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1 IntroductionThe Hierarchical Constraint Logic Programming (HCLP) scheme of Borning, Wilson,and others [3, 10, 12] greatly extends the expressibility of the general CLP scheme [7].A semantics has been de�ned for HCLP [10, 11] and some instances of it have beenimplemented [8, 10].The Partial Constraint Satisfaction (PCSP) scheme of Freuder and Wallace [4, 6]is an interesting extension of CSP, which allows the relaxation and optimisation ofproblems. Extensive empirical studies have been made of some of its instances [6].There is a widespread view that some link exists between particular HCLP prob-lems and particular PCSP problems, but no general method of transforming one intothe other is present in the literature. General frameworks have been developed ofwhich HCLP and PCSP are particular instances [1, 9], but they do not provide amethod for transforming between them. In this paper we present a completely gen-eral method for �nding the HCLP equivalent of any PCSP problem, and vice versa.Our motivation is mainly methodological, to allow the use of whichever paradigmis appropriate for speci�cation, even if the other one is more appropriate for execu-tion. But we also have a more theoretical motivation, namely to show the relation-ship between the two formalism's orthogonal approaches to over-constrained systems(OCSs). The two orthogonal approaches are as follows: HCLP reorganises the struc-ture of an over-constrained problem, by specifying relationships between constraints;PCSP keeps a at structure to the problem, but changes themeaning of the individualconstraints (by adding elements to the domain).The structure of this paper is as follows. In Section 2 we introduce HCLP andPCSP. We then make some preliminary remarks in Section 3. We discuss transformingHCLP into PCSP in Section 4, including an example in Section 4.2. Then Section 5discusses transformations from PCSP into HCLP. Pseudo-code illustrating both thesetransformations can be found in Section 6. Finally in Section 7 we present someconclusions and also mention further work.2 Background2.1 Hierarchical Constraint Logic ProgrammingA good introduction to HCLP can be found in Molly Wilson's PhD thesis [10, chapter4] or in the early reference [3]; here is a brief overview. CLP can be extended to aHierarchical CLP scheme including both `hard' and `soft' constraints. The HCLPscheme is parameterised not only by the constraint domain D but also by the `com-parator' C, which is used to compare and select from the di�erent ways of satisfyingthe soft constraints.The strengths of the di�erent constraints are indicated by a non-negative integerlabel. Constraints labelled with a zero are required (hard), while constraints labelledj for some j > 0 are optional (soft), and are preferred over those labelled k, wherek > j. (A program can include a list of symbolic names, such as required, strongly-preferred, etc., for the strength labels, which will be mapped to the natural numbersby the interpreter. If the strength label on a constraint is omitted, it is assumed tobe required .) 2



The constraint store � (a set) is partitioned into the set of required constraints S0and the set of optional ones Si. The solution set for the whole hierarchy is a subset ofthe solution set of S0, such that no other solution could be `better', i.e. for all levelsup to k, Sk is completely satis�ed, and for level Sk+1 this solution is better than allothers, in terms of some comparator. Backtracking and incomparable hierarchies giverise to multiple possible solution sets, each a subset of the solution to S0.`Better' is de�ned with respect to some comparator [12]. The key notion is thata comparator is a function from a solution of a set of constraints to a sequence ofnumbers, which are then ordered lexicographically; the �rst element of the sequencemeasures how well the solution satis�es the required constraints, the second how wellthe strongest optional constraints are satis�ed, etc.; the earlier in the order, the betterthat solution is.See Section 3.3 for more detail on the particular aspects of HCLP involved in thetransformations.2.2 Partial Constraint Satisfaction ProblemsFreuder has developed a theory of Partial Constraint Satisfaction Problems (PCSPs)to weaken systems of constraints which have no solutions, or for which �nding asolution would take too long [4, 6]. PCSP is formalised as containing three componentsh(P;U); (PS;�); (M; (N;S))iwhere P is a constraint satisfaction problem (CSP), U is a set of `universes' i.e. a setof potential values for each of