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Abstract: Streaming data refers to a data collection scheme where ob-
servations arrive sequentially and perpetually over time, making it chal-
lenging to fit into computer memory for statistical analysis. The ordinary
least squares estimate for linear regression is sensitive to heavy-tailed er-
rors and outliers, which are commonly encountered in applications. In this
case, the Huber loss function is a useful criterion for robust regression. In
this paper, we propose robust regression estimation and variable selection
for streaming datasets. Unlike the renewable estimation generalized linear
regression for streaming datasets, however, the Huber loss function is only
first-order differentiable, which poses challenges to renewable estimation in
both computation and theoretical development. To address the challenge,
we introduce a new smoothed version of the Huber first derivative, which
admits a fast and scalable algorithm to perform optimization for streaming
data sets and achieves the best fitting of Huber function among different
versions. Theoretically, the proposed statistics are shown to have the same
asymptotic properties as the standard version computed on an entire data
stream with the data batches pooled into one data set, without additional
condition. The proposed methods are illustrated using current data and
the summary statistics of historical data. Both simulations and real data
analysis are conducted to illustrate the finite sample performance of the
proposed methods.
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1. Introduction

Our era has witnessed the massive explosion of data and a dramatic improve-
ment of technology in collecting and processing big data. Due to the explosive
growth of data from non-traditional sources such as mobile phones, social net-
works, and e-commerce, streaming data is becoming a core component of big
data analysis. As streaming data grows rapidly in volume and velocity, storing
and combing data becomes increasingly challenging. To reduce the demand on
computing memory and achieve real-time processing, the nature of streaming
data calls for the development of algorithms that require only “one pass” over
the data.

In big data streams, data arrives as {D1, . . . , Db} up to the b-th batch, where
Dj is the j-th batch data set with a sample size of nj . Then, the total sample
size is Nb =

∑b
j=1 nj . The data can exceed even a supercomputer’s memory

when the number of blocks b is large enough. The primary goal of processing
such streaming data is to sequentially update some statistics of interest upon
the arrival of a new data batch, in the hope of not only freeing up space for the
storage of massive historical individual-level data, but also providing real-time
inference and decision-making. Stochastic gradient descent (SGD) algorithm
(Robbins and Monro, 1951) and streaming stochastic variance reduced gradi-
ent (Streaming SVRG) algorithm (Frostig et al., 2015) in the field of machine
learning can quickly updates of parameter estimates along with sequentially ar-
riving data. However, they are not useful for statistical inference because only
part of the information matrix (i.e. the Hessian’s diagonal elements) is recorded
and updated over iterations (Luo and Song, 2020). Statisticians have proposed
several cumulative update methods specifically for the sequential update of re-
gression coefficient estimators. For example, Schifano et al. (2016) developed
online-updating algorithms for linear models and estimating equations. How-
ever, the estimation consistency of the methods in Schifano et al. (2016) has
been established based on a strong regularity condition: the total number of
streaming data sets b needs to satisfy the order of b = O(nc

j) with c < 1/3 for
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all js. This is a very strong restriction. For example, the estimation consistency
may not be guaranteed in the situation where streaming data sets arrive per-
petually with b → ∞. Luo and Song (2020) proposed renewable estimation for
the generalized linear model, which overcame the above unnatural restriction.
Other references can see Chen, Liu and Zhang (2019); Jiang and Yu (2022);
Luo, Zhou and Song (2022); Yang and Yao (2022) and Quan and Lin (2022).

Big data is easily contaminated by outliers and often suffer heavy-tailed er-
rors. This has a significant impact on many statistical inference processes. Ro-
bust procedures in statistical inference aim to produce reliable estimates that
are not seriously affected by outliers or small deviations from model assump-
tions. So it has great interest in practice. Huber’s M-estimator (Huber, 1973)
is one of the most widely used robust alternatives to the least square estima-
tion (LSE). Actually, Huber type of regression has recently received consider-
able interest in dealing with data outliers, see Fan, Li and Wang (2017); Zhou
et al. (2018); Sun, Zhou and Fan (2020) and among others, but these meth-
ods don’t deal with streaming datasets. Consider the following linear regression
model:

Y = X�β0 + ε, (1.1)

where X is a random vector of p-dimensional covariates, β0 is a vector of un-
known parameters of interest, and ε is an independent regression error with
zero mean and finite variance σ2. The distribution function F (·) of ε is sym-
metric, as is customary in classical robust statistics to ensure consistency of
regression M-estimators. The above settings of the model (1.1) are common
for Huber regression, see Yohai and Maronna (1979); Loh (2017); Jiang et al.
(2019); Zheng (2021); Loh (2021); Han et al. (2022a) and so on. Suppose that
the batches up to the b-th batch of streaming data can be pooled into one
data set. We denote N = Nb and let {Xi, Yi}Ni=1 be an i.i.d. sample from
(X,Y) in the model (1.1). Given some τ > 0, referred to as the robustifica-
tion parameter, Huber’s regression M-estimator for estimating β0 is defined as

β̂ = arg min
β

N∑
i=1

�τ
(
Yi − X�

i β
)
, (1.2)

where the Huber loss �τ (·) is defined as

�τ (r) =
{
r2/2, if |r| ≤ τ,
τ |r| − τ2/2, if |r| > τ.

(1.3)

The shape parameter τ is chosen to be 1.345σ in order to achieve 95% asymp-
totic relative efficiency for normally distributed data, see Western (1995); Huber
and Ronchetti (2009) and Lambert-Lacroix and Zwald (2011).

Note that the Huber loss function (1.3) is only first-order differentiable, so
existing procedures explored in the state of the art on the topic such as Luo
and Song (2020) does not work. Because their method requires its loss function
to be twice continuously differentiable in order to perform a Taylor expansion
of the estimating equation. While some newly developed alternative versions
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(Jiang et al., 2019; Yu, 2020) of Huber loss functions are not twice continuously
differentiable either, we adopt a smoothing technique to smooth the first de-
rive of the ordinary Huber loss function into a twice continuously differentiable
loss function, which helps to produce a renewable estimator for Huber regres-
sion. Chen (2007) and Hampel, Hennig and Ronchetti (2011) have also devel-
oped smoothing algorithms for Huber regression, but they have no theoretical
results, so the asymptotic effect cannot be verified. Our proposed smoothing
method is different from theirs, and the large sample properties of the method
are given.

Furthermore, many data streams are high-dimensional, such as genomic data
used to explain variation in biological phenotypes and their genetic profiles.
One of the major challenges in high-dimensional data analysis is deciding which
of the many potential forecasters to include in the model. Variable selection
methods have been successfully applied to high-dimensional regression prob-
lems, such as the least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996), smoothly clipped absolute deviation (SCAD) (Fan and Li,
2001), adaptive LASSO (Zou, 2006) and so on. Several algorithms were de-
veloped for analyzing high-dimensional streaming datasets. Fan et al. (2018a)
applied the truncated stochastic gradient descent to a linear model. Shi et al.
(2021) proposed an inference procedure for high-dimensional linear models via
recursive online-score estimation. Han et al. (2021) studied an online debiased
LASSO method for high-dimensional linear models with streaming datasets
based on the least squares method. Luo et al. (2021) and Ma, Lin and Gai
(2023) investigated online updating variable selection in a generalized linear
model with streaming datasets. Deshpande, Javanmard and Mehrabi (2023) con-
sidered a class of online estimators in a high-dimensional autoregressive model.
This paper also studies a renewable variable selection method of Huber regres-
sion.

In summary, we develop renewable Huber estimation and variable selection
for high-dimensional linear regression models. Our statistical contributions in-
clude: (i) the renewable Huber estimation and variable selection are real-time
estimations, which require only the availability of the current data batch in the
data stream and sufficient statistics on the historical data at each stage of the
analysis, and inference procedure that is highly scalable with respect to rapidly
growing data volumes; and (ii) the asymptotic properties of the proposed re-
newable Huber estimators under the conditions similar to those in an offline
setting and no restrictions on nj and b, which means that the new methods are
adaptive to the situation where streaming data sets arrive fast and perpetu-
ally.

The remainder of this paper is organized as follows. In Section 2, the renew-
able smoothing Huber estimation is proposed. The renewable high-dimensional
estimation method is developed in Section 3. Both simulation examples and the
application on real data are given in Section 4 to illustrate the proposed proce-
dures. We conclude this paper with a brief conclusion in Section 5. All technical
proofs are provided in Appendix A.
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2. Renewable parameter estimation

2.1. Smoothing the first derivative of the Huber loss function

Note that the first and second derivative functions of the Huber loss function
(1.3) are

�′τ (r) =
{
r, if |r| ≤ τ,
τ sign(r), if |r| > τ,

and

�′′τ (r) =
{

1, if |r| ≤ τ,
0, if |r| > τ,

where sign(·) is a sign function. Since �′′τ (·) is not a continuous function and the
Huber estimator β̂ (1.2) does not display an expression, so it is impossible to
construct a renewable estimator for streaming data sets based on the Huber loss
function (1.3). In order to construct a renewable estimator for streaming data,
we first smooth the derivative of the Huber loss function as

�̃′τ,h(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−τ, if r < −τ − h,
A(r, h, τ), if − τ − h ≤ r ≤ −τ + h,
r, if − τ + h < r < τ − h,
−A(−r, h, τ), if τ − h ≤ r ≤ τ + h,
τ, if r > τ + h,

where A(r, h, τ) is a smooth function and h is the bandwidth. If A(r, h, τ) sat-
isfies condition C1 in Section 2.3, for any r ∈ R, we have∣∣�′τ (r) − �̃′τ,h(r)

∣∣ ≤ h,

and the derivative of �̃′τ,h(r),

�̃′′τ,h(r) =

⎧⎪⎪⎨
⎪⎪⎩
A′(r, h, τ), if − τ − h ≤ r ≤ −τ + h,
1, if − τ + h < r < τ − h,
A′(−r, h, τ), if τ − h ≤ r ≤ τ + h,
0, if |r| > τ + h,

is a continuous bounded function, where A′(r, h, τ) is the derivative of A(r, h, τ).
For instance, we can take

A(r, h, τ) = h

4 − τ + 1
2(r + τ) + 1

4h (r + τ)2, (2.1)

which satisfies condition C1, and �̃′′τ,h(r) is a continuous bounded function (see
Fig. 1) as

�̃′′τ,h(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 + 1

2h (r + τ), if − τ − h ≤ r ≤ −τ + h,
1, if − τ + h < r < τ − h,
1
2 − 1

2h (r − τ), if τ − h ≤ r ≤ τ + h,
0, if |r| > τ + h.
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Fig 1. The figures of �′τ (r), �̃′τ,h(r), �′′τ (r) and �̃′′τ,h(r) with r rang from [−3, 3], τ = 1.345 and
h = 0.5.

