

Generating Feasible Transition Paths for Testing from an Extended
Finite State Machine (EFSM)

AbdulSalam Kalaji, Robert M Hierons and Stephen Swift
School of Information Systems, Math and Computing

Brunel University, Uxbridge, UB8 3PH, UK
{abdulsalam.kalaji, rob.hierons, stephen.swift}@brunel.ac.uk

Abstract

The problem of testing from an extended finite state
machine (EFSM) can be expressed in terms of finding
suitable paths through the EFSM and then deriving test
data to follow the paths. A chosen path may be
infeasible and so it is desirable to have methods that
can direct the search for appropriate paths through the
EFSM towards those that are likely to be feasible.
However, generating feasible transition paths (FTPs)
for model based testing is a challenging task and is an
open research problem. This paper introduces a novel
fitness metric that analyzes data flow dependence
among the actions and conditions of the transitions of
a path in order to estimate its feasibility. The proposed
fitness metric is evaluated by being used in a genetic
algorithm to guide the search for FTPs.

1. Introduction

Errors in software and hardware can cause
undesired consequences and testing is therefore an
important stage of the software development process.
However, manual testing is expensive, error-prone and
time consuming hence automation is very desirable.
Automated test data generation has been a subject of
interest for many researchers in the last decade, the
objective being to develop efficient methods which can
replace conventional manual methods [1-3].

When a system is implemented, it is necessary to
test whether the implementation agrees with its
specification. This is usually performed by conducting
conformance testing which tries to find behaviours of
an implementation under test (IUT) that are not
consistent with the specification. In order to derive a
test sequence from a system specification, a model that
represents the specification is required. Finite state
machines (FSMs) and extended finite state machines
(EFSMs) are commonly used in test sequence

derivation [4]. An FSM can only model the control part
of a system; an extension is needed in order to model a
system which has control and data parts. Such systems
are usually represented by using an EFSM model.

The FSM model has been widely studied and many
methods are available for the purpose of test data
generation [5, 6]. Nevertheless, automated test data
generation from an EFSM model is complicated by the
presence of infeasible paths and is an open research
problem [7]. When testing from an EFSM, there are
several test strategies such as state coverage, transition
coverage and path coverage that require the generation
of a set of FTPs in order to produce a test suite [8].

In an EFSM model, a given transition path (TP) can
be infeasible due to the variable interdependencies
among the actions and conditions. If an infeasible path
is chosen to exercise certain transitions, these
transitions are not exercised. Problems arising from the
existence of infeasible paths are generally undecidable
[9]. In addition, feasible transition paths are subject to
different levels of traversal complexities; it can be hard
to find a set of test data that can trigger a given FTP.

A path test data is a sequence of input values to be
applied to the interaction parameter fields of the
transitions included in that path. Generally, finding a
suitable sequence of input values to trigger an FTP in
an EFSM is a hard task [10]. If test data is to be
produced from an EFSM model by first deriving a set
of TPs then it is necessary to use feasible TPs. It is also
desirable that these FTPs are relatively easy to trigger
but still satisfy the test criterion being used.

The motivation for our work is the observation that
when generating a set of paths to satisfy a test criterion
there are many alternative choices and we would like
to produce one of the sets that contains paths that are
feasible and relatively easy to trigger. We are
particularly interested in search based test generation
and so the aim is to produce a fitness metric that can be
computed quickly and that can be used as part of an
overall fitness function. In particular, if we have a

2009 International Conference on Software Testing Verification and Validation

978-0-7695-3601-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICST.2009.29

240

2009 International Conference on Software Testing Verification and Validation

978-0-7695-3601-9/09 $25.00 © 2009 IEEE

DOI 10.1109/ICST.2009.29

230

fitness function that directs search towards paths that
satisfy a current test objective (part of a test criterion)
then we can see the problem of producing an
appropriate path as a multi-objective search problem.
Ultimately, we believe that fitness metrics such as ours
can be incorporated into the search when using any
available testing technique that require the generation
of a set of feasible paths through an EFSM model to
satisfy a particular test criterion [4, 6, 7, 9, 11-17]

Since we are interested in producing a fitness metric
that can be used in search based testing we want our
fitness metric to direct the search towards paths that are
relatively easy to trigger if we then use search to find
test data. As a result, we measure how easy it is to
trigger a path using search by estimating how easy it is
to find test data to trigger the path using random test
data generation. To this end, the approach presented in
this paper aims to form part of the solution to the
following problem:
Given: an EFSM model and a test adequacy criterion
Problem: generate a set of TPs that are feasible, are
easy to trigger, and satisfy the test criterion.

The primary contributions of this paper are the
following:

1. It proposes a method that enables automatic
generation of FTPs from EFSMs models.

2. It shows how the proposed fitness metric can
make the process of path test data generation
easier through producing FTPs that are relatively
easy to trigger.

3. The paper empirically validates the efficiency of
the proposed fitness metric by using it with the
class 2 transport protocol EFSM.

The rest of the paper is organized as follows: Section
2 provides background information and an overview of
related test generation methods. The proposed
approach is described in Section 3. Experimental
results are discussed in Section 4. Concluding remarks
and future work are in Section 5.

2. Preliminaries

2.1. The model

The EFSM model is a 6-tuple [15] (S, s0, V, I, O, T)
where S is a finite set of logical states, s0 ∈S is the
initial state, V is a finite set of internal variables, I is a
set of input declarations, O is the set of output
declarations and T is a finite set of transitions.

The transition t∈T is represented by the 5-tuple (ss, i,
g, op, se) in which: ss is the start state of t, i is the input
where i∈I and i may have associated input parameters,
g is a logical expression called the guard, op is the

sequential operation such as output or assignment
statements and se is the end state of t.

In an EFSM model, there is a set of variables. One
variable in particular is used to represent the machine
state1 and is called state or major state in order to
differentiate it from the other variables called context
variables. The state variable is used to represent the
state of a finite state machine i.e. idle, wait for
connection and so on, whereas other machine data such
as port number and sequencing numbers are usually
stored in context variables. A state transition occurs
when one of the machine’s transitions is taken. Each
transition has two major states: start state (ss) and end
state (se). If a transition t has a guard g on the context
variables and input parameters then g must be satisfied
in order for t to be taken. Also, a transition t may have
one or more atomic operations (op) to be executed
when t is taken [16]. An EFSM is deterministic if for
any group of transitions with the same input that leave
a state, it is not possible to satisfy the guards of more
than one transition in this group at the same time [18].
In this paper, we only consider deterministic EFSMs.

