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A B S T R A C T   

The use of renewable energy sources (RESs) at the distribution level has become increasingly 
appealing in terms of costs and technology, expecting a massive diffusion in the near future and 
placing several challenges to the power grid. Since RESs depend on stochastic energy sources 
—solar radiation, temperature and wind speed, among others— they introduce a high level of 
uncertainty to the grid, leading to power imbalance and deteriorating the network stability. In 
this scenario, managing and forecasting RES uncertainty is vital to successfully integrate them 
into the power grids. Traditionally, physical- and statistical-based models have been used to 
predict RES power outputs. Nevertheless, the former are computationally expensive since they 
rely on solving complex mathematical models of the atmospheric dynamics, whereas the latter 
usually consider linear models, preventing them from addressing challenging forecasting sce
narios. In recent years, the advances in machine learning techniques, which can learn from his
torical data, allowing the analysis of large-scale datasets either under non-uniform characteristics 
or noisy data, have provided researchers with powerful data-driven tools that can outperform 
traditional methods. In this paper, a systematic literature review is conducted to identify the most 
widely used machine learning-based approaches to forecast RES power outputs. The results show 
that deep artificial neural networks, especially long-short term memory networks, which can 
accurately model the autoregressive nature of RES power output, and ensemble strategies, which 
allow successfully handling large amounts of highly fluctuating data, are the best suited ones. In 
addition, the most promising results of integrating the forecasted output into decision-making 
problems, such as unit commitment, to address economic, operational and managerial grid 
challenges are discussed, and solid directions for future research are provided.   

1. Introduction 

In recent years, the increasing need for decarbonising power systems has favoured the penetration of renewable energy sources 
(RESs), especially solar and wind energies, in the distribution grids. According to Ref. [1], over the last decade, the penetration of RESs 
in the power sector has remarkably increased in European countries, raising from 27 % to 57 % in Denmark, from 10 % to 26 % in 
Germany, from 15 % to 40 % in Spain and from 16 % to 44 % in Italy. Nevertheless, the transition to a higher penetration of RESs leads 
to several challenges in the power system [2–5]. In particular, since RESs depend on stochastic energy sources, they introduce a high 
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level of uncertainty to the grid, leading to power imbalance and deteriorating its stability. In this scenario, managing RES uncertainty is 
vital to successfully integrate them to the grid. 

Although different technologies, such as the ones based on energy storage, can be used to support the integration of RESs, they usually 
demand a huge investment. To avoid the installation of expensive devices in the network, RES uncertainty can be managed by a more 
proactive distribution system operator (DSO) that is capable of taking advantage of RES flexible resources for the provision of ancillary 
services (ASs). This approach requires efficient coordination between transmission systems operators (TSOs) and DSOs [2,3]. On the one 
hand, TSOs should support voltage in the transmission network, maintaining the overall system security via frequency control and 
congestion management across borders and on the TSO level. On the other hand, DSOs should manage voltage stability and congestion on 
the distribution grid, being responsible for providing data about consumers and distributed generation behaviour to the TSOs. 

To enable DSOs use ASs, an accurate RES power output prediction should be included into the unit commitment (UC) problem. 
Different strategies have been proposed in the literature to predict the RES behaviour [6–8]. Traditionally, physical-based models, such 
as the weather research and forecasting (WRF) models, and statistical models, such as the autoregressive moving average (ARIMA) 
model, the Bayesian approach, the Kalman filter and the Markov chain model, have been used [6,7]. On the one hand, physical 
methods are computationally expensive since they rely on solving complex mathematical models of the atmospheric dynamics. In 
addition, they are not able to handle unexpected errors, making them not suitable for short-term horizon applications [7,8]. On the 
other hand, statistical methods are focused on modelling the mathematical relationship between the online time series associated with 
RESs. Unfortunately, although they outperform physical methods in terms of high spatio-temporal resolution forecasting [6], they 
usually consider linear models, which prevents them from addressing challenging prediction time horizons, such as long-term ones [7]. 

In recent years, the continuous development of artificial intelligence (AI) techniques has provided researchers with powerful data- 
driven tools that can outperform physical and statistical methods. Among them, machine learning (ML)-based techniques, which are 
non-linear, non-parametric models that can learn from historical data, allowing the analysis of large-scale datasets, even under non- 
uniform characteristics or noisy data, deserve especial attention [8]. According to Ref. [9], ML-based methods are suitable for RES 
behaviour forecasting applications since they can adapt themselves to changing trends inside datasets. In Refs. [7,10–15], recent 
state-of-the-art reviews of ML-based RES behaviour forecasting approaches can be found. They agree that artificial neural networks 
(ANNs), support vector machines (SVMs), deep learning (DL) and ensembles significantly outperform traditionally used statistical 
methods in terms of accuracy, robustness, precision and generalisation capability. 

According to Ref. [16], where different ML-based models were used to predict the behaviour of different types of RESs – wind, solar 
and geothermal energies –, ML-based methods can achieve results relevant to policy and planning objectives. In this same line, authors 
in Ref. [17] highlight that the predicted RES power output can be used as the input of several decision-making grid problems, including 
UC and Economic Dispatch (ED), the design of optimal trading and maintenance strategies, and the electricity market-clearing, among 
others. In this scenario, accurately predicting RES behaviour could not only improve power balancing and grid stability but also 
provide valuable data to the system operators —DSOs and TSOs—, enabling them to perform control actions, optimally dispatch 
various distributed RES generator types, manage voltage control devices, relieve the pressure of peak and regulate frequency. 

In this paper, a systematic literature review (SLR) is conducted to identify the most widely used ML-based approaches for RES 
power output forecasting. In particular, they are evaluated in terms of the ML technique, the predicted time horizon, the data 
collection, the model parameters and the obtained results. In addition, the main implementation steps of the ML-based model – data 
pre-processing, feature extraction and selection, hyper-parameter optimisation and validation – are studied in detail. The SLR results 
provide valuable insights into the best ML-based RES power output forecasting strategies to facilitate their integration into the grid, 
giving stakeholders useful tools to design – and implement – them according to their needs. In addition, the feasibility of actually using 
the prediction within the context of different decision-making problems, enabling an efficient TSO-DSO coordination capable of 
managing RESs – and their ASs –, to address economic, operational and managerial grid challenges, is discussed. 

The rest of the paper is organised as follows. The review methodology is described in Section 2. Section 3 addresses generic aspects 
of the SLR articles. The main aspects of the SLR results are analysed in Section 4. The current trends in ML-based RES power output 
forecasting and their applications in decision-making grid problems to address economic, operational and managerial challenges are 
discussed in Section 5. Section 6.1 and Section 6.2 introduce the main research findings and gaps identified from the SLR, respectively. 
Finally, the limitations of the conducted SLR are introduced in Section 7, whereas Section 8 provides the concluding remarks. 

2. Review methodology 

2.1. Research questions 

The first step in a SLR process is to define the research questions (RQs). In this paper, the following RQs were defined.  

• RQ1: Which are the most widely used ML-based techniques to forecast RES power outputs?  
• RQ2: Which are the main operational, economic and managerial grid challenges addressed by forecasting RES power outputs? 

2.2. Literature search 

The literature was searched based on the database search methodology [18,19]. Since the use of different databases allows covering 
as many evidence as possible, generic sources, such as Science Direct and Google Scholar, as well as a specialised source, such as the 
IEEE Xplore, were used [18–20]. Science Direct, which has more than 15 million records, was used as the principal search database, 
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whereas Google Scholar, which allows retrieving a large amount of free-access articles, was used as the complementary one [20,21]. 
Finally, the IEEE Xplore database, which provides access to a great amount of high quality engineering articles, was used as the 
specialised search database [20]. 

Using the digital libraries described above, the literature was searched for relevant contributions to the SLR subject based on the 
following search strings.  

• ML-based techniques to forecast RES power outputs.  
• Economic, operational and managerial grid challenges addressed by forecasting RES power outputs. 

2.3. Inclusion/exclusion criteria 

In this paper, not only books, international journals and the proceedings of international conferences were considered for inclusion 
in the SLR but also articles from the grey literature, such as PhD theses and reports from the main associations in the field of power 
systems, like CIGRE1 and ENTSO-E,2 were considered. On the other hand, articles without a peer-reviewed process, such as on-line 
presentations, were not included. Finally, in order to focus on the current trends in the ML-based forecasting of the RES power 
output as well as on its future horizons, only articles published from 2013 were taken into account. The described inclusion and 
exclusion criteria is summarised in Table 1. 

2.4. Literature search results 

Fig. 1 shows the literature search overview. A total of 463 articles were retrieved: 383 corresponded to RQ1 and 80 corresponded to 
RQ2, as shown Table 2. First, a preliminary relevance analysis, where the titles were evaluated to decide whether the articles discussed 
the ML-based forecasting of the RES power output, was conducted. The corresponding full references of those that did, including the 
abstracts, were retrieved. Then, the duplicates were removed, obtaining 425 articles. Subsequently, all the abstracts were read to 
determine to which extent the articles were relevant to the SLR subject. Finally, 127 full-text articles were carefully read and their 
quality and eligibility were assessed to select the 82 articles included in the SLR. The selected articles not only make valuable con
tributions to ML-based RES power output forecasting in power grid applications but also provide a reliable theoretical framework, 
presenting a clearly explained methodology and obtaining significant results. Their full reference is provided in ble A1 of Appendix A, 
whereas they are listed as follows: [6–11],[13,14,16,17],[22–93]. 

3. General aspects of the SLR 

Fig. 2 shows the amount of selected articles published between 2014 and 2023. The 54.21 % of them have been published between 
2020 and the first semester of 2023, demonstrating that ML-based forecasting of RES power outputs is a hot research topic. 

Table 3 shows the number of SLR articles published in different types of publications. In particular, 84.14 % of them were published 
in international journals, 8.53 % in PhD theses, 4.87 % in international conferences proceedings or technical reports, and 2.44 % in 
books. 

The relevant information extracted from the 82 articles included in the SLR is synthesised in Table A2 of Appendix A. In particular, 
the following categories are considered.  

• Article proposal  
• ML-based technique  
• Type of RES  
• Used Parameters  
• Estimated output  
• Time horizon prediction  
• Data  
• Feature selection algorithm  
• Hyper-parameter optimisation technique  
• Accuracy measurements 

4. SLR results 

In recent years, the use of RESs, including geothermal, biomass, hydro, tidal, wind and solar ones, has gained great popularity since 
they are more sustainable than fossil fuels [22]. In particular, wind turbines and photovoltaic (PV) cells have been installed worldwide, 
making it crucial to efficiently integrate them into the distribution grid [23,22]. In this scenario, the SLR conducted in this paper 
focuses on ML-based forecasting of solar and wind energy systems’ power output. 

1 https://www.cigre.org/.  
2 https://www.entsoe.eu/. 
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Due to the uncertain nature of the wind direction and speed, researchers agree that predicting wind turbine power is more complex 
than predicting PV power. In this line, literature addressing the former is not as vast as the one devoted to the latter. The SLR results 
confirm this, surpassing the articles devoted to PV power forecasting by 35.71 % the ones addressing wind turbine power prediction, as 
shown in Table 4. In addition, only 26.82 % of the articles focus their work on both technologies. 

4.1. Design of the ML-based RES power output forecasting 

In this section, the results of the SLR regarding the use of ML-based techniques to forecast PV and wind turbine power output are 
discussed. The approaches proposed in the literature are evaluated in terms of the ML model and its parameters, the prediction time 

Table 1 
Inclusion/exclusion criteria.  

Inclusion Criteria Exclusion Criteria 

English language Non-English language 
Books, book chapters, peer-reviewed journals, peer-reviewed conference proceedings, PhD theses, 

high-quality reports with well-cited references 
Dissertation/on-line presentations (lack of peer- 
review process) 

Publication date between 2013 and 2023 Publication date before 2013 
Content answering the RQs:   

• ML-based techniques to forecast the RES power output.  
• Economic, operational and managerial grid challenges addressed by forecasting the RES power output. 

Content out of the scope of the RQs:  
• General RES behaviour modelling.  
• Only solar irradiance or wind speed 

forecasting.  
• Power load and price forecasting.  

