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Abstract—This paper is concerned with domain generalization
(DG), a practical yet challenging scenario in transfer learning
where the target data are not available in advance. The key
insight of DG is focused on learning a robust model that can
generalize to the unseen domain by leveraging knowledge from
the source domain. To this end, we propose a novel algorithm
known as Support-Sample-Assisted Adversarial Attacks (SSAA)
for DG. In the SSAA algorithm, an attack-defense strategy
is deployed to enhance the target model’s generalizability and
transferability. This strategy includes a non-targeted attack stage,
during which attack samples are generated to form pseudo-target
domains with near-realistic covariate shifts. Subsequently, in the
model defense stage, a bi-classifier structure is used to distinguish
support samples from the generated attack samples. These
support samples form a new decision boundary encompassing all
unseen samples, prompting an extension of the existing decision
boundary to meet these samples. Experimental results on cross-
domain fault diagnosis tasks suggest that SSAA outperforms
current state-of-the-art DG methods, indicating a promising
avenue for further DG development.

Index Terms—Domain generalization, attack-defense strategy,
support sample, transfer learning, domain adaptation

I. I NTRODUCTION

Transfer learning (TL) techniques have recently attracted
considerable attention in various fields such as pipeline fault
diagnosis [6], [25], battery status monitoring [13], [14], and
machinery safety assessment [18], [30], due to their potential
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in tackling the domain shift issue. Domain adaptation (DA), a
typical scenario in TL, has proven effective in transferring
learned knowledge from a well-labeled source domain to
an unlabeled target domain. Most existing DA methods are
designed to extract discriminative domain-invariant features in
high-level space using two main strategies [21]. One strategy
is to reduce the distribution discrepancies between the source
and target domains by matching statistical moments, and the
other is to generate domain-confused features by leveraging
an additional domain discriminator.

Despite the noteworthy achievements of DA, existing meth-
ods, including distribution matching and adversarial training,
all assume the prior availability of a labeled source domain and
an unlabeled target domain for model training. Unfortunately,
such an assumption may be unrealistic in practical scenarios
due to changing working conditions and the rarity of target
data. Consider, for example, the fault diagnosis task in pipeline
operation and maintenance. Variables such as geography, in-
ternal medium, and atmospheric environment result in vary-
ing pipeline data distributions. Moreover, collecting pipeline
failure data requires the pipeline to operate continuously
under failure or near-failure conditions, an approach unsuitable
for ensuring energy security. Consequently, obtaining target
samples before model deployment presents a considerable
challenge for implementing DA, given the unpredictable nature
of influencing factors. Existing DA methods fail to extrac-
t domain-invariant features when domain discrepancies are
unknown. To minimize dependency on target data, domain
generalization (DG) has surfaced as an alternative approach,
allowing the training of robust models without any target
information. Currently, DG is the most promising tool for
managing new instances and unseen categories.

The fundamental concept of DG revolves around mining
domain-invariant features that are sensitive to category dif-
ferentiation but insensitive to domain shifts [2], [17], [30].
For instance, a well-designed DG network that balances multi-
source domain invariance and specificity has been proposed in
[30] to undertake real-time cross-domain classification tasks.
Furthermore, a conditional contrastive DG method developed
in [17] aims to maximize the intra-class similarity and inter-
class separability of realistic pairs from multi-source domains.
In [2], a deep hybrid DG approach has been formulated to
learn domain-invariant and discriminative features from multi-
source domains, facilitating knowledge generalization across
different workloads and machines. From these reviews, it e-
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merges that multi-source DG (MultiDG) is the most frequently
used setting, striving to enhance the model’s generalizability
to the target domain by reducing the model’s sensitivity to
distribution shifts among multi-source domains. However, the
practical applicability of MultiDG is limited due to two key
issues: 1) the inconsistent number of source domains across
different tasks negatively impacts the model’s generalizability,
and 2) the process of collecting and labeling data from multiple
source domains is costly.

A practical yet often overlooked setting is single-source DG
(SingleDG), where only one source domain is available during
training. However, such a single source domain hampers the
model’s ability to learn domain-invariant features, as it fails
to provide any information about domain variation. Conse-
quently, the model tends to overfit to domain-specific signals.
Domain expansion (DE), the most common method for ad-
dressing SingleDG, seeks to broaden the decision boundary of
a single source domain by generating pseudo-target domains.
The primary objective of DE is to augment the diversity of
domain distributions while firmly maintaining the original
semantics. In pursuit of this goal, in this paper, an attack-
defense strategy is introduced, and the efficacy of the attack-
defense model (ADM) in managing SingleDG is demonstrated.
We will revisit and contrast the concepts of SingleDG and the
attack-defense strategy, culminating in two key conclusions on
the functioning of the ADM.