By the definition of �̃′τ,h(r) and A(r, h, τ) in (2.1), it maintains the robustness
of the original Huber method because the value of �̃′τ,h(r) is τ sign(r) if |r| > τ+h

and �̃′τ,h(r) is a bounded function if |r| ≤ τ + h.
It should point out that the Pseudo-Huber loss function (Hartley and Zis-

serman, 2004) may also be used as a smooth approximation of the Huber loss
function, which has derivatives of all degrees. From its definition

�̄τ (r) = τ2(√1 + r2/τ2 − 1
)
,

we have
�̄′τ (r) = r/

√
1 + r2/τ2.

After comparing �′τ (r) and �̄′τ (r) in Fig. 2, we can find that there is a certain
deviation between �′τ (r) and �̄′τ (r), and only when r/τ is very large or small,
�′τ (r) and �̄′τ (r) are close. However, r often contains unknown parameters, so it
is difficult to choose a proper τ . Therefore, the Pseudo-Huber loss function is
not a good smoothing method for the Huber loss function, but our proposed
smoothed version of Huber loss function method can be very close to �′τ (r) as
h decreases.
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Fig 2. The figures of �′τ (r), �̃′τ,h(r) and �̄′τ (r) with r range from [−3, 3], τ = 1.345, h = 1 and
h = 0.5.

2.2. Huber estimation for streaming data sets

For model (1.1), Dj = {Xj ,Yj} is the j-th batch data set, where Yj =
(Y1,j , . . . , Ynj ,j)� and Xj = (X1,j , . . . ,Xnj ,j)�. We suppose that the (Xi,j , Yi,j)
for all is and js are i.i.d. samples from (X,Y). We begin with a simple scenario
of two batches of data D1 and D2, where D2 arrives after D1. We want to up-
date the initial Huber estimator (HE) β̂1 (or β̂∗

1) by (1.2) to a renewed HE β̂∗
2

without using any subject-level data but only some summary statistics from D1.
By (1.2), the HE β̂1 satisfies,

1
N1

U(D1; β̂1) = 0, (2.2)

where U(Dj ;β) =
∑

i∈Dj
Xi�

′
τ (Yi−X�

i β) and N1 = n1 is the sample size of D1.
Then, β̂∗

2 satisfies the following aggregated score equation:

1
N2

U
(
D1; β̂∗

2
)

+ 1
N2

U
(
D2; β̂∗

2
)

= 0. (2.3)

Solving equation (2.3) for β̂∗
2 actually involves the use of subject-level data

in both D1 and D2, where D1 may no longer to accessible. Our renewable esti-
mation is able to handle this issue. To proceed, by the Lemma 1 in Appendix A,
we can obtain

U
(
D1; β̂∗

2
)

= Ũ
(
D1; β̂∗

2 ;h1
)

+ Op(n1h1
√
p log p), (2.4)
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where Ũ(Dj ;β;h) =
∑

i∈Dj
Xi�̃

′
τ,h(Yi − X�

i β). Because �̃′′τ,h(·) exists, we can
take the first-order Taylor series expansion of the Ũ(D1; β̂∗

2 ;h1) around β̂1 as

Ũ
(
D1; β̂∗

2 ;h1
)

= Ũ(D1; β̂1;h1) + J(D1; β̂1;h1)
(
β̂∗

2 − β̂1
)

+ Op(Rn1), (2.5)

where Rn1 = ‖β̂∗
2 − β̂1‖2(n1h1 +

√
n1h1 log p+ n1‖β̂∗

2 − β̂1‖2 +
√
n1 log p‖β̂∗

2 −
β̂1‖1/2

2 ), J(Dj ;β;h) = ∂Ũ(Dj ;β;h)/∂β = −
∑

i∈Dj
XiX�

i �̃
′′
τ,h(Yi − X�

i β) and
‖ · ‖2 is the Euclidean norm. By (2.2), (2.4) and (2.5), we have

U
(
D1; β̂∗

2
)

= J(D1; β̂1;h1)
(
β̂∗

2 − β̂1
)

+ Op(n1h1
√
p log p + Rn1). (2.6)

By placing (2.6) into (2.3), we obtain

1
N2

J(D1; β̂1;h1)
(
β̂∗

2 − β̂1
)

+ 1
N2

U
(
D2; β̂∗

2
)

+ Op

(
n1h1

√
p log p + Rn1

N2

)
= 0.

When n1 is sufficiently large, under some mild regularity conditions, both β̂1 and
β̂∗

2 are consistent estimators of β0. Moreover, taking sufficiently small bandwidth
h1, the error term may be asymptotically ignored. Removing such a term, we
propose a new estimator β̂2 as a solution to the equation of the form

1
N2

J(D1; β̂1;h1)(β̂2 − β̂1) + 1
N2

U(D2; β̂2) = 0. (2.7)

Through equation (2.7), the initial β̂1 is renewed by β̂2 only using the historical
summary statistics, including sample variance matrix J(D1; β̂1;h1) and estimate
β̂1, instead of the subject-level raw data D1.

Generalizing the equation (2.7) to streaming data sets {D1, . . . , Db}, a re-
newable estimator β̂b of β0 is defined as a solution to the following incremental
estimation equation:

1
Nb

b−1∑
j=1

J(Dj ; β̂j ;hj)(β̂b − β̂b−1) + 1
Nb

U(Db; β̂b) = 0. (2.8)

2.3. Large sample properties

To establish the asymptotic properties of the proposed estimator, the following
technical conditions are imposed.

C1. A′(r, h, τ) is a continuous, monotonically increasing nonnegative function
on interval [−τ − h,−τ + h], and A(−τ − h, h, τ) = −τ , A(−τ + h, h, τ) =
−τ + h, A′(−τ − h, h, τ) = 0, A′(−τ + h, h, τ) = 1.

C2. The random vector X is sub-Gaussian: there exist c1 > 0 such that

P
(
|X�δ| ≥ c1‖δ‖2t

)
≤ 2 exp(−t),

for all δ ∈ Rp and t ≥ 0. Σ = E(XX�) is a positive definite matrix.
Moreover, assume that 0 < Λmin(Σ) ≤ Λmax(Σ) < ∞, where Λmin(Σ)
and Λmax(Σ) are the smallest and largest eigenvalues of Σ, respectively.
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C3. The density function f(·) and the variance of ε are bounded. In addition,
the distribution function F (·) of ε is symmetric.

Remark 2.1. Condition C1 is a mild condition on A(r, h, τ) for smoothing ap-
proximation. For example, (2.1) satisfies condition C1. Condition C2 assumes
a sub-Gaussian condition on the random covariates, which encompasses the
bounded case considered by Loh (2021). The boundedness condition in C3 is
assumed for asymptotic covariance, see condition C5 in Han et al. (2022b).

Theorem 2.1. Suppose that conditions C1–C2 are satisfied. If p = O(N c2
1 )

with 0 < c2 < 1, hj = O(N−1/2
j (log p)−1) with Nj =

∑j
i=1 ni for j = 1, . . . , b

and N1 → ∞, and τ ≥ cτσ with cτ being an appropriately constant, we have

‖β̂b − β0‖2 = Op(
√

p/Nb).

Remark 2.2. Here and also in Theorem 2.2 and Theorem 3.1, the condition
τ ≥ cτσ incorporates τ = 1.345σ as a constant. Based on the simulation studies
in Section 4.1, we could designate τ = 1.345Cτσ, where Cτ assumes values
within the range of (0.1, 20).

Theorem 2.2. Suppose that all conditions in Theorem 2.1 and condition C3
hold. If p = o(min{N1,

√
Nb/ logNb}) and hj = o((pNj)−1/2(log p)−1), for any

α ∈ R
p with α 	= 0, we have

√
Nbα

�(β̂b − β0)/σ̃
L−→ N (0, 1),

where σ̃2 = α�Σ−1αE[�′τ (ε)]2/{E[�′′τ (ε)]}2 and L−→ represents the convergence
in the distribution.

Note that the renewable estimator β̂b achieves optimal efficiency (
√
Nb-con-

sistent) and its asymptotic covariance matrix is the same as that of estimator
β̂ by (1.2), which is a direct one-time use of full data, as shown in Corollary 2.1
in He and Shao (2000).