the variables in P , (PS;�) is a problem space with PSa set of problems and � a partial order over problems, M is a distance function overthe problem space, and (N;S) are necessary and su�cient bounds on the distancebetween the given problem P and some solvable member of the problem space PS.A solution to a PCSP is a problem P 0 from the problem space and its solution,where the distance between P and P 0 is less than N . If the distance between P andP 0 is minimal, then this solution is optimal.2.2.1 Constraint Satisfaction ProblemsThe de�nition of a constraint satisfaction problem is well known: it consists of apair hV;Ci where V is a set of variables, each with a domain (extension), and C isa set of constraints1. Solving a CSP involves �nding one value from the domain ofeach variable such that all the constraints are satis�ed simultaneously. Generally theCSP world restricts itself to considering binary constraints over variables with �nitedomains. A constraint c between two variables x and y can be denoted cxy.(The domains of the variables in V are usually considered as unary constraints,but in order to simplify the presentation in [4] they are represented as binary con-straints between a variable and itself. The value v is in the domain of a vari-able x if cxx contains (v; v). In fact, unless there are elements in the domain ofa variable which do not appear in any constraint, it is redundant to state indi-vidual variable domains explicitly: we can always reconstruct them by saying thatU :: fi j (i; j) 2 CUV or (k; i) 2 CWU ; for all j; k; V;Wg.)1Constraints are relations over the variables in V . In CSPs, they are usually treated extensionally,i.e. a binary constraint is just considered as a set of pairs.3



2.2.2 The problem spaceA problem space PS is a partially-ordered set of CSPs where the order � is de�nedas follows (sols(P) denotes the set of solutions to a CSP called P ):P1 � P2 i� sols(P1) � sols(P2)Note that the ordering is over problems, but de�ned in terms of solutions. The problemspace for a PCSP must contain the original problem P , which can provide the maximalelement in the order, for standard problem spaces.(In the most general case, PS canin fact contain Q such that P � Q or such that P and Q are incomparable. But ifwe take the conjunction of all the constraints in all the problems in PS and create asingle problem R, then R will de�nitely be the greatest element in the order.) If Phas no solutions, then sols(P) = fg, which is a subset of all other sets.The obvious problem space to explore when trying to weaken a problem is thecollection of all problems Q such that Q � P , but it may also be useful to consideronly some of these Qs, i.e. those problems which have been weakened in a particularway which makes sense in the context of the system that we are trying to model.2.2.3 Weakening a problemThere are four ways to weaken a CSP: (a) enlarging the domain of a variable, (b)enlarging the domain of a constraint, (c) removing a variable, and (d) removing aconstraint. Consider example Z above: if none of your shirts match your shoes, youcould buy new shoes (variable domain enlargement / augmentation), you could decidethat certain shoes do, after all, go with a certain shirt (constraint augmentation), youcould decide not to wear shoes at all (variable removal), or you could ignore clashesbetween shoes and shirts (constraint removal). (As a comparison with these fourmethods, in HCLP we could decide that the constraint that shirts match shoes issimply not very important.)Freuder shows in [4] that these can all be considered in terms of (b) above i.e.enlarging constraint domains (adding extra pairs to the relation which de�nes theconstraint). (a) As we have already decided to consider the domains of variablesas binary constraints cxx, domain enlargement can clearly be achieved by constraintaugmentation. (d) Enlarging a constraint cxy until it equals x � y (the cartesianproduct of the domains) has the same e�ect as removing it altogether. (c) Removingall the constraints on a variable achieves the aim of removing the variable itself.2.2.4 The distance functionDi�erent distance functions are possible, but one obvious one is derived from thepartial order on the problem space. If M(P;P 0) equals the number of solutions notshared by P and P 0, then when P 0 � P the distance function measures how manysolutions have been added by the relaxation of P . Another distance function is a countof the number of constraint values not shared by P and P 0, and yet others could bebased on HCLP-like strength labels. Freuder suggests that a distance function may beused which will tend to �nd weakened problems with certain properties, for exampleone whose constraint graph has certain structural properties (for example, see [5]).4



