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Abstract—This paper is concerned with domain generalization in tackling the domain shift issue. Domain adaptation (DA), a
(DG), a practical yet challenging scenario in transfer leamning typical scenario in TL, has proven effective in transferring
where the target data are not available in advance. The key learned knowledge from a well-labeled source domain to
insight of DG is focused on learning a robust model that can . .
generalize to the unseen domain by leveraging knowledge from an %J”'abe'ed target Fjoma'_n' MOSt eXIS.tII’I.g DA methods a'.‘e
the source domain. To this end, we propose a novel algorithm designed to extract discriminative domain-invariant features in
known as Support-Sample-Assisted Adversarial Attacks (SSAA) high-level space using two main strategies [21]. One strategy
for DG. In the SSAA algorithm, an attack-defense strategy is to reduce the distribution discrepancies between the source
is deployed to enhance the target model’'s generalizability and and target domains by matching statistical moments, and the

transferability. This strategy includes a non-targeted attack stage, ther is t te d . fused feat by | .
during which attack samples are generated to form pseudo-target Ot€r 1S 10 generate domain-confused teatures Dy leveraging

domains with near-realistic covariate shifts. Subsequently, in the an additional domain discriminator.

model defense stage, a bi-classifier structure is used to distinguish Despite the noteworthy achievements of DA, existing meth-
support samples from the generated attack samples. Theseqds, including distribution matching and adversarial training,
support samples form a new decision boundary encompassing all 5| 355ume the prior availability of a labeled source domain and

unseen samples, prompting an extension of the existing decision . -
boundary to meet these samples. Experimental resuilts on cross- &1 unlabeled target domain for model training. Unfortunately,

domain fault diagnosis tasks suggest that SSAA outperforms SUCh an assumption may be unrealistic in practical scenarios
current state-of-the-art DG methods, indicating a promising due to changing working conditions and the rarity of target

avenue for further DG development. data. Consider, for example, the fault diagnosis task in pipeline
Index Terms—Domain generalization, attack-defense strategy, Operation and maintenance. Variables such as geography, in-
support sample, transfer learning, domain adaptation ternal medium, and atmospheric environment result in vary-
ing pipeline data distributions. Moreover, collecting pipeline
|. INTRODUCTION failure data requires the pipeline to operate continuously

Transfer learning (TL) techniques have recently attractf&'derfa"ure or near-failure conditions, an approach unsuitable

considerable attention in various fields such as pipeline fa fif ensuring energy security. Consequently, obtaining target

diagnosis [6], [25], battery status monitoring [13], [14], an&amples before model deployment presents a considerable

machinery safety assessment [18], [30], due to their potenti gllenge fpr |mplement|ng D.A’ given the unpred!ctable nature
of influencing factors. Existing DA methods fail to extrac-
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merges that multi-source DG (MultiDG) is the most frequentlg) extending decision boundaries using these attack samples.
used setting, striving to enhance the model’'s generalizabilllyith these challenges in mind, this paper proposes a novel
to the target domain by reducing the model's sensitivity tBupportSample-assisted\dversarial Attacks (SSAA) algo-
distribution shifts among multi-source domains. However, thdthm for DE, aimed at addressing the SingleDG problem.
practical applicability of MultiDG is limited due to two key Firstly, an adversarial framework composed of a generator and
issues: 1) the inconsistent number of source domains acrasdiscriminator is designed to generate pseudo-target samples
different tasks negatively impacts the model’s generalizabilitfhenceforth referred to as attack samples) in the direction of
and 2) the process of collecting and labeling data from multiptgadient ascent, with the aim of continually attacking the mod-
source domains is costly. el and exploring the unseen target domain’s decision boundary.

A practical yet often overlooked setting is single-source DGubsequently, a bi-classifier structure, encompassing an aux-
(SingleDG), where only one source domain is available durinigary classifier and a target classifier, is created to identify
training. However, such a single source domain hampers thgport samples capable of forming a new decision boundary
model’s ability to learn domain-invariant features, as it failthat includes all unseen samples. Finally, the SSAA is designed
to provide any information about domain variation. Consee learn discriminative and transferable features from these
qguently, the model tends to overfit to domain-specific signalsupport samples, thereby extending the classification boundary
Domain expansion (DE), the most common method for adnd offering a robust classifier for the target samples.
dressing SingleDG, seeks to broaden the decision boundary ofhe core contributions of this paper are highlighted as
a single source domain by generating pseudo-target domafiofiows.