Fig. 1. Literature search overview.  

Table 2 
Retrieved articles for each of the defined search strings.  

Search String Number of retrieved articles 

ML-based techniques to forecast the RES power output 383 
Economic, operational and managerial grid challenges addressed by forecasting the RES power output 80  
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horizon and the data collection method. In addition, the main implementation steps in the modelling process – data pre-processing, 
feature extraction and selection, hyper-parameter optimisation and performance evaluation – are studied in detail. 

4.1.1. ML-based model 
Recent reviews have shown that ML-based methods are capable of automating the intricate mathematical calculations required for 

predicting the RES power output, outperforming traditional statistical methods [16,24,25,26]. Nevertheless, the discussion regarding 
which ML-based technique is better suited for this application is still open. Several works in the literature have compared the per
formance of different ML algorithms. In Ref. [27], a comparison between ANNs, SVMs, multiple linear regression (MLR) and random 
forest (RF) for PV power output prediction was conducted. Results of [27] showed that RF achieved better performance for 5-min to 
3-h-ahead predictions. In Ref. [28], a comparison between ANNs, support vector regression (SVR) and Gaussian progressive regression 
(GPR) to predict PV power output, wind power output and electricity demand was proposed. The best results for wind and PV power 
outputs were obtained with SVR, whereas the best results in terms of electricity demand were the ones corresponding to the ANN-based 
model. 

Table 5 shows the most widely used ML-based methods in the SLR articles. ANN-based methods are the most popular ones, being 
used in 65.85 % of the cases. They are followed by SVM and SVR (21.95 %), RF (10.97 %) and boosting techniques (10.97 %). 

4.1.1.1. ANNs. ANNs are one of the most popular AI methods worldwide, being used in a wide variety of applications. They are based 
on a number of processing units – called neurons – which store knowledge to make it available as and when needed. Patterns are 
presented to the ANNs through the input layer, transferred to hidden layers, where actions are taken based on a system of weighted 
connections, and received by the output layer [95]. ANNs are easy to use and allow handling large amounts of data to solve non-linear 
problems. In this sense, they are well suited for RES power output forecasting, as the preference of researchers in the field demonstrate. 

There exist different types of ANN architectures. In Ref. [50], a comparison between the performance of different ANN architec
tures for PV power output forecasting can be found. Fig. 3 shows the most widely covered in the SLR. The results demonstrates the 
popularity of deep neural networks (deep NNs) to forecast RES behaviour. Similarly to extreme learning machine (ELM) —a special 
kind of Single Hidden Layer Feedforward (SHLF) ANN—, deep NNs can overcome some of the practical issues that arise when 
traditional ANNs are applied to a complex problem like the RES power output forecasting [7]. Among them, the following ones should 
be highlighted. 

Fig. 2. Number of SLR articles per publication year. Note. SLR: systematic literature review.  

Table 3 
Types of publications in the SLR.  

Publication type Number of articles 

Journals 69 
PhD theses 7 
Conference proceedings, reports 4 
Books 2  

Table 4 
SLR coverage of the different types of RESs.  

Type of RES Number of articles 

Solar 57 
Wind 42 
Solar and wind 22 
Solar, wind, hydrogen, hydropower, ocean, geothermal 2 

Note. RES: renewable energy source. 
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Table 5 
Most popular ML techniques used in the SLR articles.  

Art. ANN LR GPR MLP SVM/SVR RF KNN CNN RNN LSTM GRU Boosting ELM DT Others 

[6] X    X X      X    
[7] X        X      X 
[8]                
[9]     X X      X   X 
[10]                
[11] X       X X      X 
[13] X               
[14] X               
[16]                
[17]                
[24]                
[25]                
[29] X               
[26] X  X X X        X X X 
[30] X        X       
[31] X               
[32] X               
[33] X X X           X X 
[34]                
[28] X  X  X           
[35] X            X   
[23]     X           
[36] X               
[37]      X          
[38] X       X        
[39] X               
[40] X               
[41]     X           
[42]               X 
[27] X X   X X          
[43]     X           
[44]  X   X X X     X  X  
[45] X       X        
[46] X        X X X     
[47] X        X X      
[48]     X           
[49] X               
[50]                
[51]      X          
[52]     X  X         
[53] X            X   
[54] X            X   
[55] X        X X      
[56] X    X    X       
[57] X        X X      
[58]     X         X  
[59]     X           
[60] X               
[61]            X   X 
[62] X        X X      
[63] X   X    X X X      
[64] X               
[65] X               
[66]            X  X  
[67] X        X X  X    
[68] X       X X X      
[69] X    X           
[70]                
[71] X       X        
[72] X X X  X X X         
[73] X        X X      
[74] X        X X      
[75] X        X X X     
[76] X        X X     X 
[77] X               
[78] X       X X  X     
[79] X       X X X      
[80] X               

(continued on next page) 
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• Hand-engineered feature selection: ANN feature selection not only requires significant personal experience, but also prevents 
traditional ANNs from dealing with inherently non-linear features, as in the case of RESs.  

• Time-consuming training phase.  
• Limited generalisation capability: Traditional ANNs fail to learn complex patterns from intermittent, stochastic and highly-varying 

data, such as weather data.  
• Sample complexity: ANNs will suffer from network instability and parameters non-convergence if, due to the increasing availability 

of environmental meters, huge amounts of training data related to RESs are available. 

ELM methods overcome the slow training speed and overfitting problems of traditional ANNs. They are based on the empirical risk 
minimisation theory, where none of the parameters of hidden nodes need to be tuned. In this way, the learning process needs only a 
single iteration, being thousands of times faster than traditional ANNs [96]. In addition, ELM has demonstrated to outperform them in 
terms of generalisation capability, robustness and controllability [97]. 

Unlike traditional ANNs, deep NNs use an unbounded number of heterogeneous layers increasing the flexibility of the model as well 

Table 5 (continued ) 

Art. ANN LR GPR MLP SVM/SVR RF KNN CNN RNN LSTM GRU Boosting ELM DT Others 

[81] X     X X  X X  X   X 
[82]   X  X           
[83] X        X X X    X 
[84]            X  X X 
[85]                
[86] X       X        
[87] X         X     X 
[88] X         X      
[89] X       X X X      
[90] X        X X      
[91]                
[92] X   X X X X     X  X  
[93]                
[94] X        X X      

Note. Art.: Article; ANN: artificial neural network; CNN: convolutional neural network; DT: decision tree DT; ELM: extreme machine learning; GPR: 
Gaussian process regression; GRU: gate recurrent unit; k-NN: k-nearest neighbours; LR: linear regression; LSTM: long-short term memory; MLP: 
multiple layer perceptron; SVM: support vector machine; SVR: support vector regression; RF: random forest; RNN: recurrent neural network. 

Fig. 3. Most used types of artificial neural networks. Note: ANN: artificial neural network; deep NN: deep neural network; ELM: extreme learning 
machine; SLR: systematic literature review. 

Fig. 4. Most popular architectures used for deep NNs. Note. Deep NN: deep neural network; CNN: convolutional neural network; MLP: multiple 
layer perceptron; RNN: recurrent neural network; SLR: systematic literature review. 
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as improving its efficiency, trainability and understandability [7]. In particular, they allow unsupervised feature learning, where 
features are automatically deduced and optimally tuned, avoiding time consuming feature extractions. In addition, the robustness to 
natural variations in the data is automatically learned, ensuring strong generalisation capability and enabling big-data training. 

Fig. 4 shows the deep NN coverage in the SLR. Results suggest that recurrent neural networks (RNNs) are the most popular ones. 
They are based on loops that allow passing information from one step of the ANN to another, making information to persist. In this 
way, using previous sequence samples can help to better understand the present one. A well-known example of RNNs are LSTM ar
chitectures, which are based on memory blocks connected through successive layers. An advantage of LSTMs is that they can learn 
short- and long-term dependencies, avoiding the long-term dependency problem of RNNs [54]. 

4.1.1.2. SVMs and SVRs. Although there is a clear trend for using deep NNs, their complex implementation makes other learning 
strategies, such as SVM/SVR, RF and boosting techniques, also attractive to researchers, as seen from Table 5. SVMs and SVRs, first 
introduced in Ref. [98], are non-linear, non-parametric methods that have demonstrated to be well suited for many complex non-linear 
applications. They aim to minimise the margin between a separation hyperplane and the training data previously mapped by a 
non-linear mapping function. Provided their internal parameters are properly adjusted, SVMs and SVRs can achieve a good 
out-of-sample generalisation, making them robust even in the presence of biased data. In addition, SVMs and SVRs deliver a unique 
solution since the optimality problem is convex. This constitutes an advantage compared to ANNs, which can have multiple solutions 
associated with local minima. Finally, they have an excellent learning ability in processing small sample data and are less prone to 
overfitting in comparison with other ML-based methods [23]. 

4.1.1.3. Ensemble methods. Together with the increasing trend for using deep NNs discussed in Section 4.1.1.1, ensemble methods 
have also been identified as one of the most popular ML-based techniques among the SLR articles. Whereas 37.8 % of them are devoted 
to the former, 19.51 % proposed the latter. Ensemble methods use multiple learning algorithms – called base learners – to improve the 
predictive performance corresponding to the use of individual learning algorithms. RF is an ensemble of decision trees (DTs), focused 
on increasing the diversity among the trees to enhance its prediction performance. In addition to its very good discriminative capa
bility, RF can manage large databases, handle a great number of input variables without performing variable selection, deal with 
missing data and outlier removal and avoid overfitting. Boosting techniques, including Gradient Boosting (GB) and Extreme Gradient 
Boosting (XGBoost), are also ensembles of DTs. In GB, additive regression models are built by fitting them according to the residuals’ 
least square minimisation [99]. One of the main advantages of GB algorithms is their flexibility; they allow to optimise different loss 
functions and provide several options for hyper-parameter tuning. The XGBoost algorithm extends the GB one by providing cus
tomisable optimisation objectives and evaluation criteria, as well as allowing regularisation, which helps to reduce overfitting [100]. 

In addition to RF and boosting techniques, several articles propose ensembles of different base learners. Using different ML-based 
models as base learners allows obtaining a higher output diversity compared to the case of using the same method, such as in RF or 
XGBoost, improving the ensemble performance [39]. In RES power output prediction applications, where data strongly depends on 
atmospheric conditions, the output of the individual base learners can vary significantly [39]. In this context, increasing the diversity 
of the ensemble is crucial to make it more robust to the changing weather conditions and improve the overall forecasting performance 
[42]. 

4.1.2. Time horizon 
The different needs of decision-making activities in the smart grids require different prediction horizons. Each of them is described 

as follows [8,54].  

• Very short-term forecasting (from a few seconds to minutes): This kind of forecasting is useful for RES power storage control and 
electricity marketing. Nowadays, very short-term forecasting of solar and wind power has become crucial.  

• Short-term forecasting (up to 2–3 days ahead): This forecasting horizon is essential for different decision-making activities involved 
in the electricity market and power system operation, including economic load dispatch, UC, etc.  

• Medium-term forecasting (up to 7 days ahead): Medium-term forecasting is useful for scheduling maintenance of wind and solar 
power generating stations, conventional generating stations, transformers and transmission lines. 

Fig. 5. Number of articles performing the different time horizon predictions. Note. SLR: systematic literature review.  
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• Long-term forecasting (from 1 month to years): Long-term estimation can be applied for long-term wind and solar energy mea
surement and planning of the power plant. 

Forecasting RES power output at different time horizons implies different challenges. Fig. 5 shows the time horizon predictions 
addressed in the selected articles. Most of them are devoted to short-term forecasting. This agrees with previous observations from 
Ref. [54]. Within the context of energy management applications, short-term forecasting is essential for different activities, such as 
operation of wind and solar energy generating stations, real-time UC, storage control and electricity marketing. The high practical 
applicability of short-term horizons can explain the number of articles devoted to it. In addition, short-term forecasting models are 
simpler than the ones corresponding to other forecasting horizons, being usually more accurate [9]. 

