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Abstract—The automotive smart cockpit is an intelligent and 

connected in-vehicle consumer electronics product. It can provide 

a safe, efficient, comfortable, and enjoyable human-machine 

interaction experience. Emotion recognition technology can help 

the smart cockpit better understand the driver's needs and state, 

improve the driving experience, and enhance safety. Currently, 

driver emotion recognition faces some challenges, such as low 

accuracy and high latency. In this paper, we propose a multimodal 

driver emotion recognition model. To our best knowledge, it is the 

first time to improve the accuracy of driver emotion recognition 

by using facial video and driving behavior (including brake pedal 

force, vehicle Y-axis position and Z-axis position) as inputs and 

employing a multi-task training approach. For verification, the 

proposed scheme is compared with some mainstream state-of-the-

art methods on the publicly available multimodal driver emotion 

dataset PPB-Emo. 

Keywords—smart cockpit, driver emotion recognition, deep 

learning， multimodal fusion 

I. INTRODUCTION

Relying on the development of artificial intelligence [1-4] 
and computing systems [5-8], smart cars are rapidly gaining 
popularity and becoming widespread worldwide. The 
popularization of smart cars has brought about dramatic changes 
in smart cockpits, an in-vehicle consumer electronics product. 
Driver emotion recognition technology infers the driver's 
emotional state by analyzing a variety of data such as the driver's 
facial expression, voice, physiological signal and behavior, 
helping the smart cockpit better understand the driver's state and 
needs. Thus, the smart cockpit can provide appropriate services 
and support. Driver's negative emotions are one of the main 
causes of traffic accidents. Emotions can affect a driver's 
decision-making, alertness and driving behavior, and even lead 
to road rage and aggressive behavior [9, 10]. Therefore, the 
development of automatic driver emotion recognition and 

corresponding human-computer interaction systems to alleviate 
drivers' negative emotions and avoid traffic accidents is of great 
value in improving driving safety. 

Driver emotion recognition technology can be divided into 
invasive and non-invasive methods. Invasive methods require 
drivers to wear physiological sensors or devices, which can 
provide more accurate recognition results but may affect driving 
safety and comfort. Non-invasive methods infer emotions by 
analyzing drivers' facial expressions, voice features, and 
behavioral actions, without contact with the driver directly, 
making drivers safer and more comfortable. However, currently, 
the accuracy of non-intrusive emotion recognition is relatively 
low, and improving its accuracy is a crucial research direction. 
Studies [11] have shown significant differences in facial action 
units between driving scenarios and other life situations, 
highlighting the importance of using driving scenario datasets in 
driver emotion recognition research. Research [12, 13] has also 
demonstrated that fusing multimodal data leads to higher 
emotion recognition performance compared to using single 
modal alone, as the latter may lack robustness in complex 
situations. Moreover, the potential role of driving behavior data 
in driver emotion recognition remains largely unexplored. 
Furthermore, multi-task learning, which leverages shared 
information from different tasks, enhances model performance 
and generalization, making it particularly suitable for training 
multimodal networks. Therefore, in our research, we utilize 
facial video and behavior data (including brake pedal force, 
vehicle Y-axis, and Z-axis positions) as inputs, conducting non-
invasive emotion recognition studies in driving scenarios, and 
adopting a multi-task learning approach for training. The main 
contributions of our work are summarized as follows: 

• We first propose and design a multimodal driver emotion
recognition network based on facial video and driving
behavior.
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• We design the driving behavior feature extractor that can
improve emotion recognition accuracy and speed up
computation.

• We adopt multi-task learning, which can more
effectively integrate the two modalities compared to
single-task learning.

II. RELATED WORK

A. Emotion Classification

Typically, researchers classify emotions based on two
models. One is the discrete emotion model [14], which 
categorizes emotions into different classes. In the 20th century, 
Ekman and Friesen [15] defined six cross-cultural basic 
emotions: anger, disgust, fear, happiness, sadness, and surprise. 
Later, contempt was added as one of the basic emotions [16]. 
The other model is the dimensional emotion model, which uses 
multiple dimensions to label emotions. Most dimensional 
emotion models include valence and arousal [17] as two 
dimensions. In the research of driver emotion recognition, the 
discrete emotion model is more commonly used. This is because 
the discrete emotion model is more intuitive and easier to 
interpret, providing concise emotion classification results that 
are easier for drivers and researchers to understand and apply. 
This paper also adopts the discrete emotion model. 

