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A B S T R A C T

This paper investigates a multi-period stochastic cash flow inventory problem with the aim of maximizing the
long-term survival probability, which may be the objective of some retailers especially in periods of economic
distress. Demand in each period is stochastic and can be non-stationary. In order to avoid too many lost sales
under this objective, we introduce a joint chance constraint requiring the probability of no stockouts during the
planning horizon to be higher than a specified service level. We develop a scenario-based model and a sample
average approximation (SAA) model to solve the problem. A statistical upper bound on the survival probability
based on SAA is provided and we discuss upper and lower bounds for the problem based on stochastic dynamic
programming. We also propose a rolling horizon approach with service rate updating to test the out-of-sample
performance of the two stochastic models and solve problems with long planning horizons. We test the two
methods in large numerical tests and find that the rolling horizon approach together with the stochastic models
can solve realistically sized problems in reasonable time.
1. Introduction

While many retailers set the objective of maximizing profits or
minimizing costs, they may still want to maximize their survival prob-
abilities in certain periods. For example, for some newly created firms,
the probability of survival rather than profit is the main objective until
they become established (Archibald et al., 2002, 2007, 2015). For some
so-called nanostores in emerging markets, survival can also have a very
important influence on operational decisions (Boulaksil and van Wijk,
2018). Moreover, in periods of economic distress such as the economic
crisis caused by the Covid-19 pandemic in recent years, some industries
like tourism, hospitality and retailing can be greatly affected. During
the crisis, survival becomes more important than maximizing profit for
some businesses in these industries. Nevertheless, we find that placing
too much emphasis on maximizing survival probabilities, as in some
related works (e.g., Archibald et al., 2002), may result in a high lost
sale rate. This is illustrated in Fig. 1 with a numerical example when
initial inventory is 0.

Fig. 1 shows the survival probability, service level and optimal
ordering quantity in the first period of a survival maximizing strategy
determined by the model of Archibald et al. (2002) as the initial cash
position of the retailer varies. As the initial cash position increases
from 0 to 75, we observe a gradual increase in the both survival

∗ Corresponding author at: Business School, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
E-mail addresses: chen.zhen5526@gmail.com (Z. Chen), T.Archibald@ed.ac.uk (T.W. Archibald).

probability and service level. However, as the initial cash position
increases beyond 75, the survival probability continues to increase
towards 100%, but the service level declines to 0%. This phenomenon
is attributed to the ordering quantity decisions illustrated in Fig. 1(b):
the optimal ordering quantity remains consistently positive when the
cash position is below 160, gradually diminishing to zero as the initial
cash position increases further. This pattern is due to the fact that,
when the initial cash is sufficiently large, the retailer can sustain itself
without ordering items to satisfy demand. A similar pattern arises in
subsequent periods, but the cash position at which the order quantity
reaches zero decreases as the end of the planning horizon becomes
closer. This clearly demonstrates that survival maximization models can
lead to significant lost sales despite the retailer having sufficient cash
reserves. Importantly, this phenomenon is not unique to this specific
example, as the original survival maximization model tends to generate
conservative ordering policies (Archibald et al., 2007). To provide
a comprehensive understanding of the relationship between service
level and ordering quantities for various parameter values, we conduct
extensive numerical tests in Section 7.4. These tests further illustrate
the impact of different parameter values on the survival probability,
service level and ordering decisions.
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Fig. 1. Typical example of survival probability, service level and optimal ordering quantity in the first period as functions of the initial cash position.
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In retail businesses, on-time delivery or service rate is often very
import. Research has found that 70% of consumers may not shop
with a retailer again after receiving a late shipment (Logistics, 2017).
Empirical data shows a one percentage point increase in service rate
is associated with a statistically significant 11% increase in retailer de-
mand (Craig et al., 2016). In some industries, service-level guarantees
are often contract-enforced and very strict (Silver et al., 1998). If a
retailer focuses on survival without considering service level, it may
lose customer goodwill due to too many lost sales and still go bankrupt
in the end.

During the pandemic, numerous retailers and restaurants prioritized
managing their cash flow to avoid bankruptcy due to the severe impact
of the COVID-19 crisis on the economic environment. However, they
also strived to maintain a low stock-out rate in order to retain as many
customers as possible in the future, as they anticipated the eventual end
of the pandemic and a return to normalcy.

Therefore, maintaining a positive cash position and meeting cus-
tomer demand at the same time is a trade-off for a retail business. The
aim of this paper is to maximize the survival probability in a multi-
period stochastic inventory management problem while trying to satisfy
the required service level. Considering the real-life background of the
problem, the periods can be days, weeks, or even months. The service
level is represented by a joint chance constraint requiring the lost sale
rate in the planning horizon to be lower than a specified proportion.
The main contributions of this study are listed below.

• We consider an operational research problem, namely maximiz-
ing the survival probability with a joint service level constraint,
which has not been considered in the literature before. Two
stochastic modelling methods are applied to solve the problem:
scenario modelling and SAA modelling.

• We construct a statistical upper bound on the survival proba-
bility for this problem based on SAA and we also provide a
lower bound by stochastic dynamic programming with Bonferroni
approximation of the service level constraint.

• We develop a service rate updating technique in a rolling horizon
approach to solve realistically sized problems efficiently.

• Through comparison with the model in Archibald et al. (2002),
we show that our models can ensure a good chance of survival
while avoiding overly conservative ordering decisions and low
service rates.

The rest of this paper is structured as follows. Section 2 reviews
he related literature and Section 3 describes the problem. Section 4
ormulates the scenario and SAA models. The bounds on the objective
2
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function are presented in Section 5. Section 6 explains the rolling hori-
zon approach and the service rate updating method. A computational
study and its results are detailed in Section 7. Finally, conclusions and
future research directions are outlined in Section 8.

2. Literature review

The literature associated with our work can be classified into two
main streams: cash flow inventory management problems and chance-
constrained programming in inventory management. Each stream is
reviewed below.

2.1. Cash flow inventory management problems

Cash flow is often taken into account in the operational research
literature. For example, Comelli et al. (2009) consider cash flow in
the supply chain planning problem; Benedito et al. (2016) study a
manufacturing system with production capacity renewal, tax and cash
flow management. Nevertheless, the cash flow does not affect ordering
or production quantities in their models. With regard to the cash con-
straint, Chao et al. (2008) investigate a cash constrained multi-period
newsvendor problem and prove the optimality of an approximate base
stock policy. Katehakis et al. (2016) discuss short-term financing and
prove that the optimal ordering policy is characterized by a pair of
threshold parameters. Boulaksil and van Wijk (2018) propose a cash
constrained stochastic inventory model with consumer loans and sup-
plier credits and give some managerial insights by simulating numerical
cases. Fu et al. (2021) address inventory-based financing and partially
characterize the optimal inventory policy controlled by two state-
dependent levels. Chen and Rossi (2021) propose an (𝑠, 𝐶(𝑥), 𝑆) policy
or a stochastic lot sizing problem with cash constraints. Kajjoune et al.
2021) consider short-term financing in a dynamic lot sizing problem
ith deterministic demands and solve the problem with dynamic pro-
ramming. Chen and Zhang (2021) build two multi-stage stochastic
odels for a multi-product problem with order-based loan.