The SLR results show a lack of very short-term, medium- and long-term horizon predictions [9,30]. The former has already been 
highlighted in Ref. [30]. Very short-term forecasting is particularly challenging since it cannot rely neither on historical power output 
nor on weather forecasting data recorded on an hourly basis. Instead, it needs real-time or nearly real-time measured data to perform 
the prediction, which makes the model technically and economically expensive. In Ref. [30], a very short-term (5- and 15-min ahead) 
PV power generation forecasting algorithm based on RNNs was proposed. On-site weather Internet of Things (IoT) dataset and power 
data were collected in real-time. In order to build a model using low-cost and low-computational power, only IoT sensors without 
image data, including solar radiation, module and ambient temperature, wind speed and humidity, were used. Using three RNN layers, 
authors of [30] achieved an accuracy of 99.01 %, in terms of the normalised Mean Average Error (nMAE), and of 98.02 %, in terms of 
the normalised Root Mean Squared Error (nRMSE), for the 5-min-ahead PV power output forecasting. In the case of the 15-min-ahead 
prediction, the accuracy was 98.16 % (nMAE) and 96.58 % (nRMSE). In Ref. [67], an improved stacked ensemble algorithm (SEA) 
combining ANNs and LSTM was proposed to forecast PV power output from 15-min ahead to 1-h ahead. Results of [67] demonstrated 
an improvement in the R2 score value of 10 %–12 % in comparison to other models. 

The lack of long-term forecasting has been discussed in Ref. [9]. There, daily wind power values of past years were used to forecast 
year-ahead wind power since the unstable and unpredictable nature of wind speed makes it not suitable for long-term forecasting 
scenarios. In order to properly forecast the wind power based on the continuous wind power values, different regression algorithms, 
including Least Absolute Shrinkage Selector Operator (LASSO), k-nearest neighbours (k-NN), XGBoost, RF and SVR were used. Results 
of [9] showed that ML-based algorithms could be successfully applied to long-term wind power forecasting problems, being the ac
curacy obtained by SVR particularly remarkable. In addition, they also showed that, by using a pilot region for the training set and 
generating a base model with it, the base model could be used for other locations, even if they have different wind characteristics. 

4.1.3. Data collection 
Fig. 6 shows the different types of data used in the SLR articles. Most of the works are based on historical data collected on site. This 

suggests that researchers in the field prefer to collect historical weather and power output data from real power systems than using data 
from benchmark databases or weather forecast providers. There are many reasons for using on-site measured data. On the one hand, 
although weather data provided by weather forecaster agencies can be easily found on the Internet, they are usually released at in
tervals of at least 1 h. In this sense, they are not suitable for very short-term predictions. On the other hand, since the published 
meteorological data are measured based on meteorological observations, they may differ from the on-site weather conditions of the 
power system being studied. 

Despite the benefits of using on-site measured data, researchers still resort to benchmark databases since technical and economic 
barriers often prevent them from acquiring real power system data. In addition, using benchmark datasets allows fair results com
parisons. In this line, it is important to highlight the vital importance of the availability of public benchmark data since it gives re
searchers a low-cost resource to train, tune and validate their approaches, while guarantying benchmark results. 

Finally, as the lack of very-short term predictions suggests, only a few articles have access to real-time data to develop their 
forecasting models. This is in line with the observations of [30], where the technical and economic challenges of installing sensors have 
been identified as the main barriers for addressing very short-term horizons. 

4.1.4. Parameters 
RES power outputs highly depend on weather conditions [33,23,37,44,45,54]. For instance, different parameters, including solar 

Fig. 6. Number of articles using different types of data. Note. SLR: systematic literature review.  
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elevation angle, haze effect and cloud cover, can make the power output from PV panels drop to near zero over the scale of minutes 
[33,23,44,45]. In this context, the weather features used to train the ML-based model will highly influence the forecasting accuracy, 
being crucial to select them carefully to obtain a good performance, even in adverse weather conditions. As discussed in Section 4.1.3, 
weather parameters can be obtained by on-site measurements or using the regularly published data of weather information providers. 
According to Ref. [45], although the former are usually helpful, there are cases in which they do not improve the forecast performance. 

In addition to weather variables, satellite and sky images can also be considered when forecasting solar energy. The former are 
usually used for longer prediction horizons and coarser resolution. In this case, cloud motion vector methods are used to extract cloud 
movement from satellite images and predict future cloud map and irradiance [45]. The latter allow capturing the sun position, cloud 
distribution, cloud movement and haze in the area of the PV system. Finally, the historical or real-time power output from neigh
bouring RES plants, modules or locations can also be used. 

Fig. 7 (a) and Fig. 7 (b) classify the different features used to model the wind and PV power outputs, respectively, into weather-, 
module-, price-, electricity- and power-related ones. In both cases, weather features are the most frequently considered, whereas 
historical power data are also utilised. On the other hand, module features, such as module temperature or turbine capacity, are not 
among the most useful ones. Finally, neither the electricity price nor network data, like load or transmission data, are regularly taken 
into account. 

Figs. 8 and 9 provide more detail about the features included in the forecasting models for the wind and PV power outputs, 
respectively. Fig. 8 shows that, in the case of wind power output forecasting, researchers prefer to use weather parameters directly 
related to the wind, including wind speed, direction and temperature. In addition, there is a clear trend for using historical wind power 
outputs. According to Fig. 9, weather parameters are also widely considered for PV power output forecasting, being the ambient 
temperature, solar radiation, wind speed and humidity the most popular ones. Nevertheless, in this case, historical PV power data 
ranks first. 

Finally, as mentioned above, parameters related to the electricity network are not widely used neither to forecast wind power 
output nor PV power output. This is probably due to the fact that most of the found articles in the literature are only focused in the 
development of the RES power output forecasting model, lacking a further application of the obtained data as input of a UC problem. It 
would be reasonable to expect that parameters which are directly related to the power network, such as energy demand, load and price, 
could help the forecasting approach to provide more useful and accurate data to be used as the input of different UC problems to deal 
with the main economic, operational and managerial issues of the grids. In this line, further research needs to be conducted to 
determine, which are the best network-related parameters to predict the RES power outputs. 

4.1.5. ML-based model implementation 
In general, the implementation of a ML-based model involves the following steps.  

• Data pre-processing  
• Feature extraction  
• Feature selection  
• Optimisation of ML-based model hyper-parameters  
• Model training  
• Model validation  
• Performance evaluation 

In the following sections, how the SLR articles implements each phase is studied. 

Fig. 7. Type of features used in the selected articles for forecasting (a) the wind power output; (b) the PV power output. Note. PV: photovoltaic; SLR: 
systematic literature review. 
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4.1.5.1. Pre-processing. Depending on the data acquisition method, the different features used to train the ML-based models, such as 
the ones shown in Figs. 8 and 9, can be saved in different formats and scales. In addition, these parameters are usually time series, 
resulting in large amounts of high dimensional data, which can have missing values or outliers. In this context, pre-processing 
techniques should be applied to convert data to a suitable format, put them into a normalised scale, remove missing values and 
outliers, and reduce dimensionality if needed. According to a recent review conducted in Ref. [16], where the ML-based models were 
evaluated in terms of their pre-processing techniques, parameter selection algorithms and prediction performance measurements, data 
decomposition and normalisation are the most popular pre-processing strategies used in the literature. The former improves the 
forecast accuracy by decomposing the original dataset into different lower-dimensional datasets, whereas the latter is crucial to 
eliminate the influence caused by the distinction of different magnitudes [16]. 

Despite the importance of data pre-processing, only a few of the SLR articles mention it in their works [7,16,44,101]. This 
observation is in line with previous ones found in Ref. [22], where it was highlighted that further research should be conducted 

Fig. 8. Most used features to train the machine learning-based wind power forecasting model. Note. SLR: systematic literature review.  

Fig. 9. Most used features to train the machine learning-based photovoltaic power forecasting model. Note. CSRM: clear sky radiation model; DHR: 
Diffuse Horizontal Radiation DNR: Diffuse Normal Radiation; GHR: Global Horizontal Radiation; PV: photovoltaic; SLR: systematic litera
ture review. 
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regarding data pre-processing methods within the context of ML-based RES power output forecasting. Finally, the selected articles 
where the pre-processing technique has indeed been mentioned resort to data decomposition and normalisation, which reinforces the 
observations of [16]. 

4.1.5.2. Feature extraction and selection. After data pre-processing, feature extraction is performed to model the time functions cor
responding to each of the chosen parameters. Then, a feature selection is conducted to ensure the ML-based model is trained based on 
the most representative ones. This allows reducing the time and resource consumption as well as avoiding overfitting in contexts where 
datasets have thousands or hundreds of thousands of variables. In addition, by removing features that can negatively impact the model, 
feature selection can also improve the forecasting performance. According to the SLR results, the most popular feature selection 
strategies are the principal component analysis (PCA) and the gini importance. 

4.1.5.3. Hyper-parameter optimisation. To accurately forecast the RES power output, the hyper-parameters of the ML-based model 
need to be properly optimised. To avoid overfitting, this should be done in a separate and independent set of data, which should not be 
used neither to train nor to validate the model. In this regard, the availability of reliable data is crucial. Fig. 10 shows the most widely 
used hyper-parameter optimisation algorithms, being the grid search and the particle swarm optimisation (PSO) the most popular 
ones. In addition, the Adam optimiser is widely used to optimise the parameters of the ANNs. 

4.1.5.4. Performance measurement. After designing, developing, training and optimising the ML-based model, the validation phase 
takes place. In this stage, it is crucial to use standard error measurements since they allow researchers to compare their results with 
similar ones in the state of the art. A good forecasting error metric should have a good trade-off between bias and precision. Fig. 11 
shows the most widely used error measurements in the SLR articles. The root mean squared error (RMSE) and the mean average error 
(MAE) resulted to be the most popular ones. The former represents the root of the mean squared distances between the actual and 
predicted values. The lower the RMSE value, the better the model. Although it has the advantage of keeping the output unit, making 
the interpretation of the result easier, it is not robust to outliers. The MAE is a common measure within the context of time series 
forecasting applications, which evaluates the mean of the absolute difference between actual and predicted values. As in the case of the 
RMSE, it keeps the output unit, and the smaller the MAE value, the better the model. In addition it has the advantage of being more 
robust to outliers than the RMSE. 

5. Current trends in ML-based approaches to forecast the power output of RESs 

According to the SLR results presented in Section 4, deep NNs, SVR/SVM and ensembles are the most popular ML-based methods to 
forecast wind and PV power outputs. Section 5.1.1, Section 5.1.2 and Section 5.1.3 discuss the most relevant works in the SLR using 
each one of them, respectively. In addition, Section 5.1.4 summarises their main pros and cons, and suggests suitable scenarios for their 
implementation. Finally, Section 5.2 introduces some real-life applications of the proposed ML-based RES power output forecasting 
approaches within the context of different UC problems. 

Fig. 10. Number of articles using different hyper-parameter optimisation algorithms. Note. GA: genetic algorithm; PSO: particle swarm optimi
sation; RMSProp: root mean squared propagation; SGD: stochastic gradient descent; SLR: systematic literature review. 
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5.1. 

5.1.1. Deep NN-based RES power output forecasting 
As discussed in Section 4.1.1.1, there is a clear trend for using deep NNs instead of traditional ANNs since they provide a stronger 

generalisation capability, which allows big-data training to avoid the laborious feature extraction and selection, reducing computa
tional costs and times. This observation is in line with the ones of [7,50], where the benefits of using deep NNs for RES power output 
forecasting have been highlighted. In Ref. [7], a comprehensive review of different deep NN approaches, including deep belief net
works (DBNs), stack auto-encoder (SAE) and RNNs, to forecast PV and wind power output was presented. In particular, different pre- 
and post-processing data techniques were studied to evaluate their impact in the whole forecasting performance. The experimental 
results confirmed the potential of deep NN-based approaches for RES power output forecasting. 

