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Abstract

Many examples exist of multivariate time series where dependencies
between variables change over time. If these changing dependencies are
not taken into account, any model that is learnt from the data will av-
erage over the different dependency structures. Paradigms that try to
explain underlying processes and observed events in multivariate time se-
ries must explicitly model these changes in order to allow non-experts to
analyse and understand such data. In this paper we have developed a
method for generating explanations in multivariate time series that takes
into account changing dependency structure. We make use of a dynamic
Bayesian network model with hidden nodes. We introduce a representa-
tion and search technique for learning such models from data and test it
on synthetic time series and real-world data from an oil refinery, both of
which contain changing underlying structure. We compare our method
to an existing EM-based method for learning structure. Results are very
promising for our method and we include sample explanations, generated
from models learnt from the refinery dataset.
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1 Introduction

There are many examples of Multivariate Time Series (MTS) where dependen-
cies between variables change over time. For example, variables in an oil refinery
can be affected by the way operators control the processes and by the different
products being refined at a particular time. If these changing dependencies are
not taken into account, any model that is learnt from the data will average
over the different dependency structures. This will not only apply to chemical
processes but also to many other dynamic systems in general. There has pre-
viously been work in the modelling of time series with changing dependencies.
Methods have been explored to model or cluster the hidden states of a system,
which change over time [6, 11]. However, our focus is on making the underly-
ing processes understood to non-statisticians through the automatic generation
of explanations. Previously, we have developed methods for learning Dynamic
Bayesian Networks (DBNs) from MTS [12]. In this paper we extend this work
to handle changing dependencies and at the same time remain transparent so
that the resulting models and explanations account for these changes.

In the next section, we introduce the dynamic cross correlation function and
use it to analyse the changes in dependency structure between two variables
within MTS. We then outline a method to learn DBNs from MTS with chang-
ing dependency structures, followed by details of the experiments and their
results when applied to synthetic and real world MTS data from an oil refinery
process. Finally, we generate explanations from the resulting structures and
draw conclusions.

2 Methods

During the analysis of MTS we have found it useful to explore how the cross
correlation function [2] between two variables changes over time. The cross
correlation function is used to measure the correlation between two time series
variables over varying time lags by time shifting the data before calculating
the correlation coefficient. For the remainder of the paper we use the following
notation: A MTS is denoted by A and ai(t) represents the ith variable at time
t. Our analysis of MTS with changing dependencies has involved developing
a Dynamic Cross Correlation Function (DCCF), ρaiaj (l, ts, tf ) , whereby the
cross correlation function is calculated for a window of data bounded by ts and
tf over lags, l, between two variables, ai and aj , and moved over the MTS by
incrementing the window position by set amounts. The DCCF is defined in
equation 1 and 2 where ai(ts, tf ) = ai(ts), ai(ts + 1), . . . , ai(tf ) and ts and tf
are determined by the window position and length, and Cov(ai, aj) returns the
covariance function of ai and aj .

ρaiaj (l, ts, tf ) =
γaiaj (l, ts, tf )√

(γai,ai(0, ts, tf )γaj ,aj (0, ts, tf ))
(1)

γaiaj (l, ts, tf ) = Cov(ai(ts, tf ), aj(ts + l, tf + l)) (2)
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The DCCF is generated by calculating the cross correlation function for all lags
and window increments [13], which can be visualised as a surface plot such as
the example in Figure 4a. Unlike the cross correlation function, the DCCF will
not only measure correlation between two variables over various time lags but it
will also measure the change in correlations over time lags. Whilst this DCCF
will not be able to tell us about the more complex relationships within the MTS
that involve more than two variables, it will assist us in making preliminary
judgments about where likely dependency changes occur.

Bayesian Networks (BNs) are probabilistic models that can be used to com-
bine expert knowledge and data [10]. They also facilitate the discovery of
complex relationships in large datasets. A BN is a directed acyclic graph con-
sisting of links between nodes that represent variables in the domain. The links
are directed from a parent node to a child node, and with each node there is an
associated set of conditional probability distributions. The Dynamic Bayesian
Network (DBN) is an extension of the BN that models time series [4]. There
has been much research into learning BNs from data, such as [3, 15]. We
propose the use of a hidden node to marginalise over the different dependency
distributions that exist in different portions of the MTS for each variable in a
DBN. Previously, hidden nodes have been used in BNs for modelling missing
data and unobserved variables [7], and Markov chains have been used to control
dependencies in DBNs [1]. The challenge of learning models with changing de-
pendencies is that we have to discover both the network structure and also the
parameters related to the link between each variable and its hidden controller
(as the actual states of the controller will be unknown).

2.1 Hidden Controller Hill Climb: Representation

We introduce a hill climb to search for DBNs with a specifically designed rep-
resentation. By including a hidden controller node as a parent for each node at
time t representing variable ai, which we will refer to from now on as Opstatei,
the dependencies associated with that variable can be controlled (see Figure 1).

OpState nodes will determine how the variables in the MTS behave based
upon their current state. The structure is represented using a list of triples of the
form (ai,aj ,l), which represents a link from ai to aj with a lag of l. We will call
the list of triples DBNList. For learning models with changing dependencies,
the OpState node is automatically inserted before evaluation. The changing of
state of OpState is not likely to happen very often in process data because oil
refinery data is recorded every minute whereas changes in operation are likely
to be many minutes between. Therefore, the relative stability of these variables
can be used to speed convergence of a hill climb. For this reason, the hill climb
will use a list, SegmentList, of pairs (state, position) to represent the switches
in each OpState variable, where state represents its new state and position
represents the position of change in the MTS.

A heuristic-based hill climb procedure is employed by making small changes
in DBNList and the SegmentList for each OpState variable. In order to
search over the DBN structure and the parameters of OpState for each vari-
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able, the Hidden Controller Hill Climb (HCHC) algorithm uses the represen-
tation described above. HCHC takes as input the initial random DBNList
and a SegmentList for each OpState node, along with the MTS, A, the max-
imum time lag, MaxT , and the number of iterations for the structure search,
DBNIterations. DBNList and the N SegmentLists are output and used to
generate the final DBN structure and OpState parameters. The OpState vari-
ables can then be reconstructed using the SegmentLists. Once all OpState
variables have been constructed, DBN parameters can be learnt from the MTS.

2.2 Hidden Controller Hill Climb: Search

HCHC applies a standard hill climb search [9] to the OpState parameters
by making small changes to each SegmentList and keeping any changes that
result in an improved log likelihood score. The log likelihood function was first
introduced in [3] and is commonly used to score potential network structures. It
requires the DBN constructed from the DBNList and the MTS with OpState
nodes constructed from the SegmentLists (see Figure 2a). It is calculated as
follows:

logp(D|bnD) =
N∏

i=1

qi∏

j=1

(ri − 1)!
(Fij + ri − 1)!

ri∏

k=1

Fijk! (3)

where N is the number of variables in the domain, ri denotes the number of
states that a node xi can take, qi denotes the number of unique instantiations
of the parents of node xi, D is the dataset of observations, bnD is the candi-
date structure of the BN, Fijk is the number of cases in D, where xi takes on
its kth unique instantiation and, the parent set of i takes on its jth unique
instantiation. Fij =

∑r
k=1 Fijk. Structure search is then carried out by repeat-

edly making small changes to DBNList and keeping any changes that improve
log likelihood. These changes involve adding and removing links or applying
a lag mutation operator [13]. Note that the Opstatei nodes are fixed so that
they cannot have parents and their only child is their respective variable, i.
After structure search is repeated DBNIterations times, the entire process is
repeated, returning to the OpState parameter search. The search ends when
the function calls, FC, reach some pre-defined value, Iterations. HCHC is il-
lustrated in Figure 2b and defined formally below.

Input A, MaxT, DBNIterations, Random DBNList, NSegmentLists
1 FC = 0

2 Use current DBNList and SegmentLists to construct DBN

3 BestScore = log likelihood of DBN

4 Repeat

5 For i=1 to N
6 Apply random change to the ith SegmentList
7 Use current DBNList and SegmentLists to construct DBN

8 If log likelihood of DBN > BestScore Then

9 BestScore = log likelihood of DBN Else

10 Undo change to ith SegmentList
11 End If
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12 End For

13 For j=1 to DBNIterations
14 Apply random change to DBNList
15 Use current DBNList and SegmentLists to construct DBN

16 If log likelihood of DBN > BestScore Then

17 BestScore = log likelihood of DBN Else

18 Undo change to DBNList
19 End If

20 End For

21 FC = FC + 1

22 Until Convergence or FC>Iterations
OutputDBNList and N SegmentLists used to construct DBN

The HCHC Segmentation Algorithm

2.3 Structural Expectation Maximisation (SEM)

In [5] Structural Expectation Maximisation (SEM) was developed that searches
for hidden variables whilst learning structure. The SEM algorithm involves an
iterative process whereby the network (current model) is initialised with a ran-
dom structure and a random set of parameters for the hidden variables (here the
OpStates). The current model and training data are then used to generate the
expected statistics for the hidden variables. In the context of Bayesian network
parameters, this involves applying inference using the current model where the
training data supplies the observations. The resulting posterior distributions
over the hidden nodes are then used to determine their expected states given
the training data. Given the expected statistics and the current model, a search
engine is used to improve the log likelihood score of the network structure. This
process of repeatedly calculating expected statistics and structure search con-
tinues until some stopping criteria is met such as minimal improvement in score
or the maximum number of iterations is met.

Input Random initial structure and parameters for unobserved variables,

Iterations, MaxT
1 i = 0

2 Repeat until convergence or i > Iterations
Expectation Step

3 Use inference to calculate the expected statistics for

OpState given the current structure and values for OpState.
4 Use these statistics to reassign the values for

OpState based upon the observed values in the MTS

Maximum Likelihood Step
5 Search for structure that improves the expected score

given the new values of OpState using a standard scoring

metric such as log likelihood or DL

6 i = i + 1

7 End Repeat

Output Final Structure and Parameters

The SEM Algorithm for Learning DBNs with Changing Dependencies.
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3 Results

3.1 Synthetic Data

Synthetic data has been generated from hand-coded DBNs using stochastic sim-
ulation [8]. The MTS datasets consisted of between five and ten variables with
time lags of up to 60 time slices. In order to incorporate changing dependencies
within the datasets, different DBN structures were used to generate different
sections of the MTS. Essentially, several MTS were appended together, hav-
ing been generated from DBNs with varying structures and parameters. For
example, MTS 1 consists of three MTS with five variables appended together,
each of length 1000. Characteristics of the datasets are described in Table 1.
The experiments involved applying the HCHC search procedure to learn the
dependency structure and segment the data for each variable according to its
OpState. The resultant structures and segmentations at convergence were then
compared to the original structures that generated each segment of the MTS
by calculating the Structural Differences (SD) [15]. We also apply Friedman’s
SEM and compare results.

Having applied both HCHC and the SEM algorithm to the synthetic datasets,
we now document the results. The average log likelihood at convergence is shown
in Table 2. It is apparent that the log likelihoods of the DBNs constructed with
the SEM method are much higher than those resulting from HCHC. This could
be due to HCHC being limited in its number of segmentations whereas the
SEM is not. However, as the true number of segmentations for each dataset
was within the limits set for HCHC, this implies either an inefficient HCHC or
overfitting in the SEM.

Table 3 shows the SD between the original and the discovered structures
and the percentage of correct links discovered for both SEM and HCHC. For
all datasets the HCHC generates networks with SDs that are relatively small
and the percentage of correct links discovered is high. The SEM appears to
have performed less well with consistently higher SD and smaller percentages
of correct links found. This implies that the high scores in Table 2 are due to
spurious correlations causing high SD.

Upon investigating the segmentation from SEM, it was found that the ex-
pected states of the OpState variables varied from segment to segment. For ex-
ample, in one segment they may remain steadily in one state whilst in another
they may fluctuate rapidly between 2 or more. See Figure 3 for an example
of the fluctuating states discovered for Opsate4 in MTS 3 over each of the 5
different segments.

It is apparent that the discovered segmentations do not neatly allocate a
different state to different MTS segments and so statistics could not easily be
used to measure the quality, suffice to say that there would have been hundreds
of segmentations in each dataset. This could well be due to the model overfitting
identified in the SD analysis. On the other hand, segmentation for the HCHC
results was very good. We now discuss this with respect to MTS 3.

We make use of the DCCF in order to further analyse the results of the
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HCHC on MTS 3. Whilst this is not really necessary for synthetic data where
the original network structures are available, it will be useful when analysing
real world data where these structures are unknown. Figure 4a shows the DCCF
for variable a3 and a4 in MTS 3. The maximum time lag, MaxT , calculated
for each CCF was 30. Note the varying peaks (in white) and troughs (in black),
which signify stronger positive and negative correlations, respectively. Below
are the discovered DBNList and SegmentList for OpState4 as discovered by
HCHC.
DBNList: ((1,0,8), (0,1,5), (0,1,9), (2,1,3), (2,1,6), (3,2,2), (1,2,7), (3,2,20), (4,3,3),
(2,3,5), (3,4,3), (3,4,25), (3,4,5))
SegmentList for OpState4 : ((0,0),(498,1),(981,2),(1502,3),(1997,4))

Figure 4b shows a graph of the most significant correlation (the maximum
absolute correlation) for each window position in the DCCF. Firstly there is no
correlation from a3 to a4 for window positions 1-10 (MTS position 1-500). Then
an inverse correlation occurs (black trough denoted by pos1) with a lag of 25
in window positions 10-20 (MTS position 500-1000). This lag then switches to
3 for MTS positions 1000-1500 (pos2). Then a positive correlation can be seen
(white area denoted by pos3) with a lag of 5 in MTS positions 1500-2000, and in
the final sections of data, no significant correlation from a3 to a4 can be found.
These correlations and lags correspond well to the links in DBNList from a3

to a4 (in bold) and the SegmentList for OpState4, discovered for MTS 3.

3.2 Oil Refinery Data

The real world MTS in this paper is from an oil refinery process which contains
300 variables and 40 000 time points. We now look at an example of applying
HCHC to an oil refinery variable and comparing the discovered segmentations
with the DCCF between certain variables. Due to the poor results of SEM
on both the synthetic and the oil refinery MTS, we focus on segmentations
and explanations generated using HCHC. Figure 5 shows the resultant DBN
structure discovered from a subset of 21 variables used to generate the following
explanations.

In Figure 6, the most significant correlation graphs for each window posi-
tion of the DCCF are shown for variable TGF with each of its three discovered
parents. There is generally a fluctuation between no and strong negative corre-
lations between TGF and A/MGB throughout the length of the MTS. However,
at about window position 40, a positive correlation occurs. This continues until
position 50 where the fluctuating returns until the end of the series. This closely
follows the segmentation found using HCHC, which are marked in Figure 6 by
dotted lines. The same applies for the other two parent variables with SOT also
showing positive and negative correlations and T6T showing varying amounts
of positive correlation. The segmentation appears to successfully separate out
each of these regions. Similar results were discovered for all variables in the oil
refinery data with most pair-wise relationships being successfully segmented.

Note that most of the segmentations that have been discovered occur where
there are switches from positive to negative correlation rather than between
regions of strong and weak correlation. Also some of the results appear to find

7



a number of segmentations that do not correspond with the correlation changes.
This could be because the relationships that are changing are more complex than
the pair-wise relationships identified in a DCCF. We explore this in the next
section.

3.3 Explanations Incorporating Hidden Controllers

We generated a DBN structure for a subset of 21 oil refinery variables in order
to explore some generated explanations. In general, the results from the pro-
cess data have been very encouraging with many of the relationships identified
using the DCCF being discovered. It must be noted that other more complex
relationships may also have been discovered and we now look at some sample
explanations that have been generated from the DBNs with OpState nodes in-
cluded to identify these relationships. Given the discovered DBN structure and
parameters for each node in the network including the set of OpStates, infer-
ence can be applied to generate explanations. This involves a process whereby
certain observations are made about variables in the DBN and inference is used
to generate posterior probability distributions over the unobserved variables.
OpStates can also be included as part of the explanation.

Figure 7 shows some explanations that have been generated using the DBN
discovered from the oil refinery data. Shaded nodes represent observations that
have been entered into the DBN (hence the probability is 1.0). It can be seen
in Figure 7a that SOT has a strong likelihood of being in state 3, 50 time
points previously, given the instantiations and OpStateTGF being 0. When
OpStateTGF changes to 3 as shown in Figure 7b the most probable state for
each parent variable alters (SOT now most likely to be in state 0 and A/MGB
in state 2). This shows how OpStates can affect explanation.

In Figure 8a the effect of adding new evidence to Figure 7b is shown, which
changes all of the variable states again. In Figure 8b TGF and its set of parents
are instantiated resulting in the controller variable OpStateTGF being most
likely in state 0, showing how an OpState node can be included as part of
an explanation. These sample explanations indicate how complex relationships
involving 3 or more variables can be modelled, illustrating how the segmentation
of the MTS in Figure 6 may represent more complex relationships than those
in its DCCF.

4 Conclusions

In this paper, we have used hidden nodes in a dynamic Bayesian network to
model changing dependencies within a Multivariate Time Series (MTS). These
hidden nodes can be interpreted as ’the current state of the system’ and, there-
fore, be used within explanations of events. We introduce an algorithm, HCHC,
which reduces the search space drastically through the use of a specific repre-
sentation. It performs far better than EM methods for learning hidden nodes
with BN structure. HCHC has allowed good models to be learnt from oil refin-
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ery MTS, reflecting expected dependency structures and changes in the data.
Future work will involve trying to improve the EM results using deterministic
annealing [14] or some method of smoothing the control transition states by fix-
ing their transition probabilities. We also intend to look at other datasets such
as gene expression and visual field data where dependency structure is based
upon experimental conditions. We will use HCHC to classify these MTS into
such operating states.
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Table 1: Details of the Synthetic Data with Changing Dependencies
- Num of

Variables
MTS

Length
Segment
Length

Maximum
Lag

Num of
Segments

MTS 1 5 3000 1000 5 3
MTS 2 10 3000 1000 60 3
MTS 3 5 2500 500 25 5
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Table 2: Resulting Log Likelihoods on Synthetic Data
- HCHC SEM

MTS 1 -3115.665 -220.738
MTS 2 -15302.017 -2032.371
MTS 3 -4494.706 -239.346
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Table 3: Structural Difference Results on Synthetic Data
Method Dataset Total SD % Correct

- MTS 1 5.6 0.916
HCHC MTS 2 6.7 0.892

- MTS 3 5.8 0.913

- MTS 1 9.6 0.725
SEM MTS 2 16.8 0.681

- MTS 3 10.8 0.488
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Figure 1: Using a Hidden Variable, OpState2, to Control Variable a2 at Time t
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Figure 2: (a) Building a DBN from SegmentLists and DBNList. (b) The
HCHC procedure
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Figure 3: The Discovered States of the Hidden Node using SEM for Variable 4
in MTS 3, Opstate4
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Figure 4: (a) The DCCF for Variable a3 and a4 in MTS 3. (b) The Most
Significant Correlation for Each Window Position in (a)
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Figure 5: The DBN Structure learnt from the Oil Refinery Data
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Figure 6: Most Significant Correlations for DCCFs from Oil Refinery Variables
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Figure 7: Sample of Generated Explanations from the Oil Refinery DBN
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Figure 8: Sample of Generated Explanations from the Oil Refinery DBN
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