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Abstract 

Short-term solar irradiance forecasting is crucial in managing power network operations 
and solar photovoltaic applications. In this paper, a Multi-view Deep Forecasting method 
with Error Correction (MvDF_EC) for 1-hour ahead solar forecasting is proposed. 
MvDF_EC comprises of the Multi-view Deep Forecasting method (MvDF) and a robust 
Radial Basis Function Neural Network trained via minimizing the Localized Generalization 
Error for compensating the solar forecasting error of MvDF. MvDF consists of three deep 
neural networks which learn representations of input data from different views. The three 
views are 1) the hierarchical local temporal information extracted by the Temporal 
Convolutional Neural Network (TCN), 2) the key context sequential information captured 
by the Bi-directional Long Short-Term Memory Neural Network with Temporal Attention 
(BLSTMattn), and 3) long-term temporal dependencies between local temporal patterns 
filtered by the Convolutional Gated Recurrent Unit Neural Network (C_GRU). The solar 
forecasting performance of the proposed MvDF_EC is evaluated with the National Solar 
Radiation Database. Simulation results show that MvDF_EC yields the most accurate solar 
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prediction compared with the benchmarks including the smart persistence and the state-of-
the-art models. The lowest relative Root Mean Square Error values for Maraba and Labelle 
are 22.08% and 27.40%, respectively in 1-hour ahead solar forecasting. 

Keywords: Solar forecasting, multi-view deep forecasting, error correction 

1. Introduction

Forecasting of renewable energy resources such as wind and solar is important for the
optimal operation of low-carbon power systems (Su. et al., 2020; Wu. et al., 2020). Solar 
energy is regarded as one of the cleanest forms of energy and the short-term solar 
forecasting is crucial in managing power network operations (Huang et al., 2018; Lai. et al., 
2017a). The real-life Global Horizontal Irradiance (GHI) predictions can address the 
performance characteristics of solar photovoltaic applications. But due to the influence of 
cloud amount and atmospheric state, the short-term forecasting is challenging. 

In previous studies, many data-driven approaches were proposed for short-term solar 
forecasting. These approaches can be mainly divided into three parts: the physical methods, 
the statistical methods, and the machine learning methods. The physical methods are based 
on mathematical meteorological data prediction (Larson et al., 2016) and the statistical 
methods utilizing the real historical solar time series data for forecasting include the auto-
regressive integrated moving average and the Markov Chain model (Jiang et al., 2017), 
among others. Recently, machine learning based approaches have been paid more attention, 
including the unsupervised clustering for de-trending solar data, adaptive learning, and deep 
learning. 

A novel clustering method TB_K-means (Azimi et al., 2016) was proposed to partition 
the solar data into several clusters where the solar data in each cluster is more stationary and 
more predictable. The TB_K-means is combined with the multiple layer perceptron to 
develop the hybrid hourly solar radiation forecasting method. The similar hybrid forecasting 
method was proposed (Feng et al., 2018), where multiple machine learning models were 
adopted including the Support Vector Machine (Bae et al., 2017), the Artificial Neural 
Network (Rodríguez et al., 2018), and the Random Forest (Benali et al., 2019) to forecast 
the hourly real-life GHI of each cluster. The clustering technique is utilized in a different 
way (Sun et al., 2018) where the K-means clustering is used to cluster the forecasting 
results of each sub-component generated from the Ensemble Empirical Mode 
Decomposition method, and a least squares support vector regression is applied to ensemble 
the sub-component forecasts of each cluster. 

A novel adaptive learning hybrid model was proposed (Wang et al., 2018) which consists 
of a time-varying multiple-linear model for capturing the linear relationship, a neural 
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network for capturing the non-linear one, and an adaptive learning online algorithm for 
improving the predicting performance adaptively online. The study (Sanfilippo et al., 2016) 
proposed a novel multi-modeling approach for solar forecasting. The supervised 
classification of forecasting evaluation results from diverse models was used to select the 
best predictions, according to their expected superiority in terms of lower error rate. 

