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Abstract—The automotive smart cockpit is an intelligent and
connected in-vehicle consumer electronics product. It can provide
a safe, efficient, comfortable, and enjoyable human-machine
interaction experience. Emotion recognition technology can help
the smart cockpit better understand the driver's needs and state,
improve the driving experience, and enhance safety. Currently,
driver emotion recognition faces some challenges, such as low
accuracy and high latency. In this paper, we propose a multimodal
driver emotion recognition model. To our best knowledge, it is the
first time to improve the accuracy of driver emotion recognition
by using facial video and driving behavior (including brake pedal
force, vehicle Y-axis position and Z-axis position) as inputs and
employing a multi-task training approach. For verification, the
proposed scheme is compared with some mainstream state-of-the-
art methods on the publicly available multimodal driver emotion
dataset PPB-Emo.

Keywords—smart cockpit, driver emotion recognition, deep
learning, multimodal fusion

I. INTRODUCTION

Relying on the development of artificial intelligence [1-4]
and computing systems [5-8], smart cars are rapidly gaining
popularity and becoming widespread worldwide. The
popularization of smart cars has brought about dramatic changes
in smart cockpits, an in-vehicle consumer electronics product.
Driver emotion recognition technology infers the driver's
emotional state by analyzing a variety of data such as the driver's
facial expression, voice, physiological signal and behavior,
helping the smart cockpit better understand the driver's state and
needs. Thus, the smart cockpit can provide appropriate services
and support. Driver's negative emotions are one of the main
causes of traffic accidents. Emotions can affect a driver's
decision-making, alertness and driving behavior, and even lead
to road rage and aggressive behavior [9, 10]. Therefore, the
development of automatic driver emotion recognition and
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corresponding human-computer interaction systems to alleviate
drivers' negative emotions and avoid traffic accidents is of great
value in improving driving safety.

Driver emotion recognition technology can be divided into
invasive and non-invasive methods. Invasive methods require
drivers to wear physiological sensors or devices, which can
provide more accurate recognition results but may affect driving
safety and comfort. Non-invasive methods infer emotions by
analyzing drivers' facial expressions, voice features, and
behavioral actions, without contact with the driver directly,
making drivers safer and more comfortable. However, currently,
the accuracy of non-intrusive emotion recognition is relatively
low, and improving its accuracy is a crucial research direction.
Studies [11] have shown significant differences in facial action
units between driving scenarios and other life situations,
highlighting the importance of using driving scenario datasets in
driver emotion recognition research. Research [12, 13] has also
demonstrated that fusing multimodal data leads to higher
emotion recognition performance compared to using single
modal alone, as the latter may lack robustness in complex
situations. Moreover, the potential role of driving behavior data
in driver emotion recognition remains largely unexplored.
Furthermore, multi-task learning, which leverages shared
information from different tasks, enhances model performance
and generalization, making it particularly suitable for training
multimodal networks. Therefore, in our research, we utilize
facial video and behavior data (including brake pedal force,
vehicle Y-axis, and Z-axis positions) as inputs, conducting non-
invasive emotion recognition studies in driving scenarios, and
adopting a multi-task learning approach for training. The main
contributions of our work are summarized as follows:

e We first propose and design a multimodal driver emotion
recognition network based on facial video and driving
behavior.
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e We design the driving behavior feature extractor that can
improve emotion recognition accuracy and speed up
computation.

e We adopt multi-task learning, which can more
effectively integrate the two modalities compared to
single-task learning.

II. RELATED WORK

A. Emotion Classification

Typically, researchers classify emotions based on two
models. One is the discrete emotion model [14], which
categorizes emotions into different classes. In the 20th century,
Ekman and Friesen [15] defined six cross-cultural basic
emotions: anger, disgust, fear, happiness, sadness, and surprise.
Later, contempt was added as one of the basic emotions [16].
The other model is the dimensional emotion model, which uses
multiple dimensions to label emotions. Most dimensional
emotion models include valence and arousal [17] as two
dimensions. In the research of driver emotion recognition, the
discrete emotion model is more commonly used. This is because
the discrete emotion model is more intuitive and easier to
interpret, providing concise emotion classification results that
are easier for drivers and researchers to understand and apply.
This paper also adopts the discrete emotion model.