B. Driver Emotion Recognition

Psychologists such as Albert Mehrabian proposed that
emotional expression is 55% through facial expression [18]. 
Facial expressions are considered the most powerful way of 
expressing emotions. Researchers have proposed different 
models for facial video-based emotion recognition [19]. For 
example, Meng D et al. introduced the Emotion-FAN model 
[20], which automatically focuses on frames with distinctive 
features. Zhao Z et al. proposed the Former-DFER model [21], 
which learns facial features in both spatial and temporal 
dimensions. Previous studies [11] have shown that human 
emotional expressions in driving scenarios differ from those in 
other life situations, making it essential to conduct driver 
emotion recognition research using datasets specifically 
collected in driving scenarios. Li et al. [22] publicly released the 
first and currently the only multimodal dataset for driving tasks, 
named PPB-Emo, in 2022. Additionally, Oh et al. [23] proposed 
an onboard system for collecting multimodal data in real driving 
environments. In recent years, research on driver emotion 
recognition has been trending towards the direction of 
multimodality. Li et al. [24] proposed the multimodal model 
CogEmoNet, which takes the driver's facial video and cognitive 
information (including age, gender, and driving age) as inputs. 
Mou et al. [25] proposed a multimodal model using eye 
movements, driving behavior, and environmental information as 
inputs, adopting multitask learning based on a convolutional 
long short-term memory network and a hybrid attentional 
mechanism. Their research demonstrated the effectiveness of 
driving behavior as an auxiliary modality for driver emotion 
recognition. To the best of our knowledge, the fusion network 
combining facial video and driving behavior modalities has not 
been explored yet. Therefore, this paper aims to investigate the 
fusion of these two modalities in our research. 

III. MODEL DESCRIPTION

A. Overview

MDEmoNet is a multimodal driver emotion recognition
model with inputs modal to facial video and driving behavior 
data (including brake pedal force, vehicle Y-axis position, and 
Z-axis position), and outputs discrete emotion classification. As
shown in Fig. 1, the model contains a facial video modal
processing module, a driving behavior modal processing
module, and a decision module. The network employs multi-
task learning to fuse the two modalities more effectively.

B. Facial Video Modal Processing Module

We first segment the video samples into 8 segments with 2
randomly selected frames in each segment. In this way, each 
video sample is transformed into a sequence of 16 frames of 

112×112 RGB facial images, denoted as X∈ℝ16×3×112×112. Next, 
this facial image sequence will be input into the convolution 
module, and for each frame, the features of the facial image are 
first extracted through four convolutional layers to obtain the 

feature map M∈ℝC×H′×W′, where C denotes the number of 

channels of the feature map, and H′ and W′ denote the height and 
width of the feature map respectively. Flatten the feature map 

into a one-dimensional sequence Mf∈ℝQ×C where Q=H′W′. We 
then encode spatial positions by adding a visual word 
embedding mf

p of length C to a learnable position embedding ep. 
The calculation process is given as follows: 

{ }   1,2, ,f

p p pz m e p Q= + ∈ L (1) 

The next part is the Spatial Transformer, which is used to extract 
spatial features from facial images. It consists of a spatial 
encoder that includes multi-head self-attention and feed-forward 
networks. Self-attention calculations are performed by 
computing query(q), key(k), and value(v) vectors. The 
calculation process is given as follows: 

( )k k

p Q pq W LN z= (2) 

( )k k

p K pk W LN z=  (3) 

( )k k

p V pv W LN z= (4) 

where LN(‧) represents the layer normalization operation, W 
represents the weight matrix of the k-th multi-head attention 

head, where k∈{1, ‧‧‧, K}, K=8 is the total number of attention 
heads. The self-attention weight λk

p of each query p can be 
obtained through the dot product. The calculation process is 
given as follows: 