3 Transformation: preliminary remarksHCLP and PCSP are not identical in scope, therefore it is impossible to transformall of HCLP into PCSP. This work presented in the rest of this paper is complete i.e.we present transformations for every single aspect which it makes sense to transform.First of all, however, we discuss those parts of HCLP which are outside the scope ofPCSP, and make other preliminary remarks.3.1 Di�erences which will not be transformed awayFirstly2, CLP in general de�nes a class of programming languages, which place con-straint solving in a logic programming framework, whereas CSP de�nes a set of prob-lems, techniques, and algorithms. We could embed PCSP in a logic programmingframework, and then a comparison with HCLP would make sense, or we can ignorethe programming language aspects of HCLP, and compare the resulting theory of `con-straint hierarchies' with PCSP. In this section we will consider the latter approach,i.e. when we say `HCLP' we really mean `constraint hierarchies'.Secondly, CSP techniques are always de�ned with �nite domains whereas the CLPframework extends to continuous domains such as the real numbers. We will onlyattempt to transform HCLP(FD); however, we will transform metric comparators aswell as predicate ones. (Metric comparators required a notion of `distance' betweenpoints in the domain, but there is no reason why this distance cannot be discrete.)Finally, in HCLP the required constraints are special; the di�erence between re-quired and strong constraints is richer than the di�erence between, say, strong andweak. PCSP does not have this special class of required constraints. This is discussedfurther in the next section.3.2 PCSP with distinguished required constraintsIn Section 2.2, we presented the standard formalisation of PCSPs as h(P;U); (PS;�);(M; (N;S))i. We can modify this to allow us to denote a subset of the constraints inP as `required', giving a theory which can be called PRCSP (our additions in italics):h(P;R;U); (PS;�); (M; (N;S))iwhere P is a constraint satisfaction problem, R � P is a set of constraints, U is a setof `universes' i.e. a set of potential values for each of the variables in P , (PS;�) is aproblem space with PS a set of problems each of which contains all the constraintsin R, and � a partial order over problems, M is a `distance function' on the problemspace, and (N;S) are necessary and su�cient bounds on the distance between thegiven problem P and some solvable member of the problem space PS. A solution toa PCSP is a problem P 0 from the problem space and its solution, where the distancebetween P and P 0 is less than N , and where all the constraints in R are satis�ed . Ifthe distance between P and P 0 is minimal, then this solution is optimal.2The three points mentioned in this section are reasonably straightforward, but have not been ex-plicitly made in any publication. They were mentioned to one of the authors by Borning [PrivateCommunication], but we were already aware of them independently.5



In Section 2.2 we noted that Freuder states that the obvious problem space toexplore when trying to weaken a problem is the collection of all problems Q such thatQ � P , but we also noted that it may be useful to consider only some of these Qs,i.e. those problems which have been weakened in a particular way which makes sensein the context of the system that we are trying to model [5]. Therefore we note thatPRCSP can be considered simply as selecting those Qs which satisfy all the constraintsin R.One way to select the appropriate part of the problem space is to choose a dis-tance function which gives an in�nitely large distance for all other parts. If distancefunctions are generally denoted by �, from now on we will assume the existence ofa particular function �1, usually parameterised by a set of required constraints �,which de�nes a distance of zero to any problem which satis�es all the constraints in�, and a distance of in�nity to all other problems. If T is some arbitrary problemdrawn from the problem space, then�1(�) = ( 0; if � � T1; otherwise�1(�r) will be the �rst element of the sequence of functions � = [�r; �s; �w; : : :] pa-rameterised by the constraints at each level of the hierarchy. For example, if thecomparator used is UCB, then � = [�1(�r); �UCB(�s); �UCB(�w); : : :].The main conclusion of this section is that we can deal with the issue of requiredconstraints