B. Driver Emotion Recognition

Psychologists such as Albert Mehrabian proposed that
emotional expression is 55% through facial expression [18].
Facial expressions are considered the most powerful way of
expressing emotions. Researchers have proposed different
models for facial video-based emotion recognition [19]. For
example, Meng D et al. introduced the Emotion-FAN model
[20], which automatically focuses on frames with distinctive
features. Zhao Z et al. proposed the Former-DFER model [21],
which learns facial features in both spatial and temporal
dimensions. Previous studies [11] have shown that human
emotional expressions in driving scenarios differ from those in
other life situations, making it essential to conduct driver
emotion recognition research using datasets specifically
collected in driving scenarios. Li et al. [22] publicly released the
first and currently the only multimodal dataset for driving tasks,
named PPB-Emo, in 2022. Additionally, Oh et al. [23] proposed
an onboard system for collecting multimodal data in real driving
environments. In recent years, research on driver emotion
recognition has been trending towards the direction of
multimodality. Li et al. [24] proposed the multimodal model
CogEmoNet, which takes the driver's facial video and cognitive
information (including age, gender, and driving age) as inputs.
Mou et al. [25] proposed a multimodal model using eye
movements, driving behavior, and environmental information as
inputs, adopting multitask learning based on a convolutional
long short-term memory network and a hybrid attentional
mechanism. Their research demonstrated the effectiveness of
driving behavior as an auxiliary modality for driver emotion
recognition. To the best of our knowledge, the fusion network
combining facial video and driving behavior modalities has not
been explored yet. Therefore, this paper aims to investigate the
fusion of these two modalities in our research.

III. MODEL DESCRIPTION

A. Overview

MDEmoNet is a multimodal driver emotion recognition
model with inputs modal to facial video and driving behavior
data (including brake pedal force, vehicle Y-axis position, and
Z-axis position), and outputs discrete emotion classification. As
shown in Fig. 1, the model contains a facial video modal
processing module, a driving behavior modal processing
module, and a decision module. The network employs multi-
task learning to fuse the two modalities more effectively.

B. Facial Video Modal Processing Module

We first segment the video samples into 8 segments with 2
randomly selected frames in each segment. In this way, each
video sample is transformed into a sequence of 16 frames of
112x112 RGB facial images, denoted as Xe R'®*112x112 Next,
this facial image sequence will be input into the convolution
module, and for each frame, the features of the facial image are
first extracted through four convolutional layers to obtain the
feature map MeRS*" where C denotes the number of
channels of the feature map, and A “and W”denote the height and
width of the feature map respectively. Flatten the feature map
into a one-dimensional sequence Me R where O=H W’ We
then encode spatial positions by adding a visual word
embedding m/,, of length C to a learnable position embedding e,
The calculation process is given as follows:

Zp =m‘£+ep pe{l,2,L ,Q} (1)

The next part is the Spatial Transformer, which is used to extract
spatial features from facial images. It consists of a spatial
encoder that includes multi-head self-attention and feed-forward
networks. Self-attention calculations are performed by
computing query(qg), key(k), and wvalue(v) vectors. The
calculation process is given as follows:

q, =WyLN(z,) )
ki =W¢LN(z,) 3)
vy =W/LN(z,) 4)

where LN(-) represents the layer normalization operation, W
represents the weight matrix of the k-th multi-head attention
head, where ke {1, ---, K}, K=8 is the total number of attention
heads. The self-attention weight 1, of each query p can be
obtained through the dot product. The calculation process is
given as follows:

kT

A = softmax(

3% .{k;'}p'zl,L ,Q) (5)

C’ is the potential dimension of each attention head. To
compute the encoding z within the block, first, the weighted
sum of value vectors is calculated using the self-attention
coefficients of the self-attention heads. The calculation formula
is as follows (6).
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Then, all the outputs from the self-attention heads are
concatenated and passed through an MLP projection with a
residual connection. The calculation can be represented as:

1

s,
z’p=W M+Zp 7

s,
z, ZMLP(LN(Z‘p))+Z'p (®)

Finally, the O encoded z” are concatenated together to generate
the refined feature map Mre R&*" " Then, it goes through a
convolutional layer, and the feature embedding x 7 R” for each
frame can be calculated as follows:

x' = GAP(g(Mr)) te{1,2,L 16} 9)

where g(+) represents the convolution block, and GAP(*) stands
for global average pooling. All frames share the same Spatial
Transformer module, given input Xe R!®3*112112 'which yields
output X € R!®F where F represents the dimensionality of the
features. Next, we input the feature sequence of the facial
images into the Temporal Transformer. It consists of 3 temporal
encoders, each comprising a multi-head self-attention and a
feed-forward network. Each temporal encoder is augmented
with temporal encoding embeddings. For example, the formula
for the temporal encoding embedding in the first temporal
encoder is as follows:

z.=x"+e, t'€{0,1L ,16} (10)

where e, represents the learned position embedding, used to
encode the temporal position. Unlike Spatial Transformer, we
add a special learnable vector x, at the first position of the
sequence to represent the embedding of the class token. Next,
in each temporal encoder, we calculate the query(q), key(k),
and value(v) vectors, following the same process as in Spatial
Transformer. The input of the next temporal encoder is the
output of the previous temporal encoder. Then, we use the
output z% of the class token from the final layer of the Temporal
Transformer to represent the video's features. Finally, we
perform classification using a fully connected network to obtain
the emotion recognition results for the video modality. The
calculation process is given as follows:

A

y,=FC(z)e i’ (11)

where FC(-) represents a fully connected network, and 7
indicates the number of emotion categories.

C. Driving Behavior Modal Processing Module

The PPB-Emo dataset records driving behavior modal data,
including acceleration, lateral acceleration, gas pedal position,
brake pedal force, gear, steering wheel position, velocity, lateral
velocity, x position, y position, and z position. We initially
extracted a total of 9396 features for each sample from the
driving behavior modal data, such as time reversal asymmetry
statistic, fft coefficient, fft aggregated, etc. To identify features
that have significant impacts on different emotion categories,
we performed a two-sided Mann-Whitney U test [26] to
determine whether each feature exhibits significant differences
between different emotion categories. We calculated the p-
value corresponding to the U statistic, which represents the
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probability of observing the U statistic or more extreme values
under the null hypothesis. If the p-value is small, it indicates
that the feature has a significant impact on the binary emotion
target. Conversely, if the p-value is large, it means that the
feature does not have a significant impact. We applied the
Benjamini-Hochberg method to control the false discovery rate
and finally identified which features are significant. After
conducting the significance test for all features, we selected a
total of 95 relevant features related to Brake pedal force, Y-axis
position, and Z-axis position. Due to space limitations, we
present key relevant features in Table I. We designed a driving
behavior feature extractor to extract these features. The raw
features extracted by the driving behavior feature extractor are
further processed through a linear layer, a normalization layer,
and a dropout layer to extract more meaningful features.
Subsequently, a fully connected network is employed for
classification, producing the emotional recognition results for
the driving behavior modality. The calculation formula is as
follows:

Fdb' = Dropout(LN (Linear(Fdb))) (12)

v, =FC(Fdb"e i’ (13)

where Fg, represents the raw features extracted by the driving
behavior feature extractor. Linear denotes the linear layer, and
Dropout(-) represents the dropout operation.

TABLE L. KEY DRIVING BEHAVIORAL FEATURES
Feature Description
A continuous wavelet transform for the Ricker

cwt coefficients
wavelet

The fourier coefficients of the one-dimensional

fft coefficient . .
coethicien discrete Fourier Transform

c3 Measure non linearity in the time series
large standard Whether the time series has a large standard
deviation deviation?
variation coefficient | The variation coefficient
quantile The q quantile of the time series
kurtosis The kurtosis of the time series
number cwt peaks Number of different peaks in the time series
median The median of the time series

range count Count observed values within the specific interval

A linear least-squares regression for values of the
time series that were aggregated over chunks
versus the sequence from 0 up to the number of
chunks minus one

agg linear trend

D. Decision Module

The decision layers of the video modal processing part and
the driving behavior modal processing part are concatenated,
and then the classification is performed through a fully
connected neural network. The calculation formulas are as
follows:

F=cat(y,,y,)e ; (14)
¥y = FC(F) (15)

where the cat(-) represents the concatenation operation and 3
represents the final classification result.
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E. Multi-task Learning

During the training process, we divided the overall task into
three sub-tasks. Sub-task 1 solely used facial video modality
features for classification, sub-task 2 solely used driving
behavior modality features for classification, while sub-task 3
integrated information from both facial video modality and
driving behavior modality for classification. During network
validation, we only retained sub-task 3. The designed loss
functions are as follows:

N exp(;mn,/argv’n )
S tog| T ) (16)
Zexp(ym,,“, \J

J

where N represents the number of samples and me {1, 2,
3} represents the different sub-tasks.

1
Loss =——>
BTN

m n=1

IV. EXPERIMENT

A. Dataset

The PPB-Emo dataset [22] is currently the only publicly
available multimodal driver emotion dataset. The dataset
collected psychological, physiological, and behavioral data
(including driving behavior and facial videos) from 40
participants in 240 driving tasks.