2.2. A case study

In this paper, we present an EFSM case study that
we use to illustrate and validate the proposed approach.
The EFSM is a major model based on the Access Point
(AP)-module, described in [19], of the simplified
version of a class 2 transport protocol. The EFSM
model represents the core protocol transitions as
described in [15] and [19]. This protocol has two
interaction points U and N for connecting to a transport
service access point and a mapping module
respectively. The protocol is involved in connection
establishment, data transfer, end-to-end flow control
and segmentation. The input declarations are given in
terms of an input signal, which is identified by using
‘?’, and the required input parameters. Output signals

1 Naturally, the state variable may represent a tuple of values.

Figure 1. Class 2 transport protocol EFSM

241231

are identified by using ‘!’. In this EFSM, all the
variables and the input parameters are of integer data
type. We exclude some input parameters {dst_add,
peer_add, E0TSDU, disc_reason, switch} since they
are not involved in any guards or assignments. The
transitions are shown in Fig.1 and described in Table 1.

2.3. Genetic algorithms

Genetic Algorithms (GAs) are powerful, simple,
and sturdy heuristic techniques that implement the
natural selection theory [20] and have been widely
applied to solve optimization problems. GAs work on a
set of candidate solutions called a population. GAs
require a suitable representation of candidate solutions
in order for them to be applied to a particular problem.
This can be achieved by using a solution encoding such
as binary or real valued encoding. Each encoded
solution is called a chromosome and each chromosome
has one or more components which are called genes
[21].

The GA’s cycle starts by evaluating the fitness of
each individual, this fitness being a positive value that
measures how ‘fit’ it is and hence its chance of use as a
parent. Then a selection based on fitness such as
Roulette wheel or ranking [22] is made to perform
‘breeding’. Through ‘breeding’ new individuals are
introduced. This is accomplished by applying a
crossover operator. Crossover or recombination acts on

two individuals to produce two new individuals and
can be performed in several ways. The simplest one is
referred to as one-point crossover. It operates by
choosing a random position on the chromosome’s bit
string, and then the substrings before that position are
kept while the tails are swapped [23]. For example, Pa1
and Pa2 are two parents recombined at position 4 to
produce the offspring C1 and C2:

Pa1 {011|00} C1 {011|11}
Pa2 {101|11} C2 {101|00}

In order to maintain population diversity, new
characteristics are infrequently injected by applying
mutation. Mutation acts on one chromosome at a time
and randomly changes the values of some of its genes
[23]. For example, C1 above might become C1′ after
mutating the genes on positions 1 and 5.

 C1 {01111} C1′ {11110}
The GA’s cycle usually yields ‘fitter’ individuals

that are used to replace or update the population. There
is a sequence of updates until it satisfies one of the
stopping criteria such as finding a solution or reaching
a maximum number of generations [24].

2.4. Definition-use and data flow dependence

Given a variable x within a program, x is said to be
defined at the program node n1 when the statement at

Table 1. Core transitions in the class 2 transport protocol
t ss se Input declarations and Params Transition guards Transition atomic operations
t0 s1 s2 U?TCONreq (dst_add, prop_opt) Nil opt = prop_opt; R_credit =0; N!TrCR
t1 s1 s3 N?TrCR (peer_add, opt_ind, cr) Nil opt= opt_ind; S_credit=cr; R_credit=0; U!TCONind
t2 s2 s4 N?TrCC (opt_ind, cr) opt_ind < opt TRsq=0; TSsq=0; opt=opt_ind; S_credit=cr;

U!TCONconf
t3 s2 s5 N?TrCC (opt_ind, cr) opt_ind > opt U!TDISind; N!TrDR
t4 s2 s1 N?TrDR (disc_reason, switch) Nil U!TDISind; N!terminated
t5 s3 s4 U?TCONresp(accpt_opt) accpt_opt < opt opt= accpt_opt; TRsq=0; TSsq=0; N!TrCC
t6 s3 s6 U?TDISreq () Nil N!TrDR
t7 s4 s4 U?TDATAreq

(Udata, E0SDU)
S_credit > 0 S_credit= S_credit -1; TSsq = (TSsq +1)mod128;

N!TrDT
t8 s4 s4 N?TrDT (Send_sq,Ndata, E0TSDU) R_credit ≠ 0 & Send_sq= TRsq TRsq=(TRsq+1) mod128; R_credit=R_credit -1;

U!DATAind; N!TrAK
t9 s4 s4 N?TrDT (Send_sq, Ndata, E0TSDU) R_credit = 0 V Send_sq ≠ TRsq U!error; N!error
t10 s4 s4 U?U READY (cr) Nil R_credit= R_credit + cr; N!TrAK
t11 s4 s4 N?TrAK (XpSsq, cr) TSsq > XpSsq & cr + XpSsq – TSsq > 0 &

cr +XpSsq – TSsq < 15
S_credit = cr + XpSsq – TSsq

t12 s4 s4 N?TrAK (XpSsq, cr) TSsq > XpSsq & (cr + XpSsq – TSsq < 0
V cr +XpSsq – TSsq >0)

U!error; N!error

t13 s4 s4 N?TrAK (XpSsq, cr) TSsq < XpSsq & cr + XpSsq – TSsq – 128
> 0 & cr + XpSsq – TSsq – 128 < 15

S_credit= cr+ XpSsq –TSsq – 128

t14 s4 s4 N?TrAK (XpSsq, cr) TSsq < XpSsq & (cr + XpSsq – TSsq –
128 < 0 V cr + XpSsq – TSsq – 128 > 15)

U!error; N!error

t15 s4 s4 N?Ready S_credit > 0 U!Ready
t16 s4 s5 U?TDISreq Nil N!TrDR
t17 s4 s6 N?TrDR (disc_reason, switch) Nil U!TDISind; N!TrDC
t18 s6 s1 N?terminated Nil U!TDISconf
t19 s5 s1 N?TrDC Nil N!terminated; U!TDISconf
t20 s5 s1 N?TrDR (disc_reason, switch) Nil N!terminated

242232

n1 assigns a value to x. A use of x occurs when an
assignment or output statement at the program node n2
references x (c-use) or a conditional statement
references x (p-use). If the definition of x at n1
propagates to be used at n2 and x is only defined at n1
and not redefined before reaching n2 then the path from
n1 to n2 is definition clear for x and (n1, n2) forms a
definition-use (du) pair for x [25]. When the path from
n1 to n2 is a du for x, then there is data flow dependence
between n1 and n2 [26].

