion, photochemical oxidation and acidification decrease by 34 %, 20 % 

and 15 % respectively which occurs due to the reduction of emissions to air during wastewater 

and sludge treatment. Lastly, abiotic depletion of elements and fossil fuels decrease by 20 % 

and 19 % respectively, which is correlated with reductions in chemical and energy consumption 

from the grid for the PBR system. Lastly, water consumption undergoes a small increase of 0.4 

%, however a change of this size is considered negligible. Combining this analysis with the 

carbon footprint results it can be concluded that the operation of the PBR system improves the 

environmental performance of wastewater treatment at this scale. 

Economic value added 

In the manuscript Figure 5.8C provides the economic value added results, showing the change 

in revenue and costs between PBR and conventional processes. The same volume of 

wastewater is treated by both systems, therefore, the gate fees are constant meaning the increase 

in revenue for the PBR system is a result of biofertiliser sales, adding approximately 0.1 M€/y. 

There is a reduction in OPEX due to the lower energy demand associated with the mitigation 

of aeration during biological treatment and energy recovery from biogas, as well as the removal 

of lime requirements for sludge treatment. The economic value generated by the PBR system 

is the increase in revenue added to the reduction in CAPEX and OPEX, which is almost M€ 

0.5 per year for water the utility. This shows that the PBR technology system for the treatment 

of wastewater is a more economically sustainable process compared with the conventional 

prolonged aeration system at this scale.  
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Social impacts 

In the manuscript Figure 5.8D provides impact results for human health, ecosystems, and 

resources indicators. The PBR system results in a reduction to all impact indicators compared 

to the conventional system, with the largest reduction being to the human health indicator 

which decreases DALY by 58 %. This trend occurs due to similar reasons explained for the 

favourable LCA and carbon footprint results. Smaller grid energy and material consumption, 

coupled with the mitigation of significant proportions of direct and indirect emissions results 

in the reduction of endpoint impacts. Employment was also used to quantify the social impacts 

of the system. Based on the employment data for local wastewater workers, it is estimated that 

3 employees would be required to operate a WWTP of this size. Project partners responsible 

for plant operation estimate that over the course of the project employment growth of 1-5 

people is expected. Therefore, for projects that implement PBR technologies, employment is 

expected to rise by an average of 100 % over a time frame of approximately 5 years. Lastly, 

contribution to the local economy of the WWTP was calculated by dividing the economic value 

added of the systems by the expected GDP of the local area (Soria). PBR system increased this 

to 0.0018%, compared with 0.00014% for the conventional system. Therefore, these 5 

indicators confirm that the PBR system results in greater social value.  

References 

Alvarado, V.I., Hsu, S.-C., Wu, Z., Lam, C.-M., Leng, L., Zhuang, H., Lee, P.-H., 2019. A 
Standardized Stoichiometric Life-Cycle Inventory for Enhanced Specificity in 
Environmental Assessment of Sewage Treatment. Environ. Sci. Technol. 53, 5111–5123. 
https://doi.org/10.1021/acs.est.9b01409 

Collin, T.D., Cunningham, R., Asghar, M.Q., Villa, R., MacAdam, J., Jefferson, B., 2020. 
Assessing the potential of enhanced primary clarification to manage fats, oils and grease 
(FOG) at wastewater treatment works. Sci. Total Environ. 728, 138415. 
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138415 

do Amaral, K.C., Aisse, M.M., Possetti, G.R.C., Prado, M.R., 2018. Use of life cycle 
assessment to evaluate environmental impacts associated with the management of sludge 
and biogas. Water Sci. Technol. 77, 2292–2300. https://doi.org/10.2166/wst.2018.146 

Eurostat, 2005. Construction producer price and construction cost indices overview [WWW 
Document]. URL https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Construction_producer_price_and_construction_cost_indices
_overview (accessed 1.3.23). 

Heimersson, S., Svanström, M., Cederberg, C., Peters, G., 2017. Improved life cycle modelling 



245 

 

of benefits from sewage sludge anaerobic digestion and land application. Resour. 
Conserv. Recycl. 122, 126–134. 
https://doi.org/https://doi.org/10.1016/j.resconrec.2017.01.016 

Longo, S., d’Antoni, B.M., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., Lema, J.M., 
Mauricio-Iglesias, M., Soares, A., Hospido, A., 2016. Monitoring and diagnosis of energy 
consumption in wastewater treatment plants. A state of the art and proposals for 
improvement. Appl. Energy 179, 1251–1268. 
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.07.043 

Lorenzo-Toja, Y., Alfonsín, C., Amores, M.J., Aldea, X., Marin, D., Moreira, M.T., Feijoo, 
G., 2016. Beyond the conventional life cycle inventory in wastewater treatment plants. 
Sci. Total Environ. 553, 71–82. 
https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.02.073 

Medina-Mijangos, R., Seguí-Amórtegui, L., 2021. Technical-economic analysis of a municipal 
solid waste energy recovery facility in Spain: A case study. Waste Manag. 119, 254–266. 
https://doi.org/https://doi.org/10.1016/j.wasman.2020.09.035 

Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P., Werker, A., 2011. 
Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in 
full-scale thermal hydrolysis plants. Bioresour. Technol. 102, 3089–3097. 
https://doi.org/https://doi.org/10.1016/j.biortech.2010.10.054 

OECD, 2004. The FEASIBLE Model, Version 2 User Manual and Documentation, Appendix 
3. 

Rodríguez-Chueca, J., Varella della Giustina, S., Rocha, J., Fernandes, T., Pablos, C., Encinas, 
Á., Barceló, D., Rodríguez-Mozaz, S., Manaia, C.M., Marugán, J., 2019. Assessment of 
full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of 
antibiotics and antibiotic resistance genes? Sci. Total Environ. 652, 1051–1061. 
https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.10.223 

Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Burton, F., 2014. Wastewater Engineering 
Treatment and Resource Recovery, 5th ed. McGraw-Hill Education, New York. 

Williams, J.B., Clarkson, C., Mant, C., Drinkwater, A., May, E., 2012. Fat, oil and grease 
deposits in sewers: Characterisation of deposits and formation mechanisms. Water Res. 
46, 6319–6328. https://doi.org/https://doi.org/10.1016/j.watres.2012.09.002 

 

 

 


