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Abstract 
 

Search based testing approaches are efficient in test 
data generation; however they are likely to perform 
poorly when applied to programs with state variables. 
The problem arises when the target function includes 
guards that reference some of the program state 
variables whose values depend on previous function 
calls. Thus, merely considering the target function to 
derive test data is not sufficient. This paper introduces 
a testability transformation approach based on the 
analysis of control and data flow dependencies to 
bypass the state variable problem. It achieves this by 
eliminating state variables from guards and/ or 
determining which functions to call in order to satisfy 
guards with state variables. A number of experiments 
demonstrate the value of the proposed approach. 
 
1. Introduction 
 

Errors in software can lead to undesired outcomes 
and testing is therefore a crucial stage. However, 
manual testing is expensive, error-prone and time 
consuming hence automation is very desirable. 

SBT approaches such as evolutionary testing (ET) 
[1] have received attention due to their efficiency in 
deriving test data automatically, however, their 
applications were largely focused on structured 
programs where the input domain of a test target is 
explored to select a set of input values according to a 
given test criterion e.g., statement coverage. The 
exploration is steered by evaluation information 
represented by a fitness function. For example, 
Wegener et al. [2] described a fitness function 
(Equation 1) in the presence of nested IF statements 
that comprises two components: a branch distance [3] 
and the approach level (Equation 2) to measure how 
close a particular input was to executing the target 
branch that is missed and how many critical nodes are 
away from the target respectively. The critical node is 
a branching node at which the path control flow may 
divert (see Fig. 1). Since it is necessary to contrast how 

many conditions were achieved by a specific input, the 
branch distance of each IF statement is normalized to a 
value in the range of [0..1] (Equation 3). 
fitness = approach level + norm (branch_distance) (1) 
approach_level=1- NumCriticalNodeFromTarget   (2) 
norm (branch_distance)  = 1 – 1.05-branch_distance        (3) 

The existence of state variables in the presence of 
function calls can cause problems when using SBT 
approaches. The main effect is that the fitness function 
is unable to direct the search towards the desired input 
values. Thus, the performance of an SBT approach is 
likely to degenerate to that of random search. 

In the literature, some techniques, cited in [4], 
studied the problem of test data generation from 
subjects with state behavior. However, an efficient and 
easy test data generation approach remains a 
requirement. Thus, the aim of this paper is to benefit 
from the efficiency and flexibility introduced by 
testability transformation (TeTra) approaches [5] and 
reformulate the state variable problem as a TeTra 
problem. Applying TeTra to a program with state 
behavior was recently highlighted by Harman [4] as an 
open research problem.  

The approach presented in this paper aims to 
address the problem described as: Given a target 
function with state variable problems, transform the 
test target so that an ET approach can automatically 
generate a set of test data that exercises this function 

The primary contributions of this paper are the 
following: (1) It proposes a TeTra approach to bypass 
state variables problems. (2) It provides a method to 
suggest when a TeTra is likely to be required. (3) The 
approach can be generally applied to similar problems 
in a program with functions and global variables. 
 
2. The Proposed Approach 
 

The approach of Wegener et al. [2] described in the 
previous Section is efficient when a given target 
function is independent e.g., it is not control or data 
dependent on other previous functions. Nevertheless, 
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when such a dependency exists, it is not always 
possible to consider only the target function. 

In order to apply TeTra, we classify an assignment 
statement op to a variable v in a function f to four 
types: { opvp, opvv, opvc, opv±c} which denote that v is 
assigned a value that depends on a parameter, another 
variable, a constant and itself and a constant 
respectively. Also, we classify a guard g with a guard 
operator gop ∈ {<, >, ≠, =, <, > } in an f  to five types: 
{gpc, gpp, gpv, gvv, gvc} which denote a comparison 
among: parameters and constant, parameters only, 
parameters and variables, variables only and variables 
and constant respectively. Based on the above 
classifications, we can distinguish two types of 
functions: affecting and affected-by functions. 
Definition 1: In a given program with n functions, fi is 
an affecting function within this program if fi has an op 
∈ {opvp, opvc, opvv, opv±c} to v and there exists a 
guarded function fj, where 0 < i < j < n, fj has a guard g 
∈ {gvv, gvc} over v and the statements at op in fi and g 
in fj form a definition-use (du) pair for v. 
Definition 2: An fj is an affected-by function within a 
program if fj has g ∈ {gvv, gvc} over v and there exists 
an affecting function fi, where 0 < i < j< n, over v and 
the statements at op in fi and g in fj form a du pair for v. 