Deep learning had been applied widely to the renewable energy, such as wind power (Li, 
et al., 2018; Li et al., 2019) and solar energy (Feng and Zhang, 2020; Zhen et al., 2020). The 
Convolutional Neural Network (CNN) was adopted (Feng and Zhang, 2020) to forecast the 
solar PV output using the contemporaneous images of the sky, while the study (Zhen et al., 
2020) firstly assigned the sky image to the corresponding class using the deep clustering 
method and then utilized a corresponding hybrid deep learning method for PV power 
forecasting. The meteorological features were utilized (Qing and Niu, 2018) as the input for 
a Long Short-Term Memory neural network (LSTM) for day-ahead hourly solar radiance 
prediction. Furthermore, the study (Ghimire et al., 2019) applied CNN to extract features 
from predictive variables while the LSTM absorbed them for solar radiation prediction. In 
contrast, the study (Zhang et al., 2020) adopted the CNN in a different way where the CNN 
was used to extract spatial correlation from meteorological parameters associated with a 
target site and its neighboring sites. Besides, a LSTM is applied to extract the temporal 
features from historical solar irradiance data and the correlations of the CNN and LSTM are 
merged finally to predict the solar irradiance. 

Different types of deep learning models such as CNN and LSTM can capture a different 
type of temporal information. The CNN is conducted to get the local temporal information 
of the input sequences (i.e., GHI feature sequences and meteorological feature sequences) 
while the LSTM can learn the long-term dependency of the input sequences. Thus, in this 
study a Multi-view Deep Forecasting with Error Correction (MvDF_EC) method is 
proposed for 1-hour ahead real-life GHI forecasting. MvDF_EC utilizes the idea of multi-
view learning (Zhang et al., 2016) to describe the input sequences more comprehensively 
and accurately in different ways using three different deep neural networks. They are the 
Temporal Convolutional Neural Network (TCN) (Bai et al., 2018), the Bi-directional Long 
Short-term Memory Neural Network with Temporal Attention (BLSTMattn) (Bin et 
al.,2019), and the Convolutional Gated Recurrent Unit Neural Network (C_GRU) (Zuo et 
al., 2016). Furthermore, an error correction method is employed in MvDF_EC to obtain 
higher forecasting accuracy. The major contributions of this work are as follows: 

1) A Multi-view Deep Forecasting (MvDF) method is proposed for 1-hour ahead real-life
GHI prediction by exploiting three different views learned by three deep neural
networks. The three views are 1) the hierarchical local temporal information extracted
by the TCN, 2) the key context sequential information captured by BLSTMattn, and 3)
long-term temporal dependencies between local temporal patterns filtered by the
C_GRU. These three views are then combined by the complementary and the
consensus principles for training MvDF. To the best knowledge of the authors, this is
the first multi-view deep learning work for the solar radiance forecasting problem.

2) The Radial Basis Function Neural Network (RBFNN) trained via minimizing the
Localized Generalization Error (L-GEM) (Yeung et al., 2007) is adopted to compensate
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for the prediction error of MvDF. Instead of performing the forecasting, the RBFNN 
predicts the error made by MvDF using the same input. L-GEM minimizes the 
generalization error made for unseen samples similar to the training samples only such 
that minor errors made by MvDF are compensated. However, L-GEM ignores very 
different unseen samples to allow a large error for very different unseen samples which 
are learned in training and expected to be correct. 

3) Extensive simulations are carried out to confirm the superiority of the proposed
method. Simulation results on the National Solar Radiation Database show that the
proposed method outperforms existing methods for solar forecasting in most cases.

The remainder of this paper is organized as follows. Section 2 describes the proposed 
method for 1-hour ahead real-life GHI forecasting. Section 3 gives the simulation results 
and detailed discussion. Finally, we provide the conclusion and future works in Section 4. 

2. Multi-view Deep Forecasting with Error Correction for Real-life GHI Forecasting

In this study, the proposed MvDF_EC consists of MvDF and RBFNN. MvDF is proposed
for 1-hour ahead real-life GHI forecasting, while RBFNN trained via minimization of L-
GEM is used to predict the forecasting error of MvDF. The final forecast result of MvDF is 
the summation of outputs of MvDF and RBFNN. Both MvDF and RBFNN take the same 
input features and the features are from two information sources, namely (i) GHI features: 
real-life GHI, clear-sky GHI, clear-sky index, and solar zenith angle. (ii) Meteorological 
features: temperature, relative humidity, wind speed, wind direction, and pressure. Note that 
the clear-sky GHI is calculated from the solar model without considering the environmental 
effect but the real-life GHI is moreover affected by the weather conditions (Lai. et al., 
2017b). The overall forecasting procedure of MvDF_EC is shown in Fig. 1. 

 In the following section, we first introduce three representative deep neural networks for 
time series prediction in Section 2.1, which are used to generate different representations 
from the same input sequences. Then, the proposed MvDF is given in Section 2.2. Finally, 
the robust RBFNN for error correction of MvDF is given in Section 2.3. 
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Fig. 1. 1-hour ahead real-life GHI forecasting procedure of MvDF_EC. 

2.1. Multi-view Construction 

Three representative types of deep learning models for time series prediction (Han et al., 
2019) are adopted in this paper to provide three different views. More specifically, they are 
TCN, BLSTMattn, and C_GRU. All these three deep neural networks capture the temporal 
features in different ways. Each layer of TCN learns the short-term relationship of the input 
sequences. The long-term useful temporal representations for real-life GHI forecasting are 
established by layer-by-layer stacking the convolutional layers. BLSTMattn learns the 
context information through BLSTM and focuses on key temporal information for real-life 
GHI forecasting by the temporal attention mechanism. C_GRU utilizes CNN as the filter 
for extracting higher-level local temporal patterns which are fed into GRU to learn the 
representations for real-life GHI forecasting.  

In fact, these three models have their own limitations. As for TCN, in the case of its local 
kernel and layer-by-layer stacking characteristics, the information of those closer to the 
predicted time may not well focused while this information is important for real-life GHI 
forecasting. On the contrary, BLSTMattn can more easily remember the recent information 
of the input sequences, but it cannot solve the vanishing gradients problem completely. 
Although the hybrid model C_GRU can solve the drawbacks of the two above mentioned 
models to some extent, it easily gets affected by different random weight initializations due 
to the more complex model architecture and hence behaves unstable. Therefore, the multi-
view learning framework is adopted in this study to utilize the knowledge from these three 
models (views) to establish a more effective model for real-life GHI forecasting. Brief 
introductions of these three deep neural networks are given as follows: 
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1) Temporal Convolutional Neural Network (TCN) 
TCN adopts the 1D dilated causal convolution in each layer to capture the local temporal 

patterns. The 1D dilated causal convolution is implemented with the left zero padding such 
that the output of each layer at time t is convolved only with features from time t and earlier 
in the previous layer. Besides, it supports an exponential expansion of the receptive field 
without loss of coverage, which enables a longer time dependency to be captured. Suppose 

 is an input of the convolutional network layer consisting of multiple dilated causal 
convolutions, and the convolutional kernel of layer is C={f1, f2… fw}, then the output of 
the convolutional layer at time step t is defined as:  

 (1) 

where d is the dilation factor and k is the kernel size. By stacking the convolutional layers, 
more past information can be fused in the deeper layer and thus more high-level temporal 
features can be learned. In addition, the identity mapping (Li and Wang, 2017) is also 
adopted in TCN to stabilize a deeper and larger network. The illustration of a residual block 
is given in Fig. 2 below: 

 
Fig. 2. A residual block of TCN. The black lines are kernels and the blue line indicates the 

identity mapping. 

2) Bi-directional Long Short-Term Memory Neural Network with Temporal Attention 
(BLSTMattn) 

BLSTMattn adopts the Bi-directional Long Short-term Neural Network (BLSTM) to 
capture the temporal relation of the input sequences. Besides, the temporal attention 
mechanism is used in BLSTMattn to explicitly enhance the importance of different hidden 
states at different time. The overall architecture of BLSTMattn is shown in Fig. 3. 
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Fig. 3. The architecture of BLSTMattn. 

 
BLSTM consists of two unidirectional LSTMs with opposite directions so that it can 

capture the context information. The LSTM consists of four basic components: the input 
gate it, the forget gate ft, the output gate ot, and the cell state ct. The forget gate ft takes 
current input and previous hidden state ht-1 as inputs to determine how much information 
of the previous cell state ct-1 will be forgotten using the sigmoid function . and ht-1 are 
also used for calculating a new candidate cell state . The input gate it determines which 
information of should be updated into the stored cell state ct. The output gate ot controls 
how much information ct is given and thus results in the hidden state ht as demonstrated by 
the following equations:  

 (2) 
 (3) 

 (4) 
 (5) 

 (6) 
 (7) 

where denotes the dot product and denotes the element-wise product. and 
( ) are learnable parameters.  

BLSTM concatenates two hidden states of opposite directions at the same time t as the 
final hidden state: 

 (8) 
where and denote the tth hidden states of two LSTMs with forward and past-ward 
direction, respectively. 
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The temporal attention mechanism is applied to the hidden states to denote the 
importance of each ht by the corresponding attention weight . The weighted sum of all 
hidden states is denoted as rH which is used for real-life GHI forecasting: 

 (9) 

  
(10) 

 (11) 

where uw is a learnable parameter vector. 

3) Convolutional Gated Recurrent Unit Neural Network (C_GRU) 
As shown in Fig. 4, the C_GRU adopts convolutional layers to learn the local temporal 

features of the input sequences while the Gated Recurrent Unit neural network (GRU) 
(Zhao et al., 2018) takes the local temporal patterns to learn the long-term dependencies.  

 
Fig. 4. The illustration of the C_GRU. 

GRU consists of the reset gate, update gate, and the hidden state. The reset gate is used 
to decide whether to ignore the previous hidden state . The update gate is used to 
determine how much memories should be updated by a new candidate hidden state , as 
shown in the following equations: 

 (12) 
 (13) 
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 (15) 

2.2. Multi-view Deep Forecasting (MvDF) 

Considering a single deep neural network has its own characteristic and limitation to 
capture the temporal information of the input sequences, three deep neural networks (TCN, 
BLSTMattn, and C_GRU) are adopted to consider the temporal characteristics of the same 
input sequences in different perspectives to describe the data more comprehensively and 
accurately. The multi-view learning paradigm is utilized to make full use of the information 
provided by each deep neural network. The success of multi-view learning strongly 
depends on complementary and consensus principles. 

1) Complementary Principle 

The complementary principle states that utilizing different representations of the data can 
describe the data more accurately since each representation may contain some information 
that others do not know. In this paper, three different deep neural networks forecast the next 
hour real-life GHI by using extracted representations of their own. The view attention is 
utilized to combine the forecasting outputs of three deep neural networks appropriately 
under the complementary principle. Let O denotes the matrix consisting of outputs of three 
networks. That is O=[o1,o2,…oV] and the number of views V=3. Let Wv = [w1,w2,…,wV] 
where wv (v=1,2,…,V) denotes the weight of the output of the vth deep neural network. The 
following equations show how to calculate the view weight matrix Wv: 

 (16) 
 (17) 

where Ww and uv are learnable parameters. Therefore, the complementary loss is established 
as shown in the following: 

 (18) 

where , sn, yn, and N represent the vth deep neural network, the nth sample, the label of 
the corresponding nth sample, and the total number of samples, respectively.  

2) Consensus Principle 
The consensus principle aims at minimizing the disagreement on multiple distinct views. 

The study reported (Dasgupta et al., 2002) proves that the probability of the disagreement 
of two independent hypotheses f1 and f2 on unseen samples is the upper bound of the error 
rate of each hypothesis, as shown in the following: 

 (19) 
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Thus, by minimizing the disagreement probability of two hypotheses on unseen samples, 
the forecasting accuracy of each hypothesis can be improved. In this paper, the consensus 
loss function is also established to minimize the disagreement of three deep neural 
networks’ forecasting outputs on the perturbed input samples which are generated by 
adding small Gaussian noises to the original samples : 

  
(20) 

Therefore, the final objective function for training the proposed MvDF model is given by 
minimizing both the complementary loss and consensus loss: 

 

 
(21) 

where  is the hyper-parameter to balance the complementary and consensus principles.  
    It should be noted that MvDF is not trained from scratch in this study. This is because a 
deep neural network with randomly initialized weights may fail to accomplish the difficult 
real-life GHI forecasting task and thus each network cannot provide useful information to 
each other to improve the forecasting accuracy. Therefore, each deep neural network is pre-
trained with the labeled data first. Then, as shown in Fig. 5, they are jointly fine-tuned 
according to Equation (21). The blue color indicates the data flow for calculating the 
complementary loss while the red color indicates the data flow for calculating the 
consensus loss. The circles represent deep networks’ outputs. The output of the View 
Attention is the view weight matrix Wv. 

 

 
Fig. 5. Fine-tuning stage of MvDF.  
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2.3. Error Correction for MvDF (MVDF_EC) 

Since the proposed MvDF may still suffer from systematic errors (Liu et al., 2019) (e.g., 
making a too high or too low prediction), RBFNN trained via minimizing the L-GEM is 
utilized to further enhance the real-life GHI forecasting accuracy. More specifically, 
RBFNN takes the same input as MvDF but tries to predict the next hour real-life GHI 
forecasting error generated from MvDF rather than the next hour real-life GHI values. In 
this work, the historical forecasting error is not severed as the input feature to the RBFNN 
because the possible different distribution between the training and testing input features to 
MvDF may enlarge the forecasting error distribution difference between the training and 
testing phase. If MvDF fails to generalize well to the unseen testing data which follows a 
slightly different distribution compared with the training data, the RBFNN utilizing the 
training forecasting error of MvDF as input feature may not perform well when taking the 
testing forecasting error of MvDF as input.  

The purpose of RBFNN training is to find a network structure and connection weight to 
minimize the generalization error. In fact, once the number of hidden neurons is 
determined, centers and widths of hidden neurons can be obtained by K-means clustering. 
After fixing both centers and widths, connection weights can be calculated by a pseudo-
inverse technique. Therefore, the objective of RBFNN training can be simplified to the 
finding of the optimal number of hidden neurons which minimizes the generalization error. 
We cannot, however, directly estimate the generalization error. In this study, L-GEM is used 
to find the upper bound of the generalization error. According to the L-GEM, given a small 
positive value Q, the localized generalization error upper bound of a RBFNN is 
given with a probability of 1−η: 

 
 

(22) 
where , A, B, Remp, and  denote the difference between the 

maximum and the minimum value of outputs, the minimum value of training mean square 
error, the training mean square error, and the stochastic sensitivity measure (SSM) of output 
differences, respectively. 

Note that both A and  are constants for a given training dataset. The SSM measures the 
output perturbations of a RBFNN between training samples and unseen samples in SQ 
which is the union of Q-neighborhoods of all training samples. The Q-neighborhood 
( ) of a training sample xf is defined as follows: 

 (23) 
where ∆x = (∆x1,...,∆xD), ∆xi, and D denote the stochastic perturbation, the stochastic 
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perturbation on the ith input feature, and the number of input features, respectively. In 
general, we do not have any prior knowledge about the distribution of unseen samples in 
SQ, thus we adopt a quasi-Monte Carlo based method (Yeung et al., 2016) to estimate the 
SSM value of a RBFNN : 

  
(24) 

where P is the number of Halton points and ∆xp denotes a Halton point with each 
coordinate ranges from [−Q, Q]. By fixing Q, the optimal RBFNN is found by searching 
the number of hidden neurons which yields the minimum . Note that the maximum 
possible number of hidden neurons is often set as the number of training samples. 

3. Simulations and Results 

3.1. Simulation Setup 

1) Data 
This study employs two 13-year (from 2005 to 2017) hourly datasets collected from the 

National Solar Radiation Database (Sengupta, et al., 2018) to train and test the 1-hour ahead 
real-life GHI forecasting models (Data from 2015 to 2016 was utilized for training 
forecasting models while data from 2017 was served as testing data). One dataset is based 
on Itupiranga (latitude = 5.15o S, longitude =49.34o W), Brazil and the other one is based on 
Ocala (latitude =29.17o N, longitude =82.14o W), Marion, Florida, United States.  

2) Implementation Details 

  
                                         (a)                                                                   (b) 

Fig. 6. Mutual information of various time-lags. 
In this paper, the inputs fed to the models were the recent historical sequences pre-

processed by a sliding window in this study. The size of the sliding window determines 
how much historical information a model can observe to forecast the next hour real-life 
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GHI. In this study the mutual information calculating the correlation of current observed 
real-life GHI with the historical real-life GHI at different time is utilized to determine the 
window size, as shown in Fig. 6. More specifically, the first minimum criterion (Ghimire, et 
al., 2019) is used to determine the window size. Hence according to Fig. 6, the sliding 
window size for the Maraba and the Labelle were both set as 12 hours.  

For training MvDF, the training data (from year 2005 to 2016) was sorted in time to be 
further divided into two parts, that is, the 20% at the end of the ranking was served as the 
validation data for determining the hyper-parameters of the MvDF and the remaining was 
utilized to train MvDF. Giving the searching ranges for each hyper-parameter, those hyper-
parameter configurations yielding the smallest Mean Square Error on the validation data 
were regarded as the best configuration. Note that the structure of each branch (i.e., TCN, 
BLSTMattn, and C_GRU) of MvDF was determined by the validation data separately to 
reduce the computational requirement. Table 1 summarizes the details of hyper-parameters 
configurations of MvDF. As for RBFNN, all training data from year 2005 to 2016 were 
utilized to train RBFNN because once the hyper-parameter Q is determined, the structure of 
RBFNN can be determined as well according to the minimization of L-GEM. The Q value 
was set as 0.01 to represent a 1% deviation from the training samples after normalization to 
[0, 1].  