While many research papers set the objective to be either maximiz-
ng profits or minimizing costs, there are also some works that aim
o maximize the survival probability. Archibald et al. (2002) analyse
n inventory control model maximizing the survival probability and
how the optimal ordering policy is more conservative than the profit
aximizing policy. Archibald et al. (2007) compare various inventory
odels and give conditions under which their policies are equiva-

ent. Archibald et al. (2015) extend the problem for managing inventory
nd production capacity. There are also some works that address a

irm’s survival probability by a bankruptcy threshold. For example, Xu
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and Birge (2006) build a multi-stage scenario tree model incorporat-
ing both production and external financing decisions and solve it to
maximize the present value of future cash flow subject to bankruptcy
risk; Tanrısever et al. (2012) assume there is a minimum profit level
required for survival as a constraint in a two-stage model; Kouvelis and
Zhao (2012) assume there is a minimum demand as bankruptcy thresh-
old. Similar assumptions are also adopted by Yang et al. (2015), Wu
et al. (2019), and Esenduran et al. (2022). Several other works compare
models with profit maximization and survival probability maximization
objectives. For example, Swinney et al. (2011) investigate capacity
investment timing decisions by a duopoly model, where the start-up
maximizes its survival probability and the established firm maximizes
profits. A similar model is built in Xing et al. (2022) for quality invest-
ment decisions. There are also a few works considering bankruptcy cost
and credit in the profit maximization model. For example, Yan and He
(2020) discuss a cash constrained problem with trade credit, service
level and bankruptcy cost.

2.2. Joint chance-constrained programming in inventory management

Chance-constrained optimization problems were introduced
by Charnes and Cooper (1959). A chance constraint places an upper
bound on the probability an event occurs in a period. When the
probability constraint applies to the whole planning horizon rather than
individual periods, it is called a joint chance constraint (Miller and
Wagner, 1965). In the following, we focus on the literature about joint
chance-constrained programming in inventory management along with
solution methods and analysis related to our paper.

The main challenge for linear programs with joint chance con-
straints is that the feasible region is non-convex. Nemirovski and
Shapiro (2007) build a convex approximation for chance-constrained
problems. Luedtke and Ahmed (2008) provide conditions for lower and
upper bounds for the SAA method of solving joint chance-constrained
problems. Pagnoncelli et al. (2009) discuss the convergence properties
of the SAA method. Luedtke et al. (2010) provide a strong extended
formulation of the SAA method for joint chance-constrained problems
in which only the right-hand side is random and this random vector
has a finite distribution. Since the extended SAA method reduces
the number of constraints and makes the computation faster, it is
adopted by some later works such as a transmission switching problem
with guaranteed wind power utilization (Qiu and Wang, 2014) and a
single-item capacitated lot-sizing problem (Gicquel and Cheng, 2018).

In solving multi-period problems, many works model the problems
with a static joint chance constraint (e.g., Gicquel and Cheng, 2018), in
which decisions are made before random demands are known. Zhang
et al. (2023) provide valid inequalities for the static joint chance-
constrained lot-sizing problem. Andrieu et al. (2010) use a dynamic
joint chance constraint, where decisions can be made after the uncer-
tainty is revealed, in a hydro power reservoir problem. Zhang et al.
(2014) develop a branch-and-cut method for dynamic joint chance-
constrained problems and show significant cost savings can be achieved
compared with static joint chance-constrained models.

From the above literature review, we can see that there are few
works that consider dynamic joint chance constraints in inventory man-
agement problems. In particular, we could find no work that maximizes
the survival probability with chance constraints to control service level.
These aspects together with the practical relevance of the problem
inspire us to investigate the topic in our paper.

3. Problem description

For convenience, the main notations adopted in this paper are listed
in Table 1. Other relevant notations will be introduced as needed.

In our problem, a cash constrained retailer periodically purchases a
product from its supplier for sale to its customers. The planning horizon
is comprised of 𝑇 periods. Customer demand in each period is stochastic
3
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and can be non-stationary. Demand is assumed to be independently
distributed from period to period. The retailer incurs purchasing and
overhead costs and earns revenue by selling the product. The retailer
is assumed to have failed if its cash position is negative at the end of any
period in the planning horizon. Similar to Archibald et al. (2002), we
assume the retailer’s objective is to maximize its survival probability.

Let 𝐼𝑡 denote the inventory available at the end of period 𝑡. More-
over, let the initial inventory at the beginning of the planning horizon
be 𝐼0. At the beginning of period 𝑡, the retailer must decide the period’s
order quantity 𝑄𝑡, where 𝑄𝑡 ≥ 0. Demand in period 𝑡 is represented by a
random variable 𝐷𝑡 with probability density function 𝑓𝑡 and cumulative
distribution function 𝐹𝑡. Demand in a period can be met by inventory
eld at the beginning of the period or items ordered in the period.
nmet demand is assumed to be lost with no additional penalty costs.
xcess stock is transferred to the next period as inventory. The selling
f excess stock back to the supplier is not allowed before the end of
he planning horizon. Suppliers require immediate payment and they
upply items immediately, i.e. the order delivery lead time is zero. The
nventory balance equation can then be expressed as

𝑡 = (𝐼𝑡−1 +𝑄𝑡 −𝐷𝑡)+, (1)

here (𝑥)+ denotes max{𝑥, 0}. A variable ordering cost 𝑣 is charged
n every ordered unit. We do not consider fixed ordering cost in the
roblem. The selling price of the product is 𝑝 per unit, and the retailer
eceives payments only when items are delivered to customers. The
ales quantity in period 𝑡 is min

{

𝐷𝑡, 𝐼𝑡−1 + 𝑄𝑡
}

, and revenue is thus
min{𝐷𝑡, 𝐼𝑡−1 +𝑄𝑡} = 𝑝(𝐼𝑡−1 +𝑄𝑡 − 𝐼𝑡).

Any inventory left over at the end of the planning horizon has a
alvage value of 𝛾 per unit. It is reasonable to assume 0 ≤ 𝛾 ≤ 𝑣 < 𝑝. At
he end of each period, overhead costs 𝐻 such as wages or rents, are
equired to be paid irrespective of the retailer’s activity. Let 𝐶𝑡 denote
he cash position at the end of period 𝑡. The retailer’s cash position at
he beginning of the planning horizon is 𝐶0. The full expression for 𝐶𝑡
s given by Eq. (2), where there is salvage value 𝛾𝐼𝑇 for the remnant
nventory at the end of period 𝑇 .

𝑡 =

{

𝐶𝑡−1 + 𝑝(𝐼𝑡−1 +𝑄𝑡 − 𝐼𝑡) − 𝑣𝑄𝑡 −𝐻 1 ≤ 𝑡 ≤ 𝑇 − 1
𝐶𝑇−1 + 𝑝(𝐼𝑇−1 +𝑄𝑇 − 𝐼𝑇 ) − 𝑣𝑄𝑇 −𝐻 + 𝛾𝐼𝑇 𝑡 = 𝑇 .

(2)

In the above formula, the end-of-period cash position 𝐶𝑡 for period
(1 ≤ 𝑡 ≤ 𝑇 ) is defined as the period’s initial cash position 𝐶𝑡−1, plus

he period’s revenue, minus the period’s total ordering costs, overhead
ost and, for 𝑡 = 𝑇 , plus the salvage value of any remnant inventory.
he retailer’s objective of maximizing its survival probability can be
xpressed as

ax Pr{𝐶𝑡 ≥ 0,∀𝑡}, (3)

here Pr denotes probability. To avoid too many lost sales, the retailer
equires a service level constraint in the model: the probability of no
tockouts in the planning horizon should be higher than 1 − 𝜖. The
oint chance constraint formulation can be expressed by the following
nequality:

r{𝐼𝑡−1 +𝑄𝑡 ≥ 𝐷𝑡,∀𝑡} ≥ 1 − 𝜖. (4)

Note that if the retailer wishes to enforce the service level constraint
n each period rather than for the whole planning horizon, individual
hance-constraints can be added to the model. This approach is used
o construct a lower bound for the survival probability in Section 5.2.
ince the retailer is a small business or a start-up firm, we assume that
ts access to finance is limited and consequently its ordering decision
or a period is constrained by the available cash, i.e.,

𝑄𝑡 ≤ max{0, 𝐶𝑡−1}, ∀𝑡. (5)

t is worth noting that the model proposed by Archibald et al. (2002)
oes not include a strict cash constraint on the order quantity because

hey assume that the supplier grants the retailer credit within a period.
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Table 1
Main notations adopted in the paper.