in a straightforward and localised manner. Therefore, perhaps surpris-ingly, in the rest of this paper we do not really need to emphasise the di�erencebetween PCSP and PRCSP.3.3 Characterisation of HCLP and PCSPIn this section we present those aspects which are relevant for the transformationprocess. The relevant aspects for HCLP arehH = (H0;H1;H2; : : :]); C = (e;E; g)iwhere H is a hierarchy of constraints, made up of all the required constraints H0,the strongly preferred constraints H1, weaker preferences H2 etc. The comparatorC is used to compare di�erent solutions; it is made up of an error function e whichcalculates the error of a possible solution with respect to one constraint, E whichsimply maps e pointwise over all the constraints in one level of the hierarchy Hi, anda combining function g which combines the elements of the sequence produced by E,resulting in a score for that solution with respect to all the constraints at that levelof the hierarchy. For example g might be `max', or `sum', or `least squares'. Theresulting sequence of errors [r; s; w; : : :] giving the errors with respect to each levelif the hierarchy, are used to order di�erent possible solutions lexicographically. Thelowest element in the order indicates the best solution.PCSP is formalised as a triple h(P;U); (PS;�); (M; (N;S))i, but we need onlyconsider certain elements of it as follows: P is a constraint satisfaction problem, andM is a distance function which selects the consistent problem `nearest' to P .When transforming HCLP into PCSP, we will take all the constraints inH withouttheir strength labels as being P . We will use the strength label information and thecomparator to construct the appropriate distance function.6



When transforming PCSP into HCLP, the constraints in the hierarchy will just bethe constraints in P , and the distance function will be used to de�ne their strengthlabels (i.e. which of the Hi should contain each constraint) and the comparator C.In the case of the standard PCSP distance function, all the constraints from Pmust be placed in the same non-required level of the hierarchy, but it does not matterwhich one is used. Arbitrarily, we choose to label them `strong' and so put them inH1.4 Transforming HCLP into PCSP4.1 Creating the distance functionThe base problem (P ) is all the constraints in the hierarchy, without their strengthlabels. U , PS, and (N;S) remain as they would for an original PCSP based on P .(By `original PCSP' we mean one written down by a user, as opposed to one createdby automatically transforming an HCLP problem.)The distance function will be calculated from a combination of the HCLP com-parator and the particular hierarchy of labelled constraints, and the hierarchy willlead to it being strati�ed into a lexicographic order. The distance function � derivedfrom a hierarchy with n levels will be strati�ed into n parts, whose results will be or-dered lexicographically (i.e. it will not calculate a single distance of the relaxed CSPfrom P ). Each relaxation (each problem drawn from the problem space PS) will beannotated with a sequence [d0; d1; d2; : : : ; dn�1] each element of which is calculated bythe respective distance function in � = [�0; : : : ; �n�1]. (The required level is formallycalled level 0, the strongest non-required level is 1, down to n � 1 for the weakestlevel.) For example, in the case of a hierarchy containing only required, strong andweak constraints, each candidate problem will be annotated with a sequence [r; s; w],where r is the distance according to �r, the part of the distance function derived fromthe required constraints, s is the distance according to �s, the part of the distancefunction derived from the strong constraints, and w is the weak distance, calculatedby �w. We then order the various relaxations according to the lexicographical orderof their sequences.The distance function calculates the distance of one of the problems T in theproblem space PS from the `ideal' set of constraints which would have distance zero(i.e. completely satisfy all the constraints in the original problem). In fact, as theoriginal constraints might be inconsistent, it is possible that no such ideal set exists.Let us de�ne sols(T ) to be the set of solutions to T . We required T to be consistent,and so sols(T ) will never be empty. Each member of sols(T ) is a valuation, i.e. anassignment of a value from its domain to each variable in T . We can calculate howwell a particular valuation satis�es the constraints � using the machinery developedby Borning and Wilson for HCLP.T may have more than one solution, and hence may give rise to more than onevaluation, therefore we de�ne the distance of T from � to be themaximum of distancesof each of the valuations in T . This is necessary because HCLP's comparators takeas input the set of original constraints and a single valuation / possible solution. Theoutput is the score for that particular valuation, which can then be used to placethat valuation in an order. In PCSP, however, distance functions create an order over7