2.5. Related work

There are many test generation approaches for
systems modeled as EFSMs [7, 9, 11, 13, 16, 27-29].
An approach to generate a unified test sequence (UTS)
for EFSM models is presented in [9]. The approach is
based on two techniques: one to test the control part
(FSM) and the other to test the data part by using data
flow analysis. The resultant UTS is then checked for
executability by using a constraint satisfaction method.
However, the assumption about the existence of the
self-loop influencing (a loop that modifies a global
predicate variable) in the considered EFSM may not
hold for all EFSMs.

Generating test sequences for EFSM models by
employing functional program testing is studied in
[16]. The approach converts an Estelle specification
into a simpler form in order to construct control and
data flow graphs to be used in test sequence derivation
in a non-automatic fashion.

Other methods that test from an EFSM model using
FSM-based test techniques appear in [27-29].
Generally, the notion of testing from EFSM models
based on FSM methods requires a transformation from
EFSM to FSM. There are two approaches, the first
being to abstract the data from an EFSM model. The
limitation of this approach is that the paths taken from
the FSM model are not necessarily feasible in the
EFSM. The second approach is to expand an EFSM to
form an FSM, however, the number of states in the
resultant FSM can become prohibitively large [30].

A method that overcomes the feasibility problem in
advance is introduced in [7]. The approach requires
that all the conditions and actions in the EFSM are
linear and converts a class of EFSMs into EFSMs in
which all TPs are feasible. However, the approach does
not provide an assessment to the traversal complexity
associated with generated FTPs and so an FTP can be
feasible but still very hard to trigger.

A technique to bypass the infeasible path problem
in an EFSM is presented in [13]. First, the
specifications are rewritten in order to derive a normal
form EFSM (NF-EFSM). Then, the NF-EFSM is

extended to Expanded-EFSM (EEFSM) with the
property that all the paths in the EEFSM are feasible.
However, the study does not provide an assessment of
the traversal complexity of the resultant FTPs.

A GA approach to generate FTPs from EFSM
model is presented in [11]. This is the only previous
work that utilizes a GA to generate FTPs. The
approach evaluates the feasibility of a given TP
according to the number and the types of guards found
in that TP. However, the transition interdependencies
are not considered in assessing a given TP feasibility.

3. Proposed FTPs generation approach

Although the techniques described in Section 2
made considerable contributions towards EFSM
testing, they have not solved the problem of generating
a set of TPs that can be easily triggered using search.
Before giving a detailed description of our approach,
we introduce some definitions:
Definition 1: A transition path TP of length n is a
sequence of n consecutive transitions t1, t2, .., tn.
Definition 2: A TP is said to be an FTP iff it is
possible to trigger each transition ti, 1 < i < n, and in
the sequential order that it appears in this TP.

A transition’s guard has the form (e gop e′) where e
and e′ are expressions and gop ∈ {<, >, ≠, =, <, > } is
the guard operator. Given an expression e, we let
Ref(e) denote the set of variables that appear in this
expression. According to e and e′ a transition’s guard
can be classified into the following types:

1. gpv: a comparison involving a parameter and zero
or more context variables; there exists a
parameter p ∈ Ref(e) ∪ Ref(e′).

2. gvv: a comparison among context variables’
values; every element of Ref(e) ∪ Ref(e′) is a
context variable.

3. gvc: a comparison between a constant and an
expression involving context variables’ values;
all elements of Ref(e) ∪ Ref(e′) are context
variables and either e or e′ is a constant.

An assignment that occurs in a transition t has the
form of v=e, where v is a context variable and e is an
expression. An assignment to a context variable v can
be classified as one of the following types:

1. oppv: it assigns to v a value that depends on the
parameter and so there is a parameter p ∈ Ref(e).

2. opvv: it assigns to v a value that depends only on
the context variable(s) and so all the elements of
Ref(e) are context variables.

3. opvc: it assigns to v a constant value and so e is a
constant.

243233

Based on the classifications of guards and
assignments, we can distinguish two types of
transitions: affecting and affected-by transitions.
Definition 3: In a given TP t1, t2, .., tn, ti is an affecting
transition within this TP iff ti has an assignment op
∈ {oppv, opvc, opvv} to v and there exists a guarded
transition tj ∈ TP, where 1 < i < j < n, tj has a guard g
∈ { gpv, gvv, gvc} over the same v and the path from ti to
tj is definition clear for v.
Definition 4: In a given TP t1, t2, .., tn, tj is an affected-
by transition iff tj has a guard g ∈ { gpv, gvv, gvc} over v

and there exists an affecting transition ti ∈ TP, where 1
< i < j < n over the same v and the path from ti to tj is
definition clear for v.
Definition 5: An assignment op of the type opvc is
opposed to a guard g of the type gvc when either the
constants that appear in opvc and gvc are the same and
gop ∈ {<, >, ≠} or are different and gop ∈ {=} and the
path from op to g is definition clear for the variable v
that appears in opvc and gvc.
 According to Definitions 3, 4 and 5, we can define a
case where a given TP is clearly infeasible:
Infeasible TP: A given TP t1, t2, .., tn with length n >1
is definitely infeasible if there exists a variable v and a
pair of transitions (ti, tj) where 1 < i < j < n, ti is an
affecting transition of type opvc, tj is an affected-by
transition of type gvc and opvc opposes gvc.

