
1. Introduction
The Asian water towers, which include the upper regions of the Indus, Ganges, Brahmaputra, Salween, Mekong, 
Yangtze, and Yellow river basins, supply a large portion of both natural and anthropogenic water demands for 
almost 2 billion people (Yao et  al.,  2022). As they are relatively undisturbed by human activities, the Asian 
water towers serve as an important regulator in the stability of the Asian climate system but are highly sensitive 
to climate change (X. Li, Long, Huang, & Zhao, 2022; X. Li, Long, Scanlon, et al., 2022; Long and Li, 2022). 
Basin runoff is of primary interest for water availability and security in the region, and is directly linked to human 
water use and natural disasters (e.g., droughts and floods). Previous studies over the United States (Berghuijs 
et al., 2014) and European Alps (Mastrotheodoros et al., 2020) have found that as a consequence of global warm-
ing, a precipitation shift from snow toward rain leads to a decrease in observed annual runoff. However, over the 
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good performance of SM2R-derived runoff suggests considerable potential for constraining hydrologic 
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Asian water towers, long-term runoff remains underexplored, due to the harsh environment, complex climate, and 
sparse in-situ observations. This hinders understanding of hydrologic processes and water resources management 
in both the high-mountain region and downstream areas.

Hydrologic models are currently the principal approach for runoff simulation in poorly gauged basins, but they 
rely heavily on the model structure and parameters (Beck et al., 2017). Observed runoff is generally essential for 
calibrating and validating model parameters, even though other ancillary data, such as snow cover, snow water 
equivalent, terrestrial water storage changes, and the drought severity index may be effective in understanding 
runoff processes over high-mountain water towers (Chen et al., 2017; Z. Han et al., 2021; Huang et al., 2022; 
Huang et al., 2020; Wu et al., 2022). Therefore, a long-standing challenge of hydrologic modeling is to extrapo-
late hydrologic information from gauged to ungauged/poorly gauged watersheds (Kratzert et al., 2019; Sivapalan 
et al., 2003). Substantial attention has been paid to runoff simulation across the Asian water towers in the past 
decades (e.g., Table 1), but these studies relied on hydrologic models that require observed runoff data. For exam-
ple, Immerzeel et al. (2010) and Lutz et al. (2014) discussed annual runoff changes over five Asian water towers 
based on a snowmelt runoff model and a distributed cryospheric-hydrological model, respectively. Limited by 
scarce gauge observations, the reliability and applicability of these hydrologic models may not be fully examined 
across different Asian water towers. The risk of equifinality in hydrologic models requires caution, and may 
result in large discrepancy among different models during the period without observation constraint (especially 
for obtaining future projections). In addition, our understanding of the hydrology of the Asian water towers keeps 
evolving over time, as multisource data from space and ground increase, and climate and hydrological models 
advance. For example, Immerzeel et al. (2010) stated that the streamflow will likely decrease by the mid-21st 
century due to reductions in glacier meltwater in the upper Indus, Ganges, and Brahmaputra basins, whereas Lutz 
et al. (2014) projected an increase in runoff until at least 2050 across above basins, due to the increase in precip-
itation (the upper Ganges and Brahmaputra) and accelerated glacier melt (the upper Indus).

One promising approach to estimating hydrologic fluxes (e.g., precipitation, evapotranspiration (ET), and runoff) 
may be achieved by using soil moisture information. In recent years, approaches for flux estimation based on 
relationships between flux variables and soil moisture have been developed, termed SM2RAIN (Soil Moisture 
to Rain) because they were first applied to precipitation estimation (Brocca et al., 2013; Brocca et al., 2015). 
Compared to hydrologic or land surface models (LSMs), the SM2RAIN approach has more explicit physical 
constraints, less forcing data or prior parameters, and stronger linkage between storage and flux variables in 
the water balance system. Parameters in the SM2RAIN model are generally determined by multi-dimensional 
mathematical optimism (e.g., the gradient descent method or genetic algorithm). The objective function could 
potentially be constrained by using soil moisture dynamics (Akbar et al., 2019), without depending on observed 
runoff calibration.

Building on SM2RAIN, Akbar et al. (2019) used remote sensing-based soil moisture observations to quantify 
ET and drainage maps over the United States. Filippucci et al. (2020) then used in situ soil moisture and precip-
itation to estimate the amount of irrigation at an experimental site in Italy. However, most studies based on the 
SM2RAIN structure focus on the site or grid-cell scale, and assume that runoff can be neglected. For example, 

Table 1 
A Summary of Previous Studies Related to Runoff Simulation Over the Asian Water Towers

Previous study Water tower Model Gauge number Time period

Immerzeel et al. (2010) Indus, Ganges, Brahmaputra, Yangtze, Yellow SRM 1 2000–2007

Immerzeel et al. (2013) Indus, Ganges Glacio-hydrological model 1 2000–2006

Lutz et al. (2014) Indus, Ganges, Brahmaputra, Salween, Mekong SPHY 8 1998–2007

Su et al. (2016) Indus, Brahmaputra, Salween, Mekong, Yangtze, Yellow VIC 6 1971–2000

Biemans et al. (2019) Indus, Ganges, Brahmaputra SPHY 6 1981–2010

Zhao et al. (2019) Brahmaputra, Salween, Mekong, Yangtze, Yellow VIC 5 1971–1990

Lutz et al. (2022) Indus, Ganges, Brahmaputra SPHY 6 1981–2010

Note. The time period in this table only shows historical runoff simulations in each study. SRM = Snowmelt Runoff Model; SPHY = Spatial Processes in HYdrology; 
VIC = Variable Infiltration Capacity.
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Brocca et al. (2013) and Akbar et al. (2019) indicated no runoff generation in 
the model because they assumed that all precipitation could be infiltrated into 
the soil. Filippucci et al. (2020) also paid no attention to surface runoff when 
estimating site-scale irrigation, because the optimized irrigation scheme was 
not expected to generate excess runoff. Although these assumptions on the 
neglection of runoff might be effective and reasonable at the site or grid-cell 
scale, they are likely to result in large non-closure of the water balance at the 
basin scale. In addition, current SM2RAIN studies use satellite-based soil 
moisture as the key input, which has inherent issues in soil moisture retrieval 
across the Asian water towers with widely distributed frozen soil and snow 
cover (Ciabatta et al., 2018). Until now, the SM2RAIN model structure has 
rarely been applied to basin-scale runoff estimation, particularly over the 
Asian water towers, and thus its potential for estimating runoff variations 
across this region has not yet been explored.

In this study, we proposed a novel SM2R (Soil Moisture to Runoff) model 
to estimate monthly runoff during the past four decades (1981–2020) 
across seven poorly gauged Asian water towers, including upper regions of 
the Indus, Ganges, Brahmaputra, Salween, Mekong, Yangtze, and Yellow 
basins. Developed from the SM2RAIN structure, the proposed SM2R model 
presents a preliminary attempt to partition precipitation into outgoing fluxes 
(ET, basin runoff, and drainage) over the basin scale, without invoking any 
runoff observations for calibration. The SM2R model is minimalistic with 
only seven parameters, and outgoing fluxes follow functions whose shapes 

are constrained by known physical processes. Apart from the basis of soil moisture dynamics, we add glacier and 
snow modules to improve the application of the SM2R model over regions with widely distributed glaciers  and 
snowpack. Globally available reanalysis data are used to force the model, and parameters are constrained and  opti-
mized through the gradient descent-based multi-dimensional optimization method. Overall, the novel SM2R 
model suggests considerable potential for runoff analysis in poorly gauged and ungauged basins. Findings from 
this study are not only valuable for water availability and security for Asian water towers and downstream areas, 
but also for providing new insights in Prediction in Ungauged Basins (PUB) globally.

2. Study Area and Data
2.1. Study Area

The study area includes seven Asian water towers, that is, the upper regions of the Indus, Ganges, Brahmaputra, 
Salween, Mekong, Yangtze, and Yellow river basins that supply freshwater to China, Pakistan, India, Bangla-
desh, Burma, Thailand, Laos, Cambodia, and Vietnam. Here the upper regions are defined as regions within the 
boundary of the Tibetan Plateau, which has a mean elevation exceeding 4,000 m (Figure 1). Across the study 
region, both precipitation and air temperature decrease from the southeast to northwest (Hong et al., 2021; Liu, 
Sun, et  al.,  2018; Yao & Zhang,  2013). Atmospheric circulation patterns over these water towers are jointly 
characterized by westerlies (the Indus basin), the South Asia monsoon (the Ganges, Brahmaputra, Salween, and 
Mekong basins), and East Asia monsoon (the Yangtze and Yellow basins) (Li & Long, 2020; Liu et al., 2016; Yao 
et al., 2022). Over the southern and eastern basins that are dominated by the monsoon system, liquid precipitation 
(rainfall) during the monsoon period accounts for more than 60% of annual precipitation (X. Li et al., 2019; Yue 
et al., 2021), whereas solid precipitation (snowfall) primarily occurs in the western Indus basin.

Complex and unique hydrologic processes exist over the Asian water towers due to widespread glaciers, snow-
pack, permafrost and seasonally frozen soil. Glaciers are precious water resources, particularly over the Indus, 
Ganges, and Brahmaputra basins with concentrated glacier distributions in the Hindu Kush-Himalayas-Nyain-
qentanglha Mountains. Significant glacier mass loss during past decades in these mountains (Brun et al., 2017; 
Hugonnet et al., 2021; Zhao et al., 2022) supplies additional water input to the soil system along with precipita-
tion (Chen et al., 2017), and largely impacts livelihoods and agriculture of densely populated downstream areas 
(e.g., the Indo-Gangetic Plain) (Biemans et al., 2019). Based on glacier mask data sets from the Randolph Glacier 
Inventory (RGI 6.0; RGI Consortium,  2017), the glacierized area accounts for ∼9% (Indus), ∼7% (Ganges), 

Figure 1. Location of the seven Asian water towers, runoff gauges, rivers, 
glaciers, and lakes. Names of runoff gauges are shown at the bottom of the 
figure. DEM, digital elevation model.
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and ∼3% (Brahmaputra) of the water tower area. In addition, snowpack stores cold-season precipitation to meet 
warm-season water demand in the high-mountain regions, and snowfall together with snowmelt plays a vital 
role in runoff generation (Liu, Wang, et al., 2018). Particularly, snowfall at high elevations (e.g., the Himalayas) 
often freezes in the cold seasons, resulting in a lag of several months before it melts into liquid water and causes 
changes in soil moisture or translates into outgoing fluxes as it gets warmer.

