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ABSTRACT Structural magnetic resonance imaging (SMRI) can identify subtle brain changes due to its high
contrast for soft tissues and high spatial resolution. It has been widely used in diagnosing neurological brain
diseases, such as Alzheimer’s disease (AD). However, the size of 3D high-resolution data poses a significant
challenge for data analysis and processing. Since only a few areas of the brain show structural changes
highly associated with AD, the patch-based methods dividing the whole data into several regular patches have
shown promising for more efficient image analysis. The major challenges of the patch-based methods include
identifying the discriminative patches, combining features from the discrete discriminative patches, and
designing appropriate classifiers. This work proposes a novel efficient patch-based deep learning network
(sMRI-PatchNet) with explainable patch localisation and selection for AD diagnosis. Specifically, it consists
of two primary components: 1) A fast and efficient explainable patch selection method for determining
the most discriminative patches; and 2) A novel patch-based network for extracting deep features and AD
classification with position embeddings to retain position information, capable of capturing the global and
local information of inter- and intra-patches. This method has been applied for the AD classification and the
prediction of the transitional state moderate cognitive impairment (MCI) conversion with real datasets. The
experimental evaluation shows that the proposed method can identify discriminative pathological locations
effectively with a significant reduction on patch numbers used, providing better performance in terms of
accuracy, computing performance, and generalizability, in contrast to the state-of-the-art methods.

INDEX TERMS Deep learning, feature extraction, alzheimer’s disease, structural MRI.

I. INTRODUCTION can give patients the best chance to prepare a treatment

Alzheimer’s disease (AD) is a degenerative brain illness and
the most prevalent cause of dementia, accounting for 60%
to 80% of cases [1]. Currently, there is no effective cure
for AD. However, an accurate and timely AD diagnosis
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plan that may change the disease progression and reduce
the symptom [2]. So far, brain atrophy [3], gray matter
atrophy [4], and regional atrophy [5], are considered as
the most critical neurodegeneration bio-markers. Structural
magnetic resonance imaging (sMRI) as a non-invasive
method measures brain morphometry, and is able to capture
the subtle brain changes induced by the atrophic process,
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thanks to its high contrast for soft tissues and high spatial
resolution [6]. It has been used in detecting AD and moderate
cognitive impairment (MCI) with various computer vision
methods [6], [7], [8]. The existing sMRI-based AD diagnostic
methods usually partition the entire MR image into multiple
regions for better feature extraction of local abnormal brain
structural changes [9], [10], [11], [12], [13]. Depending on
the partition scale, it can be broadly grouped into three
categories: 1) Voxel-based; 2) Regions of interest (ROIs)-
based and 3) Patch-based methods.

The voxel-based sMRI diagnostic methods take whole
images as input and extract global voxel-wise features for AD
diagnosis [14], [15], [16]. Features such as the probability
maps of gray matter (GM) [14], white matter (WM) [17],
and cerebrospinal fluid (CSF) [18] are widely used. However,
there exist some limitations [19] including 1) Due to the
high dimensionality of the feature extracted from the data,
the number of data used for model training is relatively
small, resulting in computationally intensive and over-fitting.
2) Ignoring area information of brain that has been shown to
be important in the diagnosis of AD.

To alleviate the aforementioned problems, several existing
works focused on some predetermined ROIs guided by prior
biological knowledge and extracted regional features for
AD diagnosis [20], [21], [22], [23], [24], [25]. However
since these methods are based on empirical regions, they
might neglect possible pathological locations in the whole
brain [26]. The features extracted from the ROI may not
capture the microscopic variation that is involved in the
brain [27]. Additionally, segmenting ROIs based on expert
knowledge is resource intensive.

To locate the subtle brain atrophy regions for the early
diagnosis of AD and avoid fine-grained segmentation, patch-
based methods, as a compromise between voxel-based and
ROI-based methods, are proposed for the effective capture
of small local structural changes in sMRI images. Unlike
the other two types of methods, the patch-based method
segments an sMRI image into multiple small fixed-size
regular 3D patches based on prior-knowledge/pre-defined
anatomical landmarks [26], [28], [29] or statistics meth-
ods [30]. However, the pre-defined patch selection approach
may miss some AD-related atrophy patches. Statistic analysis
such as the T-test does not necessarily identify the correct
regions linked with AD due to carry-over effects and lacks
explainability [31].

The feature extraction and classification from the selected
patches is another essential part of the patch-based diag-
nostic method. Currently, the conventional machine learning
methods such as Support Vector Machines (SVM) [32], and
Linear programming boosting [33] are widely used. In [34],
[35] and [36], the authors used the handcrafted features,
which may degrade the classification performance due to the
heterogeneity between features and subsequent classification
algorithms. Recently, deep learning methods based on convo-
lutional neural networks (CNNs) for AD diagnosis directly
learn feature representations from input patches without

108604

needing feature selection [26], [29], [30], [37], [38], making
the whole process much more convenient and less prone to
error and bias. However, in these methods, an image is firstly
partitioned into patches and then each selected input patch
is fed into the CNN independently. The local position infor-
mation of each patch and the spatial relationship between
patches are not included in the CNN computation. Hence, two
remaining challenges in the patch-based methods are 1) how
to accurately locate and select the patches; 2) how to capture
both local and global features for improved explainable AD
diagnosis.To address these challenges, this work proposes
a novel patch-based neural network (sMRI-PatchNet) with
explainable patch localisation and selection for Alzheimer’s
disease diagnosis and discriminative atrophy using Structural
MRI. Our contributions include:

1) An efficient explainable patch localisation and selec-
tion for discriminative atrophy regions is proposed,
in which the fewest number of AD-related patches with
explainability are selected based on a novel fast recur-
sive partition perturbation method for computing the
SHapley Additive exPlanations (SHAP) contribution to
a transfer learning model for AD diagnosis on massive
medical data. This significantly reduces computational
complexity and enhances explainability.

2) A novel patch-based deep learning model
(sMRI-PatchNet) is proposed for improving AD
diagnosis performance, in which a learned position
embedding is added to the patch presentation to retain
the position and spatial relationship of patches. The
sMRI-PatchNet has three main parts: Global spatial
information (GSI) and Local patch information (LPI),
are used to capture global feature between patches and
local features within a patch efficiently, and a classifier
for feature classification.

3) The proposed approach has been evaluated against real
datasets with the corresponding visualization. From a
clinical perspective, the visualization results of brain
regions covered by selected patches show that the pro-
posed method can effectively identify discriminative
pathological locations. These new biomarkers can help
clinicians in clinical diagnosis.

The remaining part of this paper is organized as follows:
Section II presents the related work; Section III details the
proposed method; Section IV and V describe the experimen-
tal evaluation and results. Section VI provides the discussion
on the potential of clinical translation and the limitations of
the proposed work; Section VII concludes the work.

Il. RELATED WORK

In this section, we review patch-based brain diagnosis
methods using sMRI and explainable artificial intelligence
methods.

A. PATCH-BASED BRAIN DIAGNOSIS METHODS IN SMRI
Based on partitioning scales, the existing sMRI-based AD
diagnostic methods can be broadly divided into three

VOLUME 11, 2023



X. Zhang et al.: sMRI-PatchNet: A Novel Efficient Explainable Patch-Based DL Network for AD Diagnosis

IEEE Access

categories: 1) voxel-based, 2) regions of interest (ROIs)
based, and 3) patch-based methods. The voxel-based methods
are intuitive and straightforward in terms of the interpretation
of results, aiming to identify disease-related microstructures
from sMRIs of patients. The key point of this type of methods
is to find suitable image features to estimate the probability
of different tissue classes in a given voxel, such as gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) [39]. However, only analysing the features of isolated
voxels would lead to the ignorance of high correlations
between voxels. Another limitation of voxel-level methods
is the overfitting problem because the voxel-level feature
representations always have higher dimensionality compared
with the number of image samples in model training.
Several feature dimensionality reduction algorithms are used
to solve this issue, e.g. a sparse coding method with a
hierarchical tree-guided regularisation [40]. An alternative
solution to feature extraction is to use 3D CNN. In [41],
the authors have demonstrated that using 3D CNNs to
extract features for AD classification can achieve better
accuracy than traditional hand-crafted feature extraction
approaches. In [13], the authors have designed a self-attention
3D CNN to improve the diagnosis performance by adding
attention to global features. However, the main limitation
of 3D CNN methods is their extra-high computation costs
caused by 3D convolution operations. In contrast, ROI-
based approaches are based on the predefined regions
identified from prior biological knowledge, such as the
shrinkage of cerebral cortices, hippocampi and ventricles
etc. [22], [24], [42]. These methods require a much lower
feature dimensionality than the whole voxel-based methods.
However, disease-related structural/functional changes occur
in multiple brain regions. The ROI-based approach may
neglect disease-related features or fail to capture small
and subtle changes associated with brain diseases [27].
Additionally, segmenting ROIs based on experts knowl-
edge is resource intensive, which remains a challenging
task [29].

To address these limitations, the patch-based methods
have been proposed, in which brain regions are split
into several small fix-sized 3D patches. Regular patches
eliminate the need for region segmentation in the dataset,
and each patch is a region of interest. Since brain atrophy
usually occurs locally, only a few of the regions in sMRI
scans have noticeable structural changes, highly associated
with pathological features. The existing works have been
mainly focusing on two main challenges: 1) how to select
patches and combine the local patches to capture global
information of the whole brain SMRI? 2) how to extract
representative features and classify the patches into the right
categories?

For the first challenge, empirical knowledge-based and
statistical analysis-based methods have been used for the
patch selection. On one hand, the empirical knowledge-based
methods select the patches in the important regions based
on prior knowledge. For example, Lian et al [26] adopted
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anatomical landmarks defined in the whole brain image
as prior knowledge for generating selected patches. These
anatomic landmarks were defined using a shape constraint
regression forest model [27]. On the other hand, the statistical
analysis-based selection methods use statistical algorithms
to calculate the patch differences between Alzheimer’s
disease (AD) and Normal cohort (NC) patients. The patches
with the highest variance are selected as the discriminative
patches. In previous studies [29], [30], [40], [43], a T-test
was used to find the difference between AD patients and
NC group data for each patch. The patches with p-values
smaller than 0.05 were selected. In the study [44], the
authors used the weighted correlation coefficient [45] as
the similarity measure to select discriminative patches.
However, the statistical significance for voxels in each
patch does not necessarily have a link with AD. There-
fore, the explainable patch selection is still a challenging
task.

For the second challenge, research efforts have been made
on the feature extraction and classification of patched data.
Liu et al. [43] first developed a patch-based AD diagnosis
method with an independent feature extraction for each patch.
The features were then integrated hierarchically at the classi-
fier level. Inspired by Liu’s method, Suk et al. [29] proposed a
systematic method for a joint feature representation from the
paired patches of SsMRI images using a patch-based approach.
Tong et al. [46] developed a multiple instance learning (MIL)
model for AD classification and MCI conversion prediction
using local intensity patches as features. Zhu et al. [30]
proposed a dual attention multi-instance deep learning
network (DA-MIDL) for the early diagnosis of AD, in which
a Patch-Nets with spatial attention blocks was used for
extracting discriminative features of each patch. It has been
proven that these patch-based methods can efficiently deal
with the problem of high dimensional features and sensitivity
to slight brain structure changes.

However, in the patch-based approaches described above,
each selected patch is fed into the CNN independently. The
local position information of each patch and the spatial
relationship between patches are not included in the CNN
computation. Few deep learning methods with the black-box
nature of neural networks have specific output functions
for pathological location positioning. Therefore, accurately
identifying the discriminative patches while capturing both
local and global features for improved explainable AD
diagnosis is still a remaining challenge in patch-level
methods.