sets of constraints; a set of constraints can have many solutions, and so we have tochoose the score of one of them. We choose the worst (largest) score, i.e. this set ofconstraints can never give an answer with a score worse than x. For example, if T issaid to be a distance of 2 from �, that means that any solution of T is a distance ofat most 2 from �.Therefore, using some HCLP terminology including denoting a general comparatorby C (de�ned in terms of g, e, and E), the PCSP distance function de�ned in termsof the set � of constraints from one optional level of the hierarchy is:�C(�)(T ) = maxfg(E(�� ) j � 2 sols(T )gIn other words, we treat all the constraints in � as a sequence, apply a particularvaluation � to each of them, calculate the error for each member of the sequence,combine the errors using g, and then take the maximum of the errors for all the � andtreat it as the error for T .The various distance functions, each parameterised by the constraints from a dif-ferent level of the hierarchy, will lead to results which are lexicographically ordered,just as in HCLP. The main di�erence between standard HCLP and our work is thatwe interpose the step of taking the maximum error for each of the valuations in Tbetween the application of g and placing in an order.In the case of UCB, g(v) = Pjvji=1 vi and e = ep is the simple predicate errorfunction which returns 0 for each constraint in � which is consistent with � , and 1for each inconsistent constraint [2, 12]. E is e raised over sequences, i.e. its input is asequence of constraints, and its output in this case is a sequence of 0's and 1's. g thenadds all these individual errors. Least-squares-better (LSB) has a more complicatede = ed, which measures the error as a `distance' in a metric space. g then sums thesquares of these errors:�UCB(�)(T ) = max(Xc2� ep(c; � ) j � 2 sols(T ))�LSB(�)(T ) = max(Xc2� ed(c; � )2 j � 2 sols(T ))See Section 6 for pseudo-code for transforming HCLP into PCSP.4.2 ExampleIn this section we present an example of an over-constrained system and its speci�ca-tion and solution in HCLP, and then showing its transformation into PCSP.Consider the problem of choosing matching clothes (example adapted from Freuderand Wallace [6]). A robot wishes to wear a shirt, some shoes, and some trousers, andwants them all to match each other. There are various choices for the di�erent itemsand various constraints between them. We can easily model this using three �nitedomain variables with a number of binary constraints between them. If we use theletter S to denote the variable for shirts, then we can use F for shoes (footwear)and T for trousers. The domain of the shirt variable will be S :: fr; wg for red andwhite respectively, and similarly shoes and trousers will have domains F :: fc; sg forcordovans and sneakers, and T :: fb; d; gg, for blue, denim, and grey. A constraintthat shirts must match footwear will be denoted CSF , and so on. Then, using Freuder8



and Wallace's assumptions about which clothes go with which, the complete problemcan be expressed formally as follows (we will call this model Z):S :: fr; wg; F :: fc; sg; T :: fb; d; ggCST :: f(r; g); (w; b); (w; d)g; CFT :: f(s; d); (c; g)g; CSF :: f(w; c)gThis problem is over-constrained; it has no solutions. We can see this by choosingthe red shirt, and tracing the implications of this choice. We must choose the greytrousers, which forces us to choose the cordovans as footwear. But according to CSF ,the cordovans only go with the white shirt. Contradiction. We can trace the e�ects ofchoosing the white shirt in the same way, also arriving at a contradiction. Thereforewe need to consider some way of relaxing or weakening the problem until solutionscan be found.4.2.1 Example in HCLPLet us use HCLP strength labels to indicate our assumption that, say, shirts andtrousers are more important than footwear, and let us choose the unsatis�ed-count-better (UCB) comparator:strong CST ; weak CFT ; weak CSFThe solutions to this hierarchy will equal the solutions to the two equally acceptablerelaxed problems (CST ; CFT ) and (CST ; CSF ) which are, in the