The frozen soil, including both permafrost and seasonally frozen ground, may impact runoff processes in head-
waters of the Yangtze and Yellow basin (Shi et  al.,  2020; Wang et  al.,  2018). Warming-induced frozen soil 
degradation can increase soil water storage capacity and more strongly link surface and subsurface components, 
which further causes increases in subsurface runoff and soil evaporation. However, the relationship between 
frozen ground degradation and runoff generation is complicated, involving many other factors such as the vertical 
linkage and transfer among surface water, soil moisture, and groundwater. More information on each water tower, 
including the location and elevation ranges, areas, and the area percentage of glacier and persistent snow cover to 
the study basin is provided in Table 2.

2.2. Data

2.2.1. In Situ Runoff Observations for Model Evaluation

In-situ runoff observations from 20 gauges, which are located within and around the seven Asian water towers, 
are used to evaluate SM2R-simulated monthly runoff (Figure 1 and Table 3). Basin-averaged runoff depth was 
calculated using the total volume of basin outflow divided by the drainage area of each catchment. Daily outflow 
records were obtained from in-situ observations at each outlet gauge and then aggregated to monthly estimates 
during the 1981–2020 period. Drainage areas of these 20 basins are 16,760–205,000 km 2.

2.2.2. Reanalysis-Based Model Forcings and Soil Texture Data Sets

Volumetric soil moisture (VSM), precipitation (including snowfall and rainfall), and potential ET (PET) are the 
major forcings used to drive the SM2R model. Basin-averaged monthly estimates of the above variables were 
obtained for the period 1981–2020 from the latest land component of the fifth generation of European ReAnal-
ysis (ERA5) data, ERA5-Land (simplified as ERA5L), provided by the European Centre for Medium Range 
Forecasts (ECMWF). The ERA5L estimates have the main advantage of high spatial resolution of 0.1° × 0.1° 
(∼10 km × 10 km), achieved through global high-resolution numerical integrations of the ECMWF land surface 
model driven by the downscaled meteorological forcing from the ERA5 climate reanalysis. In addition, ERA5L is 
reported to have large improvements in the description of the hydrological cycle, in particular with enhanced soil 
moisture and an overall better agreement of river discharge estimates with available observations (Munoz-Sabater 
et al., 2021).

Some ancillary variables of the SM2R model, including monthly air temperature, subsurface runoff, and total 
runoff, were also obtained from the ERA5L data sets during the 1981–2020 period. These variables were used to 

Table 2 
Information on the Asian Water Towers in This Study

Water tower Location range
Elevation 
range (m)

Area of the water 
tower (km 2)

Percentage of 
glacier area to basin 

area (%)

Percentage of 
persistent snow cover 

to basin area (%)

Indus 68°‒82°E 30°–37°N 779‒7,528 319,695 8.5 33

Ganges 78°‒88°E 27°–31°N 547‒7,982 85,237 6.9 18

Brahmaputra 82°‒98°E 27°–31°N 408‒8,247 385,973 3.3 18

Salween 91°‒99°E 26°–33°N 859‒6,382 111,102 1.1 26

Mekong 94°‒100°E 26°–34°N 1,403–5,983 90,802 0.3 20

Yangtze 91°‒105°E 27°–36°N 781‒6,317 482,063 0.3 13

Yellow 96°‒104°E 32°–38°N 1,762–6,090 249,876 0.1 11

Note. Glacier areas are derived from glacier mask data sets (RGI 6.0; RGI Consortium, 2017), and percentages of persistent 
snow cover in each water tower are provided by Immerzeel et al. (2020).
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indicate snow impacts on equivalent water input (air temperature; see Section 3.3.2), and initialize related model 
parameters (subsurface and total runoff; see Section 3.5). Note that model parameters initialized by the above 
variables are finally determined through parameter optimization (see Sections 3.5 and 3.6). All the ancillary 
variables were basin averaged and obtained at the monthly timescale.

Total runoff derived from ERA5L was compared with that from the SM2R model (see Section 4.3), which aims to 
show potential improvements in the runoff estimation mechanism driven by ERA5L inputs. The core of ERA5L 
for generating runoff is based on principles within the Hydrology-Tiled ECMWF Scheme for Surface Exchanges 
over Land (HTESSEL). The HTESSEL model considers an interception soil layer that accumulates precipita-
tion until it is saturated, and the remaining precipitation is partitioned between surface runoff and infiltration. 
Subsurface water fluxes are determined by Darcy's law, used in a soil water equation solved with a four-layer 
discretization (Balsamo et al., 2009). In addition to the ERA5L runoff, we added comparisons with two other 
runoff products in Supplementary Section 1 to further evaluate the performance of SM2R-derived runoff. The 
supplemented runoff estimates include: (a) the China Natural Runoff Dataset (CNRD; https://doi.org/10.6084/
m9.figshare.13185410) (Gou et al., 2021), and (b) the ensemble mean of 16 simulations from the second phase of 
the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP 2b; https://data.isimip.org/) that is widely used 
as references for runoff analysis (Satoh et al., 2022).

Soil texture data sets were used to initialize model parameters related to drainage coefficients and the capacity of 
subsurface runoff (see Section 3.5). Here we used data sets from the Harmonized World Soil Database (HWSD) 
Version 1.2 to provided soil texture information, including available water storage capacity, aquifer specific yield, 
soil porosity, and weight fractions of sand and clay. The HWSD is a 30 arc-second raster database at the global 
scale, provided by FAO with a collaboration of IIASA, ISRIC-World Soil Information, Institute of Soil Science, 

Table 3 
Locations, Drainage Areas, and Available Data During the 1981–2020 Period of 20 Gauges Across Seven Asian Water Towers

Water tower Outlet gauge Lon (°E) Lat (°N)
Basin area 

(km 2) Recording period
Data availability 

(months)
Data completeness 

(%)
Annual 

runoff (mm)

Indus 1. Besham Qila 72.87 34.91 192,281 1981–2018 456 100 475

2. Shatial Bridge 73.57 35.53 183,119 1981‒2007* 204 63 466

3. Partab Bridge Bunji 74.62 35.73 171,830 1981‒2018* 300 66 337

4. Skardu Kachura 75.47 35.44 140,725 1981‒2018* 444 97 315

Ganges 5. Asaraghat 81.44 28.95 20,899 1981–2010 360 100 727

6. Kali Khola 84.55 27.83 16,760 1994‒2010* 201 99 1763

7. Chatara 87.16 26.87 54,321 1981‒2010* 344 96 876

Brahmaputra 8. Lazi 87.58 29.12 47,777 2000–2010 132 100 110

9. Nugesha 89.71 29.32 109,647 2000‒2016* 181 89 167

10. Lhasa 91.16 29.64 26,563 2001‒2016* 181 94 335

11. Yangcun 91.82 29.27 165,647 2000‒2016* 169 83 221

12. Nuxia 94.65 29.47 205,000 1981–2018 456 100 290

Salween 13. Jiayuqiao 96.24 30.87 72,844 1981‒2019* 460 98 348

14. Gongshan 98.68 27.73 105,269 1999‒2016* 182 84 316

Mekong 15. Changdu 97.18 31.13 54,228 1981–2019 468 100 282

16. Liutongjiang 98.79 28.55 77,491 2011‒2017* 76 90 294

Yangtze 17. Zhimenda 97.24 33.01 139,000 1981–2017 444 100 99

18. Luning 101.87 28.45 107,882 1981–2000 240 100 402

Yellow 19. Tangnaihai 100.15 35.50 122,749 1981‒2020* 473 99 164

20. Maqu 102.08 33.97 86,200 1981–2008 336 100 161

Note. Gauges in each water tower are listed from the west to the east, consistent with the number sequence in Figure 1. The superscript * shown in the recording period 
indicates that there exist missing data during the reported timespan. Annual runoff shown in the table is the mean annual basin-averaged runoff depth from observations 
during the recording period at each gauge.
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Chinese Academy of Sciences (ISSCAS), and the Joint Research Centre of the European Commission (JRC). In 
this study, we assumed that soil texture remained the same during the study period of 1981–2020, and used the 
basin-averaged estimates to represent the soil characteristics for each basin.

2.2.3. Glacier Mass Changes and Snow Cover Area

Glacier mass changes and snow cover area (SCA) are considered separately because meltwater provides additional 
water input for high-mountain water towers. Glacier mass changes were derived from Hugonnet et al. (2021), 
which were calculated by glacier elevation changes from multisource satellite archives and a glacier mask from 
RGI 6.0. Data sets of glacier mass changes are available globally for each individual glacier during 2000–2019 at 
the monthly timescale. In this study, SCA is one of indicators showing the importance of snow impacts on each 
basin (see Section 3.3.2), and we used mean annual persistent SCA during the 2001–2017 period processed by 
Immerzeel et al. (2020). This data set is based on the MODerate resolution Imaging Spectroradiometer (MODIS) 
snow cover product (MOD10CM) with a spatial resolution of 0.05°, and provides data for 78 water towers glob-
ally. The MODIS snow cover product has been widely used in cryosphere hydrology due to its high accuracy 
(Hall & Riggs, 2007; P. Han, Long, Fang, et al., 2019). Here we did not separately calculate SCA for each drain-
age basin of a water tower, but used the ratio of SCA to the area of the water tower as a proxy. Neither glacier mass 
changes nor SCA data sets covered the entire study period due to data availability. However, this could produce 
minor differences in runoff estimation, because (a) additional water input caused by net changes in glacier mass 
could be small compared with total precipitation at the large basin scale (i.e., 16,760–205,000 km 2 in this study) 
(see Section 4.2); (b) SCA is only an indicator to assess the importance of snow, which is not directly involved in 
the runoff calculation (see Section 3.3.2). The value of including the glacier and SCA data sets lies principally in 
completing the hydrologic cycle by including glacier and snow processes across the high-mountain Asian water 
towers. This approach could provide guidance for applying the SM2R model to other glacier/snow dominated 
basins.