3.1. Dependencies representation and penalties

In order to estimate the fitness of a given TP, we
require an analysis of all the dependencies among the
affecting and affected-by transitions in that TP. In
order to have a fitness metric that can be computed
quickly we base the path fitness assessment on an
approximate value calculated by using penalty values
that are determined in advance, thus each calculation is
computationally simple and can be used in search
algorithms. There are three factors that need to be
considered when assigning a penalty value to a pair of
affected-by and affecting transitions. First, the guard
type that occurs in an affected-by transition determines
how much this transition can be impacted by another
affecting transition. For example, a guard of type gpv is
considered the easiest guard to satisfy since we can try
to choose the parameter value in order to satisfy this
guard. Thus an affecting transition’s assignment does
not play such an important role in worsening this guard
complexity. A guard of type gvc is considered the
hardest since we cannot set the value of either c or v
involved in this guard. Secondly, the guard operator
can impact the guard complexity. For example, it is
usually easier to satisfy a guard with inequality than a
guard with equality. Finally, the assignment type of an

affecting transition can improve the complexity of an
affected-by guard when a parameter value is involved
but has a negative impact when a constant value is
involved. For example, consider an affected-by
transition with a gvc(=) guard and an affecting
transition with an (opvc) assignment. Unless the
constant is the same in both transitions, the
corresponding TP is infeasible. Table 2 shows the
suggested penalty values for all possible combinations
of guards and assignments between a pair of affected-
by and affecting transitions.

Naturally, guards can contain predicates linked with
‘OR’ and ‘AND’ operators. In such cases, we consider
the smallest penalty value when the ‘OR’ operator is
used. Alternatively, it is possible to split the transition
into a number of transitions equal to the number of
‘OR’ operator used + 1. For predicates linked with
‘AND’, the sum of penalty values is used.

Any possible dependency between a pair of
affecting and affected-by transitions includes at least
one of the EFSM’s context variables and an affected-
by transition in a given TP can depend on several
affecting transitions. In a preprocessing step, we record
the type of dependency that occurs at each context
variable for each pair of transitions. From an affecting
transition’s assignments, three types of dependencies
can be distinguished where we represent each
assignment type as a unique integer value. The
negative values of {-1, -2} represent the assignment to
a parameter (oppv) and a constant (opvc) respectively
whereas the positive values of {1, 2, ..., m} represent
the assignment to a context variable (opvv) where the
referenced context variable is represented by its integer
index. If an assignment of the type (opvv) contains an
expression which references more than one context
variable, then only one of the referenced context
variables v′ is considered according to the following
order that depends on the previous assignment to v′: (1)
the previous assignment to v′ references a parameter.
(2) the previous assignment to v′ references a constant.
(3) v′ has the fewest assignments that affect its value.

In addition to these three types of dependencies,
there may be no dependency or an open ended
dependency (when a variable references another
variable(s) which, in turns, is left undefined). We
represent this type as 0. Table 3 lists all the types of
dependency together with their integer representation.
Example 1. The EFSM shown in Fig.1 has five
context variables {opt, R_credit, S_credit, TRsq, TSsq}
which we will refer to henceforth by {v1, v2, v3, v4, v5}
respectively. Let us consider transitions t2 and t7; from
Table 1, t7 is an affected-by transition of type gvc(>)
whereas t2 is an affecting transition of type oppv. From
Table 2, the associate penalty value is 24. The

244234

dependency between these transitions occurs only
through the context variable v3. Thus, we can formulate
this dependency as a tuple with six fields. Five of them
represent the dependencies between the two transitions
that occur at all context variables, whereas the last one
is used to record the associated penalty value:

The information in the above tuple can be interpreted
by using Table 3 as: there is a dependency between the
two transitions at the context variable v3 and this
dependency ends with an assignment of a parameter
value to v3.
 All the dependencies among transitions can be
represented in terms of an array with two dimensions.
In this array, rows represent affected-by transitions
whereas columns represent affecting transitions. Each
cell of this array has the form of the above mentioned
tuple. In the experiment, we constructed this array
manually, however, it is possible to derive this array
automatically.
Example 2. The following array represents the
analysis information for all the dependencies among
the affecting transition t0, t1, t2 and t3 and the affected-
by transitions t0, t1, t2, t3, t4 and t5.

3.2. The fitness metric

In this subsection we define the proposed fitness
metric. Fig.2 shows a high level description of the
algorithm that calculates the fitness metric. Given a TP
with length n > 1, the algorithm computes the fitness

by starting from the last transition tn and checking the
dependencies (if any) with the prior transition tn-1.
From the array that contains the analysis information,
if the transitions (tn, tn-1) form a pair of affected-by and
affecting transitions then the associated penalty value
is different from 0 (Line 11). In this case, the algorithm
determines the context variable at which the
dependency has occurred (Line 14). There are two
cases: first, if the dependency ends with an assignment
to a parameter or a constant value (Line 16) then the
associated penalty value of (tn, tn-1) is considered only.
In the second case, the dependency continues as a
reference to one or more context variables. At this
point, a call is made to a recursive function check
which traces back all the previous assignments which
are propagated to the context variable v. The function
check performs backward data flow dependence
analysis for variable v at transition tn where the
function stops when it reaches an assignment to a
parameter or constant value. That is, for a context
variable v, we want to know how many assignments
contribute to the value of this variable (Line A15) by
starting from the current transition (Line A10) and
working backwards to all prior transitions. A value of
40 is added each time an assignment that contributes to
the value of v is found. When v is eventually, directly
or indirectly, defined by a parameter value (Line A14),
a penalty value of 20 is added, however, if the
dependency is ended by referring to a constant value
(Line A13) or left open ended (Line A22) then a
penalty value of 60 is added. The total penalty value
calculated by check is passed back to the main function
to be added to the final result. Once all dependencies
between the transition tn and previous transitions are
detected, a new loop cycle starts to evaluate the next
pair of transitions (tn-1, tn-2) and so forth.