variable order (S;F; T ),f(r; c; g); (w; s; d)g and f(w; c; b); (w; c; d)g respectively.4.2.2 HCLP formulation transformed into PCSPThe base set of constraints for the PCSP formulation will be all the constraints fromthe HCLP version, without strength labels. The distance function will be in two parts� = [�UCB(CST ); �UCB(CFT ;CSF )], one of which measures the relaxation of the strongconstraint, and another for the weak level of the hierarchy. The order will be thelexicographic order over the sequences of integers [s;w] produced by �.UCB and �UCB(�) are elsewhere in this paper, as is the notion of constraint aug-mentation. Here it su�ces to say that the best solutions, i.e. those earliest in the or-der created by the distance function, will be the sets of constraints fCST ; CFT ; C 0SF g,fCST ; CFT ; C 00SF g, fCST ; C 0FT ; CSF g, fCST ; C 00FT ; CSF g, where C 0SF = f(w; c); (r; c)g,i.e. CSF augmented with the extra tuple (r; c), and the other three solutions also con-tain one augmented constraint (C 00SF = f(w; c); (w; s)g, C 0FT = f(s; d); (c; g); (c;b)g,C 00FT = f(s; d); (c; g); (c;d)g). The solutions from these four sets of constraints, in vari-able order (S;F; T ), are f(r; c; g)g, f(w; s; d)g, f(w; c; b)g, and f(w; c; d)g, identical tothe HCLP solutions.5 Transforming PCSP into HCLP5.1 Transforming the standard PCSP distance functionTo transform PCSP with the standard distance function into HCLP, we take theconstraints in P and give them all the same arbitrary non-required strength label,9



say `strong'. Thus they will be placed in H1. Then we use the HCLP comparatorunsatis�ed-count-better (UCB). We claim that this is the correct comparator to use,i.e. we claim that the solutions calculated by HCLP using UCB are the same as thosein PCSP, and the particular solutions which are best according to PCSP will alsobe best according to UCB. (The intuition is as follows: the number of unsatis�edconstraints counted by UCB is the same as the number of constraints which wouldneed a single domain augmentation to create a consistent CSP, thus UCB measuresan equivalent distance to that measured in PCSP.)Certain combinations of augmented constraints in the PCSP formulation, whichduplicate solutions found at a closer distance, will not appear in the HCLP answer,but all the solutions to these combinations will appear. (Here is an analogy: if the listof PCSP solutions, in order from best to worst, is [a; b; c; a; d; a; e], the list of HCLPsolutions may be [a; b; c; d; e]. So although the lists are not equal, the fact that ashould be chosen before b or d is present in both representations.)See Section 6 for pseudo-code for transforming PCSP into HCLP.5.1.1 Detailed defence of choice of UCBThis section contains a detailed defence of our choice of UCB as the comparator touse in HCLP when transforming from PCSP. It addresses one possible key objection,but does not a�ect the presentation in subsequent sections of the paper.Consider those PCSP weakenings which involve more than one augmentation of asingle constraint. We claim that the following complaint about our choice of UCB isunjusti�ed: \UCB will just detect that a constraint had been violated by a valuation.It wouldn't detect that two di�erent augmentations would be necessary for the con-straint not to be violated." It is incoherent because two augmentations can never benecessary for a single constraint not to be violated. Two augmentations to a singleconstraint might, however, lead to an additional two or more solutions, but we canignore this situation due to the following claim:Claim: the additional solutions caused by n � 2 augmentations of a single con-straint can be completely separated into n classes, each of which contains solutionscaused by only one of the n augmentations. The CSPs represented by these singly-augmented constraints will all appear in the partial order induced by the distancefunction, and they will all appear earlier than the CSP containing the n-augmentedconstraint. Therefore, no solutions will be lost by ignoring all multiply-augmentedconstraints. Therefore, the fact that UCB only picks out those solutions which vi-olate the smallest number of singly-augmented constraints, does not change the setof solutions computed. (All that would happen is that two solutions s1 and s2 willseparately appear as, say, the equal-best solutions to the hierarchy, but their unionwill fail to appear as a second-best or third-best solution.)Example: Let A0 denote the constraint A with one extra tuple added to its do-main, in the usual manner. Usually there will be more than one way to augment A;these alternatives may be indicated by A01, A02, etc. Let A00 generally denote two aug-mentations to A, and speci�cally A001;2 denote that the two augmentations are equiva-lent to A01 [A02. Then our claim is that all the solutions to the CSP fA001;2; B 003;4; C 005;6gare present in the union of the solution sets fA01; B 03; C 05g[fA02; B 03; C 05g[fA01; B 04; C 05g[fA02; B 04; C 05g [ : : :. In other words, we can ignore multiple augmentations of a singleconstraint. 10