3. Methodology
3.1. Framework

This study proposes a data-driven model, SM2R, to estimate long-term monthly runoff across the poorly gauged 
Asian water towers based on the soil water balance (Figure 2). Key points for the SM2R model include basin-scale 
soil water balance with the consideration of glacier and snow impacts, and mathematical functions to express 
relationships between outgoing fluxes and soil moisture dynamics. Using input data from reanalysis, remote 
sensing, and global soil texture data sets, the SM2R model estimates parameters based on the gradient descent 
optimization method, aiming to minimize the difference between ERA5L-derived and water balance-calculated 
changes in VSM. Optimized parameters in the SM2R model represent mathematical constraints among variables.

3.2. Basin-Scale Soil Water Balance

The basin-scale soil water balance reflects temporal dynamics of changes in soil moisture and water fluxes. With 
the soil depth z, the soil water balance equation can be expressed as Equation 1:

𝑧𝑧 ⋅ (∆𝜃𝜃∕∆𝑡𝑡) = 𝑃𝑃Eq − 𝐿𝐿(𝜃𝜃) (1)

where z is the soil depth (mm) that is set as one unknown depth to be optimized to ensure water balance closure 
(Akbar et al., 2018); θ is VSM (m 3/m 3); Δθ/Δt is the change in VSM, and the time interval Δt is 1 month; PEq is 
the equivalent water input for the soil system at the monthly timescale (mm/month), which results from actual 
rainfall, glacier mass changes, and the lag between snowfall and melt water (see Section 3.3). L(θ) is the water 
loss function that represents basin-averaged outgoing fluxes in the form of ET (ET(θ); mm/month), drainage 
(D(θ); mm/month), and runoff (R(θ); mm/month) (Equation 2). Here runoff is portioned into fast runoff, that is, 
surface flow (Rfast(θ)), and slow runoff, that is, subsurface flow and baseflow (Rslow(θ)) (Equation 3).

𝐿𝐿(𝜃𝜃) = ET(𝜃𝜃) +𝐷𝐷(𝜃𝜃) +𝑅𝑅(𝜃𝜃) (2)

𝑅𝑅(𝜃𝜃) = 𝑅𝑅fast (𝜃𝜃) +𝑅𝑅slow(𝜃𝜃) (3)
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3.3. Equivalent Water Input for the Soil System

Precipitation phase (i.e., rainfall and snowfall) can substantially affect cryospheric processes in high-mountain 
water towers and runoff generation (Z. Han et al., 2021). Thus, we partition monthly precipitation into solid 
(snowfall) and liquid (rainfall) phase in defining equivalent water input (Peq) in Equation 1, both of which were 
derived from ERA5L reanalysis data.

3.3.1. Contributions of Glacier Mass Changes to Equivalent Water Input

Contributions of glacier mass changes (i.e., glacier accumulation and retreat) to soil water input can be described 
as the following two phases: (a) during glacier accumulation in the cold seasons, solid precipitation (snowfall) 
is first stored on glaciers, and then the extra water becomes available input to the soil system (Equation 4); (b) 
during glacier mass loss in the warm seasons, glaciers melt as liquid water, providing additional liquid water 
(rainfall) to recharge the soil aquifer (Equation 5).

snowfall� =

⎧

⎪

⎨

⎪

⎩

snowfall, dh� < 0

snowfall − |dh|, dh� ≥ 0
 (4)

rainfall� =

⎧

⎪

⎨

⎪

⎩

rainfall + |dh|, dh� < 0

rainfall, dh� ≥ 0
 (5)

In Equations 4 and 5, dhg indicates glacier elevation change (mm/month), where positive values indicate glacier 
accumulation but negative ones indicate retreat; snowfallg and rainfallg indicate equivalent snowfall and rainfall 
for the soil system with the consideration of glacier mass changes, respectively; and dh indicates the change in 
basin-averaged water depth caused by net glacier mass change, calculated by Equation 6.

Figure 2. Flowchart of runoff estimation using the SM2R model.
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dh =
dh𝑔𝑔 ⋅ Area𝑔𝑔 ⋅ 𝜌𝜌𝑔𝑔

Area ⋅ 𝜌𝜌𝑤𝑤
 (6)

where Areag indicates the area of glaciers and Area indicates the drainage area of the study basins; ρg is the aver-
age glacier density of 850 kg/m 3 according to Huss (2013); and ρw is the density of water that equals 1,000 kg/m 3.

Among the 20 drainage basins, we considered the glacier module in four basins of the Indus water tower, where 
glacier areas account for ∼10% of the drainage areas. For other 16 basins, the ratio of glacier area to basin area 
is relatively small (<5%), and thus the glacier impacts were neglected. Due to the data availability, the glacier 
module was applied during the 2000–2019 period. There may be minor impacts of net glacier mass changes on 
runoff generation across the drainage basins in this study (see Section 4.2). However, the proposed glacier module 
is likely to be significant in a complete hydrologic cycle, and could facilitate the application of the SM2R model 
to other glacier-dominated basins.

3.3.2. Impacts From High-Mountain Snowfall and Snowmelt on Equivalent Water Input

Solid precipitation (snowfall) at high elevations (e.g., the Himalayas) often freezes in the cold seasons, and 
there is a lag of several months before it melts into liquid water to cause changes in VSM or translates into 
outgoing fluxes as it gets warmer. Therefore, observed runoff may lag behind precipitation for several months 
and thus exhibit different peaks compared to precipitation. Taking a drainage basin in the Indus water tower as 
an example (Figure 3), precipitation exhibits a bimodal annual distribution, where the two peaks originate from 
snowfall in spring and rainfall in summer. However, there is only one peak of observed runoff which occurs in 
July due to both large rainfall and melt water. Water towers that store cold-season snowfall to compensate for the 
warm-season hydrologic cycle are defined as “snow-dominated” basins, where the cryospheric process, particu-
larly the time lag between precipitation and runoff, plays a vital role in runoff generation.

Here we defined a Snow Index (SI) to indicate snow-dominated water towers. The SI considers the ratio of snow-
fall to total precipitation and the persistent snow cover throughout the year, expressed as Equation 7.

SI = 𝑟𝑟snow∕prep ⋅ 𝑟𝑟persistent snow cover (7)

where rsnow/prep means the ratio of mean annual snowfall to mean annual precipitation; rpersistent snow cover means the 
ratio of persistent SCA to the basin area. The proposed SI is a two-dimensional indicator for snowfall-dominated 
basins, considering both the amount and persistency of snow. Basins with SI  >  0.16 are considered as 
snow-dominated water towers where the temporal lag between snowfall and runoff requires important attention. 
The threshold of 0.16 in SI indicates the threshold of 0.4 in both rsnow/prep and rpersistent snow cover. Here the threshold 
of 0.4 is suggested for distinguishing basins that are highly impacted by snowfall and persistent SCA based on 
principles of head/tail breaks (Jiang, 2015; Jiang et al., 2013), which is a clustering scheme to divide basins into a 
few highly-impacted ones in the head and many less-impacted ones in the tail. The threshold of 0.4 is also widely 
used in related studies of distinguishing basins that are highly stressed by water resources (Huggins et al., 2022; 
Vorosmarty et  al.,  2000). In this study, only four drainage basins in the Indus water tower are identified as 

Figure 3. Mean monthly precipitation and observed runoff of a drainage basin (with the outlet gauge of Besham Qila) in the 
Indus water tower during 1981–2018. Precipitation data were obtained from ERA5L, and runoff was observed at the Besham 
Qila station.
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snow-dominated basins. However, the snow module is significant in a complete cryospheric process, and may 
provide valuable insights into runoff estimation across other poorly gauged high-mountain basins globally.

For snow-dominated basins, at the monthly timescale liquid water (Rainfallg in Equation  5) is considered to 
directly participate in the hydrologic cycle, that is, altering the outgoing fluxes and recharging soil moisture. 
However, the amount of solid water (Snowfallg in Equation 4) that would participate in the hydrologic cycle is 
determined by monthly air temperature. That is, the higher the air temperature, the more snowfallg would melt 
into liquid water and contribute to the hydrologic cycle. We define the melted snowfallg as available snowfall 
(snowfalla), and assume that the monthly snowfalla is proportional to the difference between the monthly air 
temperature and the temperature threshold (Equation 8).

snowfall𝑎𝑎 = 𝑘𝑘 ⋅ (𝑇𝑇 (𝑡𝑡) − 𝑇𝑇threshold) (8)

where snowfalla represents the available snowfall that melts into liquid water (mm/month); k is a scale factor indi-
cating the relationship between available snowfall and the temperature difference of air temperature relative to 
the temperature threshold; T(t) is the air temperature in each month (°C); and Tthreshold represents the temperature 
threshold, which is set as the mean annual air temperature minus the standard deviation of the air tempera ture 
during the study period of 1981–2020. Because at the annual timescale, the total melted available snowfall 
(Snowfalla in Equation 8) should equal the actual solid water (Snowfallg in Equation 4), the scale factor k in 
Equation 8 can be calculated as Equation 9:

𝑘𝑘 =
Snowfall𝑎𝑎

𝑇𝑇 (𝑡𝑡) − 𝑇𝑇threshold

=

∑

Snowfall𝑎𝑎
∑

(𝑇𝑇 (𝑡𝑡) − 𝑇𝑇threshold)
=

∑

Snowfall𝑔𝑔
∑

𝑇𝑇 (𝑡𝑡) − 𝑛𝑛 ⋅ 𝑇𝑇threshold

 (9)

where the summation notation ∑ is the sum of monthly estimates for each year; and n represents the number of 
months that equals 12.

Overall, four drainage basins in the Indus water tower require the consideration of both glacier and snow modules 
in this study. The equivalent water input in these basins can be calculated as Equation 10.