Indices:

𝑇 Length of the planning horizon.
𝑡 Index of a period, 𝑡 = 1,… , 𝑇 .

Constants:

𝐶0 Initial cash position.
𝐼0 Initial inventory level.
𝑝 Selling price for the product.
𝑣 Unit variable ordering cost for the product.
𝛾 Unit salvage value for the remnant inventory.
𝐻 Overhead costs in each period (e.g., wages or rents).

Stochastic variable:

𝐷𝑡 Demand for the product in period 𝑡, which follows a known probability distribution.

Decision variables:

𝑄𝑡 Ordering quantity for the product in period 𝑡.
𝐼𝑡 End-of-period inventory level in period 𝑡.
𝐶𝑡 End-of-period cash position in period 𝑡.
4
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If the retailer’s cash position is negative at the end of a period,
he retailer is said to have failed and it is unable to order from the
upplier during the remainder of the planning horizon. This leads to
he following constraint on the order quantities:

𝑡 +⋯ +𝑄𝑇 = 0, if 𝐶𝑡−1 < 0. (6)

After failure, the retailer will liquidate its assets to try to repay
reditors. Hence, we assume that the retailer can still satisfy customer
emand using existing inventory until the end of the planning horizon.

. Stochastic modelling

This paper adopts a dynamic joint chance constraint which allows
rdering decisions in one period to be made after the random demands
f previous periods have been realized. In contrast, with a static joint
hance constraint, all the ordering decisions are made at the beginning
f the planning horizon prior to the realization of the uncertain de-
and. The dynamic joint chance constraint is more flexible and can

btain better objectives in numerical tests than the static joint chance
onstraint (Zhang et al., 2014).

Let 𝛤𝑡 represent the random events that occur before the end of
eriod 𝑡, i.e., 𝛤𝑡 = (𝐷1, 𝐷2,… , 𝐷𝑡). In period 𝑡, the ordering quantity
s decided after the realization of demands in the first 𝑡 − 1 periods.

This is denoted by 𝑄𝑡(𝛤𝑡−1). The end-of-period inventory level and cash
position in period 𝑡 are determined after demands in the first 𝑡 periods
are observed. We denote these as 𝐼𝑡(𝛤𝑡) and 𝐶𝑡(𝛤𝑡), respectively. The
dynamic joint chance constraint is thus expressed by:

Pr

⎡

⎢

⎢

⎢

⎢

⎣

𝐼0 +𝑄1 ≥ 𝐷1
𝐼1(𝛤1) +𝑄2(𝛤1) ≥ 𝐷2

⋮
𝐼𝑇−1(𝛤𝑇−1) +𝑄𝑇 (𝛤𝑇−1) ≥ 𝐷𝑇

⎤

⎥

⎥

⎥

⎥

⎦

≥ 1 − 𝜖, (7)

where 𝑄1 is not related to 𝛤𝑡 because the ordering decision in the first
period is made before any random demand is realized. In a similar way,
the objective function is reformulated as:

max Pr

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1(𝛤1) ≥ 0
𝐶2(𝛤2) ≥ 0

⋮
𝐶𝑇 (𝛤𝑇 ) ≥ 0

.

⎤

⎥

⎥

⎥

⎥

⎦

(8)

The multi-dimensional integration of (7) and (8) make the problem
difficult to solve. We provide two stochastic modelling techniques to
solve this dynamic joint chance-constrained problem in the following
4

subsections. m
.1. Scenario modelling

By assuming that the random vector 𝛤𝑇 has finitely many re-
lizations, the main idea of scenario modelling is to represent the
istribution by random samples in the form of a scenario tree. A
cenario 𝑠 is a possible realization of the demands in the 𝑇 periods, the
et of all scenarios is represented by 𝑆 and the number of scenarios
s 𝑁 . Decision variables 𝑄𝑡, 𝐼𝑡 and 𝐶𝑡 are scenario-specific and are
epresented by 𝑄𝑠

𝑡 , 𝐼𝑠𝑡 and 𝐶𝑠
𝑡 , respectively, in the model. Note that

𝑠
0 = 𝐼0 and 𝐶𝑠

0 = 𝐶0. Additional notations used in the stochastic models
re detailed in Table 2. The scenario model is formulated as follows.
cenario model:

ax
∑

𝑠
𝜋𝑠𝑧𝑠 (9)

s.t.

𝐼𝑠𝑡 ≤ 𝐼𝑠𝑡−1 +𝑄𝑠
𝑡 −𝐷𝑠

𝑡 + 𝛿𝑠𝑡𝑀1, ∀𝑡,∀𝑠, (10)

𝐼𝑠𝑡 ≥ 𝐼𝑠𝑡−1 +𝑄𝑠
𝑡 −𝐷𝑠

𝑡 , ∀𝑡,∀𝑠, (11)

𝐼𝑠𝑡−1 +𝑄𝑠
𝑡 −𝐷𝑠

𝑡 ≤ (1 − 𝛿𝑠𝑡 )𝑀1, ∀𝑡,∀𝑠, (12)

𝐼𝑠𝑡 ≤ (1 − 𝛿𝑠𝑡 )𝑀1, ∀𝑡,∀𝑠, (13)

𝐶𝑠
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝐶𝑠
𝑡−1 + 𝑝(𝐼𝑠𝑡−1 +𝑄𝑠

𝑡 − 𝐼𝑠𝑡 ) − 𝑣𝑄𝑠
𝑡 −𝐻 1 ≤ 𝑡 ≤ 𝑇 − 1

𝐶𝑠
𝑇−1 + 𝑝(𝐼𝑠𝑇−1 +𝑄𝑠

𝑇 − 𝐼𝑠𝑇 ) − 𝑣𝑄𝑠
𝑇 −𝐻 + 𝛾𝐼𝑠𝑇 , 𝑡 = 𝑇

∀𝑠,

(14)

𝐶𝑠
𝑡 ≤ 𝛼𝑠𝑡𝑀2, ∀𝑡,∀𝑠, (15)

𝐶𝑠
𝑡 ≥ −(1 − 𝛼𝑠𝑡 )𝑀3, ∀𝑡,∀𝑠, (16)

𝑧𝑠 ≤ 𝛼𝑠𝑡 , ∀𝑡,∀𝑠, (17)

𝑣𝑄𝑠
𝑡 ≤ 𝐶𝑠

𝑡−1 + (1 − 𝛼𝑠𝑡−1)𝑀2, ∀𝑡,∀𝑠, (18)
𝑇
∑

𝑘=𝑡
𝑄𝑠

𝑘 ≤ 𝛼𝑠𝑡𝑀1 ∀𝑡 = 1, 2,… , 𝑇 ,∀𝑠 (19)

𝛿𝑠𝑡 ≤ 𝛽𝑠, ∀𝑡,∀𝑠, (20)
∑

𝑠
𝜋𝑠𝛽𝑠 ≤ 𝜖, (21)

∑

𝑠′∈𝐽𝑠𝑡−1

𝜋𝑠′𝑄𝑠′
𝑡 = 𝑄𝑠

𝑡

∑

𝑠′∈𝐽𝑠𝑡−1

𝜋𝑠′ , ∀𝑡,∀𝑠, (22)

𝐼𝑠𝑡 , 𝑄
𝑠
𝑡 ≥ 0, 𝛿𝑠𝑡 , 𝛼

𝑠
𝑡 , 𝛽

𝑠, 𝑧𝑠 ∈ {0, 1} ∀𝑡,∀𝑠. (23)

The objective function is the expected survival probability among
he 𝑁 scenarios where scenario 𝑠 has probability 𝜋𝑠. Binary variable
𝑠 equals 1 if there is no negative cash position in scenario 𝑠, which

eans the retailer survives the planning horizon under this scenario.