Among deep NNs, RNNs —specifically LSTM— have gained great popularity. This is mainly due to the LSTM capability to capture 
the dynamic behaviour of RES non-linear time series data with their autoregressive dependency. In Ref. [67], an ANN was used to 
extract regression rules from the weather data, whereas the autoregressive nature of LSTM was used to retain past information and 
model the time series. Then, the prediction from each model was aggregated via XGBoost, which allowed to quantify the individual 
model miscalculation and data noise uncertainty, leading to higher prediction accuracy. In Ref. [62], the periodicity, nonlinearity and 
volatility of monthly RES data, including solar, wind, hydropower and geothermal, was modelled by the seasonal-trend decomposition 
procedure based on Loess (STL). The resulting trend, seasonal and remainder subseries were predicted by LSTM, and the projections 
were integrated to compose the ultimate forecasted results, which outperformed baseline autoregressive and ML-based approaches. 
Similarly to Ref. [62], in Ref. [47], an LSTM-based hour-ahead PV output power forecasting was proposed, outperforming different 
regression approaches, including MLR, bagged regression trees (BRT) and traditional ANNs. According to the authors of [47], the 
recurrent nature of LSTM and its memory units allowed to accurately model the temporal changes inherent to atmospheric data. 

While RNNs —especially LSTM— are well suited to model temporal data, convolutional neural networks (CNNs) are suitable to 
model spatial data, being widely used for image recognition and processing. Although sky images can be used to forecast PV power 
output, Fig. 9 reveals that it is not the most common practice. Therefore, CNNs are much less used than RNNs in RES power output 
prediction applications, as Fig. 4 suggests. In Ref. [45], a CNN, consisting in two convolution blocks and two fully-connected layers, 
was proposed to perform 15-min-ahead PV power output forecasting. A sensitive analysis was conducted to select sky images and 
lagged PV power output features. Results of [45] showed that the proposed CNN-based approach was capable of comprehending cloud 
movement and accurately forecasting very short-term PV power output when using both sky images and PV power data. In Ref. [38], 
CNNs were used to forecast the wind power output. The wind feature extraction was performed resorting to a wavelet transform (WT). 
Results of [38] showed that the uncertainties in wind power data can be accurately modelled by a WT-based feature extraction and 
learned by an CNN model, obtaining results comparable with similar ones in the state of the art. 

Hybrid methods, combining the temporal capabilities of RNNs and the spatial capabilities of CNNs, have also been proposed in the 
literature. In Ref. [78], a gate recurrent unit (GRU)-CNN network was used to learn temporal features, based on a multilayered GRU 
sequential deep model, and spatial features, based on CNNs. The proposed model prioritised temporal features to efficiently capture 
the long-range complex non-linear PV power patterns for an hour-ahead forecasting. The results obtained in Ref. [78], outperformed 
several state-of-the-art ones. In Ref. [89], a CNN model was used to discover the non-linear features and invariant structures exhibited 
in historical PV power output data, whereas the LSTM was utilised to model the temporal changes in the latest PV data, to predict the 

Fig. 11. Number of articles using different error measurements to evaluate the performance of the ML-based approach. Note. MAE: mean absolute 
error; MAPE: mean absolute percentage error; MSE: mean squared error; nMAE: normalised MAE; nRMSE: normalised RMSE; RMSE: root mean 
squared error; SLR: systematic literature review. 
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PV power of the next time step. The proposed combination provided a competitive prediction performance for real data from a PV 
power plant in Limberg, Belgium. 

Finally, as discussed in Section 4.1.1.1, in addition to deep NNs, ELM has also gained popularity in the field of RES power output 
forecasting. In Ref. [54], a ELM-based approach was proposed for the PV power output forecasting of a real-time model. To train the 
single layer feed-forward neural network (SLFN), the weights of the ELM algorithm were optimised by different PSO techniques. 
Results of [54] showed that the proposed combination of PSO and ELM of SLFNs effectively improved the accuracy in PV power output 
prediction, outperforming classical backpropagation ANN-based models. In addition, authors of [54] highlighted that the proposed 
model efficiently solved the invalidity issues of forecasting changing time intervals by maintaining the consistency of the daily 
forecasting accuracy within a certain limit that fulfils the necessity of scheduling and economic operations of the power grid. In the 
same line, an improved PSO-ELM model was used in Ref. [53] to estimate PV power output using an empirical PV model based on 
estimated solar radiation data. Results of [53] revealed that the proposed approach outperformed not only typical ML-based algo
rithms, such as SVMs and DTs, but also traditional ELMs, especially in areas where on-site measurements are unavailable. 

5.1.2. SVM and SVR for RES power output forecasting 
Despite the strong trend for using deep NNs, other simpler but still powerful learners are also widely used in the literature. In 

contrast to deep NNs that need a huge amount of data to obtain accurate prediction results, SVM and SVR have the advantage of 
obtaining a good generalisation performance even when the training dataset is small. This is a key aspect in applications where there is 
not much historical data available, such as the new RES systems. In Ref. [23], a review of the state of the art regarding the use of SVM 
models to forecast PV and wind power outputs can be found. Results of [23] show that, in general, SVM can model wind and PV power 
systems in an effective and precise way, especially for short-term forecasting, outperforming other ML-based methods. In addition, 
they are easy to compute, simple to use and reduce computational time and costs, which makes them an attractive option. Never
theless, they are highly sensitive to their hyper-parameter optimisation. 

Different SLR articles studied SVM or SVR hyper-parameter optimisation problems within the context of RES power output fore
casting. In Ref. [48], the selection of suitable hyper-parameters for the SVM model was performed by an improved version of the 
moth-flame optimisation (MFO) algorithm. In particular, different meteorological conditions affecting the PV power generation were 
discussed, and the experimental input data was optimised by a grey relational analysis (GRA), improving the PV power output 
forecasting. In Ref. [41], the SVM hyper-parameter selection was performed using an improved dragonfly algorithm (IDA), based on an 
adaptive learning factor and a differential evolution strategy, to improve the search ability of the traditional dragonfly algorithm (DA). 
Results of [41] showed that the short-term IDA-SVM-based wind power output forecasting not only outperformed the classical DA but 
also other optimisation strategies, such as genetic algorithms (GAs) and the exhaustive grid search. Finally, authors of [41] highlighted 
that SVM models are ideal for the prediction of short-term wind power output since they have an excellent learning ability in pro
cessing small sample data. In this same line, the influence of different training data scales on the SVM-based PV power output fore
casting was evaluated in Ref. [52]. After training SVM and k-NN models with different sample data scales, the former resulted to be 
more robust, achieving higher prediction accuracy on small datasets. This is a great advantage of SVM models to forecast wind and PV 
power outputs since, as highlighted in Ref. [41], handling small sample datasets makes them well suited for forecasting applications in 
newly built PV and wind plants that lack great amounts of historical data. 

5.1.3. Ensemble of ML-based methods for RES power output forecasting 
As introduced in Section 4.1.1.3, together with the remarkable trend for using deep NNs, a strong trend for using ensembles of the 

same or different base learners has also been identified. In the former case, RF and XGBoost are the most popular. RF can handle large 
databases without the need for feature selection and tuning their hyper-parameters. Compared with SVMs, which are highly sensitive 
to hyper-parameter optimisation, this constitutes a great advantage. In addition, although being simple, they can achieve high 
generalisation capability. In Ref. [37], a RF-based hour-ahead wind power output predictor was proposed using correlation and 
importance metrics to select the best-suited weather features. Experimental results of [37] not also highlighted the immunity of RF to 
irrelevant inputs but also showed the proposed RF-based approach outperformed ANNs trained on the same dataset. In Ref. [51], the 
potential of introducing smart persistence (SP) predictions, solar irradiance and past production data to a RF model to predict 
short-term PV power output was evaluated, showing that the forecasting performance highly depends on the analysed PV modules. In 
addition, authors of [51] highlighted that using only measured data is usually not enough to accurately predict the future PV pro
duction for farther horizons. 

In RES power output forecasting problems, ensembles of different ML-based models are used to overcome the sensitivity of base 
learners to the atmospheric conditions. In Ref. [39], a genetic programming based semi-stochastic combination of feed forward back 
propagation neural networks (FFBPNNs), radial basis function neural networks (RBFNNs), back propagation neural networks (BPNNs) 
and Broyden Fletcher Gold-Farb Shano neural networks (BFGSNNs) was proposed to forecast the wind power output. Results of [39] 
showed the effectiveness of the approach to mitigate the influence of the inherent instability in wind power generation due to at
mospheric as well as meteorological variables. In particular, authors of [39] highlighted the advantages of generating a collective 
decision space to avoid large errors due to the inaccurate decisions of some of the base learners, making the forecaster robust against 
sudden changes in the input and enhancing its performance. In Ref. [42], BPNNs, RBFNNs and SVMs were combined based on a 
Bayesian model averaging (BMA) strategy to forecast wind power output. In addition of the diversity provided by the different 
ML-based models, more diversity was introduced by using self organising map (SOP) clustering, combined with k-fold cross-validation, 
to divide the meteorological data training set into three training subsets which feed each base learner. Results of [42] showed that the 
proposed SOP-based strategy could accurately and reliably forecast the wind power output under different meteorological conditions, 
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outperforming similar approaches in the state of the art. 
Finally, the two trends identified in the SLR can be combined by proposing an ensemble of deep NNs. In Ref. [46], LSTM, GRU, 

auto-encoder LSTM (auto-LSTM) and a novel approach called auto-encoder GRU (auto-GRU), which is similar to the auto-LSTM but 
using GRU cells, were used for PV power output forecasting. The deep NNs used as base learners were combined based on four different 
methods: simple averaging, weighted averaging using linear and non-linear approaches, and a combination through variance using 
inverse approach. In Ref. [67], an SEA combined different ANNs and a LSTM for 15-min and 1-h-ahead PV power output prediction. 
The promising results obtained in Refs. [46,67] show the predictive potential of combining the ensemble strategy with deep NNs. In 
this line, they can be used as a starting point to develop further research in this direction towards achieving the next performance level 
of RES power output forecasting. 

5.1.4. Advantages and disadvantages of the most popular ML-based approaches to forecast RES power ouputs 
The main difficulty of RES power output prediction is to simultaneously model the autoregressive nature of the power (temporal 

features) as well as its dependence on the uncertain, non-linear and complex atmospheric spatial features. Each of the ML-based 
methods analysed in the SLR proposes different strategies to address these challenges. Since all of them have their advantages and 
disadvantages, there is no one-for-all approach. Using one or another will depend on the application as well as the data and resource 

Table 6 
Advantages and disadvantages of the most popular ML techniques to forecast PV and wind power.  

Approach Advantages Disadvantages Application 

Traditional ML-based models 
ANN  • Can learn non-linear 

relationships.  
• Hand-engineered feature selection.  
• Fail to learn complex patterns from intermittent, 

stochastic and highly-varying data.  
• Sample complexity: Network instability and parameters 

non-convergence when dealing with huge amounts of 
training data.  

• Time-consuming training phase. 

RES power output forecasting within 
stationary frameworks. 

SVM/SVR  • Well-suited for complex non- 
linear applications.  

• Robust to noisy and biased 
data.  

• Less prone to overfitting than 
others ML-based methods.  

• Good generalisation capability 
for small datasets.  

• Highly sensitive to hyper-parameter tuning. Newly built PV or wind plants, which lack 
large amounts of historical data. 

Deep NNs 
LSTM  • Automatic feature selection.  

• Can handle time series data.  
• Can handle long-term time 

dependencies.  
• Can capture complex patterns 

in sequential data.  
• More robust than simple RNN 

to noisy and missing data.  

• Prone to overfitting.  
• Sensitive to hyper-parameter tuning.  
• Computationally expensive. 

RES power output forecasting considering 
autoregressive features (time series). 

CNN  • Automatic feature selection.  
• Accurate modelling of spatial 

features.  

• Requires large amounts of data to lean.  
• Computationally expensive.  

• PV power output forecasting based on 
sky or satellite images.  

• Spatial feature modelling for weather- 
related data. 

Ensembles 
RF  • Robust to missing data and 

outliers.  
• No need for variable selection.  
• Can handle large datasets.  
• Can handle high-dimensional 

data.  
• Easy hyper-parameter tuning.  
• Less prone to overfitting than 

others ML-based methods.  