Firstly, a classifier trained on the source domain tends to
misclassify target samples, as these share the same semantic
information as the source samples but exhibit different data
distributions. This mirrors the adversarial attack field, where
successful attacks occur when original samples are augmented
with minor perturbations that alter data distribution, leading
the model to confidently produce incorrect outputs. From this,
the first conclusion is that both the attack strategy and the
target domain violate the assumption of data being indepen-
dent and identically distributed (i.i.d). Moreover, the goal
of SingleDG is to eliminate domain discrepancies, enabling
the application of the source classifier to the target domain
with satisfactory results. In terms of the defense strategy,
the aim is to achieve a robust model capable of providing
the desired output, even when subjected to attacks. Thus,
the second conclusion is that both the defense strategy and
SingleDG share a common ultimate goal: enhancing the mod-
el’s generalizability and transferability to handle i.i.d-violated
samples. Therefore, we propose that all misclassified target
samples can be viewed as infinitely occurring attack samples
during the testing stage, also known as out-of-distribution
(OOD) samples. Concurrently, SingleDG essentially combats
a natural generator that incessantly attacks the target model
by introducing domain perturbations.

Following the above discussions, it is argued that the
attack-defense strategy can provide valuable guidance for
implementing DE. Specifically, enhancing generalizability and
transferability depends on the creation of pseudo-target do-
mains through continuous attacks and the extension of the
decision boundary via effective defenses. The complexities of
this strategy lie in: 1) generating imperceptible and diverse
attack samples to effectively explore unknown domains, and

2) extending decision boundaries using these attack samples.
With these challenges in mind, this paper proposes a novel
Support-Sample-assistedAdversarial Attacks (SSAA) algo-
rithm for DE, aimed at addressing the SingleDG problem.
Firstly, an adversarial framework composed of a generator and
a discriminator is designed to generate pseudo-target samples
(henceforth referred to as attack samples) in the direction of
gradient ascent, with the aim of continually attacking the mod-
el and exploring the unseen target domain’s decision boundary.
Subsequently, a bi-classifier structure, encompassing an aux-
iliary classifier and a target classifier, is created to identify
support samples capable of forming a new decision boundary
that includes all unseen samples. Finally, the SSAA is designed
to learn discriminative and transferable features from these
support samples, thereby extending the classification boundary
and offering a robust classifier for the target samples.

The core contributions of this paper are highlighted as
follows.

1) An adversarial framework, comprised of a generator
and a discriminator, is introduced to generate diverse
and smooth attack instances, while strongly maintaining
the original semantic information, thereby assisting in
exploring the distribution boundary of the unseen target
domain.

2) A well-crafted bi-classifier structure is employed to
identify support samples, which are then utilized to
form a new decision boundary, thereby enhancing the
generalizability of the cross-domain model.

3) Extensive experiments conducted on cross-domain fault
diagnosis tasks reveal that the proposed SSAA outper-
forms several existing state-of-the-art DG algorithms,
and this substantiates the effectiveness and potential
applicability of the SSAA algorithm.

The rest of this paper is structured as follows. Section II
discusses related works on DA, DG, and adversarial attacks.
Section III provides a detailed description of the novel SSAA
algorithm. Experimental results and their respective analysis
are presented in Section IV. Finally, Section V draws conclu-
sions from the study.

II. RELATED WORK

A. Domain Adaptation

Deep Neural Networks (DNNs), trained on large-scale la-
beled datasets, have made significant advancements in various
practical applications such as industrial fault diagnosis [11],
[29], image identification [10], and object detection [24], [28].
However, despite these successes, conventional DNNs trained
on labeled datasets often struggle to generalize to unlabeled
test data with differing distributions, an issue known as domain
shift. To mitigate this limitation, DA has been developed,
enabling the learning of an adaptive classifier for the target
domain by transferring knowledge from the source domain
[21]. Existing DA methods have been designed to extract
discriminative domain-invariant features in high-level spaces
through distribution matching or adversarial learning. Distribu-
tion matching specifically seeks to eliminate domain discrep-
ancies by matching all statistical moments, including Maxi-
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mum Mean Discrepancy (MMD), Deep Correlation Alignment
(CORAL) [20], and Central Moment Discrepancy (CMD)
[27]. Adversarial learning, on the other hand, draws inspiration
from Generative Adversarial Networks (GAN) [4], employing
an additional domain discriminator to create domain-confused
features through a two-player min-max game.