Intuition: Consider the CSP as a graph, with each variable represented by a nodeand each constraint represented by an edge. The tuples which make up the constraintare labels for the edges. A solution to the CSP is a path through every edge in thegraph, consistent with the labels. If we add a label to an edge, we are increasing byone the number of paths between the two nodes connected by that edge3. If insteadwe added a di�erent label, we would again increase the number of paths between thesetwo nodes by one. It is intuitively clear that adding these two labels simultaneouslywill add precisely two paths between the two nodes: any path can only take accountof one of the two labels on the edge. We could have arrived at the same set of totalpaths through the graph by taking two copies of the original graph, adding one newlabel to each of them, �nding the new paths caused by this single extra label, andthen eventually taking the union of the two sets of paths.Proof: Consider various binary constraints over di�erent pairs selected from nvariables X1, X2, X3, etc. We can de�ne the expansion C�ij of each constraint Cij ,which originally related Xi and Xj , to a set of n-tuples by creating a tuple for eachelement of the cartesian product of the variables not originally involved in the con-straint:C�ij = f(v1; v2; : : : ; vi; vj; : : : ; vn) j (vi; vj) 2 Cij; (vk; k 6= i; k 6= j) 2 dom(Xk)gExample: if X has domain fa; bg, Y has domain fc; dg, and Z has domain fe; fg, andif AXY = f(a; c); (b; d)g, then A�XY = f(a; c; e); (a; c; f); (b; d; e); (b; d; f)g.It is clear that the solution to a CSP is precisely the intersection of the expandedversions of each of its constraints. Thus instead of considering the solution of the setof constraints fAXY ; BY Z; CXZg, we can just consider A�XY \B�Y Z \ C�XZ.If we add one pair to the domain of one of the constraints in a CSP, it is equivalentto adding a set of n-tuples to the domain of that constraint's expanded version, wherethe other places in the tuple are �lled with all possible combinations of elements fromthe domains of all the other variables. Continuing with the example, let us assume,without loss of generality, that we have augmented constraint B. This leads to addinga set of n-tuples to B�; let us call this set of additional tuples R. We can imagineadding a di�erent pair to B which would lead to adding a di�erent set to B�, say R0.If we add both pairs to B at the same time, it is clear4 that we must add R [ R0 toB�.3The number of paths through the entire graph may increase by more than one. If there are k pathsleading into the start node of the edge under consideration, and l paths leading away from the endnode, then adding a path between the two nodes may increase the number of paths through theentire graph by up to kl.4If it is not clear, consider the following: if the �rst pair added to constraint Cij is (�; �) (giving,say, 01C) and the second pair is (; �) (giving 02C), and the doubly-augmented constraint is called 00C,then 01C�ij = C�ij [ f(v1; v2; : : : ; �; �; : : : ; vn) j (vk; k 6= i; k 6= j) 2 dom(Xk)g02C�ij = C�ij [ f(v1; v2; : : : ; ; �; : : : ; vn) j (vk; k 6= i; k 6= j) 2 dom(Xk)gand 00C�ij = C�ij [ f(v1; v2; : : : ; vi; vj; : : : ; vn) j (vi; vj) 2 f(�; �); (; �)g;(vk; k 6= i; k 6= j) 2 dom(Xk)gthen clearly 00C�ij = 01C�ij [ 02C�ij 11



Our claim is that we can ignore CSPs where one constraint has been multiplyaugmented; all their solutions will be present in the union of the solutions to CSPswith singly-augmented constraints. This is equivalent to claimingA� \ (B� [ (R [R0)) \ C� = (A� \ (B� [R) \ C�)[(A� \ (B� [R0) \ C�)The proof is a straightforward exercise in the use of the distributivity laws of set theory(J [ (K \ L) = (J [K) \ (J [ L) and its dual), with one use of the idempotence ofset union (K [K = K).Therefore, using UCB as our comparator in the automatically generated HCLPversion of a PCSP is acceptable. So our transformation from PCSP to HCLP holds.5.2 Transforming non-standard distance functionsWe have shown above how to transform problems using the standard PCSP distancefunction into