{ }' ' 1, ,
softmax( )

'

kT

pk k

p p p Q

q
k

C
λ

=
= ⋅

L
(5) 

C′ is the potential dimension of each attention head. To 
compute the encoding � within the block, first, the weighted 
sum of value vectors is calculated using the self-attention 
coefficients of the self-attention heads. The calculation formula 
is as follows (6). 
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Fig. 1.   The structure of the proposed method. 
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Then, all the outputs from the self-attention heads are 
concatenated and passed through an MLP projection with a 
residual connection. The calculation can be represented as: 
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M (7) 

( ( ' )) 'p p pz MLP LN z z= + (8) 

Finally, the Q encoded zp are concatenated together to generate 

the refined feature map Mr∈ℝC×H′×W′. Then, it goes through a 

convolutional layer, and the feature embedding x′t∈ℝF for each 
frame can be calculated as follows: 

{ }' ( ( ))  1,2, 16tx GAP g Mr t= ∈ L (9) 

where g(‧) represents the convolution block, and GAP(‧) stands 
for global average pooling. All frames share the same Spatial 

Transformer module, given input X∈ℝ16×3×112×112, which yields 

output X′∈ℝ16×F, where F represents the dimensionality of the 
features. Next, we input the feature sequence of the facial 
images into the Temporal Transformer. It consists of 3 temporal 
encoders, each comprising a multi-head self-attention and a 
feed-forward network. Each temporal encoder is augmented 
with temporal encoding embeddings. For example, the formula 
for the temporal encoding embedding in the first temporal 
encoder is as follows: 

{ }1

' ' ''   ' 0,1, ,16t t tz x e t= + ∈ L (10) 

where et′ represents the learned position embedding, used to 
encode the temporal position. Unlike Spatial Transformer, we 

add a special learnable vector x′
0 at the first position of the 

sequence to represent the embedding of the class token. Next, 
in each temporal encoder, we calculate the query(�), key(�), 
and value(�) vectors, following the same process as in Spatial 
Transformer. The input of the next temporal encoder is the 
output of the previous temporal encoder. Then, we use the 
output z3

0 of the class token from the final layer of the Temporal 
Transformer to represent the video's features. Finally, we 
perform classification using a fully connected network to obtain 
the emotion recognition results for the video modality. The 
calculation process is given as follows: 

3 7

01
y ( )FC z
∧

= ∈ ¡ (11) 

where FC(‧) represents a fully connected network, and 7 
indicates the number of emotion categories. 

C. Driving Behavior Modal Processing Module

The PPB-Emo dataset records driving behavior modal data,
including acceleration, lateral acceleration, gas pedal position, 
brake pedal force, gear, steering wheel position, velocity, lateral 
velocity, x position, y position, and z position. We initially 
extracted a total of 9396 features for each sample from the 
driving behavior modal data, such as time reversal asymmetry 
statistic, fft coefficient, fft aggregated, etc. To identify features 
that have significant impacts on different emotion categories, 
we performed a two-sided Mann-Whitney U test [26] to 
determine whether each feature exhibits significant differences 
between different emotion categories. We calculated the p-
value corresponding to the U statistic, which represents the 
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probability of observing the U statistic or more extreme values 
under the null hypothesis. If the p-value is small, it indicates 
that the feature has a significant impact on the binary emotion 
target. Conversely, if the p-value is large, it means that the 
feature does not have a significant impact. We applied the 
Benjamini-Hochberg method to control the false discovery rate 
and finally identified which features are significant. After 
conducting the significance test for all features, we selected a 
total of 95 relevant features related to Brake pedal force, Y-axis 
position, and Z-axis position. Due to space limitations, we 
present key relevant features in Table Ⅰ. We designed a driving 
behavior feature extractor to extract these features. The raw 
features extracted by the driving behavior feature extractor are 
further processed through a linear layer, a normalization layer, 
and a dropout layer to extract more meaningful features. 
Subsequently, a fully connected network is employed for 
classification, producing the emotional recognition results for 
the driving behavior modality. The calculation formula is as 
follows: 

' ( ( ( )))Fdb Dropout LN Linear Fdb=  (12) 

7

2
( ')y FC Fdb

∧

= ∈ ¡ (13) 

where Fdb represents the raw features extracted by the driving 
behavior feature extractor. Linear denotes the linear layer, and 
Dropout(‧) represents the dropout operation. 