𝑃𝑃Eq = rainfall𝑔𝑔 + snowfall𝑎𝑎 (10)

The other 16 drainage basins are less impacted by snow and glacier, and the equivalent water input equals actual 
precipitation estimated by ERA5L.

3.4. Mathematical Functions for Estimating Outgoing Fluxes

Here we propose mathematical functions with free parameters to express relationships between soil moisture 
dynamics and outgoing fluxes, including ET, drainage, and runoff. The proposed functions constrain the forms 
(shapes) of these outgoing fluxes, guided by hydrological processes and physical principles. Unknown param-
eters are initialized based on soil texture and physical constraints, and finally determined by multidimensional 
optimization (see Sections 3.5 and 3.6).

The ET function is represented by a flexible hyperbolic tangent form that starts at zero when soil is dry and 
gradually increases to an asymptote when the soil is moist (Equation 11) (Akbar et al., 2019). One parameter a 
is employed to determine the transition of ET from water-limited to energy-limited. The parameter a is wrapped 
within a sigmoid function constrained from [0,1] (Equation 12), and thus, it is allowed to be unconstrained to 
form ET functions essentially spanning all possible transitional regimes (Akbar et al., 2019).

ET(𝜃𝜃; 𝑎𝑎) =
PET

2

[

1 + tanh

(

8 ⋅

[

𝜃𝜃

𝜑𝜑
− sig(𝑎𝑎) + 0.25

])]

 (11)

sig(𝑎𝑎) =
1

1 + 𝑒𝑒−𝑎𝑎
 (12)

where PET (mm/month) is the basin-averaged potential ET. The variable φ in Equation 11, and later used in 
Equations 14‒16, represents the basin-averaged soil porosity. Soil porosity is calculated using the weight frac-
tions of sand and clay (Fsand and Fclay, respectively; %) (Equation 13) (Shangguan et al., 2014).
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𝜑𝜑 = (𝐹𝐹sand × 0.395) +
(

𝐹𝐹clay × 0.482
)

+
(

1 − 𝐹𝐹sand − 𝐹𝐹clay

)

× 0.451 (13)

Drainage (D) represents soil water loss vertically infiltrated into groundwa-
ter. Following Koster et al. (2018) and Jahlvand et al. (2018), we propose an 
exponential function (Equation 14) that captures the maximum rate of soil 
water loss and the reduction rate of water loss depending on the level of soil 
moisture saturation, controlled by the parameters b and c in Equation  14, 
respectively.

𝐷𝐷(𝜃𝜃; 𝑏𝑏𝑏 𝑏𝑏) = 𝑏𝑏 ⋅

(

𝜃𝜃

𝜑𝜑

)𝑏𝑏

 (14)

Runoff (R) is portioned into fast and slow runoff based on the generation 
processes. Fast runoff (Rfast) is considered as a function of the equivalent water 

input and soil moisture, whereas slow runoff (Rslow) is a function of soil moisture. According to Georgakakos and 
Baumer (1996) and Brocca et al. (2015), fast flow is expressed as an exponential functional form (Equation 15). 
In addition, slow flow is also represented by an exponential form (Equation 16) to be consistent with the shape 
of fast flow.

𝑅𝑅fast (𝜃𝜃; 𝑒𝑒) = 𝑃𝑃Eq ⋅

(

𝜃𝜃

𝜑𝜑

)𝑒𝑒

 (15)

𝑅𝑅slow(𝜃𝜃; 𝑓𝑓𝑓 𝑓𝑓) = 𝑓𝑓 ⋅

(

𝜃𝜃

𝜑𝜑

)𝑓𝑓

 (16)

The parameter e in Equation  15 controls the shape of fast flow generation, which depends on soil moisture 
saturation; the parameters f and g in Equation 16 capture the maximum rate and slow flow generation shape for 
subsurface runoff, respectively.

3.5. Parameter Initialization

Hydrologic components in the SM2R model are determined by the unknown parameter vector, X = [a, b, c, e, f, 
g, z]. Here we set the following scheme for parameter initialization based on physical constraints of different soil 
types. Note that parameter initialization is implemented to improve the optimization convergence efficiency and 
physical representativeness, but the final estimation of each parameter is determined by the optimization process 
(see Section 3.6).

The parameter a in Equation 11, determining the shape of the hyperbolic tangent function, can be set from uncon-
strained values because it is wrapped within a sigmoid function. The parameters b and c in Equation 14, deter-
mining the rate of drainage water loss, are related to soil hydraulic properties of infiltration capacity. Jahlvand 
et al. (2018) and Brocca et al. (2016) examined the relationship between the drainage rate and soil parameters 
using in situ soil observations, and provided the recommended values for b and c based on different soil types. 
Here we follow the mentioned two studies to initialize parameters b and c (Table 4).

The parameter e in Equation 15 represents the efficiency from precipitation to fast flow generation, and therefore, 
we use the basin-averaged runoff coefficient to initialize this parameter. The runoff coefficient is calculated 
by the ratio of multi-year average total runoff to precipitation, both of which were estimated from the ERA5L 
reanalysis to provide a reference.

The parameters f and g in Equation 16 are used to determine slow runoff, where f represents the capacity of slow 
runoff generation. We consider that f relates to soil water storage capacity and aquifer specific yield, and the 
initial value of f is set as Equation 17:

𝑓𝑓 = 𝑧𝑧
′
⋅ AWC ⋅ SY (17)

where AWC (mm/m) is the available soil water storage capacity derived from the HWSD (Table 5); SY is the 
aquifer specific yield, showing the percentage of water that can be released by soil aquifer (%); and z’ is the soil 

Table 4 
Drainage Coefficients for Different Soil Types

Soil type B c

Loamy sand 61.1 8.3

Sandy loam 25.9 11.3

Loam 13.2 15.6

Silt loam 6.8 16.2

Clay loam 2.3 17.5

Sandy clay 1.2 19.9

Clay 0.6 24.9
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depth for subsurface runoff generation, which is set as 100 cm according to 
the reference depth for estimating AWC from the HWSD. For soils below 
100 cm, we suppose that vertical drainage instead of subsurface flow is the 
major process of soil water loss.

The parameter g represents the shape of slow runoff, which is initialized 
by the ratio of multi-year average subsurface runoff to multi-year aver-
age total runoff, both of which are derived from the ERA5L reanalysis to 
provide a reference. The last parameter z indicates the soil depth to meet 
the water balance in Equation 1. Because the major input data are derived 
from ERA5L, we use the soil depth in ERA5L reanalysis (i.e., 2,890 mm) to 
initialize the parameter z.

3.6. Objective Function and Parameter Estimation

The objective function to be minimized is set as the root mean square error between ERA5L-derived and water 
balance-calculated changes in VSM (Equation 18):

� =

√

1
�
∑�

�=1

((

��
��

)

���5�
−
(

�Eq − �(�,�)
�

))2

 (18)

Here the optimization object is changes in VSM, that is, 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 . We set the optimization threshold (ε) as the 1‰ of 

the magnitude of the optimization object (Equation  19). The optimization threshold indicates the acceptable 
criterion to terminate the iteration. It means that if the difference between two iterative optimizations is less than 
this threshold (Equation 20), the improvement of the objective function is very limited and thus the optimization 
process can be completed. The threshold in this study can be considered as a reference for the balance between 
optimization performance and iteration times, and one can set other thresholds according to the accuracy require-
ments, for example, a smaller threshold with more iteration times.

� = 0.001 ⋅ ||
|

��
��

|

|

|

 (19)

|𝐽𝐽𝑖𝑖 − 𝐽𝐽𝑖𝑖−1| < 𝜀𝜀 (20)

The optimization algorithm is based on the gradient descent method, which is widely used in data-driven 
approaches (e.g., the back-propagation neural network). For each case, the optimization and estimation steps are 
as follows.

1.  Starting with an initial guess of each parameter X0 = [a0, b0, c0, e0, f0, g0, z0].
2.  Forward calculating Equation 18 to obtain an initial value of the optimization function (J0). VSM (θ) and 

equivalent water input (PEq) are known here.
3.  Calculating the gradient of the optimization function in Equation 18, that is, 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

 .

4.  Applying a gradient descent update to X0 for iteration: 𝐴𝐴 𝐴𝐴𝑖𝑖+1 = 𝐴𝐴𝑖𝑖 − 𝛼𝛼 ⋅

𝜕𝜕𝜕𝜕

𝜕𝜕𝐴𝐴𝑖𝑖

 . Here α represents the degree of 
optimization accuracy, which is generally set in the range of [1, 10] in the optimization iteration. In this study, 
we set α as 5 to calculate the update.

5.  Calculating the iterated value of the objective function (Ji+1) based on the updated parameters in step 4.
6.  Repeating steps 3–5 until the optimization function meets the termination criterion (Equation 20).
7.  Reporting the optimum parameter vector Xi+1 = [ai+1, bi+1, ci+1, ei+1, fi+1, gi+1, zi+1]
8.  Estimating the monthly runoff using the optimum parameters in the step 7.

3.7. Evaluation Indices and Anomaly Calculation

We chose five indices to comprehensively evaluate the performance of estimated runoff, including the 
Nash-Sutcliffe efficiency (NSE), logarithmic Nash-Sutcliffe efficiency coefficient (logNSE), Pearson correlation 
coefficient (CC), normalized root mean square error (NRMSE), and Kling-Gupta efficiency (KGE). NSE and 

Table 5 
Available Soil Water Storage Capacity for Different Soil Classes

Soil texture Available soil water storage capacity (mm/m)

Clay (heavy) 150

Silty clay 125

Clay 100

Silty clay loam 75

Clay loam 50

Silt 15

Silt loam 0

 19447973, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033597 by <

Shibboleth>
-m

em
ber@

ox.ac.uk, W
iley O

nline L
ibrary on [06/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

LI ET AL.

10.1029/2022WR033597

12 of 28

logNSE are normalized statistics determining the relative magnitude of residual variance (noise) relative to the 
measured data variance (information) (Nash & Sutcliffe, 1970), where NSE is mostly impacted by high flow but 
logNSE is mostly impacted by low flow. CC is used to measure the sample cross correlation between the simu-
lated and observed values. NRMSE measures the fitness of the predictive model, and is termed as RMSE divided 
by the difference between the maximum and minimum of the observed values. KGE is a comprehensive indicator 
including correlation, ratio of means, and ratio of dispersion of the two paired data sets (Gupta et al., 2009; Kling 
et al., 2012). Specifically, these indices are calculated as follows:

NSE = 1 −

∑

(𝑄𝑄sim −𝑄𝑄obs)
2

∑

(

𝑄𝑄obs −𝑄𝑄obs

)2 (21)

logNSE = 1 −

∑

(log(𝑄𝑄sim) − log(𝑄𝑄obs))
2

∑

(

log(𝑄𝑄obs) − log(𝑄𝑄obs)
)2 (22)

CC =

∑

(

𝑄𝑄sim −𝑄𝑄sim

)(

𝑄𝑄obs −𝑄𝑄obs

)

√

∑

(

𝑄𝑄sim −𝑄𝑄sim

)2
√

∑

(

𝑄𝑄obs −𝑄𝑄obs

)2
 (23)

NRMSE =
RMSE

max(𝑄𝑄obs) − min(𝑄𝑄obs)
 (24)

KGE = 1 −

√

√

√

√

√(CC − 1)2 +

(

𝑄𝑄sim

𝑄𝑄obs

− 1

)2

+

(

std(𝑄𝑄sim)

std(𝑄𝑄obs)
− 1

)2

 (25)

In Equations 21‒25, Qsim and Qobs represent the SM2R-simulated and observed runoff, respectively; an overbar 
denotes mean, and std represents standard deviation. Except NRMSE that has the perfect value of 0, other indices 
show the best performance indicated by a value of 1.

To evaluate the model performance by simulating the anomaly at both the annual and monthly timescales, we 
first calculated the climatological normal that is defined as the monthly average during January 1981 to Decem-
ber 2010. The monthly anomaly is the difference of monthly estimates relative to the climatological normal. For 
each year during the study period of 1981–2020, the annual anomaly is aggregated from the monthly anomaly. 
A positive runoff anomaly means a higher flow than the baseline, whereas a negative runoff anomaly indicates a 
lower flow than the long-term average.

4. Results
4.1. Performance Evaluation of SM2R-Simulated Runoff Over the Past Four Decades

Monthly runoff during the period 1981–2020 is simulated by SM2R and evaluated against observations at 20 
gauges in seven Asian water towers (Table 6). In general, SM2R simulations are highly correlated with runoff 
observations, and the variance of simulation error is pretty low (CC ≥ 0.74 and NRMSE ≤ 0.22 at all gauges). 
Good performance of three comprehensive indices (i.e., NSE, logNSE, and KGE) is found at most gauges (16 
gauges showing NSE > 0.56, logNSE > 0.43, and KGE > 0.46). This indicates that the SM2R model success-
fully captures runoff variations during the past four decades, that is, the general good simulation in both high and 
low flow, and the overall consistency with in-situ runoff in correlation, bias, and standard variation. Because the 
model performance is considered reliable with CC > 0.77 and NSE > 0.5 (Santhi et al., 2001), the SM2R model 
shows considerable potential for estimating long-term runoff in poorly gauged basins without relying on any 
observed data for calibration.

Here we further analyze the performance of the SM2R model among seven Asian water towers that are domi-
nated by different climate and geographic features (Figure 4). SM2R-derived runoff shows a high degree of 
accuracy in the Indus basin that has the largest distribution of glacier and seasonal snow cover among all 
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Asian water towers. In particular, high CC between the simulated and observed runoff is mainly attributed 
to the snow module that considers the lag between snowfall and melted water. Monthly runoff simulations 
in the Ganges and Brahmaputra water towers are also highly accurate. Despite glaciers on the Himalayas, 
the drainage basins of the Ganges and Brahmaputra water towers are highly impacted by the South Asia 
Monsoon and have a robust rainfall-runoff relationship, which serves as the basis for accurate model simula-
tion. Atmospheric circulation across the Salween and Mekong water towers is also characterized by the South 
Asia Monsoon. However, narrow river channels in the lower reaches of these two basins, particularly the 
drainage basin at the Gongshan gauge, may impact the accuracy of the SM2R model. This is because ERA5L 
forcing data have a spatial resolution of 0.1° (∼10  km), which might be too coarse to adequately reflect 
hydrologic characteristics here. As a result, we found generally good performance of SM2R-simulated runoff 
in the Salween-Mekong water towers, but the simulation results at the Gongshan gauge perform less well 
than at the other gauges. The lower reaches of the Yangtze and Yellow water towers are affected by the East 
Asia Monsoon, where the SM2R model also shows good performance (i.e., at the Luning gauge). However, 
headwaters of the Yangtze (the drainage basin at the Zhimenda gauge) and Yellow (drainage basins at the 
Maqu and Tangnaihai gauges) basins are located in the hinterland of the Tibetan Plateau, where the monsoon 
impacts are largely weakened. The headwaters of the Yangtze and Yellow basins are characterized by widely 
distributed permafrost and seasonally frozen soil, which may result in large uncertainties in soil moisture and 
soil texture estimation and therefore cause poor performance in simulated runoff at the Zhimenda, Maqu, and 
Tangnaihai gauges.

We separately examined scatterplots and time series of SM2R-simulated runoff at Gongshan, Zhimenda, Tangnai-
hai, and Maqu that have NSE < 0.5 (Figure 5). In situ observations are limited at the Gongshan gauge (182 in 
total; 84% complete over the recording period of 1999–2016), and the bias of individual simulations (e.g., the 
overestimation of SM2R-derived runoff during the summer months in 2014, Figure 5e) can impact the evaluation 
indices substantially in such small data samples. In addition, uncertainty in the forcing data due to the narrow 
drainage area at Gongshan gauge is another cause for the poor model performance. However, we find relatively 

Table 6 
Specific Values of NSE, logNSE, CC, NRMSE, and KGE for Evaluating SM2R-Derived Runoff Based on Observations 
From 20 Gauges

Water tower Gauge Observations (months) CC NRMSE KGE NSE logNSE

Indus Besham Qila 456 0.94 0.10 0.69 0.82 0.65

Shatial Bridge 204 0.94 0.10 0.73 0.85 0.77

Partab Bridge Bunji 300 0.95 0.13 0.61 0.77 0.48

Skardu Kachura 444 0.94 0.11 0.67 0.80 0.43

Ganges Asaraghat 360 0.95 0.11 0.79 0.84 0.59

Kali Khola 201 0.93 0.11 0.66 0.79 0.79

Chatara 344 0.93 0.13 0.65 0.70 0.77

Brahmaputra Lazi 132 0.89 0.13 0.79 0.72 0.65

Nugesha 181 0.92 0.15 0.46 0.56 0.54

Lhasa 181 0.93 0.10 0.75 0.83 0.79

Yangcun 169 0.94 0.10 0.77 0.82 0.80

Nuxia 456 0.95 0.06 0.87 0.90 0.86

Salween Jiayuqiao 460 0.93 0.13 0.68 0.72 0.87

Gongshan 182 0.74 0.22 0.67 0.34 0.38

Mekong Changdu 468 0.92 0.12 0.68 0.69 0.79

Liutongjiang 76 0.94 0.16 0.57 0.63 0.79

Yangtze Zhimenda 444 0.88 0.15 0.36 0.31 0.61

Luning 240 0.95 0.12 0.56 0.67 0.72

Yellow Tangnaihai 473 0.85 0.15 0.32 0.21 0.50

Maqu 336 0.81 0.17 0.23 0.14 0.49
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Figure 4. Spatial patterns of (a) CC and (b) NSE at each gauge over the seven Asian water towers. The darker and larger points show better performance at each gauge, 
whereas the lighter and smaller points show poorer performance.
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little difference between the linear regression line and 1:1 line in the scatterplots (Figure 5a), and high consistency 
between simulated and observed runoff in the annual and interannual variations (Figure 5e).

Observed runoff at the Zhimenda, Tangnaihai, and Maqu gauges is among the lowest magnitude of all drainage 
basins (Table  3), and we find an overestimation of SM2R-derived runoff at these gauges, particularly at the 
higher end (Figures 5b–5d). Specifically, the SM2R model overestimates summer high flows across these three 
drainage basins in dry years, for example, during 1994–1998, when observed runoff shows a sharp decline but 

Figure 5. (a–d) Scatterplots and (e–h) time series of SM2R simulated and observed monthly runoff during 1981–2020 at the Gongshan, Zhimenda, Tangnaihai, and 
Maqu gauges. In (a–d), observed runoff is shown on the x-axis, whereas SM2R-derived runoff is shown on the y-axis. The 1:1 lines, linear fitting lines, regression 
equations, and evaluation indices of CC and NSE are also shown. Blue shaded regions shown in the bottom-right corner of panels (a‒d) indicate the geographical 
locations of each drainage basin. In (e–h), SM2R simulated runoff is shown by solid blue lines, whereas observed runoff is shown by dashed red lines.

Figure 6. Scatterplots of SM2R simulated runoff and observed monthly runoff during wet, normal, and dry years during 
1981–2020 at the (a) Zhimenda, (b) Tangnaihai, and (c) Maqu gauges. Observed runoff is shown on the x-axis, whereas 
SM2R-derived runoff is shown on the y-axis. The 1:1 lines, linear fitting lines, regression equations, and correlation 
coefficients (CC) between SM2R-derived and observed runoff are also shown. Results for wet, normal, and dry years are 
shown in blue, yellow, and red, respectively.

 19447973, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033597 by <

Shibboleth>
-m

em
ber@

ox.ac.uk, W
iley O

nline L
ibrary on [06/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

LI ET AL.

10.1029/2022WR033597

16 of 28

SM2R-derived runoff only slightly decreases (Figures 5f–5h) Separating the data into wet, normal, and dry years, 
that is, the percentage of the annual runoff anomaly to mean annual runoff is >10% (wet), −10%–10% (normal), 
and <−10% (dry), we find that the overestimation of SM2R-derived runoff is principally caused by simulations 
during dry years at the Zhimenda, Tangnaihai, and Maqu gauges (Figure 6). The overestimation during dry years 
results in the low evaluation indices across these three basins, which may be related to the complex rainfall-runoff 
relationship caused by frozen soil degradation here (Jin et al., 2009; Yang et al., 2004). During dry years when 
temperature is generally high, the intensified degradation of permafrost and seasonally frozen ground might 
increase soil water and soil evaporation. Along with the decrease in precipitation during dry years, precipitation 
may be increasingly partitioned into ET rather than runoff across regions with degradation of frozen soil. More-
over, soil porosity might also be larger after the degradation of frozen soil. Any changes in soil porosity may be 
another source of uncertainty for the SM2R model, because this variable is directly involved in runoff calcula-
tion. Although the SM2R model does not individually address uncertainties caused by the complex soil texture 
(see discussions in Section 5.2), the overall performance of SM2R-derived runoff is basically acceptable with 
CC > 0.8, NSE > 0, and logNSE > 0.49, which is much better than other models (see Section 4.3).

In addition, we evaluated SM2R by simulating the anomaly at both the annual and monthly timescales (Figure 7). 
We selected a representative drainage basin in each water tower with an observation period of at least 30 
consecutive years to provide a reliable climatological normal. In general, the SM2R model performs well in simu-
lating anomalies across the seven water towers, showing high CC between the observed and simulated anomalies 
(CC > 0.44 for the annual timescale and CC > 0.49 for the monthly timescale). Consistency between simulated 
and observed anomalies in the monsoon-dominated basins (e.g., the Ganges, Brahmaputra, Salween, and Mekong 
water towers; Figures 7b–7e) is higher than in the Indus water tower (Figure 7a). In particular, the Brahmaputra 

Figure 7. Evaluation of the SM2R model in simulating the anomaly both at the annual and monthly timescales. Annual anomalies are shown in bars on the left y-axis, 
and monthly anomalies are shown in lines on the right y-axis. SM2R-simulated anomalies are in red, whereas anomalies derived from runoff observations are in blue. 
Correlation coefficients (CC) between the observed and SM2R-simulated time series are also shown for each basin both at the annual and monthly timescales.
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basin shows the highest degree of accuracy with CC = 0.84 and 0.90 for the monthly and annual anomalies, 
respectively (Figure 7 (c)). Good performance over the monsoon-dominated basins is possibly attributed to the 
robust rainfall-runoff relationship, which serves as the basis for SM2R simulation. In contrast, relatively poor 
performance in the Indus water tower may be caused by complex cryospheric processes, where the widely distrib-
uted glaciers, snow, and permafrost may increase the challenge in accurately simulating anomalies. It is promis-
ing that at the Zhimenda (Figure 7f) and Tangnaihai (Figure 7g) gauges, the SM2R model shows high reliability 
in estimating positive and negative anomalies, despite that evaluation indices at these two gauges do not perform 
as well as at the other 16 gauges over the Asian water towers. High CC between simulated and observed anoma-
lies in both monthly (>0.62) and annual (>0.70) timescales indicates that the SM2R model can capture variability 
well over these two basins, although the magnitude requires attention particularly in dry years (Figure 6).

4.2. Impacts of Net Glacier Mass Changes on Runoff Estimation

Due to the limited accessibility of data on glacier mass changes, the glacier module is implemented only during 
the 2000–2019 period in this study. To examine the impacts of net glacier mass changes on runoff simulation, 
here we compare runoff that is simulated with and without the glacier module across four drainage basins in the 
Indus water tower during 2000–2019 (Figure 8). At the mean monthly timescale (Figures 8a1–8d1), the supple-
mented glacier module in the SM2R model results in slightly higher runoff estimation during July–September 
but slightly lower runoff estimation during March–May. This is generally consistent with past studies on Indus 
runoff analysis using hydrologic models, which indicated that the glacier meltwater mostly increased in July and 
peaked in August (Biemans et al., 2019), but did not play a key role during March–May when snowmelt was the 
maximum within a year (Kraaijenbrink et al., 2021). At the annual timescale (Figures 8a2–8d2), glacier mass loss 

Figure 8. (a1–d1) Mean monthly (a2–d2) annual runoff simulated by the SM2R model across four drainage basins in the Indus water tower during 2000–2019. Red 
bars show runoff simulation without the glacier module, whereas blue bars show runoff simulation with the glacier module.
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provides additional water into the soil system, and thus causes slightly larger runoff in each year compared to the 
simulations without the glacier module.

However, we find only minor differences in runoff estimation caused by net glacier mass changes, that is, mean 
annual runoff during 2000–2019 increased slightly by 1.5%–3.8% across the four drainage basins if considering 
the glacier module. Two major reasons contribute to such slight differences. First, despite much higher glacier 
concentration in the Indus water tower than others, in this study additional water provided by net glacier mass 
changes is minor compared to the amount of precipitation at the basin scale. Taking the drainage basin at the 
Shatial Bridge gauge as an example, the rate of glacier retreat during 2000–2019 was −0.12 m w.e./yr (the glacier 
area is 19,621 km 2), which equals an additional water input of 11 mm/yr for the entire drainage basin (the basin 
area is 183,119 km 2). However, mean annual precipitation in this drainage basin is ∼550 mm/yr, which is 50 
times larger than the additional water input provided by net glacier mass changes. Second, although some studies 
on runoff component analysis declared a large contribution of glacier runoff to total runoff in the Indus water 
tower (Biemans et al., 2019; Lutz et al., 2014), these studies defined glacier runoff as runoff generated by net 
glacier mass changes and precipitation on the glaciers. In this study, the glacier module only represents runoff 
caused by net glacier mass changes, whereas runoff caused by precipitation on glaciers (i.e., the major contribu-
tion to glacier runoff in hydrologic models), is already included in the estimation of basin-averaged runoff (see 
Section 5.2 for more detailed discussion). Overall, the absence of the glacier module due to data availability only 
produces a minor difference, but as illustrated before, the proposed glacier module plays a significant role in 
understanding and guiding runoff generation over other glacier-dominated basins.

4.3. Comparisons Between SM2R and ERA5L-Derived Runoff Estimation

Monthly runoff estimation during the 1981–2020 period derived from ERA5L, which provides major forcings 
in this study, is evaluated at 20 gauges to show applicability of the reanalysis model over the Asian water towers 
(Table 7 and Figure 9). Although the evaluation indices of ERA5L and SM2R models are comparable at the Kali 

Table 7 
Specific Values of NSE, logNSE, CC, NRMSE, and KGE Evaluating ERA5L-Derived Runoff Based on Observations From 
20 Gauges

Basin Gauge Observations (months) CC NRMSE KGE NSE logNSE

Indus Besham Qila 456 0.71 0.19 0.60 0.35 0.14

Shatial Bridge 204 0.69 0.20 0.49 0.31 −0.07

Partab Bridge Bunji 300 0.71 0.24 0.57 0.17 0.18

Skardu Kachura 444 0.67 0.22 0.56 0.25 −0.06

Ganges Asaraghat 360 0.84 0.15 0.84 0.68 0.76

Kali Khola 201 0.90 0.11 0.78 0.80 0.83

Chatara 344 0.91 0.19 0.44 0.42 0.75

Brahmaputra Lazi 132 0.81 0.19 0.54 0.40 0.30

Nugesha 181 0.91 0.12 0.59 0.70 0.45

Lhasa 181 0.90 0.13 0.62 0.73 0.36

Yangcun 169 0.94 0.13 0.61 0.72 0.53

Nuxia 456 0.95 0.07 0.74 0.85 0.68

Salween Jiayuqiao 460 0.91 0.17 0.53 0.57 0.47

Gongshan 182 0.63 0.99 −1.88 −12.00 −1.51

Mekong Changdu 468 0.86 0.17 0.51 0.38 0.37

Liutongjiang 76 0.92 0.18 0.59 0.56 0.48

Yangtze Zhimenda 444 0.91 0.30 −0.60 −1.71 −0.23

Luning 240 0.96 0.13 0.53 0.63 0.51

Yellow Tangnaihai 473 0.73 0.92 −4.15 −34.31 −2.91

Maqu 336 0.77 0.27 −0.41 −2.24 −0.88
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Khola and Nugesha gauges, the accuracy of estimated runoff from ERA5L is much lower than that of SM2R at 
other 18 gauges. It seems that the ERA5L runoff may be useful in monsoon-dominated regions, for example, 
the Ganges and Brahmaputra water towers. However, ERA5L-derived runoff shows rather poor applicability in 
the Indus water tower that is heavily impacted by cryospheric processes (NSE = 0.17–0.35), and is unreliable in 
headwaters of the Yangtze and Yellow basins that are undergoing intense degradation of frozen soil (NSE < 0) 
(Table 7).

Here we further show comparisons between ERA5L and SM2R simulated runoff at eight gauges over the Indus, 
Salween, Yangtze, and Yellow water towers (Figure 10). ERA5L-estimated runoff substantially diverges from 
the 1:1 line in the scatterplots compared to observed runoff in the Indus water tower, particularly in the high 
end (Figures 10a–10d). Compared to ERA5L, the proposed SM2R model largely improves the correlation and 
reduces discrepancies for runoff estimation in the Indus water tower (CC = 0.94–0.95 for SM2R vs. 0.67–0.71 for 
ERA5L estimation; NRMSE = 0.10–0.13 for SM2R vs. 0.19–0.24 for ERA5L estimation; Tables 6 and 7), such 
that simulated runoff more closely follows the 1:1 line in the scatterplots (Figures 10a–10d). A major limitation 
of the ERA5L runoff in the Indus water tower is the misunderstanding of monthly runoff distribution, that is, the 

Figure 9. Radar plots of five indices (i.e., NSE, logNSE, CC, NRMSE, and KGE) evaluating SM2R and ERA5L-derived runoff based on observations from 20 gauges. 
Evaluation results from SM2R are shown in blue, whereas those from ERA5L are shown in red. Indices of ERA5L evaluation with values < 0 are excluded in the plots 
but the values are specifically provided in red font (at the Shatial Bridge, Skardu Kachura, Zhimenda, Tangnaihai, and Maqu gauges). The NRMSE index is shown as 
(1-NRMSE) in the plots, and a perfect fit is indicated by a value of 1 for all indices.
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mean monthly peak of ERA5L-derived runoff (in June) is shown to be 1-month earlier than the peak of observed 
runoff (in July) (Figure 11a–11d).

At Gongshan, Zhimenda, Tangnaihai, and Maqu gauges where the SM2R model does not perform as well as 
other 16 gauges, the ERA5L-derived runoff performs much more poorly, with NSE < 0. Large overestimation of 

Figure 10. Scatterplots of simulated and observed monthly runoff during 1981–2020 at gauges of the Indus, Salween, Yangtze, and Yellow water towers. Observed 
runoff is shown on the x-axis, whereas model-derived runoff is shown on the y-axis. The 1:1 lines are also shown. Scatterplots, linear regression lines, and linear 
regression equations of the SM2R model are shown in blue, whereas those from the ERA5L runoff are shown in red. Shadow regions of the inserted boundary on the 
bottom-right corner denote geographical locations of each drainage basin.

Figure 11. Mean monthly runoff estimated from the ERA5L (red bars), SM2R (blue bars), and in-situ observations (yellow bars) at eight gauges.
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ERA5L-derived runoff represents the major weakness of the reanalysis model (Figures 10e–10h) in these four 
drainage basins. Such overestimation of the ERA5L runoff occurs in each month, and requires particular caution 
during monsoon months (May–September) (Figures 11e–11h). Using changes in VSM to constrain the model, 
SM2R-derived runoff reduces the overall simulation bias at these four gauges (NRMSE = 0.15–0.22 for SM2R 
vs. 0.27–0.99 for ERA5L estimation; Tables 6 and 7), which makes the regression lines approach to the perfect 
1:1 lines in the scatterplots (Figures 10e–10h).

5. Discussion
5.1. Major Advantages of the Proposed SM2R Model

We summarize the advantages of the proposed SM2R model on the following three aspects. First, this model 
does not invoke any in-situ runoff observations, showing considerable potential for runoff analysis across poorly 
gauged and ungauged regions. Although past studies have developed different runoff model structures, SM2R 
is in a preliminary attempt to estimate basin-scale runoff from the knowledge of soil moisture information and 
independently from any observed runoff calibration. Ghajarnia et al. (2020) evaluated variations in hydrologic 
variables in more than 1,000 drainage basins across Europe during 1980–2010, and found a robust correla-
tion not only between monthly soil moisture and monthly runoff, but also between extreme soil moisture and 
runoff. This supports the key message that soil moisture information has considerable potential to provide addi-
tional constraints on runoff estimation. In particular, the coupled snow and glacier modules in the SM2R model 
strengthen the model's applicability across cryospheric regions that were generally excluded by the previous 
SM2RAIN structure (Brocca et al., 2013; Brocca et al., 2015; Ciabatta et al., 2018). To the best of our knowledge, 
this study provides the most comprehensive evaluation of runoff simulation at 20 gauges across seven Asian 
water towers with different geographic and climate characteristics. Findings from this study show new insights 
in PUB, which is particularly valuable over ungauged global water towers impacting water availability for about 
22% of the global population (Immerzeel et al., 2020).

Second, compared with hydrologic or land surface models, this approach is minimalistic in both the required 
forcing data and model parameters. The SM2R model is forced using three key variables (precipitation, PET, and 
VSM) from the global reanalysis ERA5L data, along with some additional information from soil texture, snow, 
and glaciers. Only seven independent parameters must be optimized and determined, the number of which is much 
smaller than other hydrologic or land surface models. Here we take a hydrologic model, Coupled Routing and 
Excess Storage Model-Snow (CREST-Snow) as a comparison. The original version of CREST-Snow, CREST, 
was a distributed hydrological model jointly developed by the University of Oklahoma and NASA SERVIR 
(Wang et al., 2011). CREST-Snow is an advanced version that coupled a snow and glacier module with CREST 
to improve its applicability in cryospheric regions (Chen et al., 2017), which has been widely used in runoff 
estimation and has achieved promising results over the Asian water towers (P. Han, Long, Fang, et al., 2019; Z. 
Han, Long, Fang, et al., 2019; Z. Han et al., 2020; Huang et al., 2020). Twenty-four parameters are required in 
CREST-Snow, including 16 parameters for runoff generation, 6 parameters in the snow module and two param-
eters in the glacier module. The large number of parameters increases the risk of equifinality, and requires more 
essentially accurate observations to constrain the model results and improve the model performance and parame-
ter reasonability. For example, CREST-Snow jointly uses observed runoff, observed/remote sensing-based snow 
water depth, remote sensing-based SCA, snow water equivalent, and terrestrial water storage changes to fully 
calibrate the model parameters. In contrast with most hydrologic models or LSMs, the minimalistic parameters in 
the SM2R model can largely reduce the uncertainty arising from equifinality and data inconsistency.

Third, appropriate mathematical functions of the relationships between flux variables and VSM largely improve 
model performance. Here we compare our study with Koster et al. (2018), who implemented a simple linear rela-
tionship between runoff and soil moisture to estimate basin-scale runoff at the 10-day timescale during the warm 
seasons in 2015–2017. Koster et al. (2018) assumed that fast runoff was proportional to the product of precipitation 
(P) and soil moisture (SM), whereas slow runoff was directly proportional to soil moisture, given by Equation 26.

𝑅𝑅 = 𝑅𝑅fast +𝑅𝑅show = 𝑝𝑝1 ⋅ 𝑃𝑃 ⋅ SM + 𝑝𝑝2 ⋅ SM + 𝑝𝑝3 (26)

To determine the three parameters, that is, p1, p2, and p3 in Equation 26, Koster et al. (2018) used observed precip-
itation and satellite-based soil moisture as the input, and relied on two thirds of observed runoff to calibrate this 
linear regression relationship (i.e., selecting 2 years during 2015–2017 for calibration and the other 1 year for 
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validation). Although calibrated by observed runoff, only 22 of 145 examined basins in the United States had a 
coefficient of determination (r 2) > 0.5 (corresponding to CC > 0.71), which performed less well than the results 
in our study (all examined gauges had r 2 > 0.5). In addition, the study period in Koster et al. (2018), that is, only 
warm seasons during 2015–2017 was much shorter than that of our study, that is, 40 years in total. Relatively 
poor performance in Koster et al. (2018) may be attributed to the simple linear regression that may not accu-
rately reveal the interaction between soil moisture and runoff. In addition, the above study did not involve a full 
consideration of water balance, particularly glacier and snow impact on runoff generation. Compared with Koster 
et al. (2018), this study largely improves the model structure and performance, showing the benefits of exploring 
relationships between soil moisture and runoff.

5.2. Caveats and Limitations

One caveat of the SM2R model is that it may not perform well at the daily or hourly timescale. This is because 
SM2R-derived runoff depends on the relationship between equivalent water input and soil moisture (Equations 15 
and 16), which may not be sufficiently robust at the daily or hourly timescale. Basin-averaged daily runoff lags 
behind daily precipitation, and an additional runoff routing system is necessary for high-temporal estimates. 
Therefore, this approach is likely to be more applicable for estimating long-term runoff variations at the monthly 
timescale than for analyses of high temporal resolution.

Soil information serves as the foundation to estimate runoff and, thus, accuracy of the SM2R model may be lower 
in regions with complex soil texture (e.g., headwaters of the Yangtze and Yellow river basins that show frozen soil 
degradation) than other drainage basins. Most root-zone soil moisture estimates, for example, ERA5L, SMAP-
L4 (Soil Moisture Active Passive L3), and LSM results from GLDAS (Global Land Data Assimilation System), 
show large uncertainty in soil moisture variations during the freezing/thawing period over frozen regions (Xing 
et al., 2021). In addition, degradation of permafrost and seasonally frozen ground may increase soil water capac-
ity, whose impacts on surface and subsurface runoff and soil evaporation are non-linear and complicated. More-
over, basin-scale soil porosity is larger after frozen soil degradation, and the uncertainty of porosity is directly 
related to runoff, as well as ET and drainage estimation (Equations 11, and 14–16). Therefore, uncertainties 
in ERA5L-based VSM and HSWD-based soil texture data combined with complex relationships between soil 
moisture and runoff process may translate to poor performance of the SM2R model over frozen regions. We 
acknowledge that more efforts are required in understanding the impacts of frozen soil thawing/freezing on runoff 
generation processes, and more representative soil texture data sets are necessary to improve runoff estimation 
over permafrost regions. However, this study mainly focuses on using available soil information to estimate 
runoff, and the task of improving accuracy of available soil data sets is out of scope.

It is worth noting the difference between PEq in glacier and snow modules and snow/glacier melt water. SM2R 
is a lumped model that uses basin-averaged estimates as forcings instead of distinguishing spatial variability in 
precipitation across snow/glacier covered areas. In SM2R, PEq represents the basin-averaged equivalent water 
input for the soil system, which can cause changes in soil moisture and regulate ET, drainage, and runoff. The 
glacier module considers the contribution from net glacier mass changes to soil water input, and the snow module 
shows the time lag of snowfall melting to liquid water. In contrast, in most hydrologic models, the glacier (snow) 
melt water is defined as runoff generated across the glacierized (snow-covered) areas, including runoff caused by 
not only net glacier mass changes (melted snowfall), but also large precipitation on glaciers (snow-covered areas). 
Therefore, this study does not explicitly calculate contributions from different runoff components as defined in 
hydrologic models. Instead, we consider the impacts of net glacier mass changes and melted snowfall individu-
ally, and input basin-averaged precipitation to force the model.

5.3. On the Forcing Data

Notwithstanding substantial progress in observational instrumentation, satellite retrievals, and modeling, accu-
rate estimation of hydrologic variables over the Asian water towers is challenging due to the complex terrains, 
sparse in situ observations, and a harsh environment. Past studies (Cheng et al., 2019; Xing et al., 2021) have 
assessed the accuracy of model-based soil moisture estimation (e.g., soil moisture derived from ERA5L, SMAP, 
and LSMs) based on gauge observations on the Tibetan Plateau, but evaluation results are not consistent across 
these studies due to differences between model-defined and observed soil moisture depth. Compared with the 
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storage variable (soil moisture), hydrologic fluxes have larger uncertainty, which may cause non-closure in water 
balance, particularly over high-elevation regions where ground observations/gridded estimates show rather 
limited representativeness. For example, Immerzeel et  al.  (2015) indicated that in the upper Indus basin, the 
amount of precipitation required to sustain the observed mass changes of large glacier systems should be far 
beyond the values observed at valley stations or estimated by gridded precipitation products (up to twice to 10 
times).

In this study, the latest global ERA5L reanalysis data provide major inputs for the SM2R model, including VSM, 
precipitation (snowfall and rainfall), and PET. Due to challenges in obtaining an accurate forcing baseline, we 
did not individually evaluate each forcing variable from ERA5L based on in-situ observations. Instead, here we 
illustrate the reliability and robustness of the SM2R model by analyzing the accuracy of changes in VSM, the 
effective constraint on runoff estimation, and the independent calculation of different hydrologic fluxes.

First, a reliable estimation of changes in VSM directly determines the objective function (Equation 18), and therefore 
is fundamental to constrain the SM2R model. We selected a drainage basin in each water tower to compare VSM and 
changes in VSM estimated from the ERA5L and LSMs (the average of NOAH-3.6 and CLSM-F2.5 from GLDAS) 
during the overlapping period of 2003–2020 (Figure 12). Although discrepancy in the magnitude of VSM exists, 
we find high consistency between the ERA5L and LSM-derived changes in VSM. Mean biases between ERA5L 
and LSM-derived VSM over the examined basins are 0.039 (Indus), 0.078 (Ganges), 0.070 (Brahmaputra), 0.114 
(Salween), 0.123 (Mekong), 0.187 (Yangtze), and 0.216 (Yellow) m 3/m 3. Such bias may be attributed to estimation 
uncertainty and different vertical levels of soil depth in each model output, that is, 0–289 cm for ERA5L, 0–200 cm 
for NOAH, and 0–100 cm for CLSM. However, mean bias in changes in VSM approaches 0 in all examined basins, 
indicating consensus in capturing soil moisture variations from different models. Because changes in VSM are 

Figure 12. Monthly VSM and changes in VSM estimated from ERA5L and LSM (the average of NOAH and CLSM) during 2003–2020 across the selected drainage 
basin in each Asian water tower. Red and blue lines show VSM estimated from ERA5L and LSM, respectively, on the left y-axis. Red and blue lines with dots show 
changes in VSM estimated from ERA5L and LSM, respectively, on the right y-axis.
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directly involved in the objective function to constrain the SM2R model, the reliability and accuracy of VSM vari-
ations could provide a promising way to optimize model parameters and largely support the reliability of SM2R.

Second, the effective constraint on runoff estimation is found based on reliable changes in VSM. Here we 
compared SM2R-derived runoff using two different precipitation inputs, that is, reanalysis-based ERA5L 
and satellite-based Integrated Multi-satellitE Retrievals for GPM (IMERG) during the overlapping period of 
2001–2020. Despite similar annual variability, difference in annual precipitation estimated from ERA5L and 
IMERG is 200–740 mm across seven Asian water towers (Figure 13), which is particularly large in the Indus 
(350 mm) and Ganges (740 mm) basins. The satellite-based IMERG product seems to largely underestimate 
precipitation in the Indus and Ganges basins (270 mm in the Indus and 1445 mm in the Ganges basin), given the 
observed runoff values (475 mm at Besham Qila and 1763 mm at Kali Khola station). With the exception of the 
Indus and Ganges water towers where IMERG precipitation is low, SM2R-derived runoff shows high consistency 
across drainage basins in the five other water towers (Figure 14). This indicates that large discrepancies in precip-
itation may be reduced through parameter optimization that depends on the effective constraint through reliable 
changes in VSM, which further supports the reliability and robustness of the SM2R model.

Third, hydrologic fluxes in the SM2R model are calculated independently, indicating that uncertainty in each kind 
of forcing variable can be limited to the related function. For example, different precipitation forcings only impact 
differences in runoff and the parameter e by Equation 15, but show little impacts on parameters related to ET and 
drainage estimation. Such independence reduces the risk of equifinality, providing a robust model structure for 

Figure 13. Annual precipitation estimated from reanalysis-based ERA5L and satellite-based IMERG during 2001–2020 (the overlapping period for the two data sets) 
over the representative drainage basins in each water tower.

Figure 14. SM2R-estimated monthly runoff forced by ERA5L (blue lines) and IMERG (red lines) precipitation during 2001–2020 across the drainage basins in the (a) 
Brahmaputra, (b) Salween, (c) Mekong, (d) Yangtze, and (e) Yellow water towers.
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water balance components. To further illustrate this, we compared differences 
in parameters related to ET (a in Equation 11) and drainage (b and c in Equa-
tion 14) using ERA5L and IMERG precipitation to force the SM2R model, and 
found very slight differences from changing the precipitation forcing (Table 8). 
The robustness of these parameters indicates that the estimation of ET and 
drainage is slightly impacted by the precipitation forcing, which further shows 
that uncertainty in individual forcings does not translate to all components esti-
mated in the SM2R model.

Overall, despite challenges in estimating accurate hydrologic forcings over 
the high-mountain Asian water towers, we find highly consistent changes in 
VSM among different models, which provides a reliable and fundamental 
constraint for the SM2R model. Consistent runoff is estimated using differ-
ent precipitation forcings, indicating the effectiveness of parameter optimiza-
tion constrained by changes in VSM. In addition, uncertainty in each kind of 
forcing can be limited to the estimation of a specific component rather than 
translate to all components in the SM2R model. These points support the 
reliability and robustness of the SM2R model, which provides a promising 
approach to constrain flux estimation using information from soil moisture.

6. Conclusions
This study proposes a data driven model, SM2R, to estimate long-term runoff from soil moisture dynamics. The 
approach is minimalistic, robust, and independent of any observed runoff for calibration. Twenty drainage basins 
across seven poorly-gauged Asian water towers were examined during the past four decades (1981–2020). To the 
best of our knowledge, this analysis provides the most comprehensive evaluation of long-term runoff variations 
to date for the Asian water towers. Relatively high correlation and low variance between SM2R-derived and 
observed monthly runoff are found at all gauges (CC ≥ 0.74 and NRMSE ≤ 0.22). The more comprehensive NSE 
and KGE indices perform well at most gauges (NSE > 0.56 and KGE > 0.46 at 16 gauges), indicating considera-
ble potential for runoff estimation in poorly-gauged and/or ungauged basins. Relatively low NSE and KGE values 
were found in basins with long and narrow drainage areas and widespread frozen ground, where the forcing data, 
particularly soil dynamics, may have large uncertainties.

Although the SM2R model is forced by ERA5L data in this study, runoff estimated from SM2R greatly outper-
forms that of the existing ERA5L runoff reanalysis. In particular, substantial improvements of SM2R-derived 
runoff occur in the Indus water tower which has high glacier concentration (NSE = 0.77–0.85 for SM2R simula-
tion vs. 0.17–0.35 for ERA5L estimation), and in the headwaters of the Yangtze and Yellow basins, which have 
widely distributed frozen soil (NSE = 0.14–0.31 for SM2R simulation vs. −34.31–−1.71 for ERA5L estimation). 
Without invoking any observations for calibration, we find that the key variable in constraining model parameters 
(i.e., changes in VSM) has the least uncertainty among forcing variables, and explains the reliability and good 
performance of the SM2R model.

The application of soil moisture information to derive hydrologic fluxes is in its infancy. This study is a prelim-
inary attempt to examine the potential of estimating basin-scale runoff using soil moisture, without requiring 
observations for calibration. The good performance of the proposed SM2R model across the high-mountain 
Asian water towers has valuable implications for understanding water security over this poorly-gauged region 
with complex terrain and climate. Moreover, no regional constraints are implemented in the SM2R model func-
tions or forcing data. This new approach may be applied to other water towers globally, providing valuable infor-
mation for PUB and water resources management.

Data Availability Statement
ERA5L reanalysis data (Muñoz Sabater, 2019) are available at https://cds.climate.copernicus.eu/cdsapp#!/data-
set/10.24381/cds.68d2bb30. Data sets from the HWSD (Fischer et al., 2008) are accessed at https://www.fao.
org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/. Glacier elevation 
changes (Berthier et al., 2021) are provided at https://doi.org/10.6096/13, and the RGI 6.0 glacier mask (RGI 

Table 8 
Differences in Parameters Related to ET (a) and Drainage (b and c) Using 
Precipitation Forcing Derived by ERA5L and IMERG

Water tower Outlet gauge Precipitation input a b c

Brahmaputra Nuxia ERA5L 6.03 13.11 15.77

IMERG 6.18 13.07 15.83

Salween Jiayuqiao ERA5L 5.62 60.35 11.46

IMERG 5.62 60.28 11.75

Mekong Changdu ERA5L 5.78 60.15 12.28

IMERG 5.74 60.16 12.25

Yangtze Zhimenda ERA5L 6.07 25.57 12.48

IMERG 6.16 25.53 12.62

Yellow Tangnaihai ERA5L 5.76 25.74 11.85

IMERG 5.95 25.68 12.09
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Consortium, 2017) can be accessed at https://doi.org/10.7265/4m1f-gd79. Percentages of persistent snow cover 
in each water tower (Immerzeel et  al.,  2019) are provided at https://doi.org/10.5281/zenodo.3521933. Soil 
moisture estimated from GLDAS NOAH [Beaudoing and Rodell,  2020; Rodell et  al.,  2004] and CLSM [B. 
Li et  al.,  2019; B. Li et  al.,  2020] land surface models can be accesses at https://disc.gsfc.nasa.gov/datasets/
GLDAS_NOAH025_M_2.1/summary and https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_DA1_D_2.2/
summary, respectively. Precipitation estimated from the IMERG product (Huffman et al., 2019) can be accessed 
at https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary. Runoff estimation results of this study (Li 
& Long, 2023) are available at https://doi.org/10.5281/zenodo.7505876.
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