This fitness metric penalizes complexity (there
being many assignments affecting the variables in a
guard). It also penalizes certain features of guards,
such as comparing two expressions only containing
context variables using =, that are likely to lead to
them being difficult to satisfy. The aim is thus to
penalize factors that could make it hard to find test data
to trigger the path but naturally this cannot be entirely
precise. The fitness metric is simple to compute and so
can be incorporated into search based testing where we
may have to evaluate fitness hundreds of thousands of
times. We did not explore the effect of different

Table 2. The suggested penalty values
Guard &
operator

Assignment
(oppv) (opvv) (opvc)

gpv(=) 8 16 24
gpv(<, >) 6 12 18
gpv(< , >) 4 8 12
gpv(≠) 2 4 6
gvv(=) 20 40 60
gvv(<, >) 16 32 48
gvv(< , >) 12 24 36
gvv(≠) 8 16 24
gvc(=) 30 60 500 if c is different and 0 otherwise
gvc(<, >) 24 48 0 if c is different and 500 otherwise
gvc(< , >) 18 36 500 if c is different and 0 otherwise
gvc(≠) 12 24 0 if c is different and 500 otherwise

Table 3. Assignment’s types representation
op Representation Meaning
oppv -1 A dependency ends with a parameter value
opvc -2 A dependency ends with a constant value
opvv v1..m A dependency continues by referencing

context variables
none 0 No dependency or open ended dependency

v1 = 0 v2 = 0 v3 = -1 v4 = 0 v5 = 0 Penalty = 24 t7

t2

t0

t1
t2
t3
t4
t5

t0
 0
 0
-1
-1
 0
-1
 v1

 0
 0
 0
 0
 0
 0
 v2

 0
 0
 0
 0
 0
 0
 v3

 0
 0
 0
 0
 0
 0
 v4

 0
 0
 0
 0
 0
 0
 v5

 0
 0
 4
 6
 0
 4

 0
 0
-1
-1
 0
-1

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 4
 6
 0
 4

 0
 0
-1
-1
 0
-1

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 4
 6
 0
 4

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

t1 t3 t2

Penalty

245235

penalties and see this as an important area of future
research.

3.3. The GA encoding

 In this study, we use the encoding method presented
in [11] where TPs are encoded as a sequence of
integers. For a given EFSM with k states, the encoding
method comprises three steps. First, calculate the
numbers n1, n2, .., nk of transitions that leave each state.
Then, find the lowest common multiplier LCM of n1,
n2, .., nk. Finally, calculate the transition ranges r1, r2,
.., rk associated with each state where ri = LCM / ni.
Thus, when considering a state si a number x in the
range 1 to LCM uniquely identifies a transition: we
simply divide x by ri and round down to give the
transition number. Thus, a sequence of numbers in the
range 1 to LCM uniquely identifies a path through the
EFSM.
Example 3. The considered EFSM has k = 6 states, n1
= 2, n2 = 3, n3 = 2, n4 = 11, n5 = 2 and n6 =1. Thus the
LCM = 66. The range associated with the first state is
r1 = 33 since n1=2. Therefore [1..33] represents t0 and
[34..66] represents t1. The range for the second state is
r2 = 22 since n2=3. Thus [1..22] represents t2, [23..44]
represents t3 and [45..66] represents t4. Similarly we
can compute all the transition ranges for other states.

4. Experiment and approach validation

In designing our experiment, we aimed to evaluate
the efficiency of the proposed fitness metric in guiding
a GA search for TPs that are feasible and easy to
trigger using search. In order to achieve this, there are
three factors to be considered. The first is related to the
length of the TPs to be generated. Naturally, a short TP
is likely to be easier to trigger since it has fewer
transitions and hence fewer dependencies exist among
its transitions. We therefore want to generate TPs that
are relatively long. Since the EFSM machine at hand
consists of 21 transitions, we consider TPs with length
n = 11 to be long enough to avoid the impact of this
factor on our results. The second factor is the number
of input parameters required to trigger a given FTP.
Since an FTP that requires fewer input parameters is
typically easier to trigger, we have to generate FTPs
that require relatively many input parameters. We set
the number of the required input parameters to be Pn =
10. Both n and Pn were selected for illustration purpose
and different values can be used to derive FTPs with
different characteristics. The third factor is to
determine how easy it is to trigger a generated FTP
using search; we used a random test data generator to
assess this. If we can quickly randomly find 10 suitable

A TP fitness metric
 1. begin
 2. input: TP, EFSM analysis array
 3. output: non negative integer value
 4. goal: evaluate a TP complexity
 5. initialize variable result = 0;
 6. for i = n downto first_transition
 7. begin
 8. j= i;
 9. repeat
10. j = j -1;
11. if [ti,tj].penalty > 0 then
 // if these Trans. form a pair of affected-by & affecting Trans.
12. begin
13. result = result + [ti,tj].penalty ;
 // add the associated penalty value
14. for v = v1 to vk do
 // check at which context Var. the dependency occurs
15. begin
16. if [ti,tj].v < 0 then continue;
 // the dependency ends by a Param. or a constant value
17. if [ti,tj].v > 0 then
 // the dependency continues by referencing a context Var.
18. result = result + check(ti,tj,v);
 // call check function to trace back all the dependencies
 // that propagated at this context Var.
19. end;
20. end;
21. until j = first_transition
22. end;
23. return result;
24. end

Figure 2. High level description of the algorithm that calculates the fitness metric

Function check all of a transition dependencies
 A1. begin
 A2. input: ti,tj,v
 A3. output: non negative integer value
 A4. goal: trace back a flow dependence on variable v
 A5. initialize variable result = 0; found = false;
 A6. begin
 A7. p = j + 1;
 A8. repeat
 A9. p = p – 1;
A10. if [ti,tp].v ≠ 0 then
A11. begin
A12. case [ti,tp].v of
 // check the type of dependency
A13. -2 : result = result + 60;
 // Assignment to a constant
A14. -1 : result = result + 20;
 // Assignment to a Param.
A15. 1..k : result = result + 40 + check(ti,tp,v1..k)
 // Assignment to a context Var. recall check function to
 // trace back all the dependencies propagated at this context Var.
A16. end;
A17. found = true;
A18. end;
A19. until P = first_transition or found;
A20. end;
A21. if found then return result
A22. else return result + 60;
 // the dependency is left open ended
A23. end.

246236

input parameters to trigger a given FTP then the
proposed FTP is considered to be easy to trigger.