B. Implementation Details

1) Data Pre-processing: For the facial video modality, we
performed face alignment on each frame image to ensure that
the face is positioned at a standard location and resized to
112x112 pixels. In the original PPB-Emo dataset, there are a
total of 240 samples with a duration of 30 seconds. In order to
obtain more training data, we cut each original sample into 10
subsamples of 3 seconds, resulting in 2400 samples.

2) Training Setting: We implemented this model using the
platform PyTorch and optimized the parameters using the SGD
optimizer with an initial learning rate of 0.01, which was
divided by 10 every 40 epochs. The batch size was set to 64,
and training was stopped after 130 epochs. We randomly split
the dataset into training and validation sets in an 8:2 ratio. The
final experimental results were obtained by averaging the
scores from five experiments.

3) Validation Metrics: Driver emotion recognition is a
multi-classification task, and the primary evaluation metric is
accuracy [27, 28]. To ensure a fair comparison, we also include
the Macro F1 score [29] as a supplementary evaluation metric.
The complexity of the model determines the computing speed
of the system. Considering the storage resources of the in-
vehicle system are limited, we take the size and complexity of
the model as additional evaluation metrics.

C. The Impact of Driving Behavior Feature Selection on
Model Performance

We input all the features and the filtered features into the
network separately, and modify the input layer dimension of the
driving behavior modal processing module accordingly. The
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experimental results are shown in Table II. The accuracy and F1
score of the model with filtered features input are significantly
improved compared to the model with all features input,
increasing by 6.04% and 0.071 respectively. This indicates that
the filtered features can better capture the emotion-related
information in driving behavior and better distinguish different
emotion categories. In contrast, the full set of features may
contain some redundant information, which reduces the
performance of the model. The experimental results show that

feature selection can significantly improve the model
performance.
TABLE II. RECOGNITION RESULTS OF ALL FEATURES AND FILTERED

FEATURES INPUT INTO THE NETWORK

Input Driving Behavior Feature Acc(%) Macro F1 score
All the features 61.88 0.6070
Filtered features 67.92 0.6780

D. The Impact of Different Driving Behavior Modality
Feature Extraction Methods on Model Performance

Since the BiLSTM neural network is widely used for
handling time series data, we compared this RNN model with
the proposed driving behavior feature extractor for extracting
driving behavior modality features in terms of accuracy, F1
score, model size, and computational speed. The experimental
results (shown in Table III) demonstrate that the model using
the driving behavior feature extractor performs the best in
accuracy and F1 score, achieving 67.92% and 0.6780,
respectively. The model using 2-layer BiLSTM for feature
extraction has slightly lower accuracy compared to the driving
behavior feature extractor, with a larger model size and slower
computational speed. The models using 1-layer or 3-layer
BiLSTM for feature extraction have lower accuracy. Therefore,
the results suggest that our designed driving behavior feature

single-modal network using facial video shows a significant
improvement in accuracy and F1 score compared to the driving
behavior modality, reaching 58.96% and 0.5854. The
multimodal network demonstrates even greater improvement in
accuracy and F1 score achieving 67.92% and 0.6780. The
fusion of multiple modalities effectively utilizes information
from both driving behavior and facial video modalities, leading
to a significant enhancement in model performance. Overall,
the experimental results validate the effectiveness of
multimodal fusion.

2) Evaluation of multi-task learning: We removed subtask
1 and subtask 2, keeping only task 3, and compared it with
MDEmoNet, using multi-task learning. The experimental
results, as shown in Table IV, indicate that the model using
single-task learning achieved an accuracy of 35.63% and an F1
score 0f 0.3314. On the other hand, MDEmoNet with multi-task
learning achieved a higher accuracy of 67.92% and an F1 score
of 0.6780. The multi-task learning strategy significantly
improved the model's classification performance. Therefore,
multi-task learning is effective in this model.