B. Domain Generalization

While DA methods have recently shown promising results
in tackling the domain shift problem, such success heavily
relies on an idealistic assumption that target data can be
accessed prior to deploying a deep model. In many fields, due
to stringent data privacy regulations, target data is generally
unavailable. To address this constraint, Domain Generalization
(DG), which involves DA without using any target infor-
mation, has been proposed for classification or regression
tasks on unseen data. Initially, considerable efforts were fo-
cused on MultiDG, as seen in [2], [9], [23] and references
therein. Prior works on MultiDG can be categorized into
three groups: 1)data augmentation, which generates virtual
data to assist in learning general representations; 2)domain-
invariant representation learning, which employs statistical
moment matching or adversarial learning to extract domain-
invariant representations from multiple source domains; and
3) learning strategy, which uses various techniques such as
self-supervised learning, meta-learning, and ensemble learning
to enhance generalization ability. However, the collection and
labeling of data from multiple domains is costly, rendering
MultiDG less practical in real-world scenarios. In this paper,
we examine a more challenging and realistic setting, known as
SingleDG. SingleDG aims to enhance the generalizability and
transferability of the target model by generating pseudo-target
domains that differ from the source domain.

C. Adversarial Attacks

In networked systems, signals transmitted over the network
are susceptible to attacks, given that sensors are interconnected
via a shared network medium. Consequently, the security of
networked control systems has garnered substantial research
interest over past decades, significantly advancing the devel-
opment of attack-defense strategies, as seen in [16], [26].
Likewise, the behavior of network attacks on DNNs has drawn
considerable attention due to their potential severe impacts
across various real-world applications. These include semantic
image segmentation in computer vision, network intrusion
detection in cyber security, and road sign recognition in the
physical world.

Adversarial attack is a prevalent form of attack, where
adversarial samples are designed to be misclassified with high
confidence by introducing imperceptible perturbations to the
original input. To bolster the model’s robustness against such
attacks, numerous researchers have recommended generating
adversarial samples to directly perturb and disrupt the target
model during training. Consequently, a defense strategy to
resist these attacks, referred to as adversarial training, is
developed. For instance, in [5], a Fast Gradient Sign Method
(FGSM) has been proposed to generate perturbations along the

gradient of the objective function. Subsequently, various vari-
ants of FGSM, including Projected Gradient Descent (PGD)
[15], Iterative FGSM (I-FGSM) [7], and Momentum Itera-
tive FGSM (MI-FGSM) [1], have been developed to further
enhance the target model’s robustness. Unlike these studies,
this paper addresses samples with significant perturbations,
i.e., Out-Of-Distribution (OOD) samples. This challenge is
more akin to cross-domain knowledge transfer rather than pure
adversarial attacks.

III. A N SSAA ALGORITHM

A. Problem Definition

Without loss of generality, this paper centers its attention
on cross-domain classification tasks on SingleDG. The goal
of SingleDG is to learn valuable knowledge (domain-invariant
feature representations) from a single source domain and apply
it to a new unseen target domain.

Let {x1, x2, . . . , xn} and{y1, y2, . . . , yn} denote the sam-
ples and corresponding labels, wheren is the number of
samples/labels. We define that a domainD = {X,Y } consists
of domain samplesX and corresponding category labelsY . In
the SSAA, we have a labeled source domainDs = {Xs, Ys}
supported byns source samples{xs,1, xs,2, . . . , xs,ns

} and
ns source labels{ys,1, ys,2, . . . , ys,ns

}. Similarly, the target
domain that is not available during the training stage is denoted
asDt = {Xt, Yt} with nt target samples{xt,1, xt,2, . . . , xt,nt

}
andnt target labels{yt,1, yt,2, . . . , yt,nt

}.
Due to the time-varying working conditions, the marginal

distribution of the target domain is different from that of
the source domain, i.e.,P (Xs) 6= P (Xt). In this paper,
the source domain, pseudo-target domain, and target domain
share the same label space, which comprisesH discrete labels
{1, 2, . . . , H}. Therefore, we aim to train a robust model with
the help of source and pseudo-target domains to predict the
data labels in the target domain with minimum prediction error.

B. Key Ideas

The objective of this paper is to learn a model robust to
the fluctuations of the input. The key idea is to exploit DE
and adversarial training under the guidance of the attack-
defense strategy. Specifically, the DE is abstracted as an attack
process, aiming to generate attack samples with invariant
semantic information utilizing the constraint of adversarial
attack. Furthermore, adversarial training is formalized as a
defense strategy that endeavors to accurately identify attack
samples by extending the decision boundary of the target
model.

The iterative procedure of the SSAA algorithm consists of
three fundamental steps.