The GA search that implemented the fitness metric
was applied to the class 2 transport protocol EFSM in
order to generate a set of 21 FTPs (n =11 and Pn = 10)
that provides a transition coverage test suite (see Table
4). During TP generation, each path is first checked for
the existence of a particular transition that this TP is
intended to cover and for the value of Pn before the GA
evaluates the path’s fitness . Any TP that violates these
constraints is considered invalid and given fitness
2000. Also, we randomly generated two alternative sets
of 21 TPs (n =11 and Pn = 10) for the purpose of
comparison (see Tables 5 and 6). Since we have a set
of TPs rather than one single TP, a reset is applied to
reinitialize the machine every time the random test data
generator tries to trigger a given TP.

Both the GA and the random technique were
implemented using the publicly available Genetic and
Evolutionary Algorithm Toolbox (GEATbx) [31]. A
detailed description of each of the GEATbx parameters
used is beyond the scope of this paper. However, these
parameters are fully explained at the tool website [31]
and we record the values used here for the purpose of
experiment replication.

An integer valued encoding with the value range of
[1..66] was used for the GA. The population size was
25 individuals where each individual consisted of 11
variables to represent 11 transitions. The selection
method was linear-ranking with a selective pressure set
to 1.8. Discrete recombination was used whereas
mutate integer mutation was applied. A random test
data generator was implemented by setting the
recombination and mutation methods to ‘recnone’ and
‘mutrandint’ respectively. An integer valued encoding
was used to represent 10 input parameters with the
range of values allowed being [0..1000].

Both techniques (GA and random) were allowed
1000 generations before search was terminated.
Finally, we repeated the search with each technique 10
times for each subject TP.

4.1. Experimental results

A set of 21 FTPs generated using a GA which
implemented the proposed fitness metric is reported in
Table 4. Also, the two alternative sets of 21 TPs that
were generated randomly for the purpose of
comparison are reported in Tables 5 and 6. Since the
complete set of results cannot fit in this paper, each
table reports the transition sequence of each path
together with its associated fitness, the average number

of generations required by random test data generator
in ten tries to trigger this path and whether or not this
path was taken. From Table 4, we can state that all the
21 FTPs were feasible and easy to trigger. The random
test data generator required, in most cases, only one
generation to trigger these FTPs. However, some FTPs
were associated with larger fitness values and required
more attempts to be triggered. This suggests that FTPs
with high fitness are hard to trigger using search.

From Tables 5 and 6 we can observe that the fitness
associated with each generated TP was larger than that
of the FTPs produced by the GA search. Furthermore,
the random test data generator failed, in most cases, to
find input parameter values to trigger the TPs. This
does not necessarily mean that these TPs are infeasible;
however, TPs with a fitness value greater than 500 are
very likely to be infeasible or hard to trigger since
many of the TPs with fitness over 500 contained an
instance of the infeasible TP case (which leads to 500
being added to the fitness value). For those TPs with
fitness values less than 500 and not triggered
randomly, we can state that they are complex enough
not to be easily triggered by a random test data
generator. Moreover, we observe that the successfully
triggered TPs from both alternative sets have the
lowest fitness values among TPs in these two sets.
They also have larger fitness values than the FTPs
generated by the GA search and required more
generations to be triggered. This provides evidence that
TPs with larger fitness values are more difficult to
trigger. Finally, all TPs with a fitness value at most 34
required only one try by the random test data generator
in order to be triggered.

Table 4. Results of the proposed approach
TPs generated by a GA approach Fitness Gen. (Avg.) Taken

t0,t2,t17,t18,t1,t6,t18,t1,t5,t10,t10 8 1 yes
t0,t2,t17,t18,t1,t6,t18,t1,t5,t10,t10 8 1 yes
t0,t3,t19,t1,t6,t18,t1,t6,t18,t0,t2 10 1 yes
t1,t5,t10,t17,t18,t0,t4,t0,t3,t19,t1 10 1 yes
t0,t4,t0,t3,t19,t1,t6,t18,t0,t2,t10 10 1 yes
t1,t6,t18,t1,t6,t18,t1,t5,t10,t10,t10 4 1 yes
t1,t6,t18,t0,t2,t10,t17,t18,t1,t5,t10 8 1 yes
t0,t2,t10,t16,t19,t0,t3,t20,t1,t5,t7 38 50 yes
t1,t6,t18,t0,t2,t10,t10,t10,t8,t10,t17 40 200 yes
t1,t6,t18,t0,t2,t10,t10,t9,t16,t19,t1 10 1 yes
t1,t6,t18,t1,t6,t18,t0,t2,t10,t10,t10 4 1 yes
t1,t6,t18,t0,t4,t1,t6,t18,t0,t2,t11 40 175 yes
t0,t4,t1,t6,t18,t1,t6,t18,t1,t5,t12 34 1 yes
t1,t6,t18,t0,t4,t1,t5,t13,t17,t18,t1 46 200 yes
t1,t6,t18,t0,t2,t10,t14,t16,t19,t1,t6 40 100 yes
t0,t3,t20,t1,t6,t18,t1,t5,t15,t10,t10 34 1 yes
t1,t6,t18,t1,t5,t10,t10,t10,t16,t19,t1 4 1 yes
t1,t6,t18,t0,t2,t17,t18,t1,t5,t10,t10 8 1 yes
t1,t6,t18,t1,t5,t10,t10,t16,t19,t1,t5 8 1 yes
t1,t6,t18,t1,t5,t16,t19,t0,t3,t20,t1 10 1 yes
t1,t5,t16,t20,t1,t5,t10,t10,t16,t19,t1 8 1 yes

247237

4.2. Threats to validity

Threats to external validity are the conditions that
restrict our ability to generalize our results. In this
study, this can be related to the case study used.
Although the case study is nontrivial, using other case
studies would increase the confidence in the results.
This threat has been limited by using an EFSM model
used to evaluate other test techniques. Another factor is
the penalty values we used: although these led to
significant results, it might be possible to adjust the
values further to produce a fitness metric with
improved accuracy. Furthermore, the length of the
generated FTPs was relatively short and for longer
paths, the length could also contribute to a path fitness
value. These require further research with additional
EFSM case studies.