From Definition 2, an affected-by fj is always data 
dependent on the corresponding affecting fi. fj is also 
control dependant on fi if fi has a guard that controls its 
assignment operations that affect fj. Based on 
Definitions 1 and 2, we can distinguish four cases in 
which a target function requires a transformation.  
Case 1: the problem occurs between a pair of affected-

by and affecting functions (fj, fi) where op in fi ∈ {opvv, 
opvc} and fj is control dependent on fi.  

Fig. 2 shows a case study that describes how TeTra 
is applied. The target function (target) is control 
dependent on task t1 which has guards that control its 
assignments (opvc). A sequence of calls to 
reset t1 target does not necessarily achieve the 
target guards (gvc). The fitness landscape of the 
original program is plotted in Fig. 2-3. Due to the flat 
region of this landscape, the search does not receive 
adequate information and relies only on chance to hit 
the target. Fig. 2-2 shows the transformed version of 
the target task. Since the assignments of t1 are 
controlled by its input parameters, these are required 
on the target task. Also, the true branches of t1 
predicates are considered since they lead to assigning 
variables x and y the required values. Now, the fitness 
landscape of Target 2 (see Fig. 2-4) has a clear 
downward surface and provides adequate guidance. 
Case 2: The problem occurs in a pair of affected-by 
and affecting functions (fj, fi) where op in fi ∈ {opvp} 
and fj is control dependent on fi.  

Compared to Case 1, this case has the input 
parameters of the affecting function referenced by the 
state variables that appear in the target function guards. 
Fig. 3 shows a case study in which a target task is 
affected by two functions t1 and t2 and these functions 
have guards that control their assignments. 
Furthermore, the input parameters of t1 and t2 are 
referenced by the state variables in the target task 
guards. A sequence of calls to reset t1 t2 target 
does not always lead to the target task being exercised. 
Fig. 3-3 shows that the fitness landscape of the original 
program is flat. The transformed version of the target 
task is shown in Fig-3-2. The input parameters and the 
assignment enabling predicates of t1 and t2 are 

 1- if (x > y) 
 2-  if (x == 0) 
 3-    // Target 
 
     Nodes 1 and 2 are 
         critical nodes 

1 

2 

Approach level =1
Branch distance =
norm(abs (x-y)) 

Figure.1 An example of a fitness calculation

T 

T 

Target 

F 

F 

Approach level = 0
Branch distance = norm(abs (x))

//Case study -2-  
int x,y; 
void reset() 
{ x = 0; y = 0; } 
void t1 (int P1) 
{if (P1 != 0) x= 100; 
 else x= P1;} 
void t2 (int P2)   
{if (P2 != 0) y=100;  
 else y = P2;} 
void target() 
{if (x ==0 && y ==0)  
 //Target 1 } 

//Case study 2 -TeTra 
int x,y; 
 
void reset() 
{ x = 0; y = 0;}  
 
void target(int P1,P2) 
{ 
if (P1 ==0 && P2 ==0) 
    //Target 2 
}               

(1) Program fragment  (2) Transformed version 

 
(3) Fitness plot of Target 1  (4) Fitness plot of Target 2 
Figure.3 TeTra applied to the second case 

//Case study 1  
int x,y; 
void reset() 
{x = 0; y = 0;} 
void t1 (int P1,P2) 
{if (P1==0) x = 10; 
 if (P2==0) y = 10;} 
void target () 
{if (x>=10 && y>=10) 
    //Target 1 } 