HCLP. We now consider three other possibilities, �rstly where all thevariables and constraints are treated equally by the distance function but the distanceis not de�ned as minimum augmentation, secondly where some of the variables in theproblem are highlighted, and �nally where some of the constraints are highlighted.5.2.1 Non-speci�c (homogeneous) distance functionsAll the constraints are put at the `strong' level of the hierarchy resulting from thetransformation. The combining function embodied by the distance function must betransformed into an HCLP-like comparator, speci�cally into an error function for eachconstraint and a combining function which combines the errors at each level.5.2.2 Distance functions which prefer a subset of the variablesIn general CSPs are considered in terms of binary constraints. The theory can beextended, but complications are introduced. CLP, on the other hand, is indi�erent tothe arity of constraints. Therefore, if a PCSP problem has some kind of cost functionwhich selects solutions which minimise the value of some function of (some of) thevariables, we can simply treat it as another constraint. If the use of the cost functionis expressed in the usual way (\Do not violate any constraints in order to minimise thefunction") then it can be labelled `weak', while all the constraints in the original PCSPare labelled `strong.' If it is acceptable to violate constraints in order to minimise thefunction, then the inverse strength labelling can be used.5.2.3 Distance functions which prefer a subset of the constraintsThis possibility can be transformed into HCLP in a very straightforward manner: thepreferred constraints are labelled `strong', while the others are labelled `weak'. If thereare multiple subsets with some order over them, then clearly more HCLP strengthlevels can be used. 12



6 Pseudo-codeIn Figure 1 we present logic-programming-style pseudo-code which transforms HCLPinto PCSP in the manner described in Section 4 of this paper. Figure 2 presentssimilar pseudo-code for the PCSP to HCLP transformation (Section 5). We can alsowrite a single procedure, called say transform-HP, which includes transformations inboth directions thus showing the relational nature of our transformations; we havekept them separate here for clarity of presentation. Using the relational version, westate the main claim of this paper as a query in logic programming terms in Figure 3.This Figure assumes the existence of two procedures, each of which interfaces to astandard implementation of HCLP and PCSP respectively. The HCLP procedurerequires a collection of labelled constraints and a comparator as input. The PCSPprocedure has as inputs a collection of unlabelled constraints and a distance function.Figure 3 claims that if we do not have an implementation of HCLP, we can replace acall to it by the two calls transform-HP, PCSP, and vice-versa. So we can specify inone of the two paradigms and solve in the other, whenever it is necessary or desirable.transform-HCLP-PCSP( (LabelledConstraints, Comparator),(Constraints, DF) ) :-partition-constraints( LabelledConstraints,(Required, Strong, Weak, ... ),remove-labels( (Required, Strong, Weak, ...),(UL-Required, UL-Strong, UL-Weak, ...) ),% DF = Distance function.% The type of DF is determined by the e and g functions% (which are determined by the choice of comparator), and% and also parameterised by the different levels of constraintsdistance-function-0( (Required, Comparator), DF-R(UL-Required) ),distance-function-1( (Strong, Comparator), DF-S(UL-Strong) ),distance-function-2( (Weak, Comparator), DF-W(UL-Weak) ),...collect-distance-functions( (DF-R(UL-Required), DF-S(UL-Strong),DF-W(UL-Weak)...), DF ),collect-constraints( (UL-Required, UL-Strong, UL-Weak,...),Constraints ).Figure 1: HCLP into PCSP7 Conclusions and further work7.1 ConclusionsWe have developed a general methodology for transforming between HCLP and PCSP.We have clari�ed various issues, and provided a proof of correctness. We have shown13



transform-PCSP-HCLP( (Constraints, DF(Type,SpecialCons)),(LabelledConstraints, Comparator) ) :-% if Type = standard, then UCB comparator will be chosen, etc.% if no constraints are highlighted by the distance function,% then SpecialCons will be empty and all constraints are `strong'partition-constraints( (Constraints, DF(Type,SpecialCons))(UL-Strong, UL-Weak, ... ),add-labels( (UL-Strong, UL-Weak, ...), (Strong, Weak, ...) ),create-comparator(Type, Comparator)collect-constraints( (Strong, Weak, ...), LabelledConstraints ).Figure 2: PCSP into HCLP?- HCLP( (LabelledConstraints, Comