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In mining, froth flotation is the largest tonnage separation process used to separate
valuable minerals from waste rock. The froth flotation process is carried out in stirred tanks
in which chemical reagents and air are added. Reagents make the valuable mineral particles
hydrophobic, so they repel water. As a consequence, the valuable mineral particles attach to
air bubbles, covering them and generating bubble–particle aggregates. The bubble–particle
aggregates rise to the top of the tank, forming a froth that overflows as a mineral-rich
concentrate. The waste rock particles do not attach to the bubbles and leave from the
bottom of the tank.

As froth flotation is a large-scale process, even small improvements in the separation
efficiency would translate into important increments in production [1,2]. Optimising
the process to increase metal recovery also increases the sustainability of the operation.
One of the most efficient ways to optimise the process is to implement advanced control
techniques [3]. Model predictive control (MPC), in particular, is widely considered as one of
the most efficient strategies to optimise a multivariable process, using an explicit, dynamic
model of the process to predict the future behaviour of the most important variables [4].
However, implementing MPC for froth flotation is very challenging, as modelling this
process is a difficult task due to the very complex dynamics involved and since it is a
multiphase (gas-liquid-solid) system with inherent instability [2,3,5–8]. While complex
models to describe the phenomena of the flotation process can be found in the literature,
models for control purposes must be simple enough—yet robust—to solve the control
problem in real time. Both characteristics conflict with each other; thus, it is necessary to
find a trade-off between simplicity and robustness.

In this study, we propose a novel dynamic flotation model for MPC purposes. The
full model development can be found in [9]. Our model differs from the others found
in previous studies since, for the first time, the physics of the froth phase is included for
control. The importance of including froth physics lies in the fact that the phenomena
occurring in the froth—such as air recovery, bubble coalescence, and bubble bursting—
ultimately determine the separation efficiency and thus the recovery of minerals [10]. The
model proposed can be classified as a differential and algebraic equation (DAE) problem,
which has 31 + 12i + 5k equations, where i is the number of mineralogical classes, and k is
the number of bubble size classes in the pulp phase. An analysis of degrees of freedom
for control revealed that two variables need to be fixed to have a completely determined
model. Since the model is quite extensive, here, we only discuss some of the equations
used to model each of the phases of a flotation system.

Experiments were carried out in an 87 L laboratory flotation tank at Imperial College
London in order to calibrate and validate the model. All experiments were performed in a
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three-phase system (solid–liquid–gas). The solids system consisted of silica with an average
particle size of 75 µm. In the experiments, we measured important flotation variables,
such as pulp level (dynamic), air recovery (dynamic), and pulp bubble size distribution
(steady state) while fixing the two degrees of freedom: air and tailings flowrates (through
their respective control valves). These flowrates are the typical manipulated variables in
flotation control. Three values of air flowrates and tailings flowrates were fixed during the
experiments, having a total of nine different operating conditions. The experiments in each
operating condition were carried out in triplicate for further statistical analysis.

The experimental data obtained were used to calibrate and validate the proposed
model, as shown in [11]. In the pulp phase, one of the most important variables for flotation
control is the pulp level. Results for the validation of the dynamic model for pulp level
prediction, based on the model proposed by [12], revealed high accuracy in terms of the
prediction and trends for this variable. In the froth phase, air recovery plays a crucial role,
as it is strongly linked to froth stability and, in turn, with the overall flotation performance.
However, little work has been conducted in terms of including this variable in control
strategies. Therefore, one of our main aims was to include this variable in the model in
order to obtain a complete flotation model capable of capturing the effect of changes in froth
stability. The experimental data analysed here are in exceptionally good agreement with
the model predictions. The standard error of estimate calculated for air recovery suggested
that the average difference between the observed values and the model prediction will fall
within the range from 1.29% to 6.77%, depending on the operating condition. What is even
more important here, though, is that the model can follow the trends in air recovery. This
ability is crucial for the implementation of our model into predictive control strategies for
enhanced metallurgical performance.

In summary, we validated a new dynamic flotation model, which is suitable for MPC
strategies and incorporates froth physics. Having models of the froth phase for MPC will
allow detailed predictions and, therefore, better control strategies to maximise the amount
of valuable metal recovered. This enhancement in the recovery of valuable metals will help
in taking a step towards better utilisation of the resources, contributing to the sustainability
of the process.
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