TABLE I. KEY DRIVING BEHAVIORAL FEATURES 

Feature Description 

cwt coefficients 
A continuous wavelet transform for the Ricker 

wavelet 

fft coefficient 
The fourier coefficients of the one-dimensional 
discrete Fourier Transform 

c3 Measure non linearity in the time series 

large standard 

deviation 

Whether the time series has a large standard 

deviation? 

variation coefficient The variation coefficient 

quantile The q quantile of the time series 

kurtosis The kurtosis of the time series 

number cwt peaks Number of different peaks in the time series 

median The median of the time series 

range count Count observed values within the specific interval 

agg linear trend 

A linear least-squares regression for values of the 

time series that were aggregated over chunks 

versus the sequence from 0 up to the number of 
chunks minus one 

D. Decision Module

The decision layers of the video modal processing part and
the driving behavior modal processing part are concatenated, 
and then the classification is performed through a fully 
connected neural network. The calculation formulas are as 
follows: 

14

21
( , )F cat y y

∧ ∧

= ∈ ¡ (14) 

3
( )y FC F

∧

=  (15) 

where the cat(‧) represents the concatenation operation and ŷ3 

represents the final classification result. 

E. Multi-task Learning

During the training process, we divided the overall task into
three sub-tasks. Sub-task 1 solely used facial video modality 
features for classification, sub-task 2 solely used driving 
behavior modality features for classification, while sub-task 3 
integrated information from both facial video modality and 
driving behavior modality for classification. During network 
validation, we only retained sub-task 3. The designed loss 
functions are as follows: 

, arg

,

1

exp
1

log

exp

n t etn

n j

mN

m n
m

j

y

Loss
N

y

∧

∧
=

   
   

   = −
   

      

 


(16) 

where N represents the number of samples and m∈{1, 2, 

3} represents the different sub-tasks. 

IV. EXPERIMENT

A. Dataset

The PPB-Emo dataset [22] is currently the only publicly
available multimodal driver emotion dataset. The dataset 
collected psychological, physiological, and behavioral data 
(including driving behavior and facial videos) from 40 
participants in 240 driving tasks. 

B. Implementation Details

1) Data Pre-processing: For the facial video modality, we

performed face alignment on each frame image to ensure that 

the face is positioned at a standard location and resized to 

112×112 pixels. In the original PPB-Emo dataset, there are a 

total of 240 samples with a duration of 30 seconds. In order to 

obtain more training data, we cut each original sample into 10 

subsamples of 3 seconds, resulting in 2400 samples. 

2) Training Setting: We implemented this model using the

platform PyTorch and optimized the parameters using the SGD 

optimizer with an initial learning rate of 0.01, which was 

divided by 10 every 40 epochs. The batch size was set to 64, 

and training was stopped after 130 epochs. We randomly split 

the dataset into training and validation sets in an 8:2 ratio. The 

final experimental results were obtained by averaging the 

scores from five experiments. 

3) Validation Metrics: Driver emotion recognition is a

multi-classification task, and the primary evaluation metric is 

accuracy [27, 28]. To ensure a fair comparison, we also include 

the Macro F1 score [29] as a supplementary evaluation metric. 

The complexity of the model determines the computing speed 

of the system. Considering the storage resources of the in-

vehicle system are limited, we take the size and complexity of 

the model as additional evaluation metrics. 

C. The Impact of Driving Behavior Feature Selection on

Model Performance

We input all the features and the filtered features into the
network separately, and modify the input layer dimension of the 
driving behavior modal processing module accordingly. The 

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI10.1109/ICCE59016.2024.10444365, 2024 IEEE International Conference on Consumer Electronics (ICCE).