The primary objective of DE is to augment the diversity of 1) An adversarial framework, comprised of a generator
domain distributions while firmly maintaining the original and a discriminator, is introduced to generate diverse
semantics. In pursuit of this goal, in this paper, an attack-  and smooth attack instances, while strongly maintaining
defense strategy is introduced, and the efficacy of the attack-  the original semantic information, thereby assisting in

defense model (ADM) in managing SingleDG is demonstrated.  exploring the distribution boundary of the unseen target

We will revisit and contrast the concepts of SingleDG and the  domain.

attack-defense strategy, culminating in two key conclusions on2) A well-crafted bi-classifier structure is employed to

the functioning of the ADM. identify support samples, which are then utilized to
Firstly, a classifier trained on the source domain tends to  form a new decision boundary, thereby enhancing the

misclassify target samples, as these share the same semantic generalizability of the cross-domain model.

information as the source samples but exhibit different datag) Extensive experiments conducted on cross-domain fault

distributions. This mirrors the adversarial attack field, where  diagnosis tasks reveal that the proposed SSAA outper-

successful attacks occur when original samples are augmented forms several existing state-of-the-art DG algorithms,

with minor perturbations that alter data distribution, leading  and this substantiates the effectiveness and potential

the model to confidently produce incorrect outputs. From this,  gpplicability of the SSAA algorithm.

the first conclusion is that both the attack strategy and thetna rest of this paper is structured as follows. Section II

target domain violate the assumption of data being indep&fiscysses related works on DA, DG, and adversarial attacks.
dent and identically distributed (i.i.d). Moreover, the goaketion |11 provides a detailed description of the novel SSAA
of SingleDG is to eliminate domain discrepancies, enablingyqrithm. Experimental results and their respective analysis

the application of the source classifier to the target domaifly presented in Section IV. Finally, Section V draws conclu-
with satisfactory results. In terms of the defense strate@y,ns from the study.

the aim is to achieve a robust model capable of providing
the desired output, even when subjected to attacks. Thus,
the second conclusion is that both the defense strategy and ) )
SingleDG share a common ultimate goal: enhancing the mdd- Domain Adaptation
el’'s generalizability and transferability to handle i.i.d-violated Deep Neural Networks (DNNSs), trained on large-scale la-
samples. Therefore, we propose that all misclassified tarpeted datasets, have made significant advancements in various
samples can be viewed as infinitely occurring attack samplasctical applications such as industrial fault diagnosis [11],
during the testing stage, also known as out-of-distributid@9], image identification [10], and object detection [24], [28].
(OOD) samples. Concurrently, SingleDG essentially combdtowever, despite these successes, conventional DNNs trained
a natural generator that incessantly attacks the target modellabeled datasets often struggle to generalize to unlabeled
by introducing domain perturbations. test data with differing distributions, an issue known as domain
Following the above discussions, it is argued that thehift. To mitigate this limitation, DA has been developed,
attack-defense strategy can provide valuable guidance &rabling the learning of an adaptive classifier for the target
implementing DE. Specifically, enhancing generalizability andomain by transferring knowledge from the source domain
transferability depends on the creation of pseudo-target d@i]. Existing DA methods have been designed to extract
mains through continuous attacks and the extension of tiiiscriminative domain-invariant features in high-level spaces
decision boundary via effective defenses. The complexitiestbfough distribution matching or adversarial learning. Distribu-
this strategy lie in: 1) generating imperceptible and divers®n matching specifically seeks to eliminate domain discrep-
attack samples to effectively explore unknown domains, aadcies by matching all statistical moments, including Maxi-

Il. RELATED WORK
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mum Mean Discrepancy (MMD), Deep Correlation Alignmengradient of the objective function. Subsequently, various vari-
(CORAL) [20], and Central Moment Discrepancy (CMD)ants of FGSM, including Projected Gradient Descent (PGD)
[27]. Adversarial learning, on the other hand, draws inspiratigh5], Iterative FGSM (I-FGSM) [7], and Momentum Itera-
from Generative Adversarial Networks (GAN) [4], employingive FGSM (MI-FGSM) [1], have been developed to further
an additional domain discriminator to create domain-confusedhance the target model's robustness. Unlike these studies,

features through a two-player min-max game. this paper addresses samples with significant perturbations,
i.e., Out-Of-Distribution (OOD) samples. This challenge is
B. Domain Generalization more akin to cross-domain knowledge transfer rather than pure