B. EXPLAINABLE METHODS

Recently, machine learning (ML) methods, including deep
learning (DL), have been enormously successful in various
fields [47]. However, they are still seen as a ‘“black box”
model due to their multilayer nonlinear structure. These
models have been criticized for lack of transparency, and
their predicted results are not traceable [48]. Interpreting
and explaining a “‘black box’’ model is extremely important
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in real applications. A reasonable interpretation of an ML
model can increase the user’s trust and provide helpful
information to improve the model. So far, there have been
many general interpretation methods for ML/DL models,
and have given birth to a new subfield, explainable arti-
ficial intelligence (XAI) [49]. Based on the algorithmic
approaches used, the XAI methods in medical image
analysis for visual explanation can be categorized into
two types: backpropagation-based and perturbation-based
methods [50]. The backpropagation-based methods focus
on the back-propagation of gradients through the neural
network to highlight pixel attributions [51], [52]. The
saliency map is the first interpretation method that generates
a visual explanation using the back-propagation on the
convolutional network [52]. The guided back-propagation
method is another gradient-based XAI method to improve
the saliency map by restricting the back-propagation of
values less than 0 [53]. Class Activation Mapping (CAM)
is also a widely used XAI method. The CAM replaces
the last fully connected layers with convolutional layers to
keep the object positions. This operation help discover the
spatial distribution of discriminative regions for the predicted
category [54]. In the paper [13], the authors used the CAM
method to explain the deep learning model’s decision on
AD diagnosis. However, the backpropagation-based methods
are criticized for being inherently dependent on the model
and data-generating process [55]. Ghorbani et al. [56] and
Kindermans et al. [57] have shown that small perturbations
or simple transformations to the input generated much
more significant changes in the interpretations than the
backpropagation-based methods did. The perturbation-based
XAI methods focus on perturbing the input to assess
the attribution of pixels in certain areas. The feature set
of the input is perturbed through occlusion, removing,
masking, conditional sampling, and other techniques. Then,
the forward pass of the perturbed input is used to generate
the attribution representations without the need for back-
propagating gradients [58], [59]. The Local Interpretable
Model-Agnostic Explanations (LIME) is one of the most
widely used perturbation-based XAI methods because it
can explain any classifier in an interpretable and faithful
manner [59]. To generate a representation that explains
the model’s decision, LIME tries to find the importance
of contiguous super-pixels in an input image towards the
output class. Shapley additive explanations (SHAP) is a
similar method that uses the classical Shapley values from
game theory to show the importance to the models [60],
[61]. However, the perturbation-based XAI methods have
the challenge of combinatorial complexity explosion. This
happens when one attempts to go through all elements of
the input and all their possible combinations to observe how
each of them would affect the output [62]. The possible
combinations of data perturbations increase dramatically
when dealing with 3D images, causing a significant increase
in computational costs. To avoid the combinatorial explosion,
a fast perturbation method is proposed in this paper.
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lil. THE PROPOSED METHOD

This study aims to propose a novel patch-based convolutional
network (sMRI-PatchNet) with an explainable patch selec-
tion for AD diagnosis with sMRI images. It involves two-
level classifications: Alzheimer’s disease (AD) vs. Normal
cohort (NC), and progressive MCI (pMCI) vs. Stable MCI
(sMCI).

The schematic diagram of our framework is shown in
Fig. 1, which consists of two major units: Explainable Patch
Localisation and Selection (EPLS) for patch selection and
sMRI-PatchNet for feature extraction and classification. The

rationale behind this architecture includes:
1) Unlike traditional statistical or prior knowledge-based

methods, we have proposed an explainable patch
localisation and selection method. It can accurately
identify the fewest number of AD-related patches based
on a novel fast recursive partition perturbation method
for computing the SHapley Additive exPlanations
(SHAP) contribution to a transfer learning model
for AD diagnosis on massive medical data. This
significantly reduces computational complexity and
enhances explainability.

2) A novel patch-based deep learning network
(sMRI-PatchNet) is proposed for feature extraction
and classification. The selected patches are flattened
into vectors using a linear projection. A learned
position embedding is added to the patch presentation
to retain their location and spatial information. Two
CNN blocks including global spatial information (GSI)
and local patch information (LPI) are proposed to
capture the global features between patches and local
features within a patch. A classifier consisting of
average pooling followed by a fully connected layer
is connected to predict output classes.

A. EXPLAINABLE PATCH LOCALISATION AND SELECTION
(EPLS)

The unit of explainable patch localisation and selection
(EPLS) aims to identify and select the most discriminative
patches by evaluating their importance to the AD diagnosis
(classification). It was implemented through transfer learning
using MedicalNet [63] pretrained on 23 publicly available
large medical image data, and fine-tuned with an sMRI
dataset. The classification accuracy of MedicalNet can reach
0.909. As shown in Fig. 2, in this unit, each sSMRI image
is uniformly partitioned into 3D cubic patches with a fixed
size, without overlapping. Based on our experiments and the
previous work [26], the size of 25 x 25 x 25 is selected
in this study. These patches are fed into the MedicalNet
for evaluating their importance to AD diagnosis. A fast
explainable recursive partition perturbation approach for
assessing the patch importance based on the value of the
SHAP coefficient has been designed. To explain the model’s
decision, we perturb the sSMRI data by filling value of 0 on
specific patch and observing how the model output changes
to the perturbations. Then, the SHAP coefficient is calculated
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to measure the contribution of each location of the sSMRI
input to the model output. This is aligned with human
intuition and can effectually discriminate among model
output classes [61]. We average the contribution of each
location for all sMRI images identified as AD, and the
high contribution locations are selected as input to the AD
diagnosis model.

1) SHAP COEFFICIENT ESTIMATION METHOD

The SHAP coefficient [60] is used to calculate the contribu-
tion of each patch towards the output of AD classification)
and can be defined as:

Cll(n—|C| - D!
sp= 3 SesicioD

ccn\{}

If Xcuw) —f Xo)]
(1)

where C is a subset of n patches used in the model, X is
the vector of all patch features and n is the number of
patches in the input. f (Xcugy) is the predicted probability
of AD with the ith patch included while f (X¢) is the
probability value without the ith patch in the input. S;(f)
represents the averaged marginalized contribution of ith
patch over all possible subsets of n. The computation
complexity is exponential in the dimension of the input
features (O(2")).

2) FAST RECURSIVE PARTITION PERTURBATION METHOD

In this work, each sMRI image is divided into n 3D cubic
patches (n=598 when the patch size is 25 x 25 x 25 on
a standard sMRI image). The computational complexity of
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Algorithm 1 Fast recursive partition Shap algorithm (R-Shap)
Input:
X: sMRI data;
7: Threshold 7 > 0;
f: The prior knowledge model;
: procedure R — Shap(Xy, f,7) # R-Shap algorithm for level I:
: X — X = (X1,0,X1,1,X12... X1,,) # Partition the input X into disjoint
regular patches X;;
3: (X1, f) = g1 # Set a n-person cooperative game:
4 51,0,51,1,51,2 - - - S1,n < Shap (g1) # Calcute the Shap value for each patch;
5. for s in s; do
6: if s < 7 then
7
8:

[

Return s
else
9: Return R — Shap(X (1 +1), f, 7) # Calcute the shap value for level I +1;
10: end if
11: end for

FIGURE 3. Fast recursive partition perturbation method.

the model explanation on each image will be 2"=% by
using the conventional permutation method. This will take
an unacceptable amount of time to work through all the
sMRI data. To reduce the computational complexity and costs
without compromising the performance, this work introduces
a fast recursive partition perturbation method to perturb the
image hierarchically.