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See 
https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishingethics/guidelines-and-policies/post-publication-policies/ for more information.



experimental results are shown in Table Ⅱ. The accuracy and F1 
score of the model with filtered features input are significantly 
improved compared to the model with all features input, 
increasing by 6.04% and 0.071 respectively. This indicates that 
the filtered features can better capture the emotion-related 
information in driving behavior and better distinguish different 
emotion categories. In contrast, the full set of features may 
contain some redundant information, which reduces the 
performance of the model. The experimental results show that 
feature selection can significantly improve the model 
performance. 

TABLE II. RECOGNITION RESULTS OF ALL FEATURES AND FILTERED 

FEATURES INPUT INTO THE NETWORK 

Input Driving Behavior Feature Acc(%) Macro F1 score 

All the features 61.88 0.6070 

Filtered features 67.92 0.6780 

D. The Impact of Different Driving Behavior Modality

Feature Extraction Methods on Model Performance

Since the BiLSTM neural network is widely used for
handling time series data, we compared this RNN model with 
the proposed driving behavior feature extractor for extracting 
driving behavior modality features in terms of accuracy, F1 
score, model size, and computational speed. The experimental 
results (shown in Table Ⅲ) demonstrate that the model using 
the driving behavior feature extractor performs the best in 
accuracy and F1 score, achieving 67.92% and 0.6780, 
respectively. The model using 2-layer BiLSTM for feature 
extraction has slightly lower accuracy compared to the driving 
behavior feature extractor, with a larger model size and slower 
computational speed. The models using 1-layer or 3-layer 
BiLSTM for feature extraction have lower accuracy. Therefore, 
the results suggest that our designed driving behavior feature 
extractor is a superior choice, providing higher accuracy, faster 
computational speed, and relatively smaller model size. 

TABLE III. RECOGNITION RESULTS OF DIFFERENT DRIVING BEHAVIOR 

MODAL FEATURE EXTRACTION METHODS 

Driving behavior 

modal feature 

extraction method 

Acc 

(%) 

Macro 

F1 score 

Model 

Size 

(MB) 

Complexity 

(GFLOPs) 

1-layer BiLSTM 60.62 0.5980 18.57 9.32 

2-layer BiLSTM 66.67 0.6613 20.04 12.17 

3-layer BiLSTM 58.96 0.5857 21.72 15.01 

the driving behavior 

feature extractor 
67.92 0.6780 18.02 8.32 

E. Ablation Analysis

To validate the effectiveness of each component in
MDEmoNet, the necessary ablation analysis is conducted in this 
part. We separately studied the effectiveness of multimodality, 
multi-task learning, and decision layer fusion methods. 

1) Evaluation of multimodality: We compared the

classification results between single-modal and multimodal 

networks. We separately retained the network with only the 

driving behavior modality and the network with only the facial 

video modality. The experimental results, as shown in Table Ⅳ, 

indicate that the single-modal network using driving behavior 

has lower accuracy and F1 score, at 21.88% and 0.1756. The 

single-modal network using facial video shows a significant 

improvement in accuracy and F1 score compared to the driving 

behavior modality, reaching 58.96% and 0.5854. The 

multimodal network demonstrates even greater improvement in 

accuracy and F1 score achieving 67.92% and 0.6780. The 

fusion of multiple modalities effectively utilizes information 

from both driving behavior and facial video modalities, leading 

to a significant enhancement in model performance. Overall, 

the experimental results validate the effectiveness of 

multimodal fusion. 

2) Evaluation of multi-task learning: We removed subtask

1 and subtask 2, keeping only task 3, and compared it with 

MDEmoNet, using multi-task learning. The experimental 

results, as shown in Table Ⅳ, indicate that the model using 

single-task learning achieved an accuracy of 35.63% and an F1 

score of 0.3314. On the other hand, MDEmoNet with multi-task 

learning achieved a higher accuracy of 67.92% and an F1 score 

of 0.6780. The multi-task learning strategy significantly 

improved the model's classification performance. Therefore, 

multi-task learning is effective in this model. 

3) Evaluation of decision layer fusion: We modified the

network to perform feature-level fusion and compared it with 

MDEmoNet using decision-level fusion. The results, as shown 

in Table Ⅳ, indicate that the model with feature-level fusion 

achieved an accuracy of 63.83% and an F1 score of 0.6348, 

while the model with decision-level fusion achieved a higher 

accuracy of 67.92% and an F1 score of 0.6780. The use of 

decision-level fusion improved the performance of the model 

compared to the feature-level fusion model. Therefore, using 

decision-level fusion in this model is reasonable. 

TABLE IV. EVALUATION OF COMPONENTS IN MDEMONET 

Model Acc(%) Macro F1 score 

Driving behavior unimodal 21.88 0.1756 

Facial video unimodal 58.96 0.5854 

Using single-task learning 35.63 0.3314 

Using feature layer fusion 63.83 0.6348 

MDEmoNet 67.92 0.6780 

F. Comparison with State-of-the-Arts

We compared our MDEmoNet model with several state-of-
the-art models on the PPB-Emo dataset from recent years. These 
advanced methods include the Emotion-FAN model [20] (2019) 
for facial video emotion recognition, the Former-DFER model 
[21] (2021) for the in-the-wild scenario facial emotion
recognition, and the CogEmoNet model [24] (2022) for driver
emotion recognition using both facial video and cognitive
features (age, gender, and driving experience) as inputs. The
results in Table Ⅴ show that our MDEmoNet achieved excellent
performance on the PPB-Emo dataset. It outperformed other
models in most sentiment categories, overall accuracy and F1
scores. Additionally, our model has relatively smaller model
size and computational complexity. By effectively leveraging
both video and driving behavior modalities, MDEmoNet
captures the driver's emotional features better. These results
demonstrate the superiority of our approach in driver emotion
recognition and highlight the advantages of using both facial
video and driving behavior modalities.
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TABLE V. COMPARISON WITH STATE-OF-THE-ART METHODS ON PPB-EMO. BOLD DENOTES THE BEST. V DENOTES  VIDEO MODAL. COG DENOTES COGNITIVE  

MODAL. DB  DENOTES  DRIVING BEHAVIOR MODAL. H DENOTES  HAPPINESS. SAD DENOTES SADNESS. N DENOTES NEURAL. A DENOTES ANGER. S DENOTES  

SURPRISE. D DENOTES DISGUEST. F DENOTES FEAR.

Model Modality 

Accuracy of Each Emotion (%) 
Acc 

(%) 

Macro  

F1  

Model 

Size 

(MB) 

Complexity 

(GFLOPs) H Sad N A S D F 

Emotion-FAN [20] (2019) V 49 30 69 31 33 36 22 40.21 0.3833 11.18 1.46 

Former-DFER [21] (2021) V 68 51 84 49 53 58 46 58.96 0.5854 19.01 8.32 

CogEmoNet [24] (2022) V-Cog 64 51 79 66 63 55 54 62.29 0.6228 21.36 15.51 

MDEmoNet (Ours) V-DB 75 58 86 69 69 44 64 67.92 0.6780 18.02 8.32 

V. CONCLUSION

In this paper, we propose a multi-modal driver emotion 
recognition network for automotive intelligent cockpits, which 
combines facial video and driving behavior data to classify 
driver emotions. By employing multi-task training and decision-
level fusion methods, the accuracy of driver emotion recognition 
is improved. The effectiveness of the entire scheme is validated 
through comparisons with advanced methods on the publicly 
available multi-modal driver dataset PPB-Emo. Experimental 
results demonstrate superior performance in accuracy, F1 score, 
model size, and computational complexity compared to state-of-
the-art methods. In conclusion, the proposed multi-modal driver 
emotion recognition network for automotive intelligent cockpits 
holds significant practical significance. In intelligent cockpits, 
this model can enhance the driving experience, improve driving 
safety, and contribute to more innovations and possibilities in 
the development of intelligent vehicles. 
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