While DA methods have recently shown promising resulgdversanal attacks.

in tackling the domain shift problem, such success heavily
relies on an idealistic assumption that target data can be lIl. AN SSAA ALGORITHM
accessed prior to deploying a deep model. In many fields, dae Problem Definition

to stringent data privacy regulations, target data is generaIIyW

. . ) . L ithout loss of generality, this paper centers its attention
unavailable. To address this constraint, Domain Generalization . 9 . y hap .
o . . . n cross-domain classification tasks on SingleDG. The goal
(DG), which involves DA without using any target infor-

; A of SingleDG is to learn valuable knowledge (domain-invariant
mation, has been proposed for classification or regressrj%

n . . .
» . ture representations) from a single source domain and appl
tasks on unseen data. Initially, considerable efforts were P ) 9 PRl

) ’ 1o a new unseen target domain.
cused on MultiDG, as seen in [2], [9], [23] and references Let {x1, 72, ...,2n} and{y1, 1o, ..., yn} denote the sam-

therein. Prior works on MultiDG can be categorized intg

three groups: 1pata augmentationwhich generates virtual ples and corresponding labels, whereis the number of
groups. - g o gene . samples/labels. We define that a doniBis= {X,Y} consists
data to assist in learning general representationstoP)ain-

) . X ) . "~.. . of domain sampleX and corresponding category lab&lsIn
invariant representation learningwhich employs statistical P P 9 gory

. ; . the SSAA, we have a labeled source domBin= { X, Y;}
moment matching or adversarial learning to extract domaip-
. . . . .~ sypported byns source samplegxs1,xs2,...,%sn,} and
invariant representations from multiple source domains; an A s
. . . . n, source labels{ys1,ys.2,...,ysn. - Similarly, the target
3) learning strategy which uses various techniques such a . : e oot - :
. : . omain that is not available during the training stage is denoted
self-supervised learning, meta-learning, and ensemble learn]

N .
. . . a = {X,,Y;} with n; target sample
to enhance generalization ability. However, the collection angibt (X, Vi n: targ plegre 1, 212, in }

. : A . andn; target label .
labeling of data from multiple domains is costly, rendering D:}é 0 %he timei%f;/inyé’z\;vork’igtgin(t:%)nditions the marginal

MultiDG less practical in real-world scenarios. In this Pab€listribution of the target domain is different from that of

we examine a more challenging and realistic setting, known t%dse source domain, i.eP (X,) # P(X). In this paper,

SingleDG. SingleDG aims to enhance the generalizability and. <ource domain pseudo-target domain, and target domain
transferability of the target model by generating pseudo—tar% v ’ i

domains that differ from the source domain hare the same label space, WhiCh comprfﬁeﬁscrete Iabels_
' {1,2,...,H}. Therefore, we aim to train a robust model with
the help of source and pseudo-target domains to predict the

C. Adversarial Attacks data labels in the target domain with minimum prediction error.

In networked systems, signals transmitted over the network
are susceptible to attacks, given that sensors are interconnegte
via a shared network medium. Consequently, the security of
networked control systems has garnered substantial research® objective of this paper is to learn a model robust to
interest over past decades, significantly advancing the devig fluctuations of the input. The key idea is to exploit DE
opment of attack-defense strategies, as seen in [16], [28]d adversarial training under the guidance of the attack-
Likewise, the behavior of network attacks on DNNs has dravii¢fense strategy. Specifically, the DE is abstracted as an attack
considerable attention due to their potential severe impal#$cess, aiming to generate attack samples with invariant
across various real-world applications. These include semarii@nantic information utilizing the constraint of adversarial
image segmentation in computer vision, network intrusigtack. Furthermore, adversarial training is formalized as a
detection in cyber security, and road sign recognition in tifiefense strategy that endeavors to accurately identify attack
physical world. samples by extending the decision boundary of the target

Adversarial attack is a prevalent form of attack, wher@odel.
adversarial samples are designed to be misclassified with higt he iterative procedure of the SSAA algorithm consists of
confidence by introducing imperceptible perturbations to ti@ree fundamental steps.
original input. To bolster the model’s robustness against suchl) Adversarial attack implementation. In this paper, at-
attacks, numerous researchers have recommended generating tack samples are defined as samples that are similar
adversarial samples to directly perturb and disrupt the target to the original samples but misclassified by the target
model during training. Consequently, a defense strategy to model. Formally, for the original samples that can be
resist these attacks, referred to as adversarial training, is classified correctly, i.e(' (F (zs)) = ys (C is classifier
developed. For instance, in [5], a Fast Gradient Sign Method and F' is feature extractor), adversarial sampigstend
(FGSM) has been proposed to generate perturbations along the to be classified in the wrong category, i€.(F (z)) #
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Fig. 1. Overview of the proposed SSAA model. It can be obsethatl the training of the SSAA model consists of two stages: the attack

stage and the defense stage. The purpose of the attack stage is to train the generator and discriminator to produce attack samples witl
imperceptible perturbations. The purpose of the defense stage is to train the feature extractor and classifier to accurately identify attack
samples.

ys. Therefore, attack samples are generated to disrdpe backbone networks off and F' are one-dimensional
the optimization direction of the target model whileconvolutional neural networks (1D-CNNJ:; and C, consist
not altering the semantic representations. Note that th&fully connected (FC) layers, activation functions ReLU, and
attacks used in this paper are non-targeted. LogSoftmax layers.D is achieved through the structure of
Support sample exploration. The key to defending FC—ReLU—FC—ReLU—~FC—ReLU—FC—Sigmoid. The
against attacks is to improve the ability of the targeiverview of the proposed SSAA model is presented in Fig. 1,
model to generalize outside the source domain, whiemd network structures are shown in Fig. 2.

can be achieved by extending the decision boundary.

However, this is a challenging task as the magnitude Network Structures

covariate shifts is priori unknown. To tackle this prob

lem, a bi-classifier structure is devised to find suppo

samples that are natural and effective tools for locatir

the decision boundary.

2)

3) Decision boundary extensionFor the feature extractor, Flatten
we encourage it to extend the decision boundary « c.icrator  [hesha > Daka FC
the target model by accurately classifying the suppc 2563 J 5123 Qi 10244 B 1024
samples. With repeated two-stage training, the targ
model can progressively extend the decision bounde Auxiliary ﬂn_,
until it contains all new unseen samples. Classifier 64

Based on the above definitions, we formulate the SSA
as a generatof; that produces attack samples to deceiv = = FC FC e
the target model, a discriminatdd that assists in the gen- <™ _’E—'E—'
eration of attack samples, a feature extractorthat map-

s the input samples to a high-dimensional feature spaéég. 2: Network structures of feature extractor, generaaaniliary
and dual classifiers’, and C, that output predicted sourceclassifier, target classifier, and discriminator.
domain labels and find support samples. More specifically,
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D. Adversarial Attack Implementation original sample but is misclassified by the target model.

As discussed in Section IlI-B, the important principle for ~ The adversarial sample is highly smooth and diverse, and
the construction of attack samples is to maintain their im- therefore effective in improving the generalizability and
perceptibility, which indicates that the attack samples should ~{ransferability of the target model.
have the same semantic information as the original sampless The third type is thesupport samplewhich is defined as
In response to this rule, a discriminator is introduced into the feature vector closest to the decision boundary. The
the SSAA with the aim of influencing the target model with ~ Support sample is the most appropriate tool to delimit the
satisfying imperceptibility. Specifically, qualified perturbations ~ Valid boundary for pseudo-target domains.
can make the discriminator fail to distinguish between attacks The fourth type isinvalid sample which is unable to
samples and original samples. Therefore, the generator and influence the target model.

discriminator can be updated by: In this paper, we adopt dual classifi€fsandC, to identify
ne the four types of samples described above. Formally, the
min max Lgen :i Z [log (D (z.:)) characteristics of meaningless samples, adversarial samples,
¢ bp C— ' support samples, and invalid samples are summarized as
+log (1 — D (G (zs,)))], (1) follows.

o Meaningless sample:C; (F (£s5)) # yshn and
Co (F (Zs,n)) # ys.n, Wherei, is the attack sample
associated with category andy;, j, is the corresponding
real label.
Adversarial sample: C; (F (&s5)) = ys» and
Co (F (Zs,1)) # Ys,h, OF ViCe versa.