1) Adversarial attack implementation. In this paper, at-
tack samples are defined as samples that are similar
to the original samples but misclassified by the target
model. Formally, for the original samplesxs that can be
classified correctly, i.e.,C (F (xs)) = ys (C is classifier
andF is feature extractor), adversarial samplesx̂s tend
to be classified in the wrong category, i.e.,C (F (x̂s)) 6=
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Fig. 1: Overview of the proposed SSAA model. It can be observedthat the training of the SSAA model consists of two stages: the attack
stage and the defense stage. The purpose of the attack stage is to train the generator and discriminator to produce attack samples with
imperceptible perturbations. The purpose of the defense stage is to train the feature extractor and classifier to accurately identify attack
samples.

ys. Therefore, attack samples are generated to disrupt
the optimization direction of the target model while
not altering the semantic representations. Note that the
attacks used in this paper are non-targeted.

2) Support sample exploration. The key to defending
against attacks is to improve the ability of the target
model to generalize outside the source domain, which
can be achieved by extending the decision boundary.
However, this is a challenging task as the magnitude of
covariate shifts is priori unknown. To tackle this prob-
lem, a bi-classifier structure is devised to find support
samples that are natural and effective tools for locating
the decision boundary.

3) Decision boundary extension.For the feature extractor,
we encourage it to extend the decision boundary of
the target model by accurately classifying the support
samples. With repeated two-stage training, the target
model can progressively extend the decision boundary
until it contains all new unseen samples.

C. Overall Framework

Based on the above definitions, we formulate the SSAA
as a generatorG that produces attack samples to deceive
the target model, a discriminatorD that assists in the gen-
eration of attack samples, a feature extractorF that map-
s the input samples to a high-dimensional feature space,
and dual classifiersCt and Ca that output predicted source
domain labels and find support samples. More specifically,

the backbone networks ofG and F are one-dimensional
convolutional neural networks (1D-CNN).Ct andCa consist
of fully connected (FC) layers, activation functions ReLU, and
LogSoftmax layers.D is achieved through the structure of
FC→ReLU→FC→ReLU→FC→ReLU→FC→Sigmoid. The
overview of the proposed SSAA model is presented in Fig. 1,
and network structures are shown in Fig. 2.
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Fig. 2: Network structures of feature extractor, generator,auxiliary
classifier, target classifier, and discriminator.
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D. Adversarial Attack Implementation

As discussed in Section III-B, the important principle for
the construction of attack samples is to maintain their im-
perceptibility, which indicates that the attack samples should
have the same semantic information as the original samples.
In response to this rule, a discriminator is introduced into
the SSAA with the aim of influencing the target model with
satisfying imperceptibility. Specifically, qualified perturbations
can make the discriminator fail to distinguish between attack
samples and original samples. Therefore, the generator and
discriminator can be updated by:

min
θG

max
θD

Lgen =
1

ns

ns
∑

i=1

[log (D (xs,i))

+log (1−D (G (xs,i)))] , (1)

where the attack sample is defined byx̂s,i , G (xs,i), θG and
θD represent the parameters ofG andD, respectively.

In the attack stage, we expect the attack samples to exert
negative impacts on the target model by altering its original
inputs, which can be achieved by optimizing the following
objective:

min
θG

Latt =− Lcla (f (x̂s) , ys) , (2)

where f = F ◦ C is the DNN and◦ represents composite
mapping.Lcla is the cross-entropy loss, which is formulated
as follows:

Lcla = −
1

ns

ns
∑

i=1

H
∑

h=1

1[h=ys,i]log (p (ys,i = h | f (x̂s,i))) ,

(3)

where ns denotes the number of attack samples,H rep-
resents the number of categories, and1[·] is the indicator
function.1[h=ys,i] = 1 if x̂s,i belongs to categoryh, otherwise
1[h=ys,i] = 0.

E. Defend Against Attacks

1) Support Sample Exploration:The key idea of defense
strategy lies in extending the decision boundary to encompass
all unseen samples, which generally requires theL∞ norm
of covariate shift to remain below a reasonable thresholdε
as ‖x̂s − xs‖∞ ≤ ε. In fact, finding a suitable thresholdε
is difficult or even impossible in real-world scenarios, which
severely limits the practical application of SingleDG. To
address this issue, the proposed SSAA relaxes the threshold
restriction, which means that the magnitude of the covariate
shift is no longer limited. Under such circumstances, four types
of attack samples would naturally emerge from the generation
process.

• The first type ismeaningless sample, which has inconsis-
tent semantic information with the source domain sample.
The meaningless sample can achieve a high attack success
rate, but violates the DE principle, which means that such
samples may degenerate the performance of the target
model.

• The second type is theadversarial sample, which essen-
tially belongs to the same category as the neighboring

original sample but is misclassified by the target model.
The adversarial sample is highly smooth and diverse, and
therefore effective in improving the generalizability and
transferability of the target model.

• The third type is thesupport sample, which is defined as
the feature vector closest to the decision boundary. The
support sample is the most appropriate tool to delimit the
valid boundary for pseudo-target domains.

• The fourth type isinvalid sample, which is unable to
influence the target model.

In this paper, we adopt dual classifiersCt andCa to identify
the four types of samples described above. Formally, the
characteristics of meaningless samples, adversarial samples,
support samples, and invalid samples are summarized as
follows.

• Meaningless sample:Ct (F (x̂s,h)) 6= ys,h and
Ca (F (x̂s,h)) 6= ys,h, where x̂s,h is the attack sample
associated with categoryh andys,h is the corresponding
real label.

• Adversarial sample: Ct (F (x̂s,h)) = ys,h and
Ca (F (x̂s,h)) 6= ys,h, or vice versa.

• Support sample is a special form of adversarial sample.
Therefore, supposing that the adversarial sample charac-
teristics are matched, we can identify the support sample
by finding argmax (Lcla (f (x̃s) , ys)).

• Invalid sample:Ct (F (x̂s,h)) = Ca (F (x̂s,h)) = ys,h.

Remark 1: In summary, OOD samples describe samples
that are different from the source domain distribution, pseudo-
target domain samples are generated OOD samples, and attack
samples are pseudo-target domain samples that are generated
by attack-defense strategy, including adversarial samples and
support samples. Therefore, in this paper, the support samples
are not generated by the pseudo-target domain, but by the
adversarial attacks. Additionally, the support samples belong
to the pseudo-target domain.

2) Decision Boundary Extension:First, we optimizeθF
andθCt

simultaneously by minimizing theLt on the labeled
source data, which can be formulated as:

min
θF ,θCt

Lt = −
1

ns

ns
∑

i=1

H
∑

h=1

1[h=ys,i]log (p (ys,i = h | f(xs,i))) ,

(4)

whereθF andθCt
are the parameters ofF andCt respectively.

Additionally, to defend against imperceptible perturbations,
the target model is learned with a conditional maximum mean
discrepancy (CMMD) loss [21] that penalizes the discrepancy
between the adversarial sample and the source sample. The
CMMD loss can be described as:

min
θF ,θCt

Ld =
1

H

H
∑

h=1
∥

∥

∥

∥

∥

∥

1

ns,h

ns,h
∑

i=1

ϕ (f (xs,h,i))−
1

n′
s,h

n′

s,h
∑

i=1

ϕ (f (x̃s,h,i))

∥

∥

∥

∥

∥

∥

2

H

, (5)

whereϕ is a nonlinear mapping,H denotes the reproducing
kernel Hilbert space (RKHS),̃xs denotes adversarial sample,
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n′
s is the number of adversarial samples including support

samples.
To efficiently and effectively resist attacks, a weighting

mechanism is employed in the optimization process of the
target model. Specifically, the support sample is given a larger
weight to extend the decision boundary and the adversarial
sample is assigned a smaller weight to defend against attacks.
This process is formulated as:

min
θF ,θCt

Ls = −
1

n′
s

n′

s
∑

i=1

H
∑

h=1

wi1[h=ys,i]log (p (ys,i = h | f(x̃s,i))) ,

(6)

wherewi is the sample weight calculated by:

wi =
eLcla(f(x̃s),ys)i

∑n′

s

i=1e
Lcla(f(x̃s),ys)i

. (7)

The training process of the proposed SSAA is shown in
Algorithm 1.

Algorithm 1: The training process of the SSAA

Input : Labeled source domain{(xs,i, ys,i)}
ns

i=1.
Input : The number of total training epochN0; attack

epochN1; defense epochN2

Output : Feature extractor weightsθF , target classifier
weightsθCt

; balancing hyperparametersλa, λd,
andλs.

Initialize θG, θD, θF , θCa
, andθCt

.
for i0 ≤ N0 do

for i1 ≤ N1 do
Update the discriminatorD by ascending

stochastic gradient, i.e.,∇θDLgen;
end
Update the generatorG by descending stochastic
gradient, which is formulated by:

∇θG
1
ns

∑ns

i=1 log (1−D (G (xs,i))) + λaLatt;
⊲ Stage 1: Non-targeted attack

for i2 ≤ N2 do
Identify adversarial samples;
Update the feature extractorF and dual

classifiersθCt
, θCa

by descending stochastic
gradient, that is,∇θF ,θCt

,θCa
Lt + λdLd + λsLs.

end
⊲ Stage 2: Model defense

end

IV. SIMULATION EXPERIMENTS

This paper utilizes pipeline fault diagnosis as the chosen
testbed. Due to their economic, safety, and stability advan-
tages, pipelines have become a prevalent feature in modern oil
and gas transportation systems. However, during pipeline oper-
ation, incidents of leakage often occur, predominantly caused
by pipeline deterioration or corrosion. These incidents pose
significant threats to both property and life, rendering them
among the most hazardous accidents. The urgency, therefore,
lies in developing a model capable of achieving high accuracy

within target distributions [6], [21]. In response to this pressing
issue, this section will evaluate and compare the performance
of the proposed SSAA algorithm with several existing state-
of-the-art DG methods on pipeline fault diagnosis tasks.

A. Data Description

In this paper, two kinds of pipeline datasets collected by
different platforms are employed for comparison experiments.
The details are described as follows.

The first kind of dataset is the negative pressure wave dataset
(NPWD) collected by the ZJ-CSGD type simulation platform,
as shown in Fig. 3. The parameters of the pipeline are set
as follows: the length is 180.2m, the sampling frequency
is 1024Hz, and the flow rate is 10m3/h. In NPWD, the
working pressure of the pipeline is set as different values to
produce multiple source domains for performance evaluation.
Specifically, three pressure conditions are included in the
NPWD, namely high pressure (HP), medium pressure (MP),
and low pressure (LP).

(a) (b)

Fig. 3: Console and platform of the negative pressure wave dataset.

The second kind of dataset is the acoustic wave dataset
(AWD) collected by the HD-II type simulation platform, as
shown in Fig. 4. The parameters of the pipeline are set
as follows: the length is 160m, the sampling frequency is
5000Hz, and the flow rate is 60m3/h. It should be noted
that acoustic signals in the AWD are collected under a fixed
pressure (FP) condition 0.5MPa.

(a) (b)

Fig. 4: Console and platform of the acoustic wave dataset.

In the NPWD and the AWD, the pipeline data under each
pressure condition can be divided into four categories, where
failure signals including large leakage, medium leakage, and
small leakage (LL, ML, and SL) are collected by switching
valves and normal signals (NS) are collected in healthy con-
dition. The data are downsampled from 5000Hz to 1024Hz
because a high sampling rate would increase the complexity of
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data processing and reduce the speed of modeling operations.
Furthermore, in order to mitigate the impact of noise on model
training, an improved VMD method proposed in [22] is used
in this paper to perform data denoising.

B. Implementation Details

In this paper, the training set, validation set, and test set are
all zero-mean normalized by the mean and standard deviation
of the training set. The split ratio of the training/validation/test
set is 0.7:0.1:0.2.

For all experiments, the stochastic gradient descent (SGD)
optimizer is employed to optimize the generatorG and dis-
criminatorD with an initial learning rate of10−4. The Adam
optimizer is used to optimize the feature extractorF , the target
classifierCt, and the auxiliary classifierCa with an initial
learning rate of10−3. The total number of the SSAA training
epochs is set to35, the number of attack epochs is set to5, and
the number of defense epochs is set to10. The training process
of the SSAA is early stopped within3 epochs. The batch size
is set to 32. Additionally, the impacts of balancing hyper-
parameters on model performance are investigated through
sensitivity analysis.

For fairness, we re-implement six advanced comparison
algorithms, including

• Empirical Risk Minimization (ERM) aims to optimize the
model parameters by minimizing the expectation of the
loss function values on the training dataset.

• Domain-Adversarial Neural Networks (DANN) [3] was
proposed by Ganin et al. in 2016. DANN promotes the
model to learn domain-invariant feature representations
by introducing a domain-adversarial loss.

• DeepCORAL [20] was proposed by Sun et al. in 2016.
The objective of DeepCORAL is to achieve domain
adaptation by minimizing the difference in the covariance
matrix between two domains.

• Group Distributionally Robust Optimization (GroupDRO)
[19] was proposed by Sagawa et al. in 2020. The primary
principle of the GroupDRO algorithm is to improve the
generalization performance of the model by dividing the
training data into multiple groups and optimizing the
empirical worst-group risk.

• Meta-Learning for Domain Generalization (MLDG) [8]
was proposed by Li et al. in 2018. The key idea of MLDG
is to improve the generalization performance of the model
through multilevel representation learning.

• Domain-Invariant Feature Exploration (DIFEX) [12] was
proposed by Lu et al. in 2022. DIFEX improves the
generalization performance of the model by learning both
internally-invariant and mutually-invariant features.

For comparison methods, all hyperparameters are selected
through the grid search method using the validation set. All
methods, including the SSAA and baselines, are repeated
five times, implemented by PyTorch, and trained on a single
NVIDIA GEFORCE RTX 3090 GPU with 24GB memory.

C. Evaluation Metric

Accuracy is employed as an evaluation metric in this paper,
which can be formulated as follows:

Accuracy =
ntp + ntn

ntp + nfn + nfp + ntn
, (8)

wherentp is the number of correctly identified failure signals,
nfp is the number of incorrectly identified failure signals,ntn

is the number of correctly monitored normal signals, andnfn

is the number of incorrectly monitored normal signals.

D. Main Experimental Results

In this subsection, we extensively assess the SSAA algo-
rithm in both MultiDG and SingleDG scenarios.

1) MultiDG: The cross-domain classification results on N-
PWD and AWD are shown in Table I. The yellow background
marks the classic ERM model. The red marks the DA methods,
which perform MultiDG through domain-invariant representa-
tion learning. The purple marks the DG methods. It can be
found that the proposed SSAA is superior to other comparison
methods by large margins. Specifically, our SSAA achieves
the best classification performance in four out of five tasks.
Furthermore, the SSAA method improves average accuracy by
6.32% and 4.17% compared to the best algorithm CORAL of
DA and the best algorithm DIFEX of DG, respectively. Based
on the above results, we can draw three important conclusions:

• As a baseline without any generalization operations, ERM
can achieve results comparable to some of the most
advanced DA or DG methods in specific tasks, which
means that achieving stable performance in different DG
situations is difficult. Despite this, the SSAA still achieves
inspiring performance on most MultiDG tasks.

• Simple distribution alignment methods, including DANN
and DeepCORAL, may be effective in DA with available
source and target domains, but they fail to achieve the
expected results in DG tasks due to the difficulty in
reducing distribution differences between multiple source
domains.

• Compared with methods such as GroupDRO, MLDG, and
DIFEX, which achieve DG by learning the distribution
differences among multiple domains, the proposed SSAA
algorithm depicts the shape of the decision boundary by
correctly identifying the support samples, and therefore
effectively improves the generalization ability.

2) SingleDG: In this part, we further perform SingleDG to
verify the superiority of our method. The experimental results
on NPWD and AWD are shown in Table II and Table III. Table
II presents the transfer tasks between three different domains
within NPWD. Table III records the transfer tasks between
different domains in NPWD and AWD.

In Table II, the proposed SSAA achieves the highest accu-
racy in five tasks: HP→MP, HP→LP, MP→HP, LP→HP, and
LP→MP. For the task MP→LP, the SSAA performs slightly
worse than MLDG. A possible reason for this phenomenon
is that the limited number of samples in a single domain
increases the difficulty of training a stable model that can
generalize well to the target domain. Despite this, the proposed
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TABLE I: MultiDG results on NPWD and AWD. The best results are highlighted inbold.(%)

Source Target ERM DANN CORAL GroupDRO MLDG DIFEX SSAA

HP, MP, AW LP 74.38 76.98 77.32 75.44 73.70 75.96 83.28
HP, MP, LP AW 73.75 73.75 75.08 75.50 73.32 76.18 79.04
HP, LP, AW MP 70.80 74.42 72.68 80.82 72.06 77.88 78.54
MP, LP, AW HP 73.90 73.38 75.54 75.08 70.30 75.58 78.78

Ave. 73.21 74.63 75.16 76.71 72.35 76.40 79.91

SSAA still achieves the highest average accuracy in five of the
six tasks.

In Table III, it can be found that the SSAA method achieves
superior or comparable performance to other state-of-the-art
methods with an average accuracy of 53.57%. Compared to
the second-best algorithm GroupDRO, the SSAA achieves an
additional gain of 18.25% in average accuracy due to its full
learning from pseudo-target domain samples that closely re-
semble real-world samples. The results show that our SSAA is
beneficial in improving generalization capability compared to
some advanced algorithms, achieving the highest performance
in five out of six tasks.

TABLE II: SingleDG results on NPWD.(%)

Source Target GroupDRO MLDG DIFEX SSAA

HP MP 75.10 74.86 75.70 80.74
HP LP 71.42 67.48 75.90 80.94
MP HP 66.98 71.17 72.30 79.02
MP LP 72.12 72.66 72.24 70.18
LP HP 74.98 68.34 75.04 78.06
LP MP 72.28 66.48 70.90 81.70

Ave. 72.15 70.17 73.68 78.44

TABLE III: SingleDG results on NPWD and AWD.(%)

Source Target GroupDRO MLDG DIFEX SSAA

HP AW 44.64 43.90 39.18 54.34
MP AW 54.78 45.12 49.95 53.48
LP AW 45.84 43.64 53.52 55.34
AW HP 44.08 45.06 24.48 51.84
AW MP 45.20 39.06 45.36 57.32
AW LP 37.26 37.24 36.70 49.12