• Not suitable for low-dimensional data.  
• Not suitable for small datasets. 

RES power output forecasting within the 
context of high-dimensional, large 
datasets. 

Different base 
learners  

• Reduce overfitting.  
• Robust to base learners’ errors.  
• Robust to inconsistencies on 

the changing weather data.  
• Better performance than 

traditional ensembles.  
• Improve of individual ML- 

based models.  

• Computationally expensive.  
• Depend on the combination strategy. 

RES power output forecasting within 
highly complex scenarios. 

Note. ANN: artificial neural network; CNN: convolutional neural network; deep NN: deep neural network; LSTM: long-short term memory; ML: 
machine learning; PV: photovoltaic; RES: renewable energy source; RF: random forest; SVM: support vector machine; SVR: support vector regression. 
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availability. Table 6 summarises the main pros and cons of the most widely used ML-based approaches for PV and wind power 
forecasting, and suggests the most suitable application for each of them. 

5.2. ML-based RES power output forecasting in real-life grid applications 

Several SLR articles highlight that the predicted ML-based RES power outputs can significantly impact the whole grid performance. 
In particular, they can be used as the input of several decision-making grid problems, including UC and ED, design of optimal trading 
and maintenance strategies, and electricity market-clearing, among others. This would help DSOs and TSOs to perform control actions, 
optimally dispatch various distributed RES generator types, manage voltage control devices, relieve the pressure of peak and regulate 
frequency [16,17,29,35,47,55,56]. Nevertheless, only a few of the SLR articles integrate their ML-based approach to real-life eco
nomic, operational or managerial grid problems [29,55,56]. 

In [29], an ensemble of ANNs was used to predict the day-ahead PV power output to reduce the grid power imbalance. The 
proposed ensemble of ANNs was fed by the sun azimuth and elevation, the clear sky irradiance (CSI) and the ground temperature 
predicted by the WRF model, as well as the PCA pre-processing of the relative humidity of 20 vertical atmospheric levels forecasted by 
the Numerical Weather Prediction (NWP) model. The predicted PV power output was then used within the framework of a power 
transmission scheduling approach, reducing 7 % the grid imbalance. In Ref. [55], the forecast of future wind load and power was 
integrated into a classical UC optimisation problem. In particular, a LSTM model was used to predict wind load and power. Then, the 
predicted data was used within the framework of a rolling horizon UC problem. Results of [55] showed that the proposed approach 
achieved a maximal cost saving ratio of 22.91 %. Nevertheless, authors of [55] highlighted that there was a need for improving power 
forecasting approaches in terms of accuracy and speed. In the same line, authors of [56] proposed forecasting the day-ahead per
formance of the wind power via RNNs and SVMs, and used the outputs for day-ahead planning by using UC optimisation techniques. 
Experimental results of [56] showed that RNNs outperformed SVMs in short-term wind power forecasting. The RNN-based forecasted 
data was then used as the input of the UC problem optimised by a GA, achieving an accurate day-ahead operation planning. The results 
in Refs. [29,55,56] are promising and provide baseline examples to integrate ML-based forecasted RES power outputs to real-life grid 
problems. Nevertheless, further research is needed in this direction. 

6. Main research findings and gaps 

The SLR results allow to identify the most relevant trends in ML-based approaches to forecast RES power outputs from the model 
design, including selection of the ML technique, data collection, time horizon definition and selection of the model parameters, to the 
model implementation, including data pre-processing, feature extraction and selection, hyper-parameter optimisation and perfor
mance evaluation. In addition, the main applications proposed in the literature to integrate them into different real-life grid scenarios 
to address economic, managerial and operational problems have also been discussed. As a result, the research findings listed in Section 
6.1 and the research gaps listed in Section 6.2 can be highlighted. 

6.1. Main research findings 

6.1.1. Feasibility of using ML-based techniques for forecasting the power output of RESs 
ML-based techniques have shown to be well suited to forecast RES power outputs. In particular, the following findings can be 

mentioned.  

• Relying only on historical data, ML-based models have the advantage of being able to forecast the RES power output without the 
need of a strong domain of knowledge of the power systems, as it would be the case of using a physical-based model [60]. 

• ML-based approaches have demonstrated to improve the accuracy, robustness, precision and generalisation ability of the tradi
tionally used data-driven methods in RES power output forecasting applications, such as statistical models [17].  

• ML-based models are potentially more flexible than physical and statistical forecasting models regarding the forecasting time 
horizons [60].  

• In the case of solar energy, ML-based methods have the advantage of being able to directly forecast the PV power output, without 
the need for forecasting the solar irradiance, as is the usual case in physical-based models [60]. 

6.1.2. ML-based model implementation 
Regarding the implementation of the ML-based models to forecast RES power outputs, the following findings can be highlighted.  

• ML-based strategy:  
- Together with the increasing availability of weather data provided by weather agencies as well as the increasing feasibility of 

acquiring on-site data, the RES power output forecasting can be treated as a big-data problem. As such, there is a clear trend for 
using deep NNs to solve it, being RNNs – especially LSTM – the most popular ones.  

- LSTM networks are the best suited to model the autoregressive nature of the RES power output.  
- Providing a good generalisation capability even when the sample data is small, SVMs are well suited for RES power output 

forecasting applications where there is not too much historical data available [41]. In this way, they can predict the power output 
of newly installed PV or wind plants. 
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- Wind and solar power generation are highly influenced by atmospheric and meteorological properties, making them inherently 
instable. In this line, ensembles of different ML-based methods are one of the most promising strategies to mitigate this impact 
since they generate a collective decision space avoiding large errors due to the inaccurate decisions of some of the base learners, 
making the forecasting model robust against sudden changes in the input [39].  

• Data collection and ML-based model parameters:  
- Although weather parameters provided by weather agencies are useful to train ML-based models to forecast RES power outputs, 

researchers agree that including on-site measurements can improve the forecasting performance [39]. This shows that the 
ML-based RES power output forecasting performance strongly depends on location. 

6.1.3. Applications 
In general, the ML-based models proposed in the literature to forecast RES power outputs are focused on their design, development, 

optimisation and accuracy assessment rather than on implementing them within the framework of real-life grid problems. In 
particular, the following observations can be done.  

• Numerous researchers highlight that the predicted RES power output can be used as the input of several decision-making problems, 
such as UC and ED, design of optimal trading and maintenance strategies and electricity market-clearing, among others, enabling 
DSOs and TSOs to perform control actions, optimally dispatch various distributed RES generator types, manage voltage control 
devices, relieve the pressure of peak and regulate frequency [16,17,35,47,53].  

• Only a few of the retrieved articles actually use the ML-based predicted RES power output to address economic, managerial or 
operational real-life grid problems [29,55,56]. In general, they solve a UC problem. 

6.2. Main research gaps 

6.2.1. Feasibility of using ML-based techniques for forecasting the power output of RESs 
The main research gaps encountered in the literature are related to the flexibility and robustness of the proposed ML-based ap

proaches since they highly depend on external factors, such as weather conditions and locations. In addition, several practical issues 
related to the data collection have been identified since data nature and quality significantly impact the performance of the forecasting 
models. The most concerning research gaps are listed as follows.  

• ML-based model flexibility and robustness:  
- There is a lack of a ML-based PV and wind power output forecasting approach that fits diverse weather conditions [39].  
- Although some researchers suggest their developed ML-based RES power output forecasting model could be adapted for 

implementation in different locations, such as the ones in Ref. [39], the strong dependence of these type of models to the local 
parameters calls for further research towards developing standard forecasting methods capable of being practically implemented 
in different locations. In Ref. [45], authors suggest that joint training on heterogeneous location data could yield a more gen
eralisable and accurate ML-based RES power output forecasting model.  

• Data collection and processing:  
- The quality of the training data used to build the ML-based model is a key aspect to obtain an accurate RES power output forecast. 

In this line, further research needs to be conducted to improve data acquisition methods and data pre-processing techniques.  
- Further research needs to be conducted regarding which are the best parameters to train ML-based models to improve PV and 

wind power output forecasting. In particular, further works evaluating the performance of demand, load and price features to 
forecast RES power outputs are required.  

- Although ML-based models have the potential to forecast RES power output within a flexible range of time horizons, only a few 
articles devoted to medium- and long-term horizons have been found in the literature. In this line, further efforts need to be done 
in this research direction. Similarly, since most of the ML-based RES power output forecasting models are developed using 
training data from weather forecasters (usually released at an hourly basis), there is a lack of very short-term forecasting ap
proaches [30]. In general, economic and technical barriers have prevented researchers from developing such predictors since 
they require on-site data acquired by expensive sensors. Although the use of IoT sensors could be a low-cost alternative, as 
suggested in Ref. [30], further research needs to be conducted in this direction. 

6.2.2. Applications 
The integration of ML-based models to forecast RES power outputs into real-life power systems is still pending. In particular, 

although the researchers suggest that the RES power output predicted based on ML can be used as the input of several decision-making 
problems, only a few of them actually use it to address economic, managerial or operational grid challenges [29,55,56]. In general, 
they solve a UC problem based on the forecasted RES power output. There is a need for further research in this direction to enable the 
DSO to manage the ASs provided by the RESs, facilitating the coordination between the DSO and the TSO. 

7. Research limitations 

Within the framework of grid applications, it would be desirable to forecast not only the RES power output but also the energy 
demand, load and price. The SLR conducted in this paper only focuses on the former, whereas the latter is out of its scope. In addition, 
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due to the lack of articles actually implementing the ML-based forecasted RES power output in real-life grid scenarios, this aspect could 
not be analysed thoroughly. Finally, although it would be preferable to analyse more articles, only 82 were left —and included in the 
SLR— after the application of the literature search methodology described in Section 2. 

8. Conclusions 

The increasing penetration of large-scale RESs – especially solar and wind energies – in the distribution grid has risen several 
operational, managerial and economic challenges to the power grid. In this paper, a SLR has been conducted to evaluate the feasibility 
of using ML-based methods to forecast the RES power output to facilitate their integration. The most widely used ML-based methods in 
the literature to forecast RES power outputs have been evaluated in terms of the ML technique, the time horizon predicted, the data 
collection, the considered ML-based model parameters and the obtained results. In addition, the main implementation steps of the ML- 
based model – data pre-processing, feature extraction and selection, hyper-parameter optimisation and performance evaluation – have 
been studied in detail. Finally, the feasibility of actually using the ML-based prediction of the RES power output as the input of different 
decision-making problems, enabling TSOs and DSOs to efficiently manage RESs – and their ASs – to address economic, operational and 
managerial grid challenges within the context of a high penetration of RESs, has been discussed. 

The SLR results have shown that different ML-based approaches, including ANNs, SVM/SVR, RF, XGBoost, DTs, LR, and k-NN, have 
been successfully implemented to predict PV and wind power outputs. A remarkable trend for using deep NNs – especially RNNs –, 
which allow unsupervised feature learning, avoiding tedious and time consuming feature extractions, and can automatically learn the 
natural variations in the data, mitigating the negative effect of the fluctuations in the atmospheric conditions and meteorological 
properties, has been identified. Among them, LSTM networks, which are well suited for time series data modelling, allowing to 
accurately capture the autoregressive nature of PV and wind power outputs, are the most popular ones. In addition, ensemble methods 
of different ML-based learners are also widely used to improve the forecasting robustness against the high varying weather conditions. 
Finally, it is important to highlight that the computational complexity of deep NNs and ensemble methods can favour the use of simpler 
ML-based methods, such as SVMs and RF, which have also demonstrated to be well suited for RES power output forecasting appli
cations. In particular, SVMs can provide a good generalisation capability even when the sample data is small, constituting a great 
advantage for applications where data is scarce, such as newly installed PV or wind plants. 

Although researchers in the field recognise that the ML-based predicted RES power outputs can be integrated into different grid 
decision-making problems, such as UC and ED, the design of optimal trading and maintenance strategies and the electricity market- 
clearing, among others, their actual implementation within the framework of real-life power systems is still pending. In this line, 
further research needs to be conducted in this direction. The promising balance and economic results obtained by solving UC opti
misation problems based on the outputs of some RNN-based RES power prediction models can be used as a solid starting point. 