o Support sample is a special form of adversarial sample.
min Loty = — Leia (f (£5) ,9s) @) Therefore, supposing that the adversarial sample charac-
bc teristics are matched, we can identify the support sample
where f = F o C is the DNN ando represents composite by finding argmax (L (f (Zs) ,ys))-
mapping.L.1. is the cross-entropy loss, which is formulated o Invalid sample:C, (F (Zs,n)) = Co (F (ZTs,n)) = Ys,h-

as follows: Remark 1:In summary, OOD samples describe samples
1 & A A that are different from the source domain distribution, pseudo-
Loa=—— DD Ay, g (p (Wi =1 | £ (#54)) target domain samples are generated OOD samples, and attack
®i=1h=1 samples are pseudo-target domain samples that are generated
) by attack-defense strategy, including adversarial samples and
where n, denotes the number of attack samplés, rep- support samples. Therefore, in this paper, the support samples
resents the number of categories, ahd is the indicator are not generated by the pseudo-target domain, but by the
function.1y,—,, ,; = 1if &, ; belongs to category, otherwise adversarial attacks. Additionally, the support samples belong

where the attack sample is definedhy; EYe (xs5,), ¢ and
0p represent the parameters@fand D, respectively.

In the attack stage, we expect the attack samples to exert
negative impacts on the target model by altering its original
inputs, which can be achieved by optimizing the following *
objective:

1=y, .1 = 0. to the pseudo-target domain.
2) Decision Boundary ExtensionFirst, we optimizefg
E. Defend Against Attacks anddq, simultaneously by minimizing th€; on the labeled

1) Support Sample ExploratioriThe key idea of defense SOUrce data, which can be formulated as:
strategy lies in extending the decision boundary to encompass T
all unseen samples, which generally requires the norm  min £; = —— DD ey alog (p (s = h | f(2:)))
of covariate shift to remain below a reasonable threshold ™" s G2l h=1
as ||z, — xs]|, < e. In fact, finding a suitable threshold (4)

is difficult or even impossible in real-world scenarios, whickyhered; andé, are the parameters &t andC; respectively.

severely limits the practical application of SingleDG. To additionally, to defend against imperceptible perturbations,
address this issue, the proposed SSAA relaxes the threshfldltarget model is learned with a conditional maximum mean
restriction, which means that the magnitude of the covarig§gscrepancy (CMMD) loss [21] that penalizes the discrepancy

shiftis no longer limited. Under such circumstances, four typgatween the adversarial sample and the source sample. The
of attack samples would naturally emerge from the generatiofiMD loss can be described as:

process. H
« The first type ismeaningless samplevhich has inconsis- min L4 = 1 Z
tent semantic information with the source domain sample. 9=.c: H i~
The meaningless sample can achieve a high attack succes - ", 2
rate, but violates the DE principle, which means thatsuch || 1 <= 1 _
samples may degenerate the performance of the target|n, z; o (f (@sni)) = n. 2@(]” @sni))|l o )
iz i

model. B H
« The second type is thedversarial samplewhich essen- wherey is a nonlinear mappingk denotes the reproducing
tially belongs to the same category as the neighboritkgrnel Hilbert space (RKHS);, denotes adversarial sample,
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n! is the number of adversarial samples including suppavtthin target distributions [6], [21]. In response to this pressing

S
samples. issue, this section will evaluate and compare the performance
To efficiently and effectively resist attacks, a weightingf the proposed SSAA algorithm with several existing state-
mechanism is employed in the optimization process of tld-the-art DG methods on pipeline fault diagnosis tasks.
target model. Specifically, the support sample is given a larger
weight to extend the decision boundary and the adversarjal

K Data Description
sample is assigned a smaller weight to defend against attacks. P

This process is formulated as: In this paper, two kinds of pipeline data;ets collec_ted by
different platforms are employed for comparison experiments.
] 1 e X B The details are described as follows.
min L = o Z Z Wilj—y, J10g (p (ys.c = h | f(Zs.0)))  The firstkind of dataset is the negative pressure wave dataset

’

ns‘

0r,0c, S i . .
¢ i=1 h=1 ©) (NPWD) collected by the ZJ-CSGD type simulation platform,
as shown in Fig. 3. The parameters of the pipeline are set
wherew; is the sample weight calculated by: as follows: the length is 180u2, the sampling frequency

oLeta(F(E)we); is 10241z, and the flow rate is 1@3/h. In NPWD, the

w; = — - . (7) working pressure of the pipeline is set as different values to

Sy efan(f(@a)ua); produce multiple source domains for performance evaluation.

The training process of the proposed SSAA is shown fPecifically, three pressure conditions are included in the
Algorithm 1. NPWD, namely high pressure (HP), medium pressure (MP),

and low pressure (LP).

Algorithm 1: The training process of the SSAA

Input: Labeled source domaifzs ;, ys,i)}zﬁl-

Input: The number of total training epocNy; attack

epochNy; defense epoctv,

Output: Feature extractor weights-, target classifier
weightséc,; balancing hyperparameteks, A4,
and \,.

Initialize 6, Op, Or, 0¢c,, andég,.

for 190 < Ny do

for ;1 < Nj do

Update the discriminatob by ascending
stochastic gradient, i.eVg,, Leen;

end

Update the generatd@¥ by descending stochastic

gradient, which is formulated by:

Fig. 3: Console and platform of the negative pressure wave dataset.

The second kind of dataset is the acoustic wave dataset
(AWD) collected by the HD-Il type simulation platform, as
shown in Fig. 4. The parameters of the pipeline are set

Vecni S log (1= D (G (254))) + AaLast; as follows: the length is 166, the sampling frequency is
° > Stage 1: Non-targeted attack 900(Hz, and the flow rate is 603/h. It should be noted
for i5 < N, do that acoustic signals in the AWD are collected under a fixed
Identify adversarial samples; pressure (FP) condition 5Pa.

Update the feature extractét and dual
classifiersfc,, 0c, by descending stochastic
gradient, that isVy. o, 00, £t + AaLa + AsLs.

end

> Stage 2: Model defense
end

- oo :
[P R .
IV. SIMULATION EXPERIMENTS (a) (b)
This paper utilizes pipeline fault diagnosis as the chosen Fig. 4: Console and platform of the acoustic wave dataset.
testbed. Due to their economic, safety, and stability advan-
tages, pipelines have become a prevalent feature in modern oih the NPWD and the AWD, the pipeline data under each
and gas transportation systems. However, during pipeline opgressure condition can be divided into four categories, where
ation, incidents of leakage often occur, predominantly caustdlure signals including large leakage, medium leakage, and
by pipeline deterioration or corrosion. These incidents posenall leakage (LL, ML, and SL) are collected by switching
significant threats to both property and life, rendering theralves and normal signals (NS) are collected in healthy con-
among the most hazardous accidents. The urgency, therefdigon. The data are downsampled from 56R0to 10241z
lies in developing a model capable of achieving high accurabgcause a high sampling rate would increase the complexity of
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data processing and reduce the speed of modeling operatidiis Evaluation Metric
Furthermore, in order to mitigate the impact of noise on mOdelAccuracy is employed as an evaluation metric in this paper,
training, an improved VMD method proposed in [22] is use@nich can be formulated as follows:

in this paper to perform data denoising. nes + N
p n

)
Ntp + N + Tifp + Nn

Accuracy = (8)
_ _ wheren, is the number of correctly identified failure signals,

B. Implementation Details ng, is the number of incorrectly identified failure signals,,

is the number of correctly monitored normal signals, and

In this paper, the training set, validation set, and test set &&ne number of incorrectly monitored normal signals.
all zero-mean normalized by the mean and standard deviation

of the training set. The split ratio of the training/validation/test _ )
setis 0.7:0.1:0.2. D. Main Experimental Results

For all experiments, the stochastic gradient descent (SGD)Yn this subsection, we extensively assess the SSAA algo-
optimizer is employed to optimize the generat@rand dis- rithm in both MultiDG and SingleDG scenarios.
criminator D with an initial learning rate of0—*. The Adam 1) MultiDG: The cross-domain classification results on N-
optimizer is used to optimize the feature extradfothe target PWD and AWD are shown in Table I. The yellow background
classifier C;, and the auxiliary classifie€, with an initial marks the classic ERM model. The red marks the DA methods,
learning rate ofil0—3. The total number of the SSAA trainingWhich perform MultiDG through domain-invariant representa-
epochs is set t85, the number of attack epochs is seGt@nd tion learning. The purple marks the DG methods. It can be
the number of defense epochs is set@oThe training process found that the proposed SSAA is superior to other comparison
of the SSAA is early stopped withih epochs. The batch sizemethods by large margins. Specifically, our SSAA achieves
is set to32. Additionally, the impacts of balancing hyperthe best classification performance in four out of five tasks.
parameters on model performance are investigated throughthermore, the SSAA method improves average accuracy by

sensitivity analysis. 6.32% and 4.17% compared to the best algorithm CORAL of
For faimess, we re-implement six advanced comparisGif* and the best algorithm DIFEX of DG, respectively. Based
algorithms, including on the above results, we can draw three important conclusions:

« As a baseline without any generalization operations, ERM
can achieve results comparable to some of the most
advanced DA or DG methods in specific tasks, which
means that achieving stable performance in different DG
situations is difficult. Despite this, the SSAA still achieves
inspiring performance on most MultiDG tasks.

Simple distribution alignment methods, including DANN
and DeepCORAL, may be effective in DA with available
source and target domains, but they fail to achieve the

’ e ) , , expected results in DG tasks due to the difficulty in
adaptation by minimizing the difference in the covariance  oqycing distribution differences between multiple source
matrix between two domains. domains.

« Group Distributionally Robust Optimi_zation (GroupDRO) « Compared with methods such as GroupDRO, MLDG, and
[19] was proposed by Sagawa et al. in 2020. The primary  pex; which achieve DG by learning the distribution
principle of the GroupDRO algorithm is to improve the  iffarences among multiple domains, the proposed SSAA
generalization performance of the model by dividing the  54orithm depicts the shape of the decision boundary by
training data into multiple groups and optimizing the  qrectly identifying the support samples, and therefore

empirical worst-group risk. o effectively improves the generalization ability.
« Meta-Learning for Domain Generalization (MLDG) [8] . i . .

. . . 2) SingleDG:In this part, we further perform SingleDG to
was proposed by Li et al. in 2018. The key idea of MLDG " o :
is to improve the generalization performance of the mod\é?“fy the superiority of our method. The experimental results

. . . on NPWD and AWD are shown in Table Il and Table Ill. Table

through multilevel representation learning. . i
. Domain-Invariant Feature Exploration (DIFEX) [12] Was” _pr_esents the transfer tasks between three different domains
within NPWD. Table Il records the transfer tasks between

propose_d k_Jy Lu et al. in 2022. DIFEX improves the ifferent domains in NPWD and AWD.
generalization performance of the model by learning bo : .
internally-invariant and mutually-invariant features In Table I, the proposed SSAA achieves the highest accu-
' racy in five tasks: HR>-MP, HP—LP, MP—HP, LP—HP, and
For comparison methods, all hyperparameters are select®d—~MP. For the task MP:>LP, the SSAA performs slightly
through the grid search method using the validation set. Allorse than MLDG. A possible reason for this phenomenon
methods, including the SSAA and baselines, are repeaisdthat the limited number of samples in a single domain
five times, implemented by PyTorch, and trained on a singlecreases the difficulty of training a stable model that can
NVIDIA GEFORCE RTX 3090 GPU with 24GB memory. generalize well to the target domain. Despite this, the proposed
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« Empirical Risk Minimization (ERM) aims to optimize the
model parameters by minimizing the expectation of the
loss function values on the training dataset.

o Domain-Adversarial Neural Networks (DANN) [3] was
proposed by Ganin et al. in 2016. DANN promotes the
model to learn domain-invariant feature representations,
by introducing a domain-adversarial loss.

o DeepCORAL [20] was proposed by Sun et al. in 2016.
The objective of DeepCORAL is to achieve domain
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TABLE I: MultiDG results on NPWD and AWD. The best results are highlightedhatd.(%6)

Source Targetf ERM | DANN CORAL | GroupDRO MLDG DIFEX | SSAA

HP, MP, AW LP 74.38 76.98 77.32 75.44 73.70 75.96 | 83.28
HP, MP, LP AW 73.75 73.75 75.08 75.50 73.32 76.18 | 79.04
HP, LP, AW MP 70.80 74.42 72.68 80.82 72.06 77.88 | 78.54
MP, LP, AW HP 73.90 73.38 75.54 75.08 70.30 75.58 | 78.78