5. Conclusion

Testing from EFSM models is usually complicated
by the presence of infeasible paths and generating a set
of TPs that are feasible is a challenging task. In this
paper, we present a fitness metric based on the analysis
of interdependencies among guards and actions found
in a given TP in order to estimate the traversal
complexity of this TP and hence its feasibility. The
fitness metric is simple to compute and so could be
incorporated into a search based testing technique with
the aim of producing feasible paths that satisfy the test
criterion and are relatively easy to trigger using search.

In the experiment, the proposed fitness metric was

utilized to guide a GA to find a set of FTPs that
achieves the transition coverage adequacy criterion.
Also, we randomly generated two alternative sets of
TPs for comparison. We observed that the proposed
fitness metric successfully guided the GA to produce a
set of FTPs that have low fitness values and can be
easily triggered. The two alternative sets of TPs had
higher fitness values and the random test data
generator failed, in most cases, to trigger them. The
results of the experiment suggest that the proposed
fitness metric can effectively estimate the traversal
complexity of a given TP and so the likelihood of this
TP being feasible.

Further research will apply the approach to additional
EFSM case studies and investigate how different
penalty values in the fitness metric affect its ability to
guide the search towards FTPs that are relatively easy
to trigger. It may also be possible to incorporate
additional information into the fitness metric in order
to make it more precise. We will investigate multi-
objective search technique that utilizes the fitness
metric to search for paths that satisfy a standard test
criterion and are easy to trigger. There is also a need
for experiments to explore the effect on fault detection
of using paths that are easy to trigger.

6. References

[1] B. Korel, "Automated software test data generation,"

Software Engineering, IEEE Transactions on, vol. 16,
pp. 870-879, 1990.

Table 5. Results of the first alternative set
TPs generated randomly Fitness Gen. (Avg.) Taken

t1,t6,t18,t0,t2,t7,t7,t11,t15,t12,t10 204 1000 no
t0,t2,t8,t7,t17,t18,t1,t5,t11,t8,t16 1116 1000 no
t1,t6,t18,t0,t4,t0,t2,t9,t8,t12,t7 588 1000 no
t0,t3,t19,t1,t6,t18,t0,t4,t1,t5,t8 534 1000 no
t0,t2,t15,t16,t20,t0,t4,t0,t2,t8,t11 592 1000 no
t0,t4,t1,t6,t18t0t4,t1,t5,t12,t8 558 1000 no
t1,t6,t18,t1,t5,t8,t10,t10,t9,t10,t15 616 1000 no
t0,t3,t19,t0,t2,t15,t7,t13,t7,t13,t7 162 1000 no
t0,t4,t1,t6,t18,t1,t5,t12,t9,t8,t7 588 1000 no
t1,t5,t11,t15,t7,t9,t9,t11,t7,t7,t9 262 1000 no
t0,t4,t1,t5,t10,t11,t8,t10,t8,t15,t15 280 1000 no
t0,t2,t8,t7,t7,t12,t15,t11,t10,t15,t9 940 1000 no
t0,t3,t20,t0,t2,t7,t12,t11,t7,t15,t16 210 1000 no
t1,t5,t7,t9,t7,t9,t10,t7,t13,t15,t14 372 1000 no
t0,t2,t12,t7,t14,t8,t7,t7,t16,t20,t1 862 1000 no
t1,t5,t14,t9,t7,t8,t15,t16,t19,t0,t2 706 1000 no
t1,t5,t13,t15,t10,t10,t16t19t1,t5,t16 74 287 yes
t1,t5,t8,t9,t7,t7,t11,t11,t15,t9,t17 860 1000 no
t1,t6,t18,t0,t4,t1,t5,t12,t7,t7,t13 194 1000 no
t1,t6,t18,t0,t3,t19,t0,t2,t15,t12,t7 88 350 yes
t1,t6,t18,t0,t2,t16,t20,t1,t5,t7,t12 52 300 yes

Table 6. Results of the second alternative set
TPs generated randomly Fitness Gen. (Avg.) Taken

t0,t4,t0,t3,t20,t0,t4,t1,t5,t12,t7 64 312 yes
t0,t2,t17,t18,t1,t5,t16,t20,t1,t5,t8 536 1000 no
t0,t2,t7,t10,t13,t15,t15,t11,t8,t10,t17 164 1000 no
t0,t3,t20,t0,t2,t8,t7,t14,t17,t18,t0 582 1000 no
t1,t5,t9,t17,t18,t0,t4,t1,t5,t11,t17 50 217 yes
t0,t3,t19,t1,t5,t7,t16,t20,t0,t2,t8 562 1000 no
t1,t5,t12,t8,t15,t17,t18,t1,t6,t18,t1 582 1000 no
t0,t2,t12,t9,t15,t11,t8,t7,t10,t17,t18 648 1000 no
t1,t5,t12,t8,t16,t20,t0,t3,t20,t0,t4 564 1000 no
t0,t3,t19,t0,t2,t7,t15,t13,t9,t8,t17 700 1000 no
t0,t2,t10,t12,t7,t9,t16,t20,t0,t3,t19 70 243 yes
t1,t5,t7,t13,t10,t11,t8,t17,t18,t0,t4 116 1000 no
t1,t5,t17,t18,t0,t2,t9,t12,t8,t17,t18 568 1000 no
t0,t4,t0,t3,t20,t0,t2,t7,t13,t15,t8 610 1000 no
t1,t5,t7,t7,t12,t9,t14,t10,t17,t18,t0 186 1000 no
t0,t2,t7,t9,t11,t10,t7,t13,t15,t9,t17 140 1000 no
t1,t5,t13,t14,t7,t10,t8,t16,t19,t0,t4 142 1000 no
t1,t5,t8,t16,t20,t1,t5,t17,t18,t1,t5 536 1000 no
t1,t6,t18,t1,t5,t8,t10,t15,t8,t12,t7 762 1000 no
t0,t3,t19,t0,t4,t1,t5,t12,t8,t16,t20 564 1000 no
t0,t2,t8,t8,t9,t10,t17,t18,t0,t3,t20 966 1000 no

248238

[2] P. McMinn, "Search-based software test data generation:
a survey: Research Articles," Software Testing,
Verification & Reliability, vol. 14, pp. 105-156, 2004.