As future work, the authors intend to design and implement a ML-based approach to provide accurate RES power output forecasting 
to the DSO and help it to manage the ASs provided by the RESs, facilitating the coordination between the DSO and the TSO. 
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Appendix A  

Table A 1 
Articles included in the SLR.  

Art. Year Publication Title 

[6] 2020 UNIVERSITY OF TEXAS AT DALLAS MACHINE LEARNING-BASED RENEWABLE AND LOAD FORECASTING IN POWER 
AND ENERGY SYSTEMS 

[7] 2019 Energy Conversion and Management A review of deep learning for renewable energy forecasting 
[8] 2017 Optimisation in Renewable Energy Systems: Recent 

Perspectives 
Impacts of Accurate Renewable Power Forecasting on Optimum Operation of Power 
System 

[9] 2019 Energy Convers. Manag. Wind power forecasting based on daily wind speed data using machine learning 
algorithms 

[10] 2022 Comput. Intell. Techniq. For Green Smart Cities Machine Learning Techniques for Renewable Energy Forecasting: A Comprehensive 
Review 

(continued on next page) 
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Table A 1 (continued ) 

Art. Year Publication Title 

[11] 2023 J. Clean. Prod. Deep learning for renewable energy forecasting: A taxonomy, and systematic 
literature review 

[13] 2023 Sustainability Forecasting Renewable Energy Generation with Machine Learning and Deep 
Learning: Current Advances and Future Prospects 

[14] 2021 Renew. Sustain. Energy Rev. A survey on deep learning methods for power load and renewable energy forecasting 
in smart microgrids 

[16] 2020 Appl. Sci. A Survey of Machine Learning Models in Renewable Energy Predictions 
[17] 2019 Wiley Interdiscip. Rev. Energy Environ. The future of forecasting for renewable energy 
[24] 2020 J. Stat. Manag. Syst. Machine learning models for renewable energy forecasting 
[25] 2019 Energies State of the Art of Machine Learning Models in Energy Systems, a Systematic Review 
[29] 2018 Sol. Energy Photovoltaic generation forecast for power transmission scheduling: A real case 

study 
[26] 2019 Energies Energy Consumption Prediction Using Machine Learning; A Review. 
[30] 2021 Energies Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors 
[31] 2018 Applied Sciences Comparison of Training Approaches for Photovoltaic Forecasts by Means of Machine 

Learning 
[32] 2014 2014 Int. Joint Conf. On Neural Networks Wind power forecasting — An application of machine learning in renewable energy 
[33] 2019 Energies Machine Learning Based Photovoltaics (PV) Power Prediction Using Different 

Environmental Parameters of Qatar 
[34] 2014 Data Analytics for Renewable Energy Integration Machine Learning Techniques for Supporting Renewable Energy Generation and 

Integration: A Survey 
[28] 2019 Renew. Sustain. Energy Rev. Machine-learning methods for integrated renewable power generation: A 

comparative study of artificial neural networks, support vector regression, and 
Gaussian Process Regression 

[35] 2014 IEEE Trans. Power Syst. Probabilistic Forecasting of Wind Power Generation Using Extreme Learning 
Machine 

[23] 2018 Journal of Cleaner Production Application of support vector machine models for forecasting solar and wind energy 
resources: A review, 

[36] 2020 Applied Sciences Advanced Methods for Photovoltaic Output Power Forecasting: A Review 
[37] 2017 Renew. Energy Hour-ahead wind power forecast based on random forests. 
[38] 2016 Applied Energy learning based ensemble approach for probabilistic wind power forecasting 
[39] 2017 Energy Convers. Manag. Intelligent and robust prediction of short term wind power using genetic 

programming based ensemble of neural networks 
[40] 2019 Future Generation Computer Systems LSTM-EFG for wind power forecasting based on sequential correlation features 
[41] 2019 International Journal of Smart Grid and Clean Energy Short-term wind power forecasting based on support vector machine with improved 

dragonfly algorithm 
[42] 2020 Renewable Energy A hybrid wind power forecasting approach based on Bayesian model averaging and 

ensemble learning 
[27] 2020 Sustain. Energy Grids Network Multiple steps ahead solar photovoltaic power forecasting based on univariate 

machine learning models and data re-sampling 
[43] 2019 Proceedings of the 3rd International Conference on 

Smart Grid and Smart Cities 
A Hybrid Approach of Solar Power Forecasting Using Machine Learning 

[44] 2019 Sustainability A Two-Step Approach to Solar Power Generation Prediction Based on Weather Data 
Using Machine Learning 

[45] 2019 Solar Energy Short-term solar power forecast with deep learning: Exploring optimal input and 
output configuration. 

[46] 2019 Applied Computer Information Solar power generation forecasting using ensemble approach based on deep learning 
and statistical methods 

[47] 2017 Neural Comput. & Applic. Accurate photovoltaic power forecasting models using deep LSTM-RNN 
[48] 2020 Renewable and Sustainable Energy Reviews An improved moth-flame optimisation algorithm for support vector machine 

prediction of photovoltaic power generation 
[49] 2019 Chapter: Advances in Intelligent Systems and Computing Deep Learning for Big Data Time Series Forecasting Applied to Solar Power. 
[50] 2019 Case Studies in Thermal Engineering A comparison study based on artificial neural network for assessing PV/T solar 

energy production 
[51] 2018 Energies Using Smart Persistence and Random Forests to Predict Photovoltaic Energy 

Production 
[52] 2017 Applied Sciences Comparative Study on KNN and SVM Based Weather Classification Models for Day 

Ahead Short Term Solar PV Power Forecasting 
[53] 2020 Renew. Sustain. Energy Rev. Machine learning models to quantify and map daily global solar radiation and 

photovoltaic power. 
[54] 2018 Engineering Science and Technology Solar photovoltaic power forecasting using optimised modified extreme learning 

machine technique 
[55] 2019 Energy Deep learning-based rolling horizon unit commitment under hybrid uncertainties 
[56] 2021 Sustainability Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty 

of Wind Power Forecasting 
[57] 2019 University of Sussex WIND FARM POWER OUTPUT PREDICTION BASED ON MACHINE LEARNING 

RECURRENT NEURAL NETWORKS 
[58] 2016 Oldenburg University Wind Power Prediction with Machine Learning Ensembles 
[59] 2019 Oldenburg University Support Vector Regression for Solar Power Prediction 
[60] 2019 University of Sydney SOLAR POWER FORECASTING 

(continued on next page) 
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Table A 1 (continued ) 

Art. Year Publication Title 

[61] 2021 University of Stavanger Predictive Analytics for Maintaining Power System Stability in Smart Energy 
Communities. 

[62] 2022 Expert Syst. Appl. Integrating data decomposition and machine learning methods: An empirical 
proposition and analysis for renewable energy generation forecasting 

[63] 2021 Sustainability Prospective Methodologies in Hybrid Renewable Energy Systems for Energy 
Prediction Using Artificial Neural Networks 

[64] 2021 Energies Numerical Weather Prediction and Artificial Neural Network Coupling for Wind 
Energy Forecast 

[65] 2017 Energy Procedia Short-range wind speed predictions for complex terrain using an interval-artificial 
neural network 

[66] 2021  Renewable Energy and Demand Forecasting in an Integrated Smart Grid 
[67] 2022 Energies Improved solar photovoltaic energy generation forecast using deep learning-based 

ensemble stacking approach 
[68] 2022 Electr. Power Syst. Res. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term 

photovoltaic power production 
[69] 2022 Comput. Intell. Neurosci. Photovoltaic Power Generation Forecasting Using a Novel Hybrid Intelligent Model 

in Smart Grid 
[70] 2015 CSEE J. Power Energy Syst. Photovoltaic and solar power forecasting for smart grid energy management 
[71] 2022 J. King Saud Univ. - Sci. Boosting energy harvesting via deep learning-based renewable power generation 

prediction 
[72] 2022 Sustainability Performance Analysis of Machine Learning Algorithms for Energy Demand & Supply 

Prediction in Smart Grids 
[73] 2023 Sustainability An Artificial-Intelligence-Based Renewable Energy Prediction Program for Demand- 

Side Management in Smart Grids 
[74] 2023 Neural Comput. Appl. AI-based solar energy forecasting for smart grid integration 
[75] 2021 2021 20th IEEE Int. Conf. On Mach. Learning and 

Applicat. (ICMLA) 
Deep Learning Applied on Renewable Energy Forecasting Towards Supply-Demand 
Matching 

[76] 2016 2016 IEEE Int. Conf. On Systems, Man, and Cybern. 
(SMC) 

Deep Learning for solar power forecasting — An approach using Auto-Encoder and 
LSTM Neural Networks 

[77] 2020 Renew. Sustain. Energy Rev. A deep learning-based forecasting model for renewable energy scenarios to guide 
sustainable energy policy: A case study of Korea 

[78] 2022 Complexity A Hybrid Deep Learning-Based Network for Photovoltaic Power Forecasting 
[79] 2021 Frontiers in Energy Research Deep Learning-Based Prediction of Wind Power for Multi-turbines in a Wind Farm 
[80] 2021 Appl. Energy A review of wind speed and wind power forecasting with deep neural networks 
[81] 2023 Comput. Mater. Contin. Wind Power Prediction Based on Machine Learning and Deep Learning Models 
[82] 2022 Energies Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative 

Study 
[83] 2021 Applied Sciences Wind Power Forecasting with Deep Learning Networks: Time-Series Forecasting 
[84] 2022 Energy Explor. Exploit Use machine learning algorithms to predict turbine power generation to replace 

renewable energy with fossil fuels 
[85] 2022 Vaasa University Machine Learning based Wind Power Forecasting for Operational Decision Support 
[86] 2022 Frontiers in Energy Research A hybrid deep learning model with error correction for photovoltaic power 

forecasting 
[87] 2020 NCE J. Sci. Eng. Solar Power Forecasting for Smart Grid System by Using Deep Learning Techniques 
[88] 2022 IEEE Access Solar Power Forecasting Using Deep Learning Techniques 
[89] 2020 IEEE Access Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach 
[90] 2023 Forecasting A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural 

Networks 
[91] 2023 Energy Reports Trends and gaps in photovoltaic power forecasting with machine learning 
[92] 2022 R. Sehgal, N. Gupta, A. Tomar, M. D. Sharma, and V. B. 

T.-S. E. and M. S. Kumaran, Eds. Academic Press 
Chapter Six - Renewable energy sources forecasting and integration using machine 
learning 

[93] 2022 Int. J. Photoenergy Forecasting Solar Energy Production Using Machine Learning 
[94] 2021 Mathemathics AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy 

Generation Forecasting 
[22] 2020 Energies The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in 

Indonesia: Case Study of Java-Bali Power System  

V is computationally expensive and 
not adaptive for other comfort related factors [12,25], researchers have been investigating data driving approaches 
from a machine learning perspective. Quite a few literature 
suggests the application of Artificial Neural Network for 
comfort learning and estimation [26,31,32], while other 
supervised learning methods have also been explored, such 
as Support Vector Machine (SVM) with radius basis kernel. 
[4,7] and locally weighted non-linear reg. 
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Table A 2 
Relevant information extracted from the selected articles.  