3) Evaluation of decision layer fusion: We modified the
network to perform feature-level fusion and compared it with
MDEmoNet using decision-level fusion. The results, as shown
in Table IV, indicate that the model with feature-level fusion
achieved an accuracy of 63.83% and an F1 score of 0.6348,
while the model with decision-level fusion achieved a higher
accuracy of 67.92% and an F1 score of 0.6780. The use of
decision-level fusion improved the performance of the model
compared to the feature-level fusion model. Therefore, using
decision-level fusion in this model is reasonable.

extractor is a superior choice, providing higher accuracy, faster TABLEIV.  EVALUATION OF COMPONENTS IN MDEMONET
computational speed, and relatively smaller model size. Model Ace%) Macro Fl score
TABLE III RECOGNITION RESULTS OF DIFFERENT DRIVING BEHAVIOR Driving behavior unimodal 2188 0.1756
" MODAL FEATURE EXTRACTION METHODS Facial video unimodal 58.96 0.5854
Using single-task learning 35.63 0.3314
Driving behavior A M Model C lexit Using feature layer fusion 63.83 0.6348
modal feature (0/°§ Fl score Size ( CEL (‘)”I‘,‘s)y MDEmoNet 67.92 0.6780
extraction method ° (MB) ) .
1-layer BILSTM 60.62 | 0.5980 18.57 9.32 F. Comparison with State-of-the-Arts
2-layer BiLSTM 66.67 | 06613 20.04 12.17 We compared our MDEmoNet model with several state-of-
th3 '(liaye.r B1tI;ShTM 58.96 0.5857 21.72 15.01 the-art models on the PPB-Emo dataset from recent years. These
€ drivin chavior . N
feature egxtra o Oro 67.92 0.6780 18.02 8.32 advanced methods include the Emotion-FAN model [20] (2019)

E. Ablation Analysis

To wvalidate the effectiveness of each component in
MDEmoNet, the necessary ablation analysis is conducted in this
part. We separately studied the effectiveness of multimodality,
multi-task learning, and decision layer fusion methods.

1) Evaluation of multimodality: We compared the
classification results between single-modal and multimodal
networks. We separately retained the network with only the
driving behavior modality and the network with only the facial
video modality. The experimental results, as shown in Table IV,
indicate that the single-modal network using driving behavior
has lower accuracy and F1 score, at 21.88% and 0.1756. The
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for facial video emotion recognition, the Former-DFER model
[21] (2021) for the in-the-wild scenario facial emotion
recognition, and the CogEmoNet model [24] (2022) for driver
emotion recognition using both facial video and cognitive
features (age, gender, and driving experience) as inputs. The
results in Table V show that our MDEmoNet achieved excellent
performance on the PPB-Emo dataset. It outperformed other
models in most sentiment categories, overall accuracy and F1
scores. Additionally, our model has relatively smaller model
size and computational complexity. By effectively leveraging
both video and driving behavior modalities, MDEmoNet
captures the driver's emotional features better. These results
demonstrate the superiority of our approach in driver emotion
recognition and highlight the advantages of using both facial
video and driving behavior modalities.
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TABLE V.

COMPARISON WITH STATE-OF-THE-ART METHODS ON PPB-EMO. BOLD DENOTES THE BEST. V DENOTES VIDEO MODAL. COG DENOTES COGNITIVE

MODAL. DB DENOTES DRIVING BEHAVIOR MODAL. H DENOTES HAPPINESS. SAD DENOTES SADNESS. N DENOTES NEURAL. A DENOTES ANGER. S DENOTES
SURPRISE. D DENOTES DISGUEST. F DENOTES FEAR.

Accuracy of Each Emotion (%) Model .
Model Modality Acc Macro Size Complexity
H | Sad N | A S D F (%) F1 (MB) (GFLOPs)
Emotion-FAN [20] (2019) \4 49 30 69 | 31 | 33 | 36 | 22 40.21 0.3833 11.18 1.46
Former-DFER [21] (2021) \4 68 51 84 | 49 | 53 | 58 | 46 58.96 0.5854 19.01 8.32
CogEmoNet [24] (2022) V-Cog 64 51 79 | 66 | 63 | 55 | 54 62.29 0.6228 21.36 15.51
MDEmoNet (Ours) V-DB 75 58 86 | 69 | 69 | 44 | 64 67.92 0.6780 18.02 8.32

V. CONCLUSION

In this paper, we propose a multi-modal driver emotion
recognition network for automotive intelligent cockpits, which
combines facial video and driving behavior data to classify
driver emotions. By employing multi-task training and decision-
level fusion methods, the accuracy of driver emotion recognition
is improved. The effectiveness of the entire scheme is validated
through comparisons with advanced methods on the publicly
available multi-modal driver dataset PPB-Emo. Experimental
results demonstrate superior performance in accuracy, F1 score,
model size, and computational complexity compared to state-of-
the-art methods. In conclusion, the proposed multi-modal driver
emotion recognition network for automotive intelligent cockpits
holds significant practical significance. In intelligent cockpits,
this model can enhance the driving experience, improve driving
safety, and contribute to more innovations and possibilities in
the development of intelligent vehicles.
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