[3] C. C. Michael, G. McGraw, and M. A. Schatz,
"Generating software test data by evolution," Software
Engineering, IEEE Transactions on, vol. 27, pp. 1085-
1110, 2001.

[4] A. Petrenko, S. Boroday, and R. Groz, "Confirming
configurations in EFSM testing," Software Engineering,
IEEE Transactions on, vol. 30, pp. 29-42, 2004.

[5] R. Lai, "A survey of communication protocol testing,"
Journal of Systems and Software, vol. 62, pp. 21-46,
2002.

[6] D. Lee and M. Yannakakis, "Principles and methods of
testing finite state machines-a survey," Proceedings of
the IEEE, vol. 84, pp. 1090-1123, 1996.

[7] A. Y. Duale and M. U. Uyar, "A method enabling
feasible conformance test sequence generation for EFSM
models," Computers, IEEE Transactions on, vol. 53, pp.
614-627, 2004.

[8] L. H. Tahat, B. Vaysburg, B. Korel, and A. J. Bader,
"Requirement-based automated black-box test
generation," presented at COMPSAC 2001. 25th Annual
International, pp. 489-495, 2001.

[9] S. T. Chanson and J. Zhu, "A unified approach to
protocol test sequence generation," presented at Twelfth
Annual Joint Conference of the IEEE Computer and
Communications Societies. Networking: Foundation for
the Future. IEEE, pp. 106-114, 1993.

[10] H. Ural and B. Yang, "A test sequence selection method
for protocol testing," Communications, IEEE
Transactions on, vol. 39, pp. 514-523, 1991.

[11] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo,
"Generating feasible input sequences for extended finite
state machines (EFSMs) using genetic algorithms," in
Proceedings of the 2005 conference on Genetic and
evolutionary computation. Washington DC, USA: ACM,
pp. 1081-1082, 2005.

[12] A. Y. Duale, M. U. Uyar, B. D. McClure, and S.
Chamberlain, "Conformance testing: towards refining
VHDL specifications," presented at Military
Communications Conference Proceedings, 1999.
MILCOM 1999. IEEE, pp. 140-144, 1999.

[13] R. M. Hierons, T.-H. Kim, and H. Ural, "On the
testability of SDL specifications," Computer Networks,
vol. 44, pp. 681-700, 2004.

[14] L.-S. Koh and M. T. Liu, "Test path selection based on
effective domains," presented at Network Protocols,
1994. Proceedings., 1994 International Conference on,
Boston, MA, pp. 64-71, 1994.

[15] T. Ramalingom, K. Thulasiraman, and A. Das, "Context
independent unique state identification sequences for
testing communication protocols modelled as extended
finite state machines," Computer Communications, vol.
26, pp. 1622-1633, 2003.

[16] B. Sarikaya, G. v. Bochmann, and E. Cerny, "A Test
Design Methodology for Protocol Testing," Software
Engineering, IEEE Transactions on, vol. SE-13, pp.
518-531, 1987.

[17] C.-J. Wang and M. T. Liu, "Generating test cases for
EFSM with given fault models," presented at Twelfth

Annual Joint Conference of the IEEE Computer and
Communications Societies. Networking: Foundation for
the Future. IEEE, pp. 774-781, 1993.

[18] C.-H. Shih, J.-D. Huang, and J.-Y. Jou, "Stimulus
generation for interface protocol verification using the
nondeterministic extended finite state machine model,"
presented at High-Level Design Validation and Test
Workshop, 2005. Tenth IEEE International, pp. 87-93,
2005.

[19] G. V. Bochmann, "Specifications of a simplified
transport protocol using different formal description
techniques," Computer Networks and ISDN Systems, vol.
18, pp. 335-377, 1990.

[20] J. H. Holland, Adaptation in natural and artificial
systems. Cambridge, MA: MIT Press, 1992.

[21] G. E. Liepins and M. R. Hilliard, "Genetic algorithms:
Foundations and applications," Annals of Operations
Research, vol. 21, pp. 31-57, 1989.

[22] X. Yao, "Global optimisation by evolutionary
algorithms," presented at Parallel
Algorithms/Architecture Synthesis, 1997. Proceedings.
Second Aizu International Symposium, pp. 282-291,
1997.

[23] M. Srinivas and L. M. Patnaik, "Genetic algorithms: a
survey," Computer, vol. 27, pp. 17-26, 1994.

[24] A. Baresel, D. Binkley, M. Harman, and B. Korel,
"Evolutionary testing in the presence of loop-assigned
flags: a testability transformation approach," in
Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis. Boston,
Massachusetts, USA: ACM, pp. 108-118, 2004.

[25] K-C. Tai, "A program complexity metric based on data
flow information in control graphs," in Proceedings of
the 7th international conference on Software
engineering. Orlando, Florida, United States: IEEE
Press, pp. 239-248, 1984.

[26] M. Weiser, "Program slicing," in Proceedings of the 5th
international conference on Software engineering. San
Diego, California, United States: IEEE Press, pp. 439-
449, 1981.

[27] K.-T. Cheng and A. S. Krishnakumar, "Automatic
generation of functional vectors using the extended finite
state machine model," ACM Transactions on Design
Automation of Electronic Systems., vol. 1, pp. 57-79,
1996.

[28] T. A. Dahbura, K. K. Sabnani, and M. U. Uyar, "Formal
methods for generating protocol conformance test
sequences," Proceedings of the IEEE, vol. 78, pp. 1317-
1326, 1990.

[29] A. Petrenko, G. v. Bochmann, and M. Yao, "On fault
coverage of tests for finite state specifications,"
Computer Networks and ISDN Systems, vol. 29, pp. 81-
106, 1996.

[30] R. M. Hierons and M. Harman, "Testing conformance of
a deterministic implementation against a non-
deterministic stream X-machine," Theoretical Computer
Science, vol. 323, pp. 191-233, 2004.

[31] H. Pohlheim, "GEATbx - Genetic and Evolutionary
Algorithm Toolbox," http://www.geatbx.com, 2008.

249239