Ave. 45.30 42.34 41.53 53.57

E. Performance Analysis

1) Parameter Sensitivity:The sensitivities of all hyperpa-
rameters in the proposed method, includingλa, λd, andλs,
are investigated in this section. As shown in Fig. 5(a), a large
λa will result in a negative transfer, as overpowering attacks
generally lead to the gradient exploding issue, and therefore
an appropriateλa is important to ensure the effectiveness of
the SSAA. According to the Fig. 5(b), we can find that a
relatively smallλd tends to result in a good performance, while
λd > 0.01 causes a significant drop in accuracy. A possible
reason for this phenomenon is that the inherent differences
between the source domain and target domain may arise from

the discriminability characteristics in each domain, and an
overemphasis on minimizing distribution discrepancies may
lead to negative transfer. Furthermore, Fig. 5(c) shows that
the proposed SSAA is robust to the variations ofλs when
λs < 0.01, which indicates the dominant role of the weighting
mechanism for learning discriminative features from pseudo-
target samples. Generally, our SSAA method is insensitive to
hyper-parameters in the appropriate range.

2) Training Stability: To verify the stability of our method,
we report the loss and validation accuracy during the training
process on the MultiDG task (HP, LP, AW)→MP and the
SingleDG task HP→LP, as shown in Fig. 6. Fig. 6(a) shows
that the training loss smoothly and rapidly reduces to a small
value in both tasks. Additionally, the validation accuracies of
MultiDG and SingleDG can quickly converge to a satisfactory
value in Fig. 6(b). Thus, we can find that our SSAA is able
to achieve stable performance in generalizing valuable knowl-
edge from the source domain to the unseen target domain.

(a) Training Loss (b) Validation Accuracy

Fig. 6: The training loss and validation accuracy of the SSAA on
NPWD and AWD. We take (HP, LP, AW)→MP and HP→LP as
examples.

3) Significance Test:In this paper, a statistical significance
test is performed on SingleDG results to quantitatively verify
the significant improvement brought by the proposed SSAA
in contrast to the strong baselines. Following the common
practice, the significance threshold is set to 0.05, which can
lead to two results includingp-value≤0.05 (reject the null hy-
pothesis) andp-value>0.05 (accept the null hypothesis). The
former implies that the improvement of the SSAA algorithm is
significant, while the latter means that the performance of the
SSAA algorithm is similar to that of the comparison methods.

In this experiment, we refer to the transfer tasks in Table
II as Case 1 and the transfer tasks in Table III as Case 2.
The statistical results in Table IV show that the SSAA has
a significant effect on improving performance compared to
state-of-the-art techniques.

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-
ethics/guidelines-and-policies/post-publication-policies/ for more information 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI10.1109/
TII.2023.3337364, IEEE Transactions on Industrial Informatics



FINAL VERSION 9

(a) (b) (c)

Fig. 5: Sensitivity analysis of various hyperparameters, includingλa for adversarial attacks,λd for reducing distributional discrepancies, and
λs for defending against attacks.

TABLE IV: Results of paired t-test.

Method
Case1 Case2

t-value p-value Result t-value p-value Result

GroupDRO 3.00 0.03 + 4.08 9.50E-03 +
MLDG 3.21 0.02 + 6.94 9.56E-04 +
DIFEX 2.75 0.04 + 2.96 3.15E-02 +

1 “+” represents the SSAA algorithm significantly outperforms the
compared algorithm.

V. CONCLUSION

In this paper, a novel and effective SSAA approach has been
proposed to tackle the challenging yet common DG problem
where only a single source domain is available. Initially,
pseudo-target domains have been created to disrupt the target
classifier by introducing diverse and smooth perturbations to
the source distribution, a process known as the non-targeted
attack stage. Subsequently, an auxiliary classifier and a target
classifier have been employed to select adversarial and support
samples from the generated pseudo-target samples, which
aids in minimizing unnecessary interference and avoiding the
wastage of computational resources. Ultimately, the general-
ization capability of the SSAA has been enhanced by extend-
ing the initial decision boundary to approach support samples,
which can form a new decision boundary that encompasses
all unseen samples. Leveraging the attack-defense strategy,
the target classifier is expected to learn discriminative and
transferable feature representations from these pseudo-target
samples, thereby achieving desired DG. Extensive experiments
conducted on two pipeline datasets have demonstrated that the
proposed SSAA provides comparable or superior cross-domain
classification performance as compared to existing advanced
techniques in both MultiDG and SingleDG scenarios. In the
future, advanced attack-defense strategies and corresponding
theoretical proofs will be introduced to achieve more precise
model generalization.
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