Art. Proposal ML RES Parameters Output Time 
Horizon 

Data Feature 
selection 

Hyper-parameter 
optimisation 

Accuracy 
metric 

[6] Ensemble of ANN, SVM, 
GB, RF for wind power 
forecasting 

Ensemble of 
ANN, SVM, GB 
and RF 

Solar, wind Humidity, wind speed, wind 
direction, pressure, air 
temperature, historical GHI, 
clear sky GHI, CSI, sky 
imaging features, DNI, DHI 

PV and 
wind 
turbine 
power 

Shor 
term, 
very- 
short 
term 

Wind Integration 
National Dataset 
(WIND) Toolkit, 
National Renewable 
Energy Laboratory 
(NREL) data 

PCA, GCT, 
AA, PAA, RFE 

SGD, Adam 
optimiser, 
AdaDelta 

MAE, MAPE, 
RMSE 

[7] Review DL: DBN, SAE, 
deep RNN 

Solar, wind        

[8] Conceptual study  Solar, wind        
[9] Case studies 

implementation of different 
ML algorithms 

XGBoost 
regression, 
SVR, RF, 
LASSO 
regression, 
kNN regression 

Wind 4-year hourly wind speed 
data 

Wind 
turbine 
power 

Long 
term 

5 years of hourly wind 
speed observation 
values of Nigde, 
Turkey 

Weibull 
distribution  

R2 score, 
RMSE, MAE 

[10] Review          
[11] Review SAE, DBN, 

CNN, GAN, 
RNN 

Solar, wind, 
ocean, 
hydrogen        

[13] Review ML, DL Solar, wind        
[14] Review          
[16] Survey  Solar, wind        
[17] Conceptual study  Solar, wind        
[24] Review  Solar        
[25] Review  Solar, wind        
[29] Evaluate the impact of 

using PV forecast for power 
transmission scheduling 

ANN Solar PV power, load and 
transmission data, weather 
data (sun azimuth and 
elevation, the clear sky 
irradiance and the ground 
temperature), energy price 
data 

PV power Day 
ahead 

Data from a South 
Tyrol Region located 
in Northern Italy 

PCA MOP  

[26] Review ANFIS, ANN, 
DT, ELM, MLP, 
SVM/SVR, 
ensemble, 
hybrid, DL 

Solar, wind Review       

[30] Deep RNN-based PV power 
short-term forecast 

Deep RNN Solar Solar radiation, ambient 
temperature, module 
temperature, humidity, wind 
speed and power data 

DC 
current, 
voltage 
and PV 
power 

Real-time 
short 
term 

Real-time PIoT sensors 
data 

PCC DLR, SGD nRMSE, 
nMAE 

[31] Comparison of different 
training methods in ANNs 
for PV power forecasting 

ANN Solar Ambient temperature, solar 
irradiance, wind speed, wind 
direction, pressure, 
precipitation, cloud type, 
cloud cover, CSRM 

PV power Day 
ahead 

Data from the 
Laboratory 
SolarTechLab  

Sensitivity 
analysis 

Enveloped 
Weighted 
MAE 

(continued on next page) 
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Table A 2 (continued ) 

Art. Proposal ML RES Parameters Output Time 
Horizon 

Data Feature 
selection 

Hyper-parameter 
optimisation 

Accuracy 
metric 

[32] Novel neuro evolutionary 
technique based on CGP to 
evolve ANN for modelling 
wind power forecasters 

ANN Wind Hourly-spaced wind power 
production 

Wind 
turbine 
power 

Short 
term, 
long term 

Historical data of 
hourly produced wind 
power plant situated 
in Galicia  

CGP MAPE, 
nRMSE 

[33] Study of the effects of the 
relevant environmental 
parameters on the output 
power of the PV panel 

LR, DT, GPR, 
ANNs 

Solar Temperature, relative 
humidity, PV surface 
temperature, solar irradiance, 
dust accumulation, wind 
speed 

PV power hourly Two years’ 
deployment period of 
PV system 

CFS Exhaustive search MAE 

[34] Survey  Solar, wind        
[28] Review ANN, SVR, GPR Solar, wind        
[35] ELM-based probabilistic 

forecasting method for 
wind power generation 

Bootstrap- 
based SLFN- 
based ELM 

Wind Wind power, speed and 
direction 

Wind 
turbine 
power 

Short 
term 

Wind farm in Australia  Cross-validation MAE, RMSE 

[23] Review SVM Solar, wind        
[36] Review DL and hybrid 

methods 
Solar        

[37] Choose the appropriate 
weather factors to forecast 
wind power 

RF Wind Wind power, speed and 
direction 

Wind 
turbine 
power 

Day 
ahead 

Wind farm in Tunisia   MAE, MASE, 
RMSE, 
nMAE, MXE, 
MAPE 

[38] Advanced point forecasting 
method based on Wavelet 
transform and CNN 

CNN Wind Wind turbine parameters: 
wind speed, capacity, 
capacity factor, used area 

Wind 
turbine 
power 

Shor 
term, 
long term 

Large-scale real data 
from a wind farm in 
China 

PCA  MAE 

[39] Ensemble regression 
comprising ANN and 
Genetic Programming to 
forecast wind power 

ANN Wind Wind speed and direction Wind 
turbine 
power 

Shor 
term 

Five different wind 
farms located in 
Europe 

Information- 
theoretic 
method 

Genetic 
programming 

RMSE, MAE 

[40] Improved LSTM-EFG to 
forecast wind power 

LSTM-EFG Wind Wind speed and power Wind 
turbine 
power 

Shor 
term, 
long term 

Data from the National 
Renewable Energy 
Laboratory 

Time series 
correlation  

MSE 

[41] Improved LSTM-EFG to 
forecast wind power 

LSTM-EFG Wind Wind speed and power Wind 
turbine 
power 

Shor 
term, 
long term 

Data from the National 
Renewable Energy 
Laboratory 

Time series 
correlation  

MSE 

[42] Hybrid wind power 
forecasting approach based 
on BMA-EL 

BMA-EL Wind Wind speed and direction, 
temperature 

Wind 
turbine 
power 

Shor 
term 

SCADA data of a wind 
farm in Inner 
Mongolia Autonomous 
region, China 

SOM 
clustering  

MAPE, 
RMSE 

[27] Univariate approach to 
predict solar PV power 
output multiple steps ahead 

ANN, RF, LR, 
SVR 

Solar PV power PV power Shor 
term 

2 years of data from a 
1.22 MW PV system in 
Australia  

Exhaustive grid 
search 

MAE, MRE, 
RMSE 

[43] Analyse multiple ML 
models and different 
weather parameters for PV 
forecasting 

SVM Solar Wind temperature at 2 m 
height, wind speed at 30 m 
height, wind direction at 30 
m height, precipitation, solar 
radiation, air pressure at sea 
level, relative humidity at 2 
m above ground, snowfall 
amount, total cloud cover 

PV power Day 
ahead 

Historical weather 
data from the weather 
station managed by 
Meteorology 
department of Ludwig 
Maximilian University 

Sensitivity 
analysis 

Grid search RMSE, R2 
score 
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Table A 2 (continued ) 

Art. Proposal ML RES Parameters Output Time 
Horizon 

Data Feature 
selection 

Hyper-parameter 
optimisation 

Accuracy 
metric 

[44] Predict amounts of PV 
power generation using 
weather information 
provided by weather 
agencies 

LR, SVR, CART, 
kNN, 
AdaBoost, RF 

Solar Weather forecast: rainfall 
type, sky type, wind 
direction, wind speed, 
humidity, temperature, solar 
elevation; weather 
observation: radiation, vapor 
pressure, surface 
temperature, atmospheric 
pressure 

PV power Day 
ahead 

Publicly available 
dataset from the 
Yeongam PV Power 
Plant in South Korea. 

Gini 
importance  

RMSE, R2 
score 

[45] Specialised CNN to predict 
15-min ahead minutely- 
averaged PV output 

CNN Solar Weather images, PV power PV power 15 min 
ahead 

Sky images and PV 
generation collected 
over a year 

Sensitivity 
analysis 

Adam optimiser RMSE 

[46] Hybrid model combining 
ML with Theta statistical 
methods for future PV 
power generation 
prediction 

LSTM, GRU, 
AE- LSTM, AE- 
GRU 

Solar GHI, Global GTI, solar 
irradiance, air temperature, 
panel temperature, wind 
speed, wind direction, 
precipitations, humidity 

PV power Day 
ahead 

Two real-time series 
datasets  

RMSProp nMAE, nMSE 

[47] LSTM-RNN to forecast PV 
power output 

LSTM-RNN Solar PV power PV power Hour 
ahead 

PV datasets from 
Aswan and Cairo, 
Egypt   

RMSE 

[48] Improved MFO for SVM 
prediction of PV power 
generation 

SVM Solar Radiation intensity, 
atmospheric temperature, 
relative humidity, wind speed 

PV power Short 
term 

Real data of PV power 
station in Australia 

GRA MFO, IMFO RMSE, 
MAPE, R2 
score 

[49] DL for PV power forecasting 
for the next day 

PSF based on 
similarity of 
patterns and 
ANN 

Solar Big PV power data (time 
series) 

PV power Day 
ahead 

Australian solar PV 
data for two years  

Grid search 
method 

RMSE, MAE 

[50] Review  Solar        
[51] RF for forecasting PV power 

generation based on smart 
persistence, irradiance, and 
past production data 

RF Solar PV production, GHI, DNI, 
mean clear sky index, 
standard deviation clear sky 
index, PV smart persistence, 
mean PV Smart Persistence 
and SD PV Smart Persistence 

PV power Short 
term 

Three years of data 
from six solar PV 
modules at Faro, 
Portugal  

BF search Skill score, 
nRMSE 

[52] Evaluate the correlation 
between classification 
accuracy and sample 
dataset scale 

kNN, SVM Solar Extraterrestrial and surface 
solar irradiance 

PV power Day 
ahead 

Grid-connected PV 
plant situated in 
Hohhot, Inner 
Mongolia, China   

R2 score, 
RMSE 

[53] Hybrid PSO-ELM to 
accurately predict daily 
solar radiation and PV 
power. 

PSO-ELM Solar Sunshine duration, PV power, 
extra-terrestrial solar 
radiation, relative humidity, 
global solar radiation, 
average air temperature, 
maximum air temperature, 
minimum air temperature, 
vapor pressure deficit 

PV power Day 
ahead 

Daily meteorological 
variables measured 
during 1961–2016 in 
China’s Loess Plateau  

PSO MAE, RMSE 

[54] ELM for PV power 
forecasting of a real time 
model 

ELM Solar Temperature, solar 
irradiance, PV power 

PV power Short 
term 

Real time PV power 
data  

PSO, CRPSO, 
APSO 

RMSE, MAE, 
MAPE 
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Table A 2 (continued ) 

Art. Proposal ML RES Parameters Output Time 
Horizon 

Data Feature 
selection 

Hyper-parameter 
optimisation 

Accuracy 
metric 

[55] DL-based rolling horizon 
UC 

LSTM Wind Historical wind load and 
power, real-time weather 

Wind 
turbine 
load and 
power 

Rolling 
horizon 

3 Irish wind farms  GA  

[56] RNN and SVM wind power 
forecasting for planning the 
day-ahead performance of 
the generation system by 
using UC optimisation 
techniques 

RNN, SVM Wind Wind power Wind 
turbine 
power 

Day 
ahead     

[57] LSTM for wind power 
forecasting 

LSTM Wind Wind speed and direction Wind 
turbine 
power 

Short 
term 

Real 14-turbine wind 
farm  

RMSProp, SGD RMSE, MSE, 
MAPE 

[58] Heterogeneous machine 
learning ensemble 
combining SVR and DT 
ensembles for wind power 
forecasting 

Ensemble of 
SVR and DT 
ensemble 

Wind Wind speed and power Wind 
turbine 
power 

Short 
term 

Australian public 
datasets  

EMOA MSE 

[59] SVR for PV power 
forecasting 

SVR Solar PV power, solar irradiance, 
air temperature 

Wind 
turbine 
power 

15 min 
ahead 

Publicly available 
weather forecast 

RF 
importance, 
k-means 
clustering 

Grid search RMSE 

[60] Direct and pair patterns 
clustering using ANN and 
SVR as well as ANN 
ensembles for PV power 
forecasting 

Direct and pair 
patterns 
clustering 
(using ANN 
and SVR), ANN 
ensemble 

Solar Solar irradiance, 
temperature, wind speed, 
humidity, PV power 

PV power Short 
term 

Australian PV and 
weather data 

RF Selection Grid search MAE, RMSE 

[61] PV power forecasting using 
an ensemble of GBR with 
tree algorithms and several 
SSLSTM networks 

Ensemble with 
GBR and LST 

Solar Cloud opacity, DHI, DNI, 
GHI, solar zenith angle, air 
temperature, wind speed, 
wind direction, PV power 

PV power 
and 
demand 

Short 
term 

Australian public 
dataset 

PCC, RFE  MAE, RMSE 

[62] STL data decomposition 
and LSTM RESs’ power 
output prediction. 