International Journal of Production Economics 270 (2024) 109191Z. Chen and T.W. Archibald

n
e
p
o
q
C
o
c
g

𝐽
s
i
𝑡
b
c
f
t
C
𝛿

l
I
f

𝑀

𝑀

𝑀

r
a
o
i
o
s

4

n
i
a
p

Table 2
Additional notations for the stochastic models.

Indices and index sets:

𝑁 Number of scenarios.
𝑆 Set of scenarios (𝑠 ∈ {1, 2,… , 𝑁}).
𝐽 𝑠
𝑡 Set of scenarios that share the same demand history with scenario 𝑠 in the first 𝑡 periods.

Scenario-specific parameters:

𝑑𝑠
𝑡 Realized demand in period 𝑡 for scenario 𝑠.

𝜋𝑠 Probability of scenario 𝑠 occurring where ∑

𝑠 𝜋𝑠 = 1.

Auxiliary binary decision variables:

𝑧𝑠 𝑧𝑠 = 1 if there is no negative cash position for scenario 𝑠.
𝛽𝑠 𝛽𝑠 = 1 if a lost sale occurs for scenario 𝑠.
𝛼𝑠
𝑡 𝛼𝑠

𝑡 = 1 if the cash position is non-negative in period 𝑡 for scenario 𝑠.
𝛿𝑠𝑡 𝛿𝑠𝑡 = 1 if a lost sale occurs in period 𝑡 for scenario 𝑠.
Constraints (10)–(13) are the linear formulation of the inventory bal-
ance equation Eq. (1): 𝛿𝑠𝑡 = 1 if a lost sale occurs in period 𝑡 for scenario
𝑠 and 𝑀1 is a sufficiently large number. Constraint (14) is the scenario-
related cash flow formula. Constraints (15)–(16) enforce 𝛼𝑠𝑡 = 0 when
the cash position 𝐶𝑠

𝑡 < 0, where 𝑀2 and 𝑀3 are sufficiently large
umbers. Constraint (17) together with the maximizing objective (9)
nforce 𝑧𝑠 = 1 when 𝛼𝑠𝑡 = 1 for all 𝑡, meaning there is no negative cash
osition in scenario 𝑠. Constraint (18)–(19) are the linear formulations
f the cash constraint (5)–(6). Constraint (19) ensures the ordering
uantities are zeros if the cash position at period 𝑡 is negative (𝛼𝑠𝑡 = 0).
onstraint (20) forces 𝛽𝑠 = 1 if 𝛿𝑠𝑡 = 1 for any 𝑡, indicating lost sales
ccur in scenario 𝑠. Constraint (21) is the linear expression for the joint-
hance constraint which requires that the probability of lost sales is no
reater than 𝜖.

Constraints (22) enforce the non-anticipativity constraints, where
𝑠
𝑡 represents the sets of scenarios that share the same history with
cenario 𝑠 up to period 𝑡 (𝐽 𝑠

0 = ∅). The non-anticipativity constraints
mply that if two scenarios share the same demand history up to period
, then the values of the decision variables up to period 𝑡 should also
e the same in the two scenarios. There are no non-anticipativity
onstraints for 𝐼𝑠𝑡 , 𝐶𝑠

𝑡 , 𝛼𝑠𝑡 and 𝛿𝑠𝑡 because these decision variables are
unctions of 𝑄𝑠

𝑡 . The subscript for 𝐽 in Constraint (22) is 𝑡 − 1 because
he ordering decision is made before the demand in a period is known.
onstraint (23) imposes the conditions that 𝐼𝑠𝑡 , 𝑄𝑠

𝑡 are non-negative and
𝑠
𝑡 , 𝛼

𝑠
𝑡 , 𝛽𝑠, 𝑧𝑠 are binary variables.

Choosing appropriate big-M values generally yields a tighter formu-
ation of the linear model and improves the performance of solvers.
n this problem, we set the values of 𝑀1, 𝑀2, 𝑀3 in computation as
ollows:

1 = max
𝑠

𝑇
∑

𝑡=1
𝐷𝑠

𝑡 (24)

2 = 𝐶0 + 𝑝max
𝑠

𝑇
∑

𝑡=1
𝐷𝑠

𝑡 = 𝐶0 + 𝑝𝑀1 (25)

3 = 𝑣(𝑀1 − 𝐼0) + 𝑇𝐻 − 𝐶0 (26)

The value of 𝑀1 reflects the fact that the inventory level at one pe-
iod need not be larger than the maximum cumulative demand among
ll scenarios. 𝑀2 is an upper bound for the cash position based on sales
f the maximum cumulative demand without any costs. Similarly, −𝑀3
s a lower bound for the cash position, which would occur if the retailer
rders up to the maximum cumulative demand, but does not make any
ales.

.2. SAA modelling

The SAA model relaxes the non-anticipativity constraints in the sce-
ario model and assumes that every scenario has the same probability,
.e., 𝜋𝑠 = 1∕𝑁 in the SAA model. The SAA model can be considered an
pproximation to the scenario model that is much easier to solve for
5

roblems with long planning horizons.
SAA model:

max
∑

𝑠

𝑧𝑠

𝑁
(27)

s.t. (10)–(20), (23)
∑

𝑠
𝛽𝑠 ≤ ⌊𝑁𝜖⌋, (28)

𝑄𝑠
1 = 𝑄𝑠′

1 ∀𝑠, 𝑠′ ∈ 𝑆. (29)

Constraint (28) guarantees that the number of scenarios with lost
sales should not exceed ⌊𝑁𝜖⌋, where ⌊𝑁𝜖⌋ denotes the integer part
of 𝑁𝜖. Constraint (29) ensures that the first period order quantity is
the same for all scenarios because the ordering quantity for period 1
is confirmed before any customer demand is observed. We still use the
superscript s in 𝑄1 for convenience. In fact, SAA reduces the original
multi-stage problem to a two-stage problem, in which the first period
order quantity is the first stage decision.

Note that when solving the SAA model, the value of 𝜖 used can be
different from the value implied by the service level required (Luedtke
and Ahmed, 2008; Pagnoncelli et al., 2009). In other words, one may
set a smaller value of 𝜖, resulting in a stricter service level requirement
in the model, in order to obtain a solution that achieves the desired
service level for the problem. This method is also suitable for the
scenario model in our numerical tests. As noted by Pagnoncelli et al.
(2009), how to set the values for 𝜖 and 𝑁 usually depends on the
underlying joint chance-constrained problem. We will discuss this issue
for our problem in Section 7.1.

5. Upper and lower bounds on the survival probability

In this section, we provide a statistical upper bound for the survival
probability in our problem based on the properties of SAA and upper
and lower bounds using stochastic dynamic programming.

5.1. A statistical upper bound

Nemirovski and Shapiro (2007) propose a method to compute a
statistical upper bound for a chance-constrained maximization prob-
lem. The upper bound is suitable for both two-stage and multi-stage
problems. This method was slightly modified in Luedtke and Ahmed
(2008) and later employed by Pagnoncelli et al. (2009) and Zhao et al.
(2014) among others. We briefly summarize the steps of this method
for computing the upper bound in our problem as follows.

• Take 𝑀 sets of 𝑁 independent scenarios and solve the corre-
sponding SAA model for each set. Denote the optimal objective
values for the SAA model in descending order by �̂�1, �̂�2, … , �̂�𝑀 .

• For a required confidence level 1 − 𝜏, denote 𝐿 as the largest
integer such that

𝐵(𝐿 − 1; 𝜃 ,𝑀) ≤ 𝜏, (30)
𝑁
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where 𝜃𝑁 = 𝐵(⌊𝜖𝑁⌋; 𝜖,𝑁) and 𝐵(𝑘, 𝑞, 𝑛) =
∑𝑘

𝑖=0
(𝑛
𝑖

)

𝑞𝑖(1 − 𝑞)𝑛−𝑖

denotes the cumulative distribution function of a binomial dis-
tribution.

• Pick the 𝐿th value denoted as �̂�𝐿 among �̂�1, �̂�2, … , �̂�𝑀 .
By Luedtke and Ahmed (2008), �̂�𝐿 gives an upper bound for the
true optimal value with a confidence level 1 − 𝜏.

5.2. Upper and lower bounds based on stochastic dynamic programming

Note that after adding the constraint (5) and (6) to the model
in Archibald et al. (2002), which does not impose constraints on
the service level, actually provides an upper bound for the survival
probability in our problem. Any feasible solution to the problem in
Section 3 is a lower bound for the optimal objective value. However, a
feasible solution to the problem may not always exist. For example, if
the initial cash position is very low, the retailer can only order a few
items due to the cash constraint (5), and it will be impossible to satisfy
a high service level if the demands in all periods are very large.

To compute a possible feasible solution by stochastic dynamic pro-
gramming, we first transform the joint chance constraint into a set of
constraints with one constraint for each time period:

Pr{𝐼𝑡−1 +𝑄𝑡 −𝐷𝑡 < 0} ≤ 𝜂, ∀𝑡 (31)

where 𝜂 is a self-assigned lost sale rate. This gives a lower bound on
the ordering quantity for a period given the initial inventory level 𝐼 :

𝑄𝑡(𝐼) = 𝐹−
𝐷𝑡
(1 − 𝜂) − 𝐼, (32)

here 𝐹−
𝐷𝑡
(⋅) is the inverse cumulative distribution function of 𝐷𝑡. When

he lower bound is an infeasible order quantity because of the cash
onstraint (5) (i.e., 𝑣𝑄𝑡(𝐼𝑡−1) > 𝐶𝑡−1), we define 𝑄𝑡 = ⌊𝐶𝑡−1∕𝑣⌋, i.e., the

largest possible order quantity. Otherwise, the retailer chooses an order
quantity between 𝑄𝑡(𝐼𝑡−1) and the maximum order quantity permitted
iven the cash position. Therefore, the feasible region for 𝑄𝑡 under the

cash constraint is:

Q𝑡(𝐼, 𝐶) =

{

{𝑄𝑡 ∣ 𝑄𝑡 ≥ 𝑄𝑡(𝐼), 𝑣𝑄𝑡 ≤ 𝐶} if 𝑣𝑄𝑡(𝐼) ≤ 𝐶

{⌊𝐶𝑡−1∕𝑣⌋} otherwise.
(33)

For given inventory level and cash position at the beginning of
he planning horizon, the problem with individual chance constraints
an be solved by stochastic dynamic programming. Let 𝑞(𝑡, 𝐼, 𝐶) be the
aximum survival probability when the retailer has inventory level
and cash position 𝐶 at the beginning of period 𝑡. The dynamic

rogramming optimality equation when 𝑡 ≤ 𝑇 and 𝐶 ≥ 0 is:

𝑞(𝑡, 𝐼, 𝐶) = max
𝑄𝑡∈Q𝑡(𝐼,𝐶)

(

∫

𝐼+𝑄𝑡

0
𝑓𝑡(𝐷𝑡)𝑞(𝑡 + 1, 𝐼 +𝑄𝑡 −𝐷𝑡, 𝐶 + 𝑝𝐷𝑡 − 𝑣𝑄𝑡 −𝐻)𝑑𝐷𝑡

+𝑞(𝑡 + 1, 0, 𝐶 + 𝑝(𝐼 +𝑄𝑡) − 𝑣𝑄𝑡 −𝐻)∫

∞

𝐼+𝑄𝑡

𝑓𝑡(𝐷𝑡)𝑑𝐷𝑡

)

,

(34)

ith boundary conditions:

𝑞(𝑇 + 1, 𝐼, 𝐶) = 1 if 𝐶 + 𝛾𝐼 ≥ 0
𝑞(𝑇 + 1, 𝐼, 𝐶) = 0 if 𝐶 + 𝛾𝐼 < 0
𝑞(𝑡, 𝐼, 𝐶) = 0 if 𝐶 < 0, 𝑡 = 1, 2,… , 𝑇 .

(35)

In the numerical tests, we use Eqs. (34) and (35) to compute a
ossible feasible solution as a lower bound. We start from a Bonferroni
pproximation with 𝜂 = 𝜖∕𝑇 , which was also used by Nemirovski and
hapiro (2007) in a joint chance constrained problem, then gradually
ecrease 𝜂 while the solution is infeasible to see if a feasible solution
an be found. The feasibility is checked by computing the service level
rom the dynamic programming formulation below.

We introduce a binary variable 𝑏𝑡 to indicate whether the retailer
ails before the beginning of period 𝑡 (𝑏𝑡 = 1) or not (𝑏𝑡 = 0). If the
etailer fails before the beginning of period 𝑡, then 𝐶 < 0 for some 𝑘
6

𝑘

atisfying 1 ≤ 𝑘 ≤ 𝑡 − 1 and 𝑄𝑡 = 0 by our assumption in Constraint
6). Let 𝑄∗(𝑡, 𝐼, 𝐶, 0) be the order quantity that maximizes the right
and side of Eq. (34) for 𝑞(𝑡, 𝐼, 𝐶) and define 𝑄∗(𝑡, 𝐼, 𝐶, 1) = 0. Let
(𝑡, 𝐼, 𝐶, 𝑏) denote the probability of no stockouts during the remainder
f the planning horizon when the retailer has initial inventory level 𝐼
nd cash position 𝐶 at the beginning of period 𝑡 and 𝑏 indicates whether
r not the retailer fails before the beginning of period 𝑡.

(𝑡, 𝐼, 𝐶, 𝑏) = ∫

𝐼+𝑄∗(𝑡,𝐼,𝐶,𝑏)

0
𝑓𝑡(𝐷𝑡)𝑠(𝑡 + 1, 𝐼 +𝑄∗(𝑡, 𝐼, 𝐶, 𝑏) −𝐷𝑡, 𝐶 + 𝑝𝐷𝑡

− 𝑣𝑄∗(𝑡, 𝐼, 𝐶, 𝑏) −𝐻, 𝑏′)𝑑𝐷𝑡, (36)

ith the transition function for the failure status given by:

′ =

{

1 if 𝐶 + 𝑝𝐷𝑡 − 𝑣𝑄∗(𝑡, 𝐼, 𝐶, 𝑏) −𝐻 < 0
𝑏 otherwise.

(37)

nd boundary condition:

(𝑇 + 1, 𝐼, 𝐶, 𝑏) = 1. (38)

. Rolling horizon approach

One of the main drawbacks for the scenario-based multi-stage
tochastic programming approach is that the models are generally
omputationally expensive (Fattahi and Govindan, 2022). The so-called
olling horizon approach is often applied to overcome the computa-
ional burden. Moreover, the objective value obtained by SAA for our
roblem is likely to be overly optimistic because SAA in fact reduces
he original multi-stage problem to a two-stage problem by relaxing
he non-anticipativity constraints. Therefore, we provide a rolling
orizon approach to implement the ordering decisions in out-of-sample
cenarios. The basic idea is as follows:

• Generate some out-of-sample scenarios, i.e., scenarios that are
different from those used in computing the scenario model and
the SAA model.

• Implement the first-stage decision from the solution to a stochas-
tic model with a possibly shorter planning horizon of 𝐾 periods
(𝐾 ≤ 𝑇 ).

• Update the initial cash position, initial inventory level and joint
chance constraint for the next period 𝑡, re-solve the stochastic
model for the next min{𝐾, 𝑇 − 𝑡} periods and implement the new
solution for period 𝑡.

• Repeat this process until the last period 𝑇 in the planning horizon
is reached.

When updating the joint chance constraint in a scenario, assume
he required maximum lost sales rate from period 𝑡 to period 𝑡 + 𝐾 in
cenario 𝑠 is 𝜖𝑠𝑡∼𝑡+𝐾 , which means that the required service level from
eriod 𝑡 to period 𝑡+𝐾 is 1 − 𝜖𝑠𝑡∼𝑡+𝐾 and 𝜖𝑠1∼𝑇 = 𝜖. When implementing
he rolling horizon approach, the service level requirement is updated
s follows:

− 𝜖𝑡∼𝑡+𝐾 = (1 − 𝜂)𝐷𝑡∼𝑡+𝐾∕𝐷1∼𝑇 . (39)

where 𝐷𝑡∼𝑡+𝐾 is the sum of mean demands in periods 𝑡 to 𝑡 + 𝐾, 𝐷1∼𝑇
is the sum of mean demands over the whole planning horizon and 1−𝜂
is a self assigned service level value. The above formula is a heuristic
step which assumes that the joint chance level from period 𝑡 to period
𝑡+𝐾 is a geometric proportion of the total joint chance level. Note that
sometimes one may self assign the value of 1−𝜂 to be close to 1 in order
to get feasible solutions. The rolling horizon process can be applied
to independent sample sets and the average objective value obtained
can be used to approximate the optimal objective value. Details of this
process are presented in Algorithm 1.
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Algorithm 1: Rolling horizon algorithm
Data: Required service rate 1 − 𝜖 and other parameter values.
Result: Approximate survival probability 𝑆𝑃 for the problem.

1 Initialize: Generate 𝑀 sets of 𝑁 independent scenarios for the
entire planning horizon. Each set is represented by
𝑚(𝑚 = 1, 2,… ,𝑀); Rolling horizon length 𝐾.

2 for 𝑚 ← 1 to 𝑀 do
3 for 𝑠 ∈ 𝑚 do
4 𝜖𝑠1∼𝑇 ← 𝜂, 𝑧𝑠 ← 1;
5 𝑄0 ← 0, 𝐼𝑠0 ← 𝐼0, 𝐶𝑠

0 ← 𝐶0;
6 for 𝑡 ← 1 to 𝑇 do
7 Update service rate requirement according to

Eq. (39);
8 Build and solve the scenario or SAA model for

period 𝑡 to min{𝑡 +𝐾, 𝑇 } (𝐾 ≤ 𝑇 ) to obtain 𝑄𝑠
𝑡 ;

9 𝐼𝑠𝑡 ← max{0, 𝐼𝑠𝑡−1 +𝑄𝑠
𝑡 −𝐷𝑠

𝑡 }, update 𝐶𝑠
𝑡 by Eq. (14);

10 if 𝐶𝑠
𝑡 < 0 then

11 𝑧𝑠 ← 0;
12 end
13 end
14 end
15 𝑆𝑃𝑚 ←

∑

𝑠 𝜋
𝑠𝑧𝑠;

16 end
17 𝑆𝑃 ←

∑

𝑚 𝑆𝑃𝑚∕𝑀 ;

7. Numerical analysis

In this section, we first discuss a numerical example to illustrate how
to set the values for 𝑁 and 𝜖 and compute the upper and lower bounds
for the problem. Detailed results of the scenario and SAA models and
comparisons of their computational effectiveness are also discussed.
Next numerical tests are conducted to investigate the performance of
the rolling horizon approach. Finally, we compare the survival proba-
bilities and service levels of the models with and without the service
level constraint to obtain some managerial insights.

The computational studies were coded in Java and run on a note-
book computer with an Apple M1 Pro CPU, 16 GB of RAM, and macOS
Monterey operating system. We use Gurobi 10.0.1 to solve the linear
programming models.

7.1. Setting the values of 𝑁 and 𝜖

In the numerical example for the tests: planning horizon 𝑇 = 3,
initial inventory 𝐼0 = 0, selling price 𝑝 = 5, unit variable ordering
ost 𝑣 = 1, overhead cost 𝐻 = 80, unit salvage value for remnant
nventory 𝛾 = 0.5, initial cash position 𝐶0 = 130, demand in each period
s independent and Poisson distributed with mean values [10, 20, 10].
andom samples are generated by Latin hypercube sampling (McKay
t al., 2000) for both methods. The sample detail for scenario size 𝑁
s [𝑁,𝑁,𝑁], meaning that 𝑁 random demand samples are generated
n each period. We consider scenario sizes 3, 5, 7, 9 and 11 with
ample detail [3, 3, 3], [5, 5, 5], [7, 7, 7], [9, 9, 9] and [11, 11, 11],
espectively. Since the service level in the stochastic models can be
ssigned a value that is different from the required value (Pagnoncelli
t al., 2009), we use 𝜂 instead of 𝜖 in Constraint (21) as well as in
he upper bound computation in (31). The required service level is
− 𝜖 = 70% and we set the service level 1 − 𝜂 in the stochastic models

o be 70%, 80%, 85% and 95%. We report the objective values for the
tochastic models as the average of 10 runs of the model.

The results for different values of 1 − 𝜂 and scenario sizes 𝑁 are
hown as box plots in Fig. 2. We also report the average simulated ob-
ective values and average service levels for the solutions obtained from
7

s

he two methods in Fig. 3 by applying the rolling horizon approach
ith 𝐾 = 𝑇 to 1000 out-of-sample scenarios. Based on Figs. 2 and 3,
e make the following observations:

• as the scenario size increases, the objective values obtained by the
scenario model are slightly higher than SAA (see Fig. 2); but there
a few exceptional situations; the objective values of both models
are relatively stable with smaller fluctuations, as shown in Fig. 2;

• for the smallest scenario size (size3) or low assigned service
level value 1 − 𝜂 (70%), some of the simulated service levels
are lower than the required joint service level 70% (see Fig. 3),
demonstrating that both methods may obtain infeasible solutions
when the scenario size is too small or the value of service level
assigned is not high enough although the problem itself is feasible
as we show in the next subsection;

• when the service level is set high enough for the required service
level and the scenario size is not too small, both methods can
obtain feasible solutions (see Fig. 3); note that assigning the
service level a high value in the stochastic models generally
results in a lower survival probability (see Fig. 2);

• the objective values obtained by the scenario model are generally
more stable than those of SAA (see Fig. 2); however, the simulated
objective values of both methods, obtained by the rolling horizon
approach, are very close (see Fig. 3).

.2. Illustrations of the upper and lower bounds on the survival probability

In the following numerical tests, the required service level is 1 −
= 70% and the value of 1 − 𝜂 is set to be 95%. We compare the

omputational efficiency of the two methods and calculate the upper
ound and lower bound on the objective function of the problems. In
ddition to the numerical example in Section 7.1, the two methods are
pplied to solve a 4-period problem with mean demand values [10, 20,
0, 10]. All the other parameter values are the same as Section 7.1. We
un each method 10 times for each numerical case, so 𝑀 = 10 when
omputing the statistical upper bound with confidence level 1 − 𝜏 =
5%.

The results are presented in Table 3, in which columns 1, 5, 6, 7, 8,
, 10 and 11 show the scenario size, the average objective value, the
imulated objective value, the simulated service rate for the scenario
r SAA model, the statistical upper bound, the upper bound, the lower
ound and the service rate for the model in Archibald et al. (2002),
espectively. The lower bounds are obtained by initially setting 𝜂 to be
∕𝑇 in Eq. (31) as explained in Section 5.2. There are several points
llustrated by Table 3:

• the running time grows sharply as the length of the planning
horizon increases from 3 periods to 4 periods especially for the
scenario model, which runs out of memory in the solver for the
4-period case when the scenario size is 9;

• the statistical upper bound obtained by SAA is generally higher
than the upper bound by dynamic programming for the problem;

• the service rate for the model in Archibald et al. (2002) is very
low (3.69% for the 3-period problem and 6.79% for the 4-period
problem).

.3. Assessment of the rolling horizon framework

For multi-stage stochastic problems with large planning horizons,
olling horizon computation is usually applied. As noted by Glomb et al.
2022), increasing the rolling horizon length does not always lead to
etter solutions. The design of the following numerical tests is two-fold:
irst we investigate this issue by varying the rolling horizon length and
ssigned service level values (1 − 𝜂) within the two stochastic methods
or the 4-period problem of the previous subsection (see Table 4);

econd, we test the performance of the SAA model on larger problems
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Fig. 2. Objective values for the scenario and SAA methods with different scenario sizes and assigned service levels.
Table 3
The results of 3-period and 4-period numerical cases.

size case method time avg. obj. sim. obj. sim. ser1.a sta. ub. ub. lb. ser2.b

5
3-period Scenario 0.11s 98.08% 97.70% 87.73% 98.40% 98.06% 91.48% 3.69%SAA 0.08s 98.52% 97.00% 81.82%

4-period Scenario 2.65s 97.70% 96.60% 75.36% 97.68% 95.07% 81.16% 6.79%SAA 1.13s 95.17% 96.02% 73.06%

7
3-period Scenario 0.57s 97.45% 97.75% 85.50% 98.54% 98.06% 91.48% 3.69%SAA 0.51s 98.06% 97.45% 85.70%

4-period Scenario 876.73s 96.04% 94.12% 93.23% 96.50% 95.07% 81.16% 6.79%SAA 6.08s 96.21% 95.89% 92.40%

9
3-period Scenario 30.13s 98.12% 97.60% 89.85% 99.17% 98.06% 91.48% 3.69%SAA 6.98s 98.01% 97.70% 88.81%

4-period Scenario —c – – – 97.65% 95.07% 81.16% 6.79%SAA 39.82s 96.08% 96.15% 83.37%

a Simulated service rate for the scenario or SAA model.
b Service rate for the model in Archibald et al. (2002).
c — means the solver is out of memory.
t
a
(
(
(
a
o

m

with planning horizons of 12 periods (see Table 5) and compare it with
the model without service constraint (see Table 6).

For the tests with the 4-period problem, the scenario size is 94 and
he required joint service level is 1 − 𝜖 = 70%. As shown in Table 4,
here is no apparent advantage for the scenario model over SAA in
he rolling horizon approach among the different rolling lengths and
ifferent values of 1 − 𝜂.

We focus on applying SAA when conducting numerical tests with
arger problem sizes for the rolling horizon approach because SAA
olves problems faster with no noticeable reduction in the quality of
8

s

he solutions. The test beds are adopted from Rossi et al. (2015). There
re 10 demand patterns for numerical analysis: 1 stationary pattern
STA), 2 life cycle patterns (LCY1 and LCY2), 2 sinusoidal patterns
SIN1 and SIN2), 1 random pattern (RAND), and 4 empirical patterns
EMP1, EMP2, EMP3, EMP4). Demands follow Poisson distributions
nd expected demands for different patterns are shown in Fig. 4. Details
f the expected demand data are given in Appendix.

In the 12-period problems, we set 1 − 𝜂 = 95% in the stochastic
odel and the parameter values are the same as Section 7.1. The

imulated service rates, simulated objectives, running time for different
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s

Fig. 3. Average simulated objectives and service levels for the scenario and SAA methods with different scenario sizes and assigned service levels.
Table 4
The results of different rolling horizon lengths and assigned service levels in a 4-period problem.

Method Rolling length 1 − 𝜂 = 70% 1 − 𝜂 = 80% 1 − 𝜂 = 95%

sim. obj. ser. sim. obj. ser. sim. obj. ser.

SAA

1 95.92% 86.92% 95.70% 85.10% 95.64% 85.02%
2 95.12% 90.61% 95.80% 95.21% 95.52% 93.60%
3 96.23% 83.42% 96.21% 91.33% 96.32% 90.30%
4 96.32% 70.72% 96.62% 85.31% 96.15% 83.37%

Scenario

1 95.50% 85.53% 96.00% 84.90% 96.10% 84.31%
2 96.11% 90.63% 95.13% 93.40% 96.21% 94.53%
3 96.15% 83.10% 94.81% 90.90% 96.07% 90.61%
4 – – – – – –
scenario sizes and different rolling horizon lengths in 100 out-of-sample
scenarios are shown in Table 5, where size 𝑁 means there are 𝑁
amples in each period. From the table, we can see that:

• as the scenario size increases, the rolling horizon method demon-
strates notable improvements in terms of the objective and service
rate for almost all numerical cases; however, this enhancement
comes at the expense of increased running time;

• for demand pattern EMP1, the rolling horizon method does not
achieve high objectives and service rates across all three rolling
lengths; this can be attributed to the initial demands for EMP1
being very low; it should be noted that the scale values differ for
different sub-figures in Fig. 4; due to the limited initial demand,
the retailer faces challenges in generating sufficient cash positions
to sustain future operations while maintaining a high service
9

level;
• increasing the rolling horizon does not always result in improved
performance; our findings reveal that in certain numerical cases
characterized by significant demand fluctuations or low initial
cash position (e.g., LCY2, EMP1, EMP2), rolling lengths of 2 or 3
may lead to worse performance; however, for other cases where
the sample sizes in each period are the same (size 10 in Table 5),
larger rolling lengths generally exhibit better performance;

• the running time significantly increases as the rolling length
grows; in particular, for rolling length 3, the solver encounters
the time limit (we set 20,000 s for the solver) and is unable to
complete certain cases, as indicated by the notation ‘‘—’’.

7.4. Comparison of results with and without the service level constraint

As the rationale for this paper is that the model maximizing survival

probability without a service level constraint may result in a high lost
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Fig. 4. Demand patterns used in the numerical tests.
sales rate, we compare the results from Archibald et al. (2002) with our
rolling horizon approach with a joint chance constraint.

The test beds are the same as in Section 7.3, but we scale the
planning horizon length to 5 periods to make the problems easier for
computation. We introduce some parameter variations in the tests: the
initial cash position 𝐶0 takes values in the range of (80, 100, 120), price
𝑝 takes values in the range of (4, 5, 6), overhead cost 𝐻 takes values
in the range of (60, 80, 100), unit variable ordering cost 𝑣 is set to 1,
and unit salvage value 𝛾 is set to 0.5. In the rolling horizon approach,
the rolling length is set to 1, the scenario size is 300, and the required
service level (1 − 𝜂) in the model is set to 95%.

Table 6 presents the average objectives, average service rates, and
average ordering quantities in the first period (𝑄1) for both the model
without a service level constraint, as in Archibald et al. (2002), and our
approach with the joint service level constraint.

It is evident from Table 6 that the average service rates are very
low (0.85%) for the model without a service level constraint, indicating
a significantly high lost sale rate. In some cases with high expected
10
profits (i.e., high prices or low overhead costs), the service rates are
almost 0.00%. On the contrary, our approach provides solutions with
high service rates, particularly for cases with high expected profits.
The reason for this is reflected in the ordering quantities of the two
approaches. Without the service level constraint, the survival proba-
bility maximization model leads to conservative decisions compared
to the model with the joint service level constraint. For example,
among the 270 numerical cases, the average 𝑄1 is 27.63 for the former
approach, while it is 44.27 for the latter approach. This difference is
more pronounced in cases with high expected profits, such as when the
price is high or the overhead cost is low. For instance, when the price
is 6, the average 𝑄1 is only 20.96 for the former approach, whereas it
is 44.42 for the latter approach.

From the findings presented in Table 6 and our model formulation,
it becomes evident that the overhead cost has a major impact on the
retailer’s survival probability, irrespective of the presence of a service
level constraint. To investigate its influence in more detail, we varied
the overhead cost from 0 to 100 and show the average objectives
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Table 5
Results of rolling horizon method for different demand patterns (1 − 𝜂 = 95%).

Demand pattern Rolling length 1 Rolling length 2 Rolling length 3

size obj. ser. time size obj. ser. time size obj. ser. time

STA
10 100% 55% 1s 10 100% 63% 7s 10 100% 93% 450s
100 100% 94% 3s 30 100% 97% 430s 15 100% 95% 2048s
300 100% 99% 9s 50 100% 98% 960s 20 – – –

LCY1
10 100% 64% 1s 10 100% 68% 7s 10 100% 90% 339s
100 100% 95% 4s 30 100% 98% 380s 15 100% 93% 936s
300 100% 99% 10s 50 100% 98% 820s 20 – – –

LCY2
10 80% 44% 1s 10 46% 35% 6s 10 68% 62% 249s
100 81% 72% 4s 30 53% 51% 50s 15 70% 60% 1416s
300 81% 74% 9s 50 68% 68% 464s 20 65% 46% 16319s

SIN1
10 100% 75% 1s 10 99% 63% 6s 10 100% 92% 409s
100 100% 95% 4s 30 100% 92% 255s 15 100% 93% 2326s
300 100% 99% 10s 50 100% 95% 1094s 20 – – –

SIN2
10 100% 63% 1s 10 100% 63% 5s 10 100% 88% 391s
100 100% 97% 4s 30 100% 99% 406s 15 100% 95% 2126s
300 100% 97% 10s 50 100% 96% 1049s 20 – – –

RAND
10 100% 66% 1s 10 100% 59% 6s 10 100% 77% 353s
100 100% 92% 4s 30 100% 92% 181s 15 100% 88% 2153s
300 100% 98% 9s 50 100% 94% 715s 20 – – –

EMP1
10 38% 14% 1s 10 38% 19% 5s 10 24% 18% 48s
100 19% 13% 2s 30 25% 17% 41s 15 39% 24% 504s
300 20% 13% 9s 50 15% 10% 120s 20 23% 17% 3041s

EMP2
10 80% 56% 1s 10 93% 50% 6s 10 99% 89% 210s
100 86% 84% 4s 30 92% 79% 50s 15 97% 92% 971s
300 86% 84% 10s 50 91% 81% 148s 20 92% 88% 5956s

EMP3
10 100% 51% 1s 10 98% 73% 6s 10 100% 74% 303s
100 100% 94% 4s 30 100% 86% 50s 15 95% 97% 1191s
300 100% 94% 10s 20 100% 97% 818s 20 – – –

EMP4
10 100% 51% 1s 10 100% 57% 5s 10 100% 84% 276s
100 100% 87% 4s 30 100% 88% 50s 15 100% 98% 1644s
300 100% 96% 10s 50 100% 96% 688s 20 – – –
Table 6
Impact of the service level constraint.

Without service constraint Joint service constraint Cases

avg. obj. avg. ser. avg. 𝑄1 avg. obj. avg. ser. avg. 𝑄1

Initial cash
80 86.67% 0.84% 29.95 65.33% 60.79% 43.72 90
100 93.18% 0.88% 27.83 86.69% 63.98% 44.57 90
120 96.71% 0.83% 25.11 93.37% 73.67% 44.51 90

Price
4 81.30% 2.47% 34.88 58.32% 54.00% 44.37 90
5 96.13% 0.08% 27.05 80.51% 76.47% 44.01 90
6 99.12% 0.00% 20.96 90.54% 81.82% 44.42 90

Overhead cost
60 99.99% 0.00% 16.09 94.81% 91.02% 44.26 90
80 97.49% 0.12% 29.40 79.68% 74.13% 44.12 90
100 79.08% 2.44% 37.40 54.87% 53.53% 44.42 90

Demand pattern
STA 97.70% 0.21% 28.07 96.21% 95.06% 47.81 27
LCY1 99.98% 0.01% 28.89 99.97% 99.31% 72.30 27
LCY2 85.22% 0.00% 22.03 72.39% 71.07% 26.56 27
SIN1 95.56% 0.00% 44.37 92.91% 88.14% 69.70 27
SIN2 79.92% 0.87% 17.26 55.86% 54.47% 19.04 27
RAND 91.31% 7.44% 62.22 90.36% 98.34% 85.30 27
EMP1 99.76% 0.00% 17.70 86.24% 70.25% 41.70 27
EMP2 87.08% 0.00% 18.78 46.47% 45.26% 26.67 27
EMP3 92.46% 0.00% 17.85 68.36% 58.49% 25.00 27
EMP4 92.97% 0.00% 19.11 55.81% 48.55% 28.59 27

General 92.19% 0.85% 27.63 76.46% 72.89% 44.27 270
and service levels in Fig. 5. When the overhead cost is zero, the
cash position at the end of a period can never be negative and the
retailer’s survival is assured. While the overhead cost remains low,
the retailer’s survival probability remains close to 1 in both models.
11
However as the overhead cost increases, a point is reached at which
the retailer’s survival probability is significantly affected. This point is
reached earlier, and is more pronounced, for the model with the service
level constraint. Service level follows a similar pattern for the model
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Fig. 5. Survival probability and service level as functions of the overhead cost.
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Table A.1
Detailed mean demand data of the 12-period demand patterns.

Demand pattern Period

1 2 3 4 5 6 7 8 9 10 11 12

STA 30 30 30 30 30 30 30 30 30 30 30 30
LCY1 46 49 50 50 49 46 42 38 33 28 23 18
LCY2 11 14 18 23 28 33 38 42 46 49 50 49
SIN1 47 30 13 6 13 30 47 54 47 30 13 6
SIN2 36 30 24 21 24 30 36 39 36 30 24 21
RAND 63 27 10 24 1 23 33 35 67 7 14 41
EMP1 5 15 46 140 80 147 134 74 84 109 47 88
EMP2 14 24 71 118 49 86 152 117 226 208 78 59
EMP3 13 35 79 43 44 59 22 55 61 34 50 95
EMP4 15 56 19 84 136 67 67 155 87 164 19 67

Table A.2
Detailed mean demand data of the 5-period demand patterns.

Demand pattern Period

1 2 3 4 5

STA 30 30 30 30 30
LCY1 50 46 38 28 14
LCY2 14 23 33 46 50
SIN1 47 30 6 30 54
SIN2 9 30 44 30 8
RAND 63 27 10 24 1
EMP1 25 46 140 80 147
EMP2 14 24 71 118 49
EMP3 13 35 79 43 44
EMP4 15 56 19 84 136

with the service level constraint. In contrast, the service levels in the
model without a service level constraint consistently hover near 0%
across the range of overhead cost values.

8. Conclusions

While several previous works aim to maximize the survival prob-
ability of a retailer facing a multi-period inventory problem, the lost
sales rates of the solutions found are usually too large to be acceptable
in practice. This paper addresses this issue by adding a joint chance
constraint on service level to the problem. Two stochastic models: a
scenario-based model and the SAA model are formulated to solve the
problem. We also provide a statistical upper bound for the survival
probability of the retailer based on SAA and upper and lower bounds
based on stochastic dynamic programming. When the planning horizon
is large, a rolling horizon approach with service rate updating is also
12
developed. We find that the rolling horizon approach together with
the stochastic models can solve realistically sized problems in large
numerical tests.

Our numerical results show that, across a range of parameter set-
tings, the proposed model with a service level constraint is able to strike
a balance between maximizing the probability of survival and achiev-
ing an acceptable minimum service level. Our results also show that
without the constraint on service level, the optimal survival strategy
can result in service levels close to zero. It is important for managers to
recognize that even when carefully managing cash flow during periods
when cash is heavily constrained, such as during an economic crisis,
the minimum service level achieved also needs careful consideration.
Otherwise low customer satisfaction may result in failure anyway.

Future research may consider distributionally robust optimization
methods to solve the problem when the demand distribution is ambigu-
ous. A second possible future research direction is to investigate supply
chain financing in the problem.
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