Ave. | 7321 | 74.63 75.16 | 76.71 72.35 76.40 | 79.91

SSAA still achieves the highest average accuracy in five of thhee discriminability characteristics in each domain, and an
six tasks. overemphasis on minimizing distribution discrepancies may
In Table 111, it can be found that the SSAA method achievdead to negative transfer. Furthermore, Fig. 5(c) shows that
superior or comparable performance to other state-of-the-tm¢ proposed SSAA is robust to the variationsaf when
methods with an average accuracy of 53.57%. ComparedXp< 0.01, which indicates the dominant role of the weighting
the second-best algorithm GroupDRO, the SSAA achieves mechanism for learning discriminative features from pseudo-
additional gain of 18.25% in average accuracy due to its fulirget samples. Generally, our SSAA method is insensitive to
learning from pseudo-target domain samples that closely femper-parameters in the appropriate range.
semble real-world samples. The results show that our SSAA is2) Training Stability: To verify the stability of our method,
beneficial in improving generalization capability compared twe report the loss and validation accuracy during the training
some advanced algorithms, achieving the highest performapcecess on the MultiDG task (HP, LP, AWAMP and the
in five out of six tasks. SingleDG task HPsLP, as shown in Fig. 6. Fig. 6(a) shows
. that the training loss smoothly and rapidly reduces to a small
TABLE II: SingleDG results an NPWD. (%) value in both tgsks. Additionaillly, the \E)aligation accuracies of
Source Target| GroupDRO MLDG  DIFEX | SSAA MultiD_G and SingleDG can quickly. convergeto a satisfactory
value in Fig. 6(b). Thus, we can find that our SSAA is able

:E '\lfIFF: ;iig 2471.33 ;g'gg gg'gj to achieve stable performance in generalizing valuable knowl-
MP HP 66.98 7117 7230 79.02 edge from the source domain to the unseen target domain.
MP LP 72.12 72.66 72.24 70.18
LP HP 74.98 68.34 75.04 | 78.06
LP MP 72.28 66.48  70.90| 81.70 ]|

Ave. | 7215 7017  73.68| 78.44 T

TABLE IlI: SingleDG results on NPWD and AWD.(%)

Source  Target| GroupDRO MLDG DIFEX | SSAA B =g . B

HP AW 44'64 43.90 39.18 54.34 0 5 10 Ihimmmlll 25 30 35 0 5 10 I;P“Ch 20 25 30 35

MP AW 54.78 45.12 49.95 53.48 (a) Training Loss (b) Validation Accuracy

LP AW 45.84 43.64 53.52| 55.34

AW HP 44.08 45.06 24.48 | 51.84 Fig. 6: The training loss and validation accuracy of the SSAA o
AW MP 45.20 39.06 45.36| 57.32 NPWD and AWD. We take (HP, LP, AW}MP and HP-LP as
AW LP 37.26 37.24 36.70 | 49.12 examples.

Ave. | 45.30 42.34 41.53 | 53.57

3) Significance TestIn this paper, a statistical significance
test is performed on SingleDG results to quantitatively verify
_ the significant improvement brought by the proposed SSAA
E. Performance Analysis in contrast to the strong baselines. Following the common

1) Parameter SensitivityThe sensitivities of all hyperpa- practice, the significance threshold is set to 0.05, which can
rameters in the proposed method, including M4, and )\, lead to two results including-value<0.05 (reject the null hy-
are investigated in this section. As shown in Fig. 5(a), a largethesis) ang-value>0.05 (accept the null hypothesis). The
Ao Will result in a negative transfer, as overpowering attackermer implies that the improvement of the SSAA algorithm is
generally lead to the gradient exploding issue, and therefaignificant, while the latter means that the performance of the
an appropriate\, is important to ensure the effectiveness 0BSAA algorithm is similar to that of the comparison methods.
the SSAA. According to the Fig. 5(b), we can find that a In this experiment, we refer to the transfer tasks in Table
relatively small\; tends to result in a good performance, whilél as Case 1 and the transfer tasks in Table Il as Case 2.
Aq > 0.01 causes a significant drop in accuracy. A possiblBhe statistical results in Table IV show that the SSAA has
reason for this phenomenon is that the inherent differencessignificant effect on improving performance compared to
between the source domain and target domain may arise fretate-of-the-art techniques.
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