 

Table 1. Model Structure of MvDF determined by the validation data 

Locations Models Hyper-parameters Configurations 

Maraba 

TCN 

Two-layer causal convolutional layers; 

Dilation rates of the 1st and 2nd layer are 1 
and 2, respectively; 

Kernel sizes of both layers are 2; 

Number of kernels of both layers is 64 ; 

BLSTMattn 
Number of BLSTM layers is 1; 

Number of hidden units is 64; 

C_GRU 

Number of convolutional layer is 1; 

Kernel size of the convolutional layer is 3; 

Number of kernel in the convolutional layer is 
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64; 

Number of GRU layer is 1; 

Number of hidden units of GRU layer is 128; 

MvDF The  balancing the complementary and 
consensus is 0.0001;  

Labelle 
 

TCN 

Two-layer causal convolutional layers; 

Dilation rates of the 1st and 2nd layer are 1 
and 2, respectively; 

Kernel sizes of both layers are 2; 

Number of kernels of both layers is 64 ; 

BLSTMattn 
Number of BLSTM layers is 1; 

Number of hidden units is 16; 

C_GRU 

Number of convolutional layer is 1; 

Kernel size of the convolutional layer is 1; 

Number of kernel in the convolutional layer is 
64; 

Number of GRU layer is 1; 

Number of hidden units of GRU layer is 64; 

MvDF The  balancing the complementary and 
consensus is 0.01;  

 
To show the effectiveness of the proposed method, several recent works were 

implemented to compare with our proposed method. The following is a brief introduction 
of the methods:  
(i) Smart Persistence (Yang, 2019): Smart persistence is the persistence model which is 

often referred to as the baseline in previous studies. The key idea is to predict the next 
hour real-life GHI by assuming the next hour clear-sky index is the same as the current 

l

l
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hour clear-sky index, as shown below: 
 (25) 

where kcs(t), Ics(t+1) and represent the clear-sky index at time t, the clear-sky 
GHI at time t+1, and the predicted GHI at time t+1. 

(ii) TB_K-means+MLP 0: A new clustering TB_K-means is proposed to partition the real-
life GHI time series data into k clusters and each cluster has its corresponding real-life 
GHI predictor which is the Multiple Layer Perceptron (MLP). 

(iii) Random Forest (RF) (Benali et al., 2019): The random forest is a collection of multiple 
decision trees, where each decision tree is trained by a randomly sampled subset. The 
output of the RF is the average of all decision trees, which makes the RF more robust.  

(iv) LSTM (Qing and Niu, 2018): LSTM takes meteorological features as input to achieve 
the real-life GHI forecasting. 

(v) C_LSTM (Ghimire et al., 2019): C_LSTM exploits a CNN to extract local temporal 
features and then a LSTM takes these local temporal features as input to forecast real-
life GHI. 

Besides, to make a fair comparison, the features fed to all forecasting models (except the 
Smart Persistence) are the same. 

3）Evaluation Criteria 

Several commonly used statistical metrics for regression problems are employed to 
evaluate the forecasting performances of real-life GHI prediction models. They are the 
relative Root Mean Square Error (rRMSE), the relative Mean Bias Error (rMBE), the 
maximum error (Errormax), and the minimum error (Errormin). Equations of these metrics are 
given below: 

 
 

(26) 

 

 
(27) 
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(29) 
where f(t) and h(t) represent the predicted GHI at time t and the real GHI at time t, 
respectively. U is the total number of the testing data. Furthermore, Forecast Skill (FS) is 
also used to make a fair comparison among point forecasts made at different locations 
(Yang, 2019). 
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(30) 

 
where rRMSEproposed is the rRMSE of the model under evaluation and rRMSEbaseline is the 
rRMSE of the baseline (i.e., Smart Persistence).  

3.2. Results and Analysis 

1) Effectiveness of Multi-view Learning and Error Correction 
In this study, in terms of both rRMSE and rMBE metrics, data from 2017 are used to 

evaluate the effectiveness of the proposed MvDF compared with each single network 
branch (view) and to evaluate the effectiveness of the error correction for MvDF. The 
rRMSE quantifies the difference between the prediction and actual observation and the 
rMBE quantifies how much overestimation or underestimation bias a model may produce. 
If a photovoltaic prediction system produces severe overestimation, it may cause the actual 
power shortage, otherwise, it may cause excess power generation. Therefore, a solar 
forecasting model which can produce the rMBE as closed to 0 as possible will have a 
practical significance. 

Table 2 shows that each branch achieves a similar performance. However, each branch 
provides distinct representation for real-life GHI forecasting and thus contains some 
information that others cannot provide. For example, the TCN makes forecasting by 
considering all local temporal segments, while BLSTMattn makes forecasting by utilizing 
the key temporal information of the working memory. When the multi-view learning 
schema is utilized (thus results in MvDF), the forecasting accuracies are improved (i.e., 
lower rRMSE and rMBE closer to zero). MvDF yields higher prediction accuracies than 
each branch and alleviates the problem of overestimation or underestimation of real-life 
GHI (the rMBE value away from zero) on single view because it makes forecasting by 
jointly combining all forecasting outputs of each network branch appropriately under the 
complementary principle.  

By utilizing the RBFNN trained via minimizing L-GEM to compensate the solar 
forecasting error of MvDF, MvDF_EC obtains a further improvement over MvDF 
especially in terms of rMBE. That is a significance difference of 86.5% i.e., (0.37-
0.05)/0.37 and 33.9% i.e., (0.59-0.39)/0.59 for Maraba and Labelle, respectively. Although 
the RBFNN produces a low improvement in terms of the rRMSE which may be caused by 
the limited capacity of the RBFNN, the RBFNN is a fast-training model compared with the 
deep learning models because the weight of the RBFNN can be determined by the linearly 
pseudo inverse method. Therefore, adding the error correction model in the forecasting 
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system will not complicate the system too much, but also reduce the overestimation or 
underestimation forecasting bias of the forecasting system. 

Table 2. Results of MVDF_EC for 1-hour ahead real-life GHI forecasting 

Locations Models 
Performance Metrics 

rRMSE(%) rMBE (%) 

Maraba 

TCN 22.57 -1.94 

BLSTMattn 22.51 3.41 

C_GRU 22.37 -0.63 

MvDF 22.10 0.37 

MvDF_EC 22.08 0.05 

Labelle 
 

TCN 27.91 0.98 

BLSTMattn 27.59 -1.37 

C_GRU 27.74 2.71 

MvDF 27.42 0.59 

MvDF_EC 27.40 0.39 

 

2) Performance Analysis 
Table 3 shows the 1-hour ahead daytime real-life GHI forecasting results. The proposed 

MvDF_EC yields the highest FS values among all compared models, where the FS values 
are 15.30% and 13.29% for Maraba and Labelle, respectively. By contrast, RF achieves the 
lowest FS referred to the baseline (i.e., the Smart Persistence).  RF makes forecasting 
relying on the ensemble of decision trees where a decision tree has limited prediction 
ability for non-stationary real-life GHI forecasting. TB_K-means+MLP achieves a higher 
FS then the RF because it utilizes the clustering technique to de-trend the real-life GHI time 
series into K clusters and develops a MLP for each cluster. However, the limited prediction 
ability of such shallow model (i.e., MLP) and the cluster selection strategy for testing data 
will affect the forecasting accuracy. By comparison, the deep learning based models (LSTM 
and C_LSTM) show superior performance in terms of the FS among the compared models. 
The proposed MvDF_EC combines the forecasting outputs of three deep learning models in 
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an appropriate way and utilizes an error correction model to enhance the forecasting. Thus, 
it obtains the highest FS values among all the forecasting models. Besides, MvDF_EC also 
achieves the best results in other performance metrics except the Errormin. MvDF_EC yields 
a larger Errormin than both Smart Persistence and RF because all deep learning based 
methods can only approximate the target. 

Table 3. 1-hour ahead daytime forecasting performance comparisons of different models 

Location Models 
Performance Metrics 

rRMSE 
(%) 

rMBE 
(%) 

Errormax 
(W/m2) 

Errormin 
(W/m2) 

FS (%) 

Maraba 

Smart 
Persistence 

26.07 -2.65 801.00 0.00 0.00 

TB_K-
means+MLP 

22.78 1.21 746.11 1.26E-02 12.62 

RF 23.87 -0.91 736.00 0.00 8.44 

LSTM 22.54 -0.62 783.28 3.88E-02 13.54 

C_LSTM 22.53 -2.90 758.76 2.11E-02 13.58 

MvDF_EC 22.08 0.05 734.89 9.76E-03 15.30 

Labelle 

Smart 
Persistence 

31.60 1.91 876.00 0.00 0.00 

TB_K-
means+MLP 

28.43 2.28 743.28 1.64E-02 10.03 

RF 29.56 -0.69 776.80 0.00 6.46 

LSTM 27.88 2.76 765.17 3.36E-03 11.77 

C_LSTM 27.75 1.08 741.69 1.18E-02 12.18 

MvDF_EC 27.40 0.39 739.87 7.63E-03 13.29 

 
To evaluate the performances of forecasting models more comprehensively, Fig. 7 shows 

the 1-hour ahead real-life GHI forecasting results of different models in terms of rRMSE 
(%) for different seasons in Maraba. The proposed MvDF_EC achieves the lowest rRMSE 
values compared with other models for different seasons. Besides, it yields a small rRMSE 
for winter but a relatively high rRMSE for summer. This is reasonable since the weather is 
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clear in winter while summer has a more varying and unpredictable weather. 
 