//Case study 1- TeTra 
int x,y; 
void reset() 
{ x = 0; y = 0;} 
void target (int P1,P2)
{if (P1==0){x =10; 
  if (P2==0){y =10; 
   if (x>=10 && y>=10) 
    //Target 2  
}}} 

(1) Program fragment  (2) Transformed version 

(3) Fitness plot of Target 1  (4) Fitness plot of Target 2  
Figure.2 TeTra applied to the first case  
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embedded in the transformed version. Also, the state 
variables of the original target task are replaced by the 
input parameters that they reference. As observed in 
Fig. 3-4, the fitness landscape of Target 2 provides the 
search with enough guidance.  
Case 3: The problem exists between a pair of affected-
by and affecting functions (fj, fi) where op in fi ∈ {opvv, 
opvp, opvc} and fj is control dependent on fi.  

This case can be seen as a generalisation of Case 1 
and Case 2. However, the main difference is that the 
affecting function assignments are complicated by 
many types of assignments. Consequently, bypassing 
the state variables in this case is not a straight forward 
process. This problem can be transformed by applying 
amorphous slicing [6] for the state variables of the 
target function. 

Fig. 4-1 presents a case study in which the target 
task has two state variables which are assigned values 
in t1. A sequence of calls to reset t1 target is 
unlikely to solve the problem. The original fitness 
landscape plotted in Fig. 4-3 is almost flat and provides 
insufficient guidance. In Fig. 4-2, the transformation is 
applied to replace the state variables x and y by 
expressions that reference parameters. The fitness 
landscape of the transformed version provides the 
search with adequate guidance as shown in Fig. 4-4. 
Case 4: The problem occurs between a pair of 
affected-by and affecting functions (fj, fi) where op in fi 
∈ {opv±c} and fj is control dependent on fi. 

This problem is likely to exist when a state variable 
in the target function has the role of a counter. For such 
a case, it is necessary to determine which and how 
many calls to be made to other functions before calling 
the target one. Fig. 5-1 shows a case study of two 
functions where the target task is control dependent on 
the affecting t1. As shown in Fig. 5-3, the fitness 

landscape does not touch the zero surface and so the 
original scenario: reset t1 target is infeasible. The 
transformed version shown in Fig. 5-2 tries to 
construct a feasible path that enables the target task to 
be triggered. Since the input parameters of the 
affecting t1 decide whether the assignments are 
executed, these are included in the transformed 
version. Once suitable input parameters values are 
found, a loop of calls is made to the affecting t1 
assignments. The notion of implementing a loop to 
perform the necessary calls to an affecting function is 
introduced in [4]. The number of the loop cycles 
(number of calls) can be determined by reversing the 
guards of the target task. For this case study, this is 
determined as: loop while (x<10 OR y<10). Similarly, 
a logical connector AND is reversed to OR and guard 
operators: {<, <, >, >, =, ≠} are reversed to: {>, >, <, <, 
≠, =}. Once the affecting functions, the number of 
calls, and the suitable input parameters values are 
determined, a feasible path is constructed from the 
original code by repeatedly calling the affecting 
functions with the same suitable input parameters 
values. Fig. 5-4 shows a clear downwards fitness 
landscape of the transformed version for finding the 
suitable input parameter values to be applied to t1. 

Table 1 lists all possible combinations among 
affected-by and affecting functions. The fields marked 
by R indicate the cases where we conjecture that TeTra 
is likely to be required. Fields marked by F/R indicate 
that the transformation is only required if the scenario 
is feasible and fields marked by N identify the cases 
where the transformation is not necessary. 
 
3. Experimental Study and Conclusion 
 

Experiments were performed on the four case 
studies presented in this paper by using random search 

//Case study 4 
int x,y; 
void reset() 
  { x = 0; y = 0;} 
void t1 (int P1,P2) 
{if (P1 >= 0) 
   x=x+1; else x =0; 
 if (P2 >= 0) 
  y=y+1; else y=100;} 
void target () 
{if (x>=10 && y>=10) 
   //Target 1 } 

//Case study 4 - TeTra 
int x,y; 
void reset() 
  { x = 0; y = 0;} 
 
void target (int P1,P2)
{if (P1 >= 0){ 
  if (P2 >= 0){ 
   //Target 2    
for(i=1; (x<10 || y<10) 
;i++) 
  t1(P1,P2); }}} 

(1) Program fragment  (2) Transformed version 

(3) Fitness plot of Target 1 (4) Fitness plot of Target 2 
Figure.5 TeTra for finding a feasible path  

//Case study 3  
int x,y; 
void reset() 
{x = 0; y = 0;}  
void t1 (int P1,P2) 
{if (P1 >= 0){ 
  x=x+P1*2; y=y+P1;} 
 else{x=100; y=100;} 
 if (P2 >= 0){ 
  x=x+P2*3; y=y+x;} 
 else{x=100; y=100;}} 
void target() 
{if (x==0 && y==0)  
  //Target 1 } 

//Case study 3 - TeTra 
int x,y; 
 
void reset() 
{ x = 0; y = 0;}  
 
void target (int P1,P2)
{ 
if (P1 >= 0){ 
 if (P2 >= 0){ 
  if (P1*2 + P2*3==0){ 
   if (P1*3 + P2*3==0){
       //Target 2 
}}}}} 

(1) Program fragment  (2) Transformed program 

 
(3) Fitness plot of Target 1 (3) Fitness plot of Target 2 

Figure.4 TeTra applied to the third case  
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and the standard ET approach described in Section 1. 
Although the four case studies are small in terms of 
code size, the complexity for a search-based algorithm 
is not related to the code size but it is a function of the 
search space size [7]. The input domain size used with 
the four case studies had 4×106 possible candidate 
solutions. Both of the standard ET and random 
approaches were implemented with the publicly 
available GEATbx [8]. The population size was 50 
individuals with two variables in the range [-
1000..1000]. The ET methods were: linear-ranking 
with 1.8 selective pressure, discrete recombination and 
mutate integer. The search was terminated after 1000 
generations or if the objective value of zero was 
achieved. Finally, each search was repeated 10 times. 

Fig. 6 plots the performances of random and ET 
approaches on each case study before applying the 
transformation and once again the ET performance 
after the transformation was applied. Each plot shows 
the normalized best achieved fitness yet in a specific 
generation for a particular search approach averaged 
over ten repetitions of the experiment.  

Fig. 6-1, 6-2 and 6-3 plot the performances of the 
search approaches on Case study 1, 2 and 3 
respectively. From these plots, we observe that ET and 
random searches exhibited relatively similar 
performance before applying the transformation and 
they failed to exercise the test target. In contrast, the 
ET search on the transformed version was successful 
and hit the target relatively quickly. Fig. 6-4 
corresponds to the last case study. Since the 
untransformed version corresponds to an infeasible 
path, it was not surprising that ET and random searches 
both failed. However, the ET performance on the 
transformed version was very fast in locating the 
required input values. The empirical results 
demonstrate that the proposed TeTra approach was 
effective in improving and enhancing the ET 
technique. Further research will apply the approach to 

additional examples and investigate its use to derive 
feasible paths for the purpose of model-based testing. 
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Figure 6: Results of random, ET and ET after TeTra was applied on the four case studies 
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-3- 

-2- 

-4- 

Table. 1 Suggesting when TeTra is required 
Guard & operator 

(affected-by)
Assignment (affecting) 

(oppv) (opvv) (opvc) (opv±c) 
gpc

, gpp, gvp (=, <, >, <, >, ≠) N N N N 
gvv(=, <, >, <, >, ≠) R R R R 
gvc(=, <, >, <, >, ≠) R R F/R R 
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