Finally, we provide consistent analytical renewable estimators of the compo-
nents of the variances: Σ̂ = N−1

b

∑b
j=1

∑
i∈Dj

XiX�
i , Ê[�′τ (ε)]2 =

N−1
b

∑b
j=1

∑
i∈Dj

[�′τ (ε̂i,j)]2 and Ê[�′′τ (ε)] = N−1
b

∑b
j=1

∑
i∈Dj

�′′τ (ε̂i,j), where
ε̂i,j = Yi − X�

i β̂j . The consistency of these estimators follows from the law
of large numbers and consistency of β̂j for j = 1, . . . , b. As a result, a 1 − α
confidence interval for β0 is

[
β̂b − Φ−1(1 − α/2) × Ŝd, β̂b + Φ−1(1 − α/2) × Ŝd

]
, (2.9)

where Ŝd =
√

diag(Σ̂−1)Ê[�′τ (ε)]2/{Ê[�′′τ (ε)]}2/Nb and Φ(·) is the standard nor-
mal cumulative distribution function.
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2.4. Algorithm

Numerically, it is quite straightforward to find β̂b from (2.8) using the Newton-
Raphson method at the (r + 1)-th iteration:

β̂
(r+1)
b = β̂

(r)
b −

{
Ĵb−1 + J

(
Db; β̂(r)

b ;hb

)}−1Û(r)
b , (2.10)

where Ĵb−1 =
∑b−1

j=1 J(Dj ; β̂j ;hj) and Û(r)
b = Ĵb−1(β̂(r)

b − β̂b−1) + U(Db; β̂(r)
b ).

Recall (2.10), which can be computationally expensive for calculating the
inverse matrix of Ĵb−1 +J(Db; β̂(r)

b ;hb) under a large p and needs modifications
if it is ill-conditioned. For this reason, we use a Barzilai-Borwein (BB) method
proposed by Barzilai and Borwein (1988) to get a simple approximation of the
inverse matrix of Ĵb−1 + J(Db; β̂(r)

b ;hb). The BB method chooses ωr so that
ωrÛ(r)

b = (ω−1
r I)−1Û(r)

b approximates {Ĵb−1 + J(Db; β̂(r)
b ;hb)}−1Û(r)

b , where I
is a p× p unit matrix. Therefore, we compute ωr such that(

ω−1
r I

)
η(r) = Ψ(r),

where Ψ(r) = Û(r)
b − Û(r−1)

b and η(r) = β̂
(r)
b − β̂

(r−1)
b . Via least squares approx-

imations, we can obtain the ωr by

ωr = arg min
γ

‖η(r) − γΨ(r)‖2 = (η(r))�Ψ(r)

(Ψ(r))�Ψ(r) .

Moreover, the ωr computed in BB may sometimes vibrate drastically, causing
instability of the algorithm. Therefore, as suggested by Luo, Sun and Zhou
(2022), we take min{ωr, 10}. Consequently, the iteration of (2.10) by the BB
method is

β̂
(r+1)
b = β̂

(r)
b − min{ωr, 10}Û(r)

b . (2.11)

We summarize the general algorithm for the proposed renewable Huber esti-
mation by (2.11) as follows.

Note that in step 7 in Algorithm 1, we only need to save β̂b and Ĵb, which
are p× 1 and p× p, respectively. The scale of the data to be stored is (p + 1)p
instead of Nbp, which is the sample size of the streaming data sets up to b
batches. Because p = O(N c2

1 ) with 0 < c2 < 1 in Theorem 2.1, our method
greatly reduces the amount of data storage.

3. High-dimensional estimation for Huber regression with streaming
datasets

3.1. Methodologies

To avoid overfitting and improve the generalization ability, we first consider the
penalized Huber estimator (PHE) based on all data (the batches up to the b-th
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Algorithm 1 Renewable Huber estimation for streaming data sets.
1: Input: streaming data sets D1, . . . , Db, . . . , the Huber parameter τ and bandwidths hb

with b = 1, 2 . . .
2: Initialize: calculate β̂1 by minimizing (1.2) with D1 and compute J(D1; β̂1;h1);
3: for b = 2, 3, . . . do
4: read in data set Db;
5: select the initial estimator β̂

(0)
b = β̂b−1 and run the following iterations until conver-

gence:
β̂

(r+1)
b = β̂

(r)
b − min{ωr, 10}Û(r)

b ;

6: update Ĵb = Ĵb−1 + J(Db; β̂b;hb);
7: save β̂b and Ĵb, release β̂b−1, Ĵb−1 and data set Db from the memory;
8: end for
9: Output: β̂b for b = 2, 3, . . .

batch of streaming data can be pooled into one data set):

β̃∗ = arg min
β

{
1
N

N∑
i=1

�τ
(
Yi − X�

i β
)

+ λ‖β‖1

}
, (3.1)

where λ is a regularization parameter and ‖ · ‖1 is the absolute norm.
For streaming data sets, we begin with two batches of data D1 and D2. We

can obtain the initial PHE β̃1 (or β̃∗
1) based on D1 as:

β̃1 = arg min
β

{
1
N1

∑
i∈D1

�τ
(
Yi − X�

i β
)

+ λ1‖β‖1

}
.

By convex optimization theory, β̃1 also satisfies the first-order condition

− 1
N1

U(D1; β̃1) + λ1 sgn(β̃1) = 0, (3.2)

where sgn(β) = (sgn(β1), . . . , sgn(βp))� and sgn(βk) is the subgradient of |βk|.
Then, β̃∗

2 satisfies the following aggregated score equation:

− 1
N2

U
(
D1; β̃∗

2
)
− 1

N2
U
(
D2; β̃∗

2
)

+ λ2 sgn
(
β̃∗

2
)

= 0. (3.3)

By analysis similar to Section 2.2 and (3.2), we can get

U
(
D1; β̃∗

2
)

= N1λ1 sgn(β̃1) + J(D1; β̃1;h1)
(
β̃∗

2 − β̃1
)

+ 
N1 , (3.4)

where 
N1 is an asymptotically ignored error term. By substituting (3.4) into
(3.3) and removing the asymptotically ignored term 
N1 , we propose a new
estimator β̃2 as a solution to the equation of the form

− 1
N2

J(D1; β̃1;h1)(β̃2 − β̃1)−
1
N2

U(D2; β̃2)−
N1

N2
λ1 sgn(β̃1)+λ2 sgn(β̃2) = 0.

(3.5)
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Through equation (3.5), the initial β̃1 is renewed by β̃2 using statistics
J(D1; β̃1;h1), β̃1 and λ1 instead of D1.

Generalizing the above procedure to streaming data sets {D1, . . . , Db}, a
renewable penalized estimator β̃b of β0 is defined as a solution to the following
incremental estimating equation:

− 1
Nb

b−1∑
j=1

J(Dj ; β̃j ;hj)(β̃b − β̃b−1) −
1
Nb

U(Db; β̃b)

− Nb−1

Nb
λb−1 sgn(β̃b−1) + λb sgn(β̃b) = 0. (3.6)

The following theorem shows the asymptotic property of the estimator β̃b

in (3.6).

Theorem 3.1. Let p = o(exp(N c3
1 )) with c3 > 0, s = o(min{N1/ log p,√

Nb/ log p/ logNb}) and hj = o((Nj log p)−1/2) for j = 1, . . . , b. Take λb =
C̄
√

log p/Nb with C̄ being a sufficiently large constant and τ ≥ cτσ with cτ be-
ing an appropriately constant. Under conditions C1–C2 and N1 → ∞, we can
obtain

‖β̃b − β0‖2 = Op(
√
s log p/Nb),

where s is the number of non-zero coefficients {k : β0,k 	= 0}.
Theorem 3.1 shows that the renewable estimator β̃b in (3.6) achieves the same

asymptotic property as the estimator β̃∗ in (3.1), which is directly computed
using all the samples (n = Nb), see Theorem 1 in Loh (2021).

3.2. Algorithm

This section is devoted to computational algorithm and numerical implementa-
tion for (3.6). Note that (3.6) is equal to

β̃b = arg min
β

{
Hb(β) + λb‖β‖1

}
, (3.7)

where

Hb(β) = 1
Nb

∑
i∈Db

�τ
(
Yi − X�

i β
)
− 1

2Nb
(β − β̃b−1)�J̃b−1(β − β̃b−1)

− Nb−1

Nb
λb−1(β − β̃b−1)� sgn(β̃b−1), (3.8)

and J̃b−1 =
∑b−1

j=1 J(Dj ; β̃j ;hj). We describe a fast and easily implementable
method using the local adaptive majorization-minimization (LAMM) principle
(Fan et al., 2018b). We therefore locally majorize Hb(β) in (3.8) at β̃

(r)
b using

an isotropic quadratic function

gb
(
β|β̃(r)

b

)
= Hb

(
β̃

(r)
b

)
+
(
β − β̃

(r)
b

)�H′
b

(
β̃

(r)
b

)
+ φ

2 ‖β − β̃
(r)
b ‖2

2,
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where φ is a quadratic parameter such that gb(β̃(r+1)
b |β̃(r)

b ) ≥ Hb(β̃(r+1)
b ) and

H′
b(β) = − 1

Nb
U(Db,β) − 1

Nb
J̃b−1(β − β̃b−1) −

Nb−1

Nb
λb−1 sgn(β̃b−1). (3.9)

We can take β̃b−1 as an initial estimator β̃
(0)
b . For simplicity, we take sgn(r) =

sign(r) for |r| > 0 and 0 for r = 0.
To find the smallest φ such that gb(β̃(r+1)

b |β̃(r)
b ) ≥ Hb(β̃(r+1)

b ), the basic idea
of LAMM is to start from a relatively small isotropic parameter φ = φ0 =
10−6, and then successfully inflate φ by a factor ω > 1. We set ω = 10 in the
numerical studies. The isotropic form also allows a simple analytic solution to
the subsequent majorized optimization problem:

min
β

{(
β − β̃

(r)
b

)�H′
b

(
β̃

(r)
b

)
+ φ

2 ‖β − β̃
(r)
b ‖2

2 + λb‖β‖1

}
. (3.10)

It can be shown that (3.10) is minimized at

β̃
(r+1)
b = Soft

(
β̃

(r)
b − φ−1H′

b

(
β̃

(r)
b

)
, φ−1λb

)
, (3.11)

where Soft(μ,ν) is the soft-thresholding operator, defined by Soft(μ,ν) =
sign(μ)max(|μ| − ν, 0). A simple stopping criterion for (3.11) is ‖β̃(r+1)

b −
β̃

(r)
b ‖2 ≤ ε for a sufficiently small ε, say 10−4.
It is well known that the regularization parameter plays an important role

in the penalized method. Following Wang, Li and Tsai (2007), we use Bayesian
information criterion (BIC) to choose the optimal value of the regularization
parameter λb in (3.6). Specifically, the BIC statistic is defined as

BIC(λb) = ln
{
Hb(β̃b,λb

)
}

+ dfλb
ln(Nb)/Nb, (3.12)

where β̃b,λb
is the penalized estimator of β0 by (3.6) given λb and dfλb

is the
number of nonzero coefficients in β̃b,λb

.
We summarize the general algorithm for the proposed renewable PHE esti-

mation as follows.
Note that in step 14 in Algorithm 2, we only need to save β̃b, J̃b and λb.