 
                         (a) Spring                                                              (b) Summer 

 
                               (c) Autumn                                                      (d) Winter  

Fig. 7.  1-hour ahead real-life GHI forecasting results of different models in terms of 
rRMSE(%) for different seasons in Maraba. 

 

Fig. 8 shows the real GHI series and predicted GHI series from different models under 
different weather condition (sunny, rainy, and cloudy) in Labelle. When it is a sunny day, all 
forecasting models can predict the next hour real-life GHI well. All the models perform 
worse when it is a rainy or cloudy day. The proposed MvDF_EC yields the smallest rRMSE 
values with 10.18%, 31.21%, and 42.87% for the sunny, cloudy, and rainy days, 
respectively. MvDF_EC performs better than other models under different weather 
conditions because different representations from different network branches provide more 
information for MvDF_EC.  However, the performance of MvDF_EC is still highly 
affected by the uncertain weather types where samples for common weather events (e.g., 
clear sky) dominate the training of MvDF_EC (Lai et al., 2019). Overall, the proposed 
MvDF_EC can give more realistic real-life GHI predictions than other solar forecasting 
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methods under different weather conditions. 

 
                   (a) Sunny (9th January 2017)                           (b) Cloudy (13th July 2017)  

 

 
(c) Rainy (2nd October 2017) 

Fig. 8.  1-hour ahead real-life GHI forecasting results of different models for the a) sunny, b) 
cloudy, and c) rainy days in Labelle. 

 
Tables 4 and 5 show the training and testing computational requirement of the proposed 

method and other published machine learning methods for solar forecasting on the Maraba 
and Labelle datasets. The experiment was conducted on the RTX 2080 Ti GPU. The 
training maximum epoch of all deep learning based models was set as 1000 while the early-
stop technique was also used in the experiment and the patience of the early-stop technique 
was set as 15. As seen from Tables 4 and 5, although the training of the proposed method 
spends the most time in both Ocala and Itupiranga datasets compared with other machine 
learning based methods, the testing time of the proposed method is short enough for real-
time applications. Besides, as seen from Table 1, the optimal structure of MvDF is not 
complicated and thus we believe the testing time of the proposed method can still meet the 
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real-time requirement even the GPU is not as sophisticated as RTX 2080 Ti.  

Table 4. The training computational requirement (second/sample) of machine learning 
based models 

 TB_K-
means+MLP 

RF LSTM CLSTM MvDF_EC 

Maraba 5.82E-4 2.62E-3 3.74E-3 2.22E-3 4.60E-2 
Labelle 7.13E-4 2.70E-3 5.65E-3 4.04E-3 5.10E-2 

 

Table 5. The testing computational requirement (second/sample) of machine learning based 
models 

 TB_K-
means+MLP 

RF LSTM CLSTM MvDF_EC 

Maraba 1.48E-5 1.14E-6 2.08E-5 1.64E-5 7.19E-5 
Labelle 1.74E-5 1.13E-6 1.86E-5 1.58E-5 7.65E-5 

4.Conclusions and Future Work 

This paper presents a novel Multi-view Deep Forecasting method with Error Correction 
(MvDF_EC) for 1-hour ahead real-life GHI forecasting. The multi-view learning schema is 
leveraged to jointly optimize three deep neural networks (TCN, BLSTMattn, and C_GRU) 
according to the consensus principle and the complementary principle, which results in the 
MvDF. To further improve the performance of MvDF, the robust RBFNN trained via 
minimizing L-GEM is adopted to correct the forecasting error of MvDF, by forecasting the 
prediction error of MvDF. The final solar forecasting output of the proposed MvDF_EC is 
the output of MvDF plus the forecasting error predicted by the RBFNN. Simulation results 
on the National Solar Radiation Database show that the proposed method achieves the 
smallest solar forecasting error compared with the smart persistence and other state-of-the-
art methods. The proposed MvDF_EC yields the smallest rRMSE and the rMBE is closest 
to zero. For future work, we aim at incorporating MvDF_EC with de-trending techniques to 
take stationary data into account for achieving a lower solar forecasting error. Also, the 
types, structures, and the inputs of forecasting error correction model should be considered 
in detail.   
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