STL-LSTM Solar, wind, 
hydropower, 
geothermal   

Mid-term     

[63] Review MLP, CNN, 
RNN, LSTM         

[64] NWP and ANN coupling for 
wind energy forecast 

ANN Wind Wind power Wind 
turbine 
power 

>6 h 
ahead 

Historical weather 
data from 2019 to 
2020  

Standard 
heuristic 
approach 

MAE, RMSE, 
MedAE, ME 

[65] Interval-based NN for short- 
term wind power prediction 

interval-based 
NN 

Wind Temperature, wind speed and 
wind direction, relative 
humidity, pressure  

intra 
days to 
days 
ahead 
term 

Benchmark NWP 
datasets  

Adam optimiser MSE 

[66] Medium DT and sequential 
boost ensemble technique 
to forecast wind and solar 
power generation 

medium DTs, 
sequential 
boost ensemble 

Solar, wind Solar irradiance, wind speed  Short- 
term 

Benchmark datasets  Standard 
heuristic 
approach  
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Table A 2 (continued ) 

Art. Proposal ML RES Parameters Output Time 
Horizon 

Data Feature 
selection 

Hyper-parameter 
optimisation 

Accuracy 
metric 

[67] DL-based ensemble 
stacking approach for solar 
PV energy generation 
forecast 

Ensemble GB, 
ANN, LSTM 

Solar GHI, temperature, relative 
humidity 

PV power 15 min 
and 1 h 
ahead 

Solar farms on 
commercial buildings 
in Bunnik, 
Netherlands and 
benchmark weather 
data 

Literature 
search 

Stacked 
generalization 
framework 

R2, RMSE, 
MAE 

[68] Merge two DL 
architectures: LSTM and 
CNN to predict PV power 
output 

LSTM and CNN Solar PV power PV power Short- 
term 

Real-world dataset 
from Rabat, Morocco   

MAE, MAPE, 
RMSE 

[69] Hybrid method based on 
SVM, ANNs and PSO 

SVM, ANNs Solar Solar irradiance, 
temperature, humidity, wind 
speed 

PV power Long 
term 

Real data of 
consumption and 
climate factors of 
Douala, Cameroon  

PSO MSE, RMSE, 
MAPE, MAE, 
R2 

[70] Review  Solar  PV power      
[71] Hybrid DL model for power 

generation 
CNNESN Solar, wind Wind speed, temperature, 

humidity, GHR, DHR, wind 
direction, rainfall, RGT, RDT 

PV and 
wind 
turbine 
power 

short- 
term 

Historical data   RMSE, MSE, 
nRMSE, 
MAE 

[72] Performance analysis of ML 
algorithms for energy 
demand–supply prediction 
in smart grids 

ANN, Gaussian 
regression, 
KNN, LR, RF, 
SVR 

Solar, wind PV and wind power PV and 
wind 
turbines 
power 

hourly Eskom benchmark 
database  

Grid search CC, RAE, 
MAE, RRSE, 
RMSE 

[73] RESs’ power output 
prediction program for 
demand-side management 
in smart grids 

LSTM Solar, wind Solar irradiance, local sky 
imaging 

PV and 
wind 
turbines 
power  

Benchmark datasets    

[74] Hybrid method based on 
the combination of an 
LSTM and AE 

LSTM Solar PV power PV power  Benchmark datasets   RMSE 

[75] Demand-supply matching 
approach based on an 
accurate renewable energy 
forecasting and demand 
forecasting 

RNN, LSTM, 
GRU 

Solar, wind  PV and 
wind 
turbines 
power  

Real historical data    

[76] Combine DL and ANN, 
including DBN, AE and 
LSTM, to forecast 
renewable energy power 

DBN, LSTM, 
Auto-LSTM 

Solar PV power, weather data PV power Day 
ahead 

Historical NWP data 
from 21 photovoltaic 
facilities in Germany  

RMSprop 
optimiser 

RMSE, MAE 

[77] Korean policy case study 
based on RESs’ power 
output forecasting 

DL Solar, wind  PV and 
wind 
turbines 
power  

Korean energy policy    

[78] End-to-end hybrid deep 
network for automatic PV 
power forecasting 

GRU-CNN Solar  PV power  Publicly available 
real-world PV power 
datasets gathered in 
Alice Springs, 
Australia   

MSE, MAE, 
RMSE, MBE 
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Table A 2 (continued ) 

Art. Proposal ML RES Parameters Output Time 
Horizon 

Data Feature 
selection 

Hyper-parameter 
optimisation 

Accuracy 
metric 

[79] Two-stage modelling 
strategy, in which a DNN 
combines spatiotemporal 
correlation to 
simultaneously predict the 
power of multiple wind 
turbines 

LSTM, CNN Wind Wind power Multi- 
turbines 
wind 
power  

Wind historical power 
data from an offshore 
wind farm in China  

Adam optimiser RMSE, MAE, 
MSE 

[80] Review DL Wind  Wind 
speed and 
wind 
turbine 
power      

[81] Wind power prediction 
based on DNN, KNN, LSTM, 
RF, bagging regression and 
GBR 

DNN, KNN, 
LSTM, 
averaging 
model, RF 
bagging 
regression, 
GBR 

Wind Wind speed, direction and 
power 

Wind 
turbine 
power 

Hourly to 
two days 
horizon   

SFS-PSO, Adam 
optimiser 

MAE, NSE, 
MSE, R2, 
RMSE 

[82] Forecast univariate wind 
power time-series data 

GPR, SVR, 
ensemble 
learning: 
Boosted trees 
and Bagged 
trees 

Wind Wind speed, direction and 
power 

Wind 
turbine 
power 

Days 
ahead 

French and Turkish 
wind farms  

BO R2, RMSE, 
MAE 

[83] 24–72-h ahead prediction 
of wind power using the 
TCN 

TCN, LSTM, 
RNN, GRU 

Wind Wind speed and wind 
direction 

Wind 
turbine 
power 

24–72 h 
ahead 

Historical dataset from 
SCADA wind farm in 
Turkey 

PCA Gradient descent 
algorithms, Adam 
optimiser, SGD, 
RMSprop 

MAPE 

[84] Evaluate different ML 
methods for wind power 
forecasting 

ET, LGB, GBR, 
DT, Ada Boost, 
ridge 
algorithms 

Wind Wind power Wind 
turbine 
power 

Day 
ahead 

Benchmark datasets   R2 

[85] Conceptual study  Wind  Wind 
turbine 
power      

[86] DL-based hybrid 
technologies for ultra-short- 
term PV power forecasting 
consisting of a feature 
engineering module, a DL- 
based point prediction 
module and an error 
correction module 

NPCNN Solar PV power PV power 15 min 
ahead 

PV data from Limburg, 
Belgium 

IF  MAE, RMSE, 
MAPE 

[87] PV power modelling using 
polynomial regression and 
DL-ANNs 

MNN, LSTM Solar PV power PV power  35.58 kWp solar PV 
system installed inside 
the K3 substation of 
Singhdarbar, 
Kathmandu Nepal   

RMSE 
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Table A 2 (continued ) 

Art. Proposal ML RES Parameters Output Time 
Horizon 

Data Feature 
selection 

Hyper-parameter 
optimisation 

Accuracy 
metric 

[88] PV power forecasting using 
LSTM 

LSTM Solar PV power PV power Short 
term 

One-year data (2017) 
from Halifax, located 
in Nova Scotia, 
Canada   

MAE, MAPE, 
RMSE, R2 

[89] Hybrid CNN-LSTM DL 
approach 

CNN, LSTM Solar PV power PV power 15 min 
ahead to 
180-min 
ahead 

Real PV power data 
from Limberg, 
Belgium  

BPTT MAE, RMSE, 
R2 

[90] Transfer learning method to 
use reliable trained DL 
models of old PV plants in 
newly installed PV plants in 
the same neighborhoods. 

LSTM Solar PV power, ambient 
temperature, humidity. 

PV power hourly 
day- 
ahead 

Limited historical data  Adam optimiser MSE, 
wMAPE 

[91] Review  Solar  PV power      
[92] Review DT, RF, ANN, 

SVM, MLP, GB, 
KNN         

[93] Hybrid model combining 
ML with statistical methods 
for future PV power 
generation prediction 

ensemble Solar Solar radiation PV power  Polycrystalline solar 
panels and thin-film 
solar cells 

PCC  RMSE 

[94] One-step forecast of RES 
generation for short-term 
horizons by incorporating 
an AE BiLSTM 

BiLSTM Solar, wind Solar inclined irradiance, 
surrounding temperature, 
surface temperature, wind 
direction, air temperature, 
wind speed, air density, 
surface air pressure 

PV and 
wind 
turbine 
power 

Short- 
term 

Benchmark datasets  Adam optimiser RMSE, MSE 

Note. AA: autocorrelation analysis; AE: auto-encoder; ANFIS: adaptive neuro fuzzy inference system; ANN: artificial neural network; APSO: accelerated PSO; BiLSTM: bidirectional LSTM; BF: brute force; 
BMA: Bayesian model averaging; BO: Bayesian optimisation; BPTT: back propagation through time; CC: correlation coefficient; CFS: correlation feature selection; CGP: cartesian genetic programming; 
CNN: convolutional neural network; CRPSO: craziness PSO; CSI: clear sky index, CSRM: clear sky radiation model; DBN: deep Bayesian network; DHI: direct horizontal irradiance; DHR: diffuse horizontal 
radiation; DL: deep learning; DLR: decayed learning rate; DNI: direct normal irradiance, DNN: deep neural network; DT: decision tree; EFG: enhanced forget-gate; EL: ensemble learning; ELM: extreme 
learning machine; EMOA: evolutionary multi-objective optimisation algorithm; ESN: echo state network; ET: extra tree; GA: genetic algorithm; GAN: generative adversarial networks; GB: gradient 
boosting; GBR: gradient boosting regression; GCT: Granger causality tes; GHI: global horizontal irradiance, GHR: global horizontal radiation; GPR: Gaussian progressive regression; GRA: grey relational 
analysis; GRU: gated recurrence unit; GTI: global tilt irradiance; IDA: improved dragonfly algorithm; IF: isolation forest; IMFO: improved MFO; KNN: k-nearest neighbours; LASSO: least absolute shrinkage 
and selection operator; LGB: light gradient boosting; LR: linear regression; LSTM: long-short term memory; MAE: mean absolute error; MAPE: mean absolute percentage error; MASE: mean absolute 
squared error; MBE: mean bias error; ME: maximum error; MedAE: median absolute error; MFO: moth-flame optimisation; ML: machine learning; MLP: multiple layer perceptron; MNN: multilayer neural 
network; MOP: master optimisation procedure; MSE: mean squared error; MXE: maximum absolute error; nMAE: normalised MAE; nMSE: normalised MSE; NNCNN: non-pooling CNN; nRMSE: normalised 
RMSE; NSE: Nash Sutcliffe efficiency; NWP: numerical weather prediction; PAA: partial autocorrelation analysis; PCA: principal component analysis; PCC: Pearson correlation coefficient; PSF: point 
spread function; PSO: particle swarm optimisation; PV: photovoltaic; RAE: root absolute error; RES: renewable energy source; RDT: radiation diffuse tilted; RF: random forest; RFE: recursive feature 
elimination; RGT: radiation global tilted; RMSE: root mean squared error; RMSProp: Root Mean Square Propagation; RNN: recurrent neural network; RRSE: root relative squared error; SAE: stacked auto- 
encoder; SCADA: supervisory control and data acquisition; SD: standard deviation; SFS: stochastic fractal search; SGD: stochastic gradient descent; SLFN: single layer feed-forward neural network; SOM: 
self organising map; SSLSTM: sequence-to-sequence LSTM; STL: seasonal-trend decomposition based on Loess; SVM: support vector machine; SVR: support vector regression; TCN: temporal convolutional 
network; UC: unit commitment; wMAPE: weighted MAPE; XGBoost: extreme gradient boosting.  
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