Unlike the conventional permutation methods which
ignore the link between patches, our proposed method
calculates the importance of each patch by iteratively
partitioning the data. The algorithm is shown in Fig. 3.
Specifically, to avoid predefining regions of interest, we par-
tition an image, X, into 8 disjointed regular patches
(X1,0,X1,1, X1,2... X1,n), called level 1, the size of each
patch is 100 x 100 x 100, and the computation complex-
ity will be (0(2%)) which is significantly reduced. After
computing the SHAP coefficients of all patches at Level 1,
(51,0, S1.1,812--. Sl,,,), we further partition each patch into
8 smaller sub-patches in a hierarchical manner up to Level 3,
based on its SHAP value. If the calculated SHAP coefficient
for a patch is greater than a pre-defined threshold (7),
then there is no further partition to the next level; or else,
if S1; < 7, we partition this patch to the next level; and
recursive this manner up to Level 3. The patch sizes are
50 x 50 x 50 at Level 2 and 25 x 25 x 25 at Level 3. After the
recursion, all the patches along with their SHAP coefficient
values are returned.
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B. sMRI-PATCHNET

The second major unit is a patch-based deep learning con-
volutional network for feature extraction and classification,
named sMRI-PatchNet, as shown in Fig. 4. After the patch
selection, these selected patches are flattened into vectors
(xp € RMx(P 3)) and mapped to d dimensions (the size
of vectors) to reduce the dimensions of the data using a
linear projection. Where P is the size of the patch, and M
is the number of selected patches. To retain the positional
information, a learned 1D position embedding [64] is added
to the patch vectors.

X = [XIIVIE; X§4E; s XME]
+ Epos, E € RM*4 E ¢ RM>d )

We then group patch vectors in sequence to a new
array (X € RE@TDXmxm)ywhere m x m = M is
the number of patches, d is the size of the array’s Z-axis
which denotes the dimension of each flattened patch. The
Z-axis (d) represents the information inside each patch.
The xy-axis (m x m) represents the spatial information
between the different small patches. The sMRI-PatchNet
consists of global spatial information (GSI), local patch
information (LPI), and a classifier. GSI is used to capture
global information between the patches from the XY-axis
and the LPI is used to capture the local features within a
patch from Z-axis (d). The classifier consists of average
pooling and a fully connected layer that classifies features
into the correct class. In this work, the GSI and LPI will
repeat the depth (D) times to increase the length of the
model.

1) GLOBAL SPATIAL INFORMATION (GSI)

The GSI is proposed to capture the global spatial information
of patches. In the first part, the 3D patches are flattened
into vectors and then converted to a 2D array (X € RI*M ),
which can reduce the computational consumption caused by
3D convolution. Then a spatial-wise 2D convolution with a
large kernel size of M is used to operate on X € R4*M
to extract the global spatial information. The kernel size
M allows the receptive field of convolution to cover the
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sMRI-PatchNet

GSI LPI

Global Spatial Local Patch Global Average
Information Information Pooling

Depth Classifier

Local Patch Information (LPI)
Conv2D Activation BatchNorm
Kernel size=1

Point-wise Dense Layer

entire area. Then, the conventional activation (o, Rectified
Linear Unit(ReLLU) [65] ) and BatchNorm (BN [66]) are used
following the GSI module to accelerate the model training.
A residual connection [67] is introduced before and after the
GSI to avoid the gradient vanishing problem when the depth
of the model is increased.

X = BN ( SpatialwiseConv (X;—1))) +X;—1  (3)

2) LOCAL PATCH INFORMATION (LPI)

The LPI is proposed to capture the internal information of
each patch. Note that the voxel values of each patch are
flattened on the Z-axis in the input array with dimension d.
Therefore, a pointwise 2D convolution with kernel size 1 x 1,
regarded as a multilayer perceptron (MLP), is executed on the
channel axes. The activation and Batchnorm are also followed
after the LPI module.

Zi41 = BN (o (PointwiseConv (X;))) )

IV. EXPERIMENTAL EVALUATION
A. DATASET DESCRIPTION AND PREPROCESSING
This study used the ADNI dataset, which was obtained
from the public Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu). In the ADNI
dataset, a total of 1193 1.5T/3T T1-weighted structural
magnetic resonance imaging (SMRI) scans are taken from the
baseline/screening visits (i.e. first examination) of subjects
in the three ADNI phases (ADNI-1, ADNI-2 and ADNI-3).
These participants can be classified into three groups: AD
(Alzheimer’s disease), MCI (mild cognitive impairment)
and NC (normal controls) according to standard clinical
criterias. For the prediction of MCI conversion, MCI subjects
are further categorised into two groups: pMCI (progressive
MCI subjects who convert to AD within 36 months of
the baseline visit) and sSMCI (stable MCI subjects who are
consistently diagnosed with MCI). The study’s ADNI dataset
contained 389 AD, 172 pMCI, 232 sMCI and 400 NC sub-
jects. The demographic details of this dataset are described
in Table. 1.

The original structural MRI data from the ADNI database
are pre-processed for subsequent feature learning and
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TABLE 1. Demographic details of the studied subjects including dataset,
group type, gender, age, mini-mental state examination (mmse) and
clinical dementia rating (cdr).

Dataset Group Gender Age Edu MMSE

(Male/Female) (Mean+Std) (Mean+Std) (Mean+Std)

AD 200 (103/97) 7562+£7.70 14.68£320 2329 +2.04

ADNI-1 pMCI 172 (106/66) 7634+7.15 1576+2.84  26.61+1.70
sMCI  232(154/78) 7647+7.82 1558+3.17 27.31+1.79

NC 231 (119/112)  75.99 +£5.00
AD 153 (85/68) 74.95+7.80
NC 419 (170/249)  74.84 +6.60

16.06 +2.84  29.12+0.99
15.88+2.66 23.03+2.14
16.63+2.48 29.09+1.19

ADNI-2/3

classification. As the original dataset is in Neuroimaging
Informatics Technology Initiative (NIfTI) format, the pre-
process is needed for spatial distortion correction caused by
gradient nonlinearity and B1 field inhomogeneity. This is
a standard pipeline process including anterior commissure
(AC)-posterior commissure (PC) correction, intensity correc-
tion [68], and skull stripping [69]. We have used MIPAV
(Medical Image Processing, Analysis, and Visualisation)
application to implement AC-PC correction and use FSL
(FMRIB Software Library v6.0) for skull stripping. A linear
registration strategy (flirt instruction in FSL) is also executed
to align every sMRI linearly with the Colin27 template [70] to
delete global linear differences (including global translation,
scale, and rotation differences), and also to re-sample
all sMRIs to have the identical spatial resolution. After
the preprocessing, all sSMRI images have the same size,
containing 181 x 217 x 181 voxels.

B. EVALUATION METRICS

We have evaluated two binary classification tasks: AD classi-
fication (i.e., AD vs. NC) and MCI conversion prediction (i.e.,
pMCI vs. sMCI). The classification performance is evaluated
based on four commonly used standard metrics, including
classification accuracy (ACC), sensitivity (SEN), specificity
(SPE), and Area under the curve (AUC). These metrics are
defined as:

TP + TN
ACC = ©)
TP + TN + FP + FN
TP
SEN = —— ©)
TP + FN
N
SPE = ————— @)
TN + FP

where TP = TruePositive, TN = TrueNegative, FP =
FalsePositive and FN = FalseNegative. The AUC is
calculated based on all possible SEN and 1-SPE obtained
by changing the thresholds performed on the classification
scores yielded by the trained networks.

C. EXPERIMENTAL EVALUATION

To evaluate the performance of our proposed model,
we have conducted three types of experiments: 1) Diagnostic
performance evaluation. 2) Generalisability evaluation and
3) Impact of discriminative patch location selection on model
performance.
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TABLE 2. The model configuration.

Model sMRI-PatchNet
Patch size 25

Patch number 36

Heads Na

Depth (D) 12

Dimension 1600

Param (M) 34.53

1) EXPERIMENT ONE: DIAGNOSTIC PERFORMANCE
EVALUATION

In this experiment, we evaluate the diagnostic performance
of our proposed model. The detailed configuration of the
proposed PatchNet is shown in Table. 2. The patch size is
25 x 25 x 25, and top 36 patches with the highest SHAP value
are selected. These configurations are the best combinations
obtained in our experiments. The model has 16 layers (D).
The dimension of the flattened patch is 1600.

The proposed model is compared with several commonly
used automatic AD diagnosis methods, including

1) Three traditional machine learning (ML) based methods
representing a typical example of the three types of existing
computer-aided diagnostic methods for AD, respectively
including:

a) A voxel-based method (VBM) from Ashburneretal [71].
In VBM, each sMRI is processed by the spatial normalization
to a standard stereotactic brain space (i.e., Colin27 template)
and the local gray matter density is measured as the voxel-
level feature.

b) A region-based method (RBM) by Zhang et al, [72].
The RBM uses the prior knowledge identified regions
of the sMRI image as the input. After a deformable
registration [73], an entire brain sMRI image is segmented
into 93 areas according to the template with 93 manually
labeled ROIs [74], as described in [72]. The grey matter
volume in each ROI is then calculated as a region-
level feature, which is normalized by the total intracranial
volume;

¢) A patch-based method (PBM) from Zhang et al. [40].
The PBM uses selected patches as the input. The patch
location selection method proposed in their study is used
to evaluate the contribution of each patch to AD. The top
40 patches are selected, and a patch pool is operated on
selected patches from tissue density maps to generate input
vectors. The Light Gradient Boosting Machine (LightGBM)
machine learning classifier is selected for feature classifica-
tion. It has state-of-the-art accuracy, lower memory usage,
and higher efficiency that can handle large-scale data [75].
The detailed parameters for the LightGBM classifier are
shown in Table. 3.

2) One deep learning model based on transfer learning:
The MedicalNet (Med3D) [63]. It is also the trained model
that we used for the explainable discriminative location
selection. The Med3D adopts the ResNet family (ResNet 10,
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TABLE 3. The LightGBM classifier training parameters.

Parameters Description Value

Boosting_type  Method of boosting Gradient-boosted decision trees (gbdt)
Num_leaves Max number of leaves in one tree

Max_depth Limit the max depth Forr tree model, -1 means no limit -1

Num_iterations Number of boosting iterations 100

Learning_rate  The shrinkage rate for model train 0.05

ResNet 18) architecture as the backbone [67]. To enable the
Med3D to train with 3D medical data, all 2D convolution
kernels are replaced with their 3D versions. To avoid
overfitting when trained on the limited volume of training
data, Med3D collected the dataset from several medical
challenges to build a large dataset and provided a pre-trained
model for other downstream tasks. In this work, we use this
pre-trained model and fine-tune it with SsMRI data for our AD
diagnosis tasks.

3) Two typical patch-based deep learning methods,
HFCN [26] and DA-MIDL [30]. Both of these methods used
the statistical method for patch selection and proposed novel
CNN models for patch feature extraction and classification.
The HFCN model is implemented by multi-layer convolu-
tional structures. It contains three-level networks consisting
of patch-level, region-level, and subject-level sub-networks.
Multi-scale feature representations are jointly learned and
fused for the construction of hierarchical classifiers. The
features from different levels are spatially combined to feed
into the classifier. The DA-MIDL model consists of three
primary components: a) Patch-Nets with spatial attention
blocks for extracting features within each patch; b) an
attention multi-instance learning (MIL) pooling operation
for balancing the relative contribution of each patch, and
¢) an attention-aware global classifier for further learning the
features and making the AD-related classification decisions.

In this test, we train our model using the ADNI-1 dataset
and perform 10 times of five-fold cross-validation. The
dataset is randomly split into five groups where four groups
(80% of the dataset) are used for training, and the rest are
used for testing. The experimental results for classification
performance are the average of the accuracies and and its
standard deviation on the testing set across all folds. This
allowed a more appropriate model analysis and made it
possible to avoid overfitting problems. To optimize model
parameters, Adam [76], a stochastic optimization algorithm
with a batch size of 8 samples, has been used in training the
proposed network. We first set the initial learning rate (LR)
as 1 x 107*. The LR is decreased to 1 x 10~ with increased
iterations. CrossEntropy has been selected as the loss function
for this task [77]. The experiments are implemented based on
PyTorch and executed on a server with an Intel(R) Xeon(R)
CPU E5-2650, NVIDIA 2080TI, and 64 GB memory.

2) EXPERIMENT TWO: GENERALISABILITY EVALUATION

In this experiment, the generalisability and repeatability of
the proposed PatchNet model are evaluated. We train the
model based on the whole ADNI-1 dataset and test it on
two independent datasets (ADNI-2 and ADNI-3). Due to a
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lack of pMCI and sMCI samples from ADNI-2 and ADNI-3,
we only evaluate the model performance on the AD vs.
NC classification task. The four automatic diagnosis methods
described in the previous section are used for comparison.

3) EXPERIMENT THREE: THE IMPACT OF DISCRIMINATIVE
PATCH SELECTION ON MODEL PERFORMANCE

In this experiment, we evaluate the influence of patch
selections on the classification performance of our proposed
classification model, based on two different patch selection
approaches, our SHAP-based method, and the traditional
statistic method. We investigate the effect of the patch number
on classification performance and the performance of two
different patch selection methods on identifying the locations
of patches in the brain. Considering that the patch choice
is based on its contribution to AD, we use the AD vs.
NC classification task for evaluation. In our SHAP-based
patch selection approach, the top 16, 36, and 64 patches
with the highest SHAP value are selected, respectively. The
number of selected patches has to be squareable to match
the PatchNet requirement (that is, it can be converted to an
mxm array). The traditional statistical analysis-based patch
selection method used in [29], [30], [40], and [43] is selected
for comparison. This method assumes that the patch locations
with the most significant differences between the AD and NC
groups are more likely to be the brain regions with abnormal
atrophy. Thus, the t-test [78] is applied to two groups of
patch-level features at one patch location from the same
amount of AD patients and normal controls in the training
set, respectively. The p-value for each patch location is used to
sort the informativeness in all patches. The patches with lower
p-values are selected. Here we orderly select the number
from 20, 40, 60, 120, 200 in the PatchNet and record the
corresponding results. Identifying morphological changes in
the brain can help the clinical diagnosis of AD [5], [79], [80].
To investigate the performance of the two patch selection
methods on identifying the brain regions associated with AD,
we quantitatively visualize the patch locations predicted as
AD and the regions where they are located in the brain.
Accurately identifying these regions can provide valuable
information for clinical diagnosis.

V. RESULTS
A. RESULTS OF DIAGNOSTIC PERFORMANCE EVALUATION
The results of AD vs. NC classification and MCI conversion
prediction achieved by our sMRI-PatchNet model and the
competing methods on the ADNI-1 dataset are shown in
Table. 4. The proposed sMRI-PatchNet method achieves the
best accuracy (0.920 and 0.819) in the two classification
tasks, which are statistically significant. Of the three machine
learning-based baseline methods, the PBM outperforms the
RBM and VBM methods, indicating that patch-level feature
representations could offer better discriminative information
regarding the subtle brain changes for brain disease diagnosis.
Moreover, as shown in Table. 4, the Med3D-18, which
uses the whole image as input, surpasses the three traditional
machine learning-based methods (WBM, RBM, and PBM)

VOLUME 11, 2023



X. Zhang et al.: sMRI-PatchNet: A Novel Efficient Explainable Patch-Based DL Network for AD Diagnosis

IEEE Access

TABLE 4. Results for AD classification (i.e., AD vs. NC) and MCI conversion prediction (i.e., pMClI vs. sMCI).

Model AD vs. NC classification

pMCI vs. sMCI classification

ACC SEN SPE AUC ACC SEN SPE AUC
VBM [71] 0.815+0.043  0.755£0.05 0.873x0.036  0.884+0.037  0.682+0.054  0.629+0.08 0.714£0.06 0.706x0.053
RBM [72] 0.808+0.107  0.717+0.103  0.883+0.106  0.849+0.072  0.669+0.084  0.573+£0.094  0.741£0.073  0.696+0.034
PBM [40] 0.838+0.089  0.726+0.124  0.871+0.05 0.847+0.028  0.682+0.071  0.4+0.096 0.73£0.071 0.637+0.048
Med3D-18 [63]  0.909£0.149  0.896+0.142  0.924+0.151  0.952+0.085  0.806+£0.047  0.773£0.054  0.833%£0.055  0.817£0.033
HFCN [26] 0.882+0.047  0.89+0.054 0.883+0.055  0.929+0.033  0.807+0.046  0.806+0.049  0.798+0.036  0.794+0.036
DA-MIDL [30]  0.904+0.079  0.887£0.092  0.903+0.075  0.922+0.034  0.809+0.092  0.771£0.101  0.826+0.097  0.851+0.047
Our Method 0.920£0.088  0.920+0.119  0.919+0.052  0.967+0.023  0.819+0.044  0.818+0.055 0.816+0.056  0.857+0.029

TABLE 5. Results of AD classification on the independent ADNI2 and
3 datasetss.

AD vs. NC classification

Model ACC SEN SPE AUC

VBM 0.806+£0.046  0.578+0.049  0.866+0.036  0.816+0.036
RBM 0.789£0.102  0.522+0.103  0.865£0.102  0.795+0.076
PBM 0.825+0.088  0.775+0.119  0.866+0.052  0.884+0.023
Med3D-18 0.874+0.147  0.795+0.141  0.915£0.148  0.906+0.089
HFCN 0.851£0.012  0.749+0.014  0.855£0.009  0.865+0.026
DA-MIDL 0.868+0.034  0.772+0.092  0.893+0.101  0.901+0.097
Our method  0.891x0.019  0.791£0.068  0.882+0.046  0.925+0.023

with different input representations by significant margins
in both tasks. It demonstrates that with the transfer learning
from the massive medical dataset training [63], Med3D can
effectively extract useful high-level features from the entire
sMRI image for the classification task. In addition, the deep
learning-based methods learn high-level features from data in
an incremental manner with a massive number of parameters
and non-linear calculations, thus allowing better performance
than traditional machine learning models.

B. RESULTS OF GENERALIZABILITY EVALUATION

Table. 5 shows the AD classification results of our method
and the competing methods evaluated on the independent
ADNI2 &3 datasets. Our proposed sMRI-PatchNet gen-
erally outperforms the other five competing methods. the
sMRI-PatchNet obtains the highest accuracy (0.891) in the
AD vs. NC classification, outperforming VBM (0.806),
RBM (0.789), PBM (0.825), Med3D-18 (0.874), HFCN
(0.851) and DA-MIDL(0.868). These results indicate that
the sMRI-PatchNet can provide robust performance across
different datasets.

In general, the performance of a model is expected to
decrease when evaluating on the independent dataset. The
accuracy and AUC of our proposed model slightly decrease
by 2% and 4%, respectively. These results indicate the good
generalization capability of our method for AD diagnosis.
The accuracy of machine learning-based methods, such as
VBM, RBM, and PBM, only drops by around 1%. This may
be due to the fact that the ML-based methods have fewer
parameters, allowing the model to avoid overfitting.

C. THE IMPACT OF DISCRIMINATIVE PATCH LOCATION
SELECTION ON MODEL PERFORMANCE

Fig. 5 shows the distributions of discriminative patches
selected by the statistical analysis method and the proposed
explainable SHAP-based method. The discriminative patch
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FIGURE 5. The discriminative patch location distribution determined by:
(a) the proposed explainable SHAP based method and (b) the statistic
analysis method.
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FIGURE 6. Results of Accuracy and AUC in AD classification obtained by:
(a) our proposed explainable SHAP-based method and (b) the statistic
analysis method with different selected numbers of input image patches.

locations determined by the SHAP-based method focus more
on the central part of the sMRI image, while the results from
the statistical analysis method are discrete and distributed in
various regions.

Fig. 6 shows the changes in the classification performance
of our sMRI-PatchNet model with the increasing number of
input image patches selected by the two methods, in terms
of accuracy and AUC. It can be observed that PatchNet
achieves satisfactory accuracy and AUC using the input
patches selected by our proposed patch selection approach,
even though the number of selected patches (n) is only 16.
In contrast, the classification accuracy of PatchNet with the
input patches selected by the statistic analysis method is only
0.846, after selecting a larger number (60) of input patches.
Only under the circumstance of increasing the number of
patches selected by the statistic method from 60 to 140,
both the accuracy and AUC are significantly improved.
This implies that the locations determined by the statistical
methods are not necessarily correct, and a smaller number
of patches are insufficient to yield satisfactory results. In our
implementations, n = 36 is chosen to make a compromise
between the computational complexity, the memory cost of
training, and including a large enough number of potentially
valuable locations.
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FIGURE 7. AD classification performance of the proposed model with the
input patches of different sizes ( 15 x 15 x 15 to 35 x 35 x 35) on the
ADNI test set.

TABLE 6. A list of brain regions that the suggested patches from our
method cover in the automated anatomical atlas (AAL 3V1) [81].

Description Code  Description Code
Frontal Lobe Insula and Cingulate Gyri

Precentral gyrus 2 Insula 33,34
Superior frontal gyrus, dorsolateral 4 Middle cingulate & paracingulate gyri 38
Middle frontal gyrus 6 Posterior cingulate gyrus 39,40
Inferior frontal gyrus, triangular part 9 Occipital Lobe

IFG pars orbitalis 11,12 Calcarine fissure and surrounding cortex 47
Supplementary motor area 16 Lingual gyrus 52
Olfactory cortex 17,18  Parietal Lobe

Superior frontal gyrus, medial 20 Postcentral gyrus 62
Gyrus rectus 23,24 Precuneus 71,72
Medial orbital gyrus 25,26  Central Structures

Posterior orbital gyrus 29,30  Caudate nucleus 75,76
Temporal Lobe Lenticular nucleus, Putamen 77,78
Hippocampus 41 Lenticular nucleus, Pallidum 79.80
Parahippocampal gyrus 43,44 Pallidum (PAL) 81.82
Amygdala 4546  Ventral anterior 126
Superior temporal gyrus 85 Pulvinar medial 145,146
Temporal pole: superior temporal gyrus 87,88 Nucleus accumbens 158
Posterior Fossa

Lobule IV, V of vermis 115

VI. DISCUSSIONS

In this section, we first analyse the influence of the number
and size of patch selection on the performance of the
proposed model and its potential for clinical translation.
Then, we compare our proposed method with previous
studies on AD-related brain disease diagnosis.

A. INFLUENCE OF NUMBER AND SIZE OF PATCHES

As a patch-based method, the size and number of patches
are important parameters. We discuss the influence of the
number and size of patches on the performance of the
proposed model. Fig. 6 a) shows the AD classification results
achieved by the proposed model respectively with a range
from 16 to 64. We can observe that both ACC and AUC
are stable and better in the range of 16 to 64. The best
performance is achieved when n increases to 36. This implies
that small numbers of patches (e.g., n=16) may not include
adequate patches related to AD classification. While, large
numbers of patches (e.g., N=64) will increase the number of
patches with useless information for AD classification.

In this paper, we select a patch size of 25 x 25 x 25, the
same as used [26], [30]. We evaluate the AD classification
performance with different patch sizes. Fig. 7 shows the
AD classification performance with different patch sizes in
arange of 15 x 15 x 15 to 35 x 35 x 35. The result shows the
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proposed model achieve a stable performance for all selected
patches, and indicating that the model is not sensitive to the
size of input patches within this range. The accuracy of the
proposed model is greater than 0.9 for all selected patch sizes,
except 15 x 15x15. This implies that a relatively large patch
size is required in order to capture sufficient details of feature
changes by brain atrophy.

B. DISCRIMINATIVE PATHOLOGICAL LOCATIONS AND THE
POTENTIAL OF CLINICAL TRANSLATION
In Fig. 8, we visualize the locations of selected patches for
AD diagnosis and their corresponding brain regions in the
automated anatomical atlas (AAL 3V1) [81]. Nearly half of
the suggested discriminative locations by the statistic method
are in the Posterior fossa, and the rest are in the cerebrum.
However, the discriminative locations suggested by the
proposed method cover 47 of 170 brain structures. Table. 6
lists 31 brain regions to which the patches suggested by our
SHAP-based approach correspond in the brain atlas AAL 3V.
They include Frontal Lobe, Temporal Lobe, Posterior Fossa,
Insula and Cingulate Gyri, Occipital Lobe, Parietal Lobe,
Central Structures, etc. These regions, such as the Precentral
gyrus, Superior frontal gyrus, Middle frontal gyrus, Inferior
frontal gyrus [82], Supplementary motor area [83], Olfactory
cortex [84], Hippocampus, Parahippocampal gyrus, Amyg-
dala [85], Insula [86], Lingual gyrus [87], Precuneus [88],
Caudate nucleus [89], etc. are reported to be associated with
AD. Specifically, the hippocampus is strongly linked to long-
term memory. The impact of AD-related brain shrinkage on
the hippocampus has been scientifically validated [24]. The
amygdala is considered to influence emotional functioning
as well as learning and memory management [90]. The
thalamus is linked to cognition and information processing
speed [91], which are also relevant to AD. These pieces of
evidence imply the feasibility of our proposed method for
identifying AD-associated areas and can inform clinicians on
AD diagnosis.

C. COMPARISON WITH PREVIOUS WORKS

For a broad comparison between our method and related
studies on the performance of AD diagnosis, in Table 8 we
list the results of several state-of-the-art models reported
in the literature for AD classification and MCI conversion
prediction tasks using structural MRI data from the ADNI
database, including two voxel-level methods [13], [92],
two ROI-level methods [93], [94] and four patch-level
methods [26], [30], [43], [46]. The following observations
can be noted in Table 8. 1) Our method has achieved a
competitive performance in both AD-related classification
tasks. 2) Compared with traditional machine learning-based
methods such as SVM [46], [92], LDA [94], and KNN [93],
the deep learning-based methods have better performance,
particularly for more difficult MCI conversion tasks. The
possible reason is that deep learning methods have more
parameters and can therefore deal with the spatial features
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TABLE 7. Referential comparison on sMRI-based studies for ad classification and mci conversion prediction.

References Feature Method Subject AD vs. NC classification ~ pMCI vs. sMCI classification
[92] Voxel-based SVM 137AD+134sMCI+76pMCI+162NC 0.89  0.81 0.95 07 057 0.78
[13] 3D-CNN 353AD+232sMCI+172pMCI+59INC 091 091 0.92 0.82 0.81 0.81
[94] ROls-based LDA 194AD+234sMCI+161pMCI+226NC ~ 0.87 0.9 092 0773  0.69 0.79
[93] KNN 192AD+229sMCI+168pMCI+229NC ~ 0.89  0.86 0.9 0.7  0.68 0.71
[46] SVM 198 AD+238sMCI+167pMCI+231NC 09 086 0.93 072 0.79 0.74
[43] Landmark detection + 3D CNN  199AD+226sMCI+167pMCI+229NC  0.91  0.88 0.94 0.77 042 0.82
[26] Patch-based  Hierarchical-CNN 358 AD+465sMCI+205pMCI+429NC ~ 0.88  0.89 0.88 081 0.81 0.8
[30] Attention+MIL+CNN 398 AD+232sMCI+172pMCI+400NC 09 089 0.9 081 0.77 0.83
Proposed Method Custom CNN 353AD+232sMCI+172pMCI+59INC 092 0.92 0.92 082 0.82 0.86
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FIGURE 8. Discriminative AD-associated locations automatically identified by our proposed explainable SHAP-based method and
the statistic analysis method. The first column shows the top 10 informative patch locations suggested by the statistical analysis.
The second and third columns show the informative patch locations suggested by the proposed SHAP-based method with
thresholds 0.7 and 0.5, respectively. The rightmost column shows the marked brain regions where the suggested patches are

gathered by the proposed method.

and correlation of the 3D data better than machine learn-
ing methods. Compared to the other two deep learning
patch-based methods, HFCN and DA-MIDL, the proposed
method achieves better accuracy. As we mentioned in the
Introduction section, the 3D convolution operation brings
increased parameters and around six times the computational
complexity (3x3 kernel size) than the 2D convolution
operation. Table 6 shows the computational complexity and
the number of parameters of the four deep learning-based
methods. The Med3D with 10 layers, HFCN, DA-MIDL, and
sMRI-PatchNet have a similar number of parameters (around
35 Million). The Med3D with 18 layers has the highest num-
ber of parameters (63.53 Million). However, in terms of com-
putational complexity, the Med3D, HFCD and DA-MIDL
are all use 3D convolution operation. Their computational
complexities are 169.55 GMac and 240.73 GMac and
220.63 GMac, respectively. Our proposed sMRI-PatchNet
uses 2D convolution and has the minimal computational
complexity (2.21GMac). (3) Unlike ROI-based methods
relying on empirically predetermined ROIs, the proposed
sMRI-PatchNet automatically extracts important areas from
multiple patches distributed in the whole brain. This is
much more difficult. However, our method still obtains good
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TABLE 8. The Computational complexity and parameters of proposed and
Med3D methods.

Model name Computational complexity (Gflops) ~ Number of parameters  Accuracy
Med3D -10 Layer  169.55 GMac 35.47 Million 0.873
Med3D -18 Layer ~ 253.69 GMac 63.53 Million 0.909
HFCN 240.73 GMac 37.86 Million 0.882
DA-MIDL 220.63 GMac 36.54 Million 0.904
Our Method 2.21 GMac 34.53 Million 0.920

performance, implying the effectiveness of our model for
identifying the location of pathology.

VIl. CONCLUSION

This study has proposed a patch-based convolutional network
with explainable patch location suggestions for Alzheimer’s
Disease Diagnosis. First, we propose a fast and efficient
explainable method for patch location suggestions through
computing the SHapley Additive exPlanations (SHAP)
contribution to a transfer learning model for AD diagnosis on
massive medical data. A fast recursive partition perturbation
method is introduced to effectively perturb the data to provide
a fast estimation for the SHAP value of each patch. It has
significantly reduced the number of patches required for
achieving a good classification performance with 36 patches
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only, in contrast to 140 patches used in the existing statistical-
based methods. Consequently, it dramatically reduces the
computational complexity of the model, enabling efficient 3D
data processing and analysis. Then, a novel patch-based con-
volutional network (sMRI-PatchNet) is designed to extract
deep features of the discriminative patches and applied to
AD classification and its transitional state moderate cognitive
impairment (MCI) conversion prediction. The visualization
results of brain regions covered by selected patches show that
the proposed method can effectively identify discriminative
pathological locations. These new biomarkers can help clin-
icians in clinical diagnosis. The classification performance
and generalisability of our proposed method have been
evaluated on two independent datasets and also compared
with the five state-of-the-arts methods. The results show that
the proposed model outperforms the existing methods and has
good generalizability in all cases. Moreover, it dramatically
reduces the computational complexity and computational
costs, compared to traditional deep learning methods. Future
research will apply this method to more medical data and
related disease diagnoses.
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