The scale of data to be stored is p2 + p + 1 instead of Nbp (the sample size of
streaming data sets up to b batches). Our proposed method for variable selection
also greatly reduces the amount of data storage.

The convergence of Algorithms 1 and 2 can be found in Section 3 (pages
3303–3305) of Pan, Sun and Zhou (2021).

4. Numerical studies

In this section, we first use Monte Carlo simulation studies to assess the finite
sample performance of the proposed procedures and then demonstrate the ap-
plication of the proposed methods with a real data analysis. All programs are
written in R code.
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Algorithm 2 The renewable PHE estimation for streaming data sets.
1: Input: streaming data sets D1, . . . , Db, . . ., the Huber parameter τ and bandwidths hb

with b = 1, 2 . . .
2: Initialize: calculate β̃1 and λ1 with D1 and compute J(D1; β̃1;h1);
3: for b = 2, 3, . . . do
4: read in data set Db;
5: select the initial estimator β̃

(0)
b = β̃b−1 and choose λb via (3.12);

6: for r = 0, 1, . . . , until ‖β̃(r+1)
b − β̃

(r)
b ‖2 ≤ ε do

7: repeat
8: β̃

(r+1)
b = Soft(β̃(r)

b − φ−1H′
b(β̃

(r)
b ), φ−1λb);

9: if gb(β̃
(r+1)
b |β̃(r)

b ) < Hb(β̃
(r+1)
b ) then φ ← 10φ;

10: until gb(β̃
(r+1)
b |β̃(r)

b ) ≥ Hb(β̃
(r+1)
b );

11: return β̃
(r+1)
b and φ ← max{10−6, φ/10};

12: end for
13: update J̃b = J̃b−1 + J(Db; β̃b;hb), where β̃b = β̃

(r+1)
b ;

14: save β̃b, J̃b and λb, release β̃b−1, J̃b−1, λb−1 and data set Db from the memory;
15: end for
16: Output: β̃b for b = 2, 3, . . .

4.1. Simulation example 1: smoothing Huber estimation

In this section, we study the performance of the smoothing Huber estimation
(SHE) proposed in Section 2.1. We generate data from the following linear
model:

Y = X�β0 + ε, (4.1)

where X = (1,X1, . . . ,Xp−1)� is a p-dimensional covariate vector and Xj , j =
1, . . . , p − 1 are drawn from a normal distribution N(0, 1). The true value of
the parameter is β0 = (1, 1, 1, 1, 1, 0, . . . , 0)� with p = 10 and 100. Two error
distributions of ε are considered: a standard normal distribution N(0, 1) and a
t distribution with 5 degrees of freedom t(5). The sample size is N = 200.

To evaluate the performance of the estimation method, we calculate the mean
squared error (MSE): ‖β̂ − β0‖2. We also investigate the sensitivity of the pro-
posed SHE method to the bandwidth selection h and shape parameter τ . Recall
that the bandwidth is h = ChN

−1/2(log p)−1 in Theorem 2.1 with Ch > 0 being
the scaling constant. We take τ = 1.345Cτ σ̂, where σ̂ = median|ε̂−median(ε̂)|,
ε̂ = Y − X�β̂LS and β̂LS denotes the least squares estimator. He et al. (2023)
also considered this type of τ as τ = 1.345σ̂ (Cτ = 1). We vary the constant Ch

from 0.001 to 10 and Cτ from 0.1 to 20, respectively.
Simulation results of the SHE and Huber estimation (HE) by (1.2) are based

on 500 simulation replications. The results are shown in Table 1. As can be seen
from Table 1 that the MSEs of SHE and HE are very close under different errors
and dimensions p. In addition, SHE is insensitive to bandwidth h. The Huber
estimators (HE and SHE) depends on τ as expected, but the effect is not large
according to MSEs in Table 1.
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Table 1

The means and standard deviations (in parentheses) of MSEs under different Cτ , Ch,
methods, dimensions p and errors for simulation example 1.

N(0, 1) t(5)
Cτ Method Ch p = 10 p = 100 p = 10 p = 100
0.1 HE – 0.273 (0.061) 1.042 (0.101) 0.290 (0.070) 1.288 (0.142)

SHE 0.001 0.273 (0.061) 1.042 (0.101) 0.290 (0.070) 1.288 (0.142)
0.01 0.273 (0.061) 1.042 (0.101) 0.290 (0.070) 1.288 (0.142)
0.1 0.273 (0.061) 1.042 (0.101) 0.290 (0.070) 1.288 (0.142)
1 0.273 (0.061) 1.045 (0.100) 0.290 (0.070) 1.289 (0.142)
10 0.258 (0.057) 1.011 (0.102) 0.286 (0.069) 1.282 (0.144)

0.5 HE – 0.251 (0.057) 1.091 (0.104) 0.272 (0.065) 1.291 (0.142)
SHE 0.001 0.251 (0.057) 1.091 (0.104) 0.272 (0.065) 1.291 (0.142)

0.01 0.251 (0.057) 1.091 (0.104) 0.272 (0.065) 1.291 (0.142)
0.1 0.251 (0.057) 1.091 (0.104) 0.272 (0.065) 1.291 (0.142)
1 0.251 (0.056) 1.092 (0.105) 0.272 (0.065) 1.291 (0.142)
10 0.247 (0.057) 1.097 (0.105) 0.269 (0.064) 1.294 (0.143)

1 HE – 0.240 (0.060) 1.061 (0.102) 0.261 (0.063) 1.254 (0.137)
SHE 0.001 0.240 (0.060) 1.061 (0.102) 0.261 (0.063) 1.254 (0.137)

0.01 0.240 (0.060) 1.061 (0.102) 0.261 (0.063) 1.254 (0.137)
0.1 0.240 (0.060) 1.061 (0.102) 0.261 (0.063) 1.254 (0.137)
1 0.240 (0.060) 1.061 (0.102) 0.261 (0.063) 1.254 (0.137)
10 0.239 (0.056) 1.062 (0.103) 0.261 (0.062) 1.254 (0.137)

5 HE – 0.225 (0.051) 1.005 (0.096) 0.278 (0.066) 1.281 (0.151)
SHE 0.001 0.225 (0.051) 1.005 (0.096) 0.278 (0.066) 1.281 (0.151)

0.01 0.225 (0.051) 1.005 (0.096) 0.278 (0.066) 1.281 (0.151)
0.1 0.225 (0.051) 1.005 (0.096) 0.278 (0.066) 1.281 (0.151)
1 0.225 (0.051) 1.005 (0.096) 0.278 (0.066) 1.281 (0.151)
10 0.225 (0.051) 1.005 (0.096) 0.278 (0.066) 1.281 (0.151)

10 HE – 0.223 (0.050) 1.000 (0.095) 0.292 (0.069) 1.290 (0.157)
SHE 0.001 0.223 (0.050) 1.000 (0.095) 0.292 (0.069) 1.290 (0.157)

0.01 0.223 (0.050) 1.000 (0.095) 0.292 (0.069) 1.290 (0.157)
0.1 0.223 (0.050) 1.000 (0.095) 0.292 (0.069) 1.290 (0.157)
1 0.223 (0.050) 1.000 (0.095) 0.292 (0.069) 1.290 (0.157)
10 0.223 (0.050) 1.000 (0.095) 0.292 (0.069) 1.290 (0.157)

20 HE – 0.224 (0.051) 1.001 (0.097) 0.285 (0.068) 1.295 (0.174)
SHE 0.001 0.224 (0.051) 1.001 (0.097) 0.285 (0.068) 1.295 (0.174)

0.01 0.224 (0.051) 1.001 (0.097) 0.285 (0.068) 1.295 (0.174)
0.1 0.224 (0.051) 1.001 (0.097) 0.285 (0.068) 1.295 (0.174)
1 0.224 (0.051) 1.001 (0.097) 0.285 (0.068) 1.295 (0.174)
10 0.224 (0.051) 1.001 (0.097) 0.285 (0.068) 1.295 (0.174)

4.2. Simulation example 2: renewable smoothing Huber estimation

In this section, we study the performance of the renewable smoothing Huber
estimation (RSHE) proposed in Section 2.

The data are generated from the linear model (4.1). We fix the sample size of
each batch to n = 200 and vary the number of batches b = 100, 200, 500, 1000,
2000, 5000, 10000, 20000. Simulation results are based on 100 simulation replica-
tions. Based on the analysis in Simulation example 1, we adopt τ = 1.345σ̂ (Cτ =
1) as chose in He et al. (2023), where σ̂ is based on the first streaming data D1.

We first study the sensitivity of RSHE to bandwidth. Recall that the band-
width is hj = CN

−1/2
j (log p)−1 in Theorem 2.1 with C > 0 being the scaling
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Table 2

The means and standard deviations (in parentheses) of the MSEs (×100) under different C
for simulation example 2 with ε ∼ N(0, 1).

p b C = 0.001 0.01 0.1 1 10
10 100 2.242 (0.511) 2.260 (0.514) 2.261 (0.514) 2.261 (0.514) 2.261 (0.514)

200 1.643 (0.359) 1.642 (0.363) 1.642 (0.363) 1.642 (0.363) 1.642 (0.363)
500 1.019 (0.215) 1.022 (0.215) 1.022 (0.215) 1.022 (0.215) 1.022 (0.215)
1000 0.754 (0.156) 0.755 (0.156) 0.755 (0.156) 0.755 (0.156) 0.755 (0.156)
2000 0.517 (0.124) 0.518 (0.124) 0.518 (0.124) 0.518 (0.124) 0.518 (0.124)
5000 0.334 (0.070) 0.334 (0.070) 0.334 (0.070) 0.334 (0.070) 0.334 (0.070)
10000 0.240 (0.054) 0.240 (0.054) 0.240 (0.054) 0.240 (0.054) 0.240 (0.054)
20000 0.158 (0.038) 0.158 (0.037) 0.158 (0.037) 0.158 (0.037) 0.158 (0.037)

100 100 7.778 (0.624) 7.799 (0.619) 7.803 (0.618) 7.801 (0.618) 7.799 (0.618)
200 5.473 (0.426) 5.477 (0.414) 5.478 (0.414) 5.478 (0.414) 5.475 (0.414)
500 3.462 (0.250) 3.462 (0.249) 3.462 (0.249) 3.462 (0.248) 3.462 (0.248)
1000 2.419 (0.166) 2.414 (0.168) 2.414 (0.168) 2.414 (0.168) 2.414 (0.168)
2000 1.697 (0.139) 1.698 (0.138) 1.698 (0.138) 1.698 (0.138) 1.698 (0.138)
5000 1.090 (0.076) 1.091 (0.076) 1.091 (0.076) 1.091 (0.076) 1.091 (0.076)
10000 0.761 (0.039) 0.761 (0.040) 0.761 (0.040) 0.761 (0.040) 0.761 (0.040)
20000 0.556 (0.039) 0.556 (0.039) 0.556 (0.039) 0.556 (0.039) 0.556 (0.039)

Table 3

The means and standard deviations (in parentheses) of the MSEs (×100) under different C
for simulation example 2 with ε ∼ t(5).

p b C = 0.001 0.01 0.1 1 10
10 100 2.558 (0.590) 2.569 (0.604) 2.569 (0.605) 2.569 (0.605) 2.569 (0.605)

200 1.795 (0.364) 1.799 (0.366) 1.799 (0.366) 1.799 (0.366) 1.799 (0.366)
500 1.152 (0.269) 1.152 (0.267) 1.152 (0.267) 1.152 (0.267) 1.152 (0.267)
1000 0.800 (0.189) 0.799 (0.189) 0.799 (0.189) 0.799 (0.189) 0.799 (0.190)
2000 0.577 (0.114) 0.577 (0.114) 0.577 (0.114) 0.577 (0.114) 0.577 (0.114)
5000 0.359 (0.084) 0.359 (0.084) 0.359 (0.084) 0.359 (0.084) 0.359 (0.084)
10000 0.255 (0.057) 0.255 (0.057) 0.255 (0.057) 0.255 (0.057) 0.255 (0.057)
20000 0.178 (0.041) 0.178 (0.041) 0.178 (0.041) 0.178 (0.041) 0.178 (0.041)

100 100 8.352 (0.611) 8.371 (0.644) 8.374 (0.644) 8.373 (0.643) 8.368 (0.641)
200 5.828 (0.390) 5.839 (0.401) 5.839 (0.401) 5.839 (0.400) 5.837 (0.401)
500 3.664 (0.226) 3.670 (0.221) 3.670 (0.222) 3.670 (0.221) 3.670 (0.221)
1000 2.620 (0.191) 2.625 (0.194) 2.625 (0.194) 2.625 (0.194) 2.625 (0.194)
2000 1.830 (0.108) 1.830 (0.107) 1.830 (0.107) 1.830 (0.106) 1.830 (0.107)
5000 1.182 (0.079) 1.183 (0.079) 1.183 (0.079) 1.183 (0.079) 1.183 (0.079)
10000 0.829 (0.061) 0.828 (0.061) 0.828 (0.061) 0.828 (0.061) 0.828 (0.061)
20000 0.572 (0.030) 0.572 (0.030) 0.572 (0.030) 0.572 (0.030) 0.572 (0.030)

constant. We vary the constant C from 0.001 to 10. The results in Tables 2
and 3 show that RSHE is also insensitive to bandwidth h.

Furthermore, we compare our proposed RSHE (with hj = N
−1/2
j (log p)−1)

with the following two competitors: (1) the Huber estimator (HE) with full data;
and (2) the average Huber estimator (AHE) for the streaming data set, that is,
estimate each streaming data separately and then take its average. To evaluate
the performance of the three methods, we calculate the MSE and computation
time (in seconds). From Tables 4–7, the following conclusions can be drawn:

(1) In terms of the MSEs in Tables 4 and 5, we note that (i) all the estimators
are close to the true value because the MSEs are very small; and (ii) for



690 R. Jiang et al.

Table 4

The means and standard deviations (in parentheses) of the MSEs (×100) under different
methods for simulation example 2 with ε ∼ N(0, 1).

p b HE AHE RSHE
10 100 2.311 (0.510) 2.369 (0.504) 2.313 (0.512)

200 1.597 (0.356) 1.640 (0.351) 1.597 (0.355)
500 1.044 (0.238) 1.065 (0.250) 1.044 (0.238)
1000 0.729 (0.143) 0.751 (0.150) 0.730 (0.142)
2000 0.513 (0.130) 0.523 (0.140) 0.513 (0.130)
5000 0.329 (0.070) 0.334 (0.076) 0.329 (0.070)
10000 0.237 (0.047) 0.239 (0.045) 0.237 (0.047)
20000 0.163 (0.036) 0.166 (0.039) 0.163 (0.036)

100 100 7.722 (0.605) 10.349 (0.765) 7.806 (0.611)
200 5.542 (0.357) 7.532 (0.445) 5.579 (0.355)
500 3.447 (0.250) 4.878 (0.352) 3.455 (0.252)
1000 2.505 (0.206) 3.676 (0.297) 2.509 (0.205)
2000 1.728 (0.122) 2.715 (0.298) 1.730 (0.123)
5000 1.075 (0.081) 2.020 (0.227) 1.076 (0.081)
10000 0.780 (0.053) 1.740 (0.291) 0.780 (0.053)
20000 0.557 (0.037) 1.591 (0.194) 0.557 (0.037)

Table 5

The means and standard deviations (in parentheses) of the MSEs (×100) under different
methods for simulation example 2 with ε ∼ t(5).

p b HE AHE RSHE
10 100 2.542 (0.574) 2.633 (0.597) 2.541 (0.574)

200 1.764 (0.371) 1.836 (0.395) 1.764 (0.372)
500 1.137 (0.245) 1.185 (0.266) 1.137 (0.245)
1000 0.824 (0.164) 0.843 (0.166) 0.824 (0.164)
2000 0.561 (0.126) 0.590 (0.131) 0.561 (0.126)
5000 0.349 (0.081) 0.367 (0.085) 0.349 (0.081)
10000 0.247 (0.057) 0.256 (0.055) 0.247 (0.057)
20000 0.209 (0.040) 0.222 (0.041) 0.209 (0.040)

100 100 8.151 (0.495) 12.370 (0.853) 8.207 (0.503)
200 5.937 (0.454) 8.754 (0.627) 5.950 (0.460)
500 3.717 (0.268) 5.784 (0.417) 3.703 (0.267)
1000 2.672 (0.257) 4.283 (0.372) 2.670 (0.253)
2000 1.853 (0.126) 3.222 (0.359) 1.857 (0.125)
5000 1.158 (0.087) 2.408 (0.324) 1.158 (0.088)
10000 0.811 (0.061) 1.994 (0.287) 0.819 (0.061)
20000 0.613 (0.037) 1.832 (0.249) 0.613 (0.029)

any given number of batches b, p and errors, the MSEs of the proposed
estimator (RSHE) are very close to those of HE and better than those of
AHE.

(2) In terms of the computation time (in seconds) in Table 6, we note that (i)
under p = 10, the computation times of the RSHE are close to those of HE
and less than those of AHE, and (ii) under p = 100 and large b = 20000,
the RSHE are faster than HE under different errors.

(3) In Table 7, we study the coverage probability of the interval estimate in
(2.9). Since the results are similar for all components in β0, only the results
on β2 = 1 is reported in Table 7. It can be seen that the coverage proba-
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Table 6

The mean computing time (in seconds) under different methods for simulation example 2.

N(0, 1) t(5)
p b HE AHE RSHE HE AHE RSHE
10 100 0.008 0.039 0.022 0.008 0.040 0.027

200 0.017 0.079 0.042 0.016 0.080 0.042
500 0.052 0.197 0.099 0.042 0.199 0.097
1000 0.119 0.393 0.183 0.089 0.399 0.183
2000 0.269 0.784 0.301 0.191 0.794 0.302
5000 0.724 1.951 0.644 0.571 1.985 0.637
10000 1.467 3.935 1.205 1.125 3.965 1.191
20000 2.923 7.881 2.384 2.344 7.924 2.335

100 100 0.108 0.244 0.233 0.109 0.238 0.231
200 0.226 0.481 0.446 0.215 0.476 0.432
500 0.572 1.191 1.022 0.568 1.189 1.012
1000 1.124 2.380 1.962 1.126 2.377 1.950
2000 2.622 4.763 3.844 2.641 4.759 3.865
5000 7.053 12.048 8.878 7.887 11.898 8.951
10000 31.657 24.123 37.603 27.909 24.155 35.565
20000 400.682 48.203 81.181 433.805 47.913 76.680

Table 7

The coverage probability of 90% confidence interval under different batches b and errors for
simulation example 2.

Errors p b = 100 200 500 1000 2000 5000 10000 20000
N(0, 1) 10 0.95 0.87 0.84 0.88 0.92 0.90 0.85 0.84

100 0.91 0.90 0.95 0.91 0.91 0.91 0.92 0.90
t(5) 10 0.86 0.86 0.92 0.94 0.95 0.89 0.84 0.91

100 0.88 0.85 0.90 0.85 0.90 0.89 0.86 0.92

bility are all around the nominal level (0.90). Therefore, the construction
of confidence interval is valid.

4.3. Simulation example 3: renewable penalized smoothing Huber
estimation

In this section, we study the performances of the renewable penalized smooth-
ing Huber estimator (RPSHE) method proposed in Section 3. The data are
generated from the following linear model:

Y = X�β0 + 0.2ε,

where β0 = (1, 1, 1, 0.5, 0.3, 0.1, 0, . . . , 0) and p = 200. We fix the sample size
of each batch as n = 100. Other settings are the same as in simulation exam-
ple 2. According to Theorem 3.1, we choose hj = N

−1/2
j (log p)−1 and λj =

0.5τ
√

log p/Nj for simplicity.
To evaluate the performance of RPSHE, we calculate the MSE in simulation

example 1, the average proportion of nonzero coefficients correctly estimated
to be nonzero (denoted as C), and the average proportion of zero coefficients
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Table 8

The means and standard deviations (in parentheses) of the MSEs (×100) under different
batches b, methods and errors for simulation example 3.

Errors b PHE PSHE RPSHE
N(0, 1) 100 1.129 (0.190) 1.146 (0.205) 0.654 (0.188)

200 0.778 (0.099) 0.794 (0.112) 0.424 (0.124)
500 0.494 (0.071) 0.502 (0.076) 0.249 (0.069)
1000 0.354 (0.050) 0.378 (0.058) 0.180 (0.056)
2000 0.234 (0.057) 0.246 (0.064) 0.135 (0.034)
5000 0.158 (0.029) 0.165 (0.041) 0.088 (0.018)
10000 0.110 (0.025) 0.111 (0.023) 0.054 (0.019)
20000 0.073 (0.009) 0.087 (0.017) 0.030 (0.011)

t(5) 100 1.210 (0.162) 1.220 (0.165) 0.756 (0.157)
200 0.876 (0.151) 0.889 (0.159) 0.495 (0.139)
500 0.542 (0.088) 0.573 (0.126) 0.272 (0.077)
1000 0.402 (0.062) 0.424 (0.080) 0.203 (0.075)
2000 0.273 (0.034) 0.291 (0.041) 0.129 (0.043)
5000 0.177 (0.024) 0.206 (0.040) 0.069 (0.027)
10000 0.132 (0.018) 0.133 (0.018) 0.051 (0.014)
20000 0.093 (0.006) 0.096 (0.005) 0.045 (0.007)

Table 9

The means of IC under different batches b, methods and errors for simulation example 3.
N(0, 1) t(5)

b PHE PSHE RPSHE PHE PSHE RPSHE
100 0.112 0.113 0.010 0.113 0.113 0.015
200 0.109 0.109 0.009 0.119 0.120 0.001
500 0.108 0.108 0.005 0.116 0.116 0.007
1000 0.104 0.104 0.005 0.118 0.119 0.004
2000 0.109 0.110 0.003 0.106 0.106 0.003
5000 0.126 0.126 0.002 0.117 0.117 0.002
10000 0.119 0.119 0.001 0.127 0.127 0.001
20000 0.115 0.115 0.001 0.115 0.115 0.002

incorrectly estimated to be nonzero (denoted as IC). Note that C = 1 and
IC = 0 imply perfect recovery. Moreover, we compare our proposed method
with PHE in (3.1) and penalized smoothing Huber estimator (PSHE), which
is used the smoothing Huber loss instead of the ordinary Huber loss in (3.1).
PHE and PSHE are directly used all data. Simulation results are presented in
Tables 8 and 9 based on 100 simulation replications.

From Tables 8 and 9, the following conclusions can be drawn: (i) three es-
timators are close to the true value because the MSEs are very small and Cs
are all equal to one; (ii) the results of MSE and IC show that PSHE is close to
PHE; (iii) an interesting result is that the MSE values of RPSHE are less than
those of PHE and PSHE. The reason for this should be that RPSHE correctly
selects the variable (with smaller IC).

4.4. Real data example: YearPredictionMSD data set

As an illustration, we now apply the proposed methodologies in Sections 2 and 3
to the YearPredictionMSD dataset. The dataset is collected from the public
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Table 10

The MAPEs, MAPEs (Penalized) and NOVSs of the LSE, HE, SHE, AHE, and RSHE
estimators under different bs for real data example.

Method MAPE MAPE (Penalized) NOVS
LSE (All data) 6.906 6.906 83
QR (All data) 6.694 6.694 51
HE (All data) 6.709 6.743 89
SHE (All data) 6.698 6.743 89
RQR (b = 100) 6.703 6.704 52
RQR (b = 200) 6.718 6.717 52
RQR (b = 500) 6.821 6.819 50
RQR (b = 1000) 6.961 6.963 48
AHE (b = 100) 6.704 6.777 90
AHE (b = 200) 6.710 6.800 90
AHE (b = 500) 6.729 6.854 90
AHE (b = 1000) 6.759 6.911 90
RSHE (b = 100) 6.695 6.697 63
RSHE (b = 200) 6.696 6.705 54
RSHE (b = 500) 6.695 6.725 48
RSHE (b = 1000) 6.696 6.747 39

database of the UCI machine learning repository (https://archive.ics.uci.
edu/dataset/203/yearpredictionmsd). It is extracted from the million song
dataset, which consists of 515,345 songs ranging 1922–2011 with a peak in the
year 2000s. The research problem is to retrieve songs released in a particular
year based on the features of audio content. Feature extraction is perform using
Echo Nest API, and produces 90 audio features in total, including 12 timbre
averages and 78 timbre covariances. The average and covariance are calculated
over a set of segments of a song, where each segment being described as a 12-
dimensional timbre vector. The target value is the release year of song tracks
(between 1922 to 2011). Jiang and Yu (2022) also studied this dataset by quan-
tile regression (QR).

In this study, model (1.1), where the year of a song is the dependent vari-
able (Y) and the 12 average timbre and 78 timbre covariance variables are the
covariate variables, is used to fit the data. To evaluate the performances of our
proposed methods (RSHE and RPSHE) in Sections 2 and 3, we calculate the
mean absolute prediction error (MAPE) of the predictions. The first 500000
data points are used for the estimation, and the remaining 15345 data points
are used for the prediction. Therefore,

MAPE = 1
ñ

ñ∑
i=1

|Yi − Ŷi|,

where Ŷi is the fitted value of Yi and ñ = 15345.
We choose τ = 1.345σ̂, where σ̂ = median|ε̂ − median(ε̂)| anf ε̂ is an error

estimation based on LSE. In addition, we take hj = N
−1/2
j (log p)−1 for RSHE,

and hj = N
−1/2
j (log p)−1 and λj = 0.5τ

√
log p/Nj for RPSHE, respectively.

The results of MAPEs are presented in Table 10, and the table clearly shows

https://archive.ics.uci.edu/dataset/203/yearpredictionmsd
https://archive.ics.uci.edu/dataset/203/yearpredictionmsd
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that (i) in terms of MAPE and MAPE (Penalized) which is the MAPE based on
penalized estimation method, the performances of RSHE are very close to QR,
HE and SHE and better than LSE, AHE and RQR (Jiang and Yu, 2022), and
(ii) we also study the number of variables selected (NOVS), which indicates that
the LASSO produces a small model because the numbers of variables selected
under different batches are all smaller than the case with p = 90 variables.
The performances of penalized AHE method are as poor as expected because
of p = 90 under different batches.

5. Conclusion

The goal of this work is to develop renewable parameter estimation and variable
selection for a Huber regression with high-dimensional streaming data sets. One
key insight from this work is that a smoothing technique is adopted to trans-
form the ordinary Huber loss function into a twice continuously differentiable
loss function, which helps to produce renewable estimators for Huber regression.
The renewable estimators require only the availability of the current data batch
in the data stream and sufficient statistics on the historical data (the latest es-
timator, the cumulative Hessian matrix and the latest regularization parameter
for variable selection) in each stage of the analysis. Theoretically, the proposed
estimators achieve optimal efficiency, and their asymptotic properties are the
same as those of the estimators with full data. In addition, the proposed re-
newable methods are all free of the constraint on the number of batches, which
means that the new methods are adaptive to the situation where streaming data
sets arrive fast and perpetually. Algorithms 1–2 for proposed methods are all
fast and scalable.

It can be seen from numerical studies that the performance of smoothing Hu-
ber estimation is very close to that of ordinary Huber estimation, and smoothing
Huber estimation is not sensitive to bandwidth selection. In terms of estimation
accuracy, our proposed renewable parameter estimation and variable selection
are similar to the Huber estimator with full data directly, but the running time
is smaller than that of Huber estimator with full data directly.

For the analysis of streaming data sets, the smoothing technique of the sign
function for Huber estimator in this paper can be also used for other estimation
methods, such as logistic regression.

Appendix A: Proof of main results

Lemma 1. Assume that conditions C1 and C2 are satisfied, for any β ∈ R
p

and j = 1, . . . , b, we have∥∥U(Dj ;β) − Ũ(Dj ;β;hj)
∥∥

2 = Op(njhj
√
p log p).

Proof. Let Q = U(Dj ;β) − Ũ(Dj ;β;hj). For each 1 ≤ k ≤ p, based on the
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condition C1, we see that

e�k Q =
∑
i∈Dj

e�k Xi

{
�′τ
(
Yi − X�

i β
)
− �̃′τ,h

(
Yi − X�

i β
)}

≤
∑
i∈Dj

∣∣e�k Xi

∣∣∣∣�′τ(Yi − X�
i β

)
− �̃′τ,h

(
Yi − X�

i β
)∣∣

≤ h
∑
i∈Dj

∣∣e�k Xi

∣∣
where ek is the k-th one, other zero. Then by condition C2 and p → ∞, we
have

P(‖Q‖∞≥2c1njhj log p)≤P
(
hj max

1≤k≤p

∑
i∈Dj

∣∣e�k Xi

∣∣≥2c1njhj log p
)
≤2p−1→0,

where ‖·‖∞ is the maximal absolute value in the components of a vector. Finally,
by ‖Q‖2 ≤ √

p‖Q‖∞, we can prove the Lemma 1.

Lemma 2. Assume that conditions C1–C3 are satisfied. Then, for any j =
1, . . . , b, we have∥∥∥∥∑

i∈Dj

XiX�
i �̃

′′
τ,hj

(εi) −
∑
i∈Dj

XiX�
i �

′′
τ (εi)

∥∥∥∥ = Op(njhj +
√
njhj log p),

where ‖ · ‖ is spectral norm.

Proof. By the proof of Lemma 3 in Cai, Zhang and Zhou (2010), we have∥∥∥∥∑
i∈Dj

XiX�
i �̃

′′
τ,hj

(εi) −
∑
i∈Dj

XiX�
i �

′′
τ (εi)

∥∥∥∥
≤ 5 sup

k≤C1

∣∣∣∣ν�
k

∑
i∈Dj

XiX�
i

{
�̃′′τ,hj

(εi) − �′′τ (εi)
}
νk

∣∣∣∣,
where ν1, . . . ,νC1 are some non-random vectors with ‖νk‖2 = 1 and C1 ≤ 5p.
Now let

Hk =
∑
i∈Dj

(
ν�
k Xi

)2{
�̃′′τ,hj

(εi) − �′′τ (εi)
}
.

By conditions C1–C3 and a large enough constant C2, we have

E(Hk) =
∑
i∈Dj

E
[(
ν�
k Xi

)2{
�̃′′τ,hj

(εi) − �′′τ (εi)
}]

≤
∑
i∈Dj

E
(
ν�
k Xi

)2E∣∣�̃′′τ,hj
(εi) − �′′τ (εi)

∣∣
≤ Λmax(Σ)

∑
i∈Dj

E
{
I(−τ − hj ≤ εi ≤ −τ + hj) + I(τ − hj≤εi≤τ + hj)

}
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= 2Λmax(Σ)
∑
i∈Dj

{
P (−τ − hj≤εi≤−τ + hj) + P(τ − hj ≤ εi ≤ τ + hj)

}
= njΛmax(Σ)

{
F(−τ + hj) − F(−τ − hj) + F(τ + hj) − F(τ − hj)

}
= 2hjnjΛmax(Σ)

{
f(s1) + f(s2)

}
≤ C2hjnj ,

where s1 and s2 are in (−τ − hj ,−τ + hj) and (τ − hj , τ + hj), respectively.
Then by Lemma 1 in Cai and Liu (2011), we can obtain that

sup
k

P
(∣∣Hk − E(Hk)

∣∣ ≥ 4
√
hjnj log p

)
≤ p−3.

Thus, we can prove the Lemma.

Lemma 3. Assume that conditions C1–C3 are satisfied. Then, for any β1,β2 ∈
R

p and j = 1, . . . , b, we have∥∥J(Dj ;β2;hj) − J(Dj ;β1;hj)
∥∥ = Op

(
Rj(β1,β2)

)
,

where Rj(β1,β2) = njhj +
√

njhj log p+nj‖β2−β1‖2 +
√

nj log p‖β2−β1‖1/2
2 .

Proof. Denote r1i = X�
i (β1−β0), r2i = X�

i (β2−β0). Without loss of generality,
we assume that r1i ≤ r2i (the same result can be obtained in other cases). By
conditions C1–C3 and a large enough constant C3, we have

E
[
ν�
k

{
J(Dj ;β2;hj) − J(Dj ;β1;hj)

}
νk

]
=

∑
i∈Dj

E
[(
ν�
k Xi

)2{
�̃′′τ,hj

(εi − r1i) − �̃′′τ,hj
(εi − r2i)

}]

≤ Λmax(Σ)
∑
i∈Dj

E
∣∣�̃′′τ,hj

(εi − r1i) − �̃′′τ,hj
(εi − r2i)

∣∣
≤ Λmax(Σ)

∑
i∈Dj

E
{
I(−τ − hj + r1i ≤ εi ≤ −τ + hj + r2i)

+ I(τ − hj + r1i ≤ εi ≤ τ + hj + r2i)
}

≤ C3nj(2hj + ‖β2 − β1‖2).

By using the method of Lemma 2, we can prove this lemma.

Proof of Theorem 2.1. Define a function

Gb(β) = 1
Nb

b−1∑
j=1

J(Dj ; β̂j ;hj)(β − β̂b−1) + 1
Nb

U(Db;β). (A.1)

Thus,

Gb(β̂b)−Gb(β0) = 1
Nb

b−1∑
j=1

J(Dj ; β̂j ;hj)(β̂b−β0)+
1
Nb

{
U(Db; β̂b)−U(Db;β0)

}
.

(A.2)
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Considering the second term in (A.2), By Lemma 1, we have

U(Db; β̂b) − U(Db;β0)
= Ũ(Db; β̂b;hb) − Ũ(Db;β0;hb) + Op(nbhb

√
p log p)

= J(Db;β0;hb)(β̂b − β0) +
{
J(Db; β̄;hb) − J(Db;β0;hb)

}
(β̂b − β0)

+ Op(nbhb
√
p log p), (A.3)

where β̄ lies in between β̂b and β0. By Lemma 3, we can obtain
∥∥J(Db; β̄;hb) − J(Db;β0;hb)

∥∥ = Op

(
Rb(β̂b,β0)

)
. (A.4)

Using equation (A.4), we can rewrite (A.3) as

U(Db; β̂b) − U(Db;β0) = J(Db;β0;hb)(β̂b − β0) + Op(R̂b), (A.5)

where R̂j = njhj
√
p log p + Rj(β̂j ,β0)‖β̂j − β0‖2 for j = 1, . . . , b. Combining

equations (A.2) and (A.5) yields

Gb(β̂b) − Gb(β0)

= 1
Nb

{
b−1∑
j=1

J(Dj ; β̂j ;hj) + J(Db;β0;hb)
}

(β̂b − β0) + 1
Nb

Op(R̂b). (A.6)

According to equation (2.8), the renewable estimator β̂b satisfies

Gb(β̂b) = 0. (A.7)

From equations (A.1), (A.6) and (A.7), we know that

Gb(β0) = 1
Nb

b−1∑
j=1

J(Dj ; β̂j ;hj)(β0 − β̂b−1) + 1
Nb

U(Db;β0)

= 1
Nb

{
b−1∑
j=1

J(Dj ; β̂j ;hj) + J(Db;β0;hb)
}

(β0 − β̂b) + 1
Nb

Op(R̂b).

It follows that

− 1
Nb

{
b−1∑
j=1

J(Dj ; β̂j ;hj) + J(Db;β0;hb)
}

(β0 − β̂b)

+ 1
Nb

b−1∑
j=1

J(Dj ; β̂j ;hj)(β0 − β̂b−1)

+ 1
Nb

U(Db;β0) + 1
Nb

Op(R̂b) = 0. (A.8)
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By U(D1; β̂1) = 0 and Lemmas 1 and 3, we have

U(D1;β0) = Ũ(D1;β0;h1) + Op(n1h1
√
p log p)

= Ũ(D1; β̂1;h1) + J(D1; β̂1;h1)(β0 − β̂1) + Op(R̂1)
= U(D1; β̂1) + J(D1; β̂1;h1)(β0 − β̂1) + Op(R̂1)
= J(D1; β̂1;h1)(β0 − β̂1) + Op(R̂1). (A.9)

By (2.7), we can obtain

U(D2;β0) = Ũ(D2;β0;h2) + Op(n2h2
√
p log p)

= Ũ(D2; β̂2;h2) + J(D2; β̂2;h2)(β0 − β̂2) + Op(R̂2)
= U(D2; β̂2) + J(D2; β̂2;h2)(β0 − β̂2) + Op(R̂2)
= −J(D1; β̂1;h1)(β̂2 − β̂1) + J(D2; β̂2;h2)(β0 − β̂2) + Op(R̂2).

(A.10)

Thus, combining (A.9) and (A.10),

U(D1;β0) + U(D2;β0)

=
{
J(D1; β̂1;h1) + J(D2; β̂2;h2)

}
(β0 − β̂2) +

2∑
j=1

Op(R̂j). (A.11)

Similarly to equation (A.11), at the (b− 1)-th data batch, it is easy to shown
that

b−1∑
j=1

U(Dj ;β0) =
b−1∑
j=1

J(Dj ; β̂j ;hj)(β0 − β̂b−1) +
b−1∑
j=1

Op(R̂j). (A.12)

Plugging equation (A.12) into equation (A.8), we get

− 1
Nb

{
b−1∑
j=1

J(Dj ; β̂j ;hj) + J(Db;β0;hb)
}

(β0 − β̂b)

+ 1
Nb

b∑
j=1

U(Dj ;β0) + 1
Nb

b∑
j=1

Op(R̂j) = 0. (A.13)

Under condition N1 → ∞, by Corollary 2.1 in He and Shao (2000), β̂1 is
√

p/N1-
consistent. If {β̂j}b−1

j=1 are
√
p/Nj-consistent, by Lemma 4 and conditions hj =

O(N−1/2
j (log p)−1) for j = 1, . . . , b hold, we have

1
Nb

b∑
j=1

Op(R̂j)= 1
Nb

Op

(
b∑

j=1
njhj

√
p log p

)
=

√
p

Nb
Op

(
b∑

j=1

nj√
Nj

)
=Op

(√
p

Nb

)
,

(A.14)
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where the last equation is based on
∑b

j=1 nj/
√
Nj ≤ 2

√
Nb by Lemma 3 in Han

et al. (2021).
It is easy to prove that Nb

−1{
∑b−1

j=1 J(Dj ; β̂j ;hj) + J(Db;β0;hb)} = Op(1).
By (A.9) in Zhou et al. (2018), we can obtain∥∥∥∥∥ 1

Nb

b∑
j=1

U(Dj ;β0)

∥∥∥∥∥
2

= Op(
√
p/Nb). (A.15)

Then, equations (A.13)–(A.15), we can obtain ‖β̂b − β0‖2 = Op(
√

p/Nb).

Proof of Theorem 2.2. By Theorem 2.1 and Lemmas 2 and 3, we can obtain

J(Dj ; β̂j ;hj) = J(Dj ;β0;hj) + Op

(
Rj(β̂j ,β0)

)
= −

∑
i∈Dj

XiX�
i �

′′
τ (εi) + Op

(
Rj(β̂j ,β0)

)
.

Then, we have

1
Nb

{
b−1∑
j=1

J(Dj ; β̂j ;hj) + J(Db;β0;hb)
}

= − 1
Nb

∑
i∈Nb

XiX�
i �

′′
τ (εi) + 1

Nb

b∑
j=1

Op

(
Rj(β̂j ,β0)

)
= −ΣE

[
�′′τ (ε)

]
+ op(1). (A.16)

Plugging (A.16) into equation (A.13), and by conditions p =
o(min{N1,

√
Nb/ logNb}) and hj = o((pNj)−1/2(log p)−1), we have

√
NbE

[
�′′τ (ε)

]
Σ(β̂b − β0) = 1√

Nb

b∑
j=1

U(Dj ;β0) + op(1).

Thus, by the central limit theorem, we prove the theorem.

Proof of Theorem 3.1. By equation (3.2) and the proof of Lemma 1, we have

e�k U(D1;β0) = e�k Ũ(D1;β0;h1) + Op(n1h1 log p)
= e�k Ũ(D1; β̃1;h1) + e�k J(D1; β̃1;h1)(β0 − β̃1) + Op(R̃1)
= e�k U(D1; β̃1) + e�k J(D1; β̃1;h1)(β0 − β̃1) + Op(R̃1)
= e�k J(D1; β̃1;h1)(β0 − β̂1) + e�k N1λ1 sgn(β̃1) + Op(R̃1),

(A.17)

where R̃j = njhj log p + Rj(β̃j ,β0)‖β̃j − β0‖2. By (3.5), we can obtain

e�k U(D2;β0) = e�k U(D2; β̃2) + e�k J(D2; β̃2;h2)(β0 − β̃2) + Op(R̃2)
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= −e�k J(D1; β̃1;h1)(β̃2 − β̃1) + e�k J(D2; β̃2;h2)(β0 − β̃2)
+ e�k N2λ2 sgn(β̃2) − e�k N1λ1 sgn(β̃1) + Op(R̃2). (A.18)

Thus, combining (A.17) and (A.18),

e�k U(D1;β0) + e�k U(D2;β0)

= e�k
{
J(D1; β̃1;h1)+J(D2; β̃2;h2)

}
(β0−β̃2)+e�k N2λ2 sgn(β̃2)+

2∑
j=1

Op(R̃j).

(A.19)

Under conditions in Theorem 3.1, we have ‖β̃1 − β0‖2 = Op(
√

s log p/N1)
by Loh (2021). If ‖β̃j − β0‖2 = Op(

√
s log p/Nj) for j = 1, . . . , b − 1, then by

(A.19) and condition hj = o((Nj log p)−1/2), at the (b − 1)-th data batch, it is
easy to shown that

b−1∑
j=1

e�k U(Dj ;β0)

=
b−1∑
j=1

e�k J(Dj ; β̃j ;hj)(β0 − β̃b−1) + e�k Nb−1λb−1 sgn(β̃b−1)

+
b−1∑
j=1

Op

(
njhj log p + snj log p/Nj + (s log p/Nj)3/4

√
nj log p

)
. (A.20)

Plugging equation (A.20) into equation (3.9), we get

e�k H′
b(β0) = − 1

Nb
e�k U(Db,β0) −

1
Nb

e�k J̃b−1(β0 − β̃b−1)

− Nb−1

Nb
λb−1e�k sgn(β̃b−1)

= − 1
Nb

b∑
j=1

e�k U(Dj ;β0)

+ 1
Nb

b−1∑
j=1

Op

(
njhj log p + snj log p/Nj + (s log p/Nj)3/4

√
nj log p

)
.

(A.21)

By conditions s logNb

√
log p/Nb → 0 and hj = o((Nj log p)−1/2) for j =

1, . . . , b, (A.21) can be rewritten as

e�k H′
b(β0) = − 1

Nb

b∑
j=1

e�k U(Dj ;β0) + op(
√

log p/Nb). (A.22)
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Similar to the proof (B.1) in Loh (2021), for large enough constant C̄, we can
obtain ∥∥H′

b(β0)
∥∥
∞ ≤ λb/2, (A.23)

with probability tending to one. By equations (3.8) and (3.9), we have

Hb(β̃b) − Hb(β0) − (β̃b − β0)�H′
b(β0)

= 1
Nb

∑
i∈Db

�τ
(
Yi − X�

i β̃b

)
− 1

Nb

∑
i∈Db

�τ
(
Yi − X�

i β0
)

+ 1
Nb

(β̃b − β0)�U(Db;β0) −
1

2Nb
(β̃b − β0)�J̃b−1(β̃b − β0). (A.24)

Based on equation (3.7), we have the basic inequality

Hb(β̃b) + λb‖β̃b‖1 ≤ Hb(β0) + λb‖β0‖1. (A.25)

Hence, by (A.24) and (A.25), and the convexity of �τ (·), we can obtain

(β̃b − β0)�H′
b(β0) ≤ Hb(β̃b) − Hb(β0) ≤ λb(‖β0‖1 − ‖β̃b‖1).

Therefore, by (A.23), with probability tending to one, we have

0 ≤ λb(‖β0‖1 − ‖β̃b‖1) +
∥∥H ′

b(β0)
∥∥
∞‖β̃b − β0‖1

≤ λb

(
‖β0‖1 − ‖β̃b‖1 + 1

2‖β̃b − β0‖1

)
. (A.26)

Since

‖β0‖1 − ‖β̃b‖1 = ‖β0,S‖1 − ‖β̃b,S‖1 − ‖β̃b,Sc‖1

≤ ‖(β̃b − β0)S‖1 − ‖(β̃b − β0)Sc‖1. (A.27)

Combing (A.26) and (A.27),

‖(β̃b − β0)Sc‖1 ≤ 3‖(β̃b − β0)S‖1, (A.28)

with probability tending to one. Based on (A.28) and by the proof (B.2) in Loh
(2021), we can obtain

1
nb

∑
i∈Db

�τ
(
Yi − X�

i β̃b

)
− 1

nb

∑
i∈Db

�τ
(
Yi − X�

i β0
)

+ 1
nb

(β̃b − β0)�U(Db;β0)

≥ 1
4Λmin(Σ)‖β̃b − β0‖2

2, (A.29)

with probability tending to one. Note that the last term in (A.24), with proba-
bility tending to one, we have

−(β̃b − β0)�J̃b−1(β̃b − β0) =
b−1∑
j=1

∑
i∈Dj

{
X�

i (β̃b − β0)
}2

�̃′′τ,hj

(
Yi − X�

i β̃j

)
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≥
b−1∑
j=1

∑
i∈Dj

{
X�

i (β̃b − β0)
}2I

(
|Yi − X�

i β̃j |≤τ − hj

)

≥
b−1∑
j=1

∑
i∈Dj

{
X�

i (β̃b − β0)
}2I

(
|Yi − X�

i β̃j | ≤ τ/2
)

≥ σ2

τ2 Nb−1Λmin(Σ)‖β̃b − β0‖2
2, (A.30)

where σ2 = V ar(ε) and the last inequality be proved by using the inequality
(B.15) in Loh (2021). By (A.24), (A.29) and (A.30), with probability tending
to one, we have

Hb(β̃b) − Hb(β0) − (β̃b − β0)�H′
b(β0) ≥ C4‖β̃b − β0‖2

2, (A.31)

where C4 = min{1/4, σ2/(2τ2)}Λmin(Σ). Therefore, the (A.31) together with
the basic inequality (A.25) implies that

(β̃b − β0)�H′
b(β0) + C4‖β̃b − β0‖2

2 ≤ Hb(β̃b) − Hb(β0) ≤ λb(‖β0‖1 − ‖β̃b‖1),
(A.32)

so combing with inequalities (A.23) and (A.32), we can obtain

C4‖β̃b − β0‖2
2 ≤

∥∥H′
b(β0)

∥∥
∞‖β̃b − β0‖1 + λb(‖β0‖1 − ‖β̃b‖1)

≤ λb

(
1
2‖β̃b − β0‖1 +

∥∥(β̃b − β0)S
∥∥

1 −
∥∥(β̃b − β0)Sc

∥∥
1

)

≤ 3
2λb

∥∥(β̃b − β0)S
∥∥

1 ≤ 3
2λb

√
s‖β̃b − β0‖2,

implying that

‖β̃b − β0‖2 ≤ 3λb
√
s

2C4
,

with probability tending to one. Therefore, we can obtain

‖β̃b − β0‖2 = Op(
√

s log p/Nb).

This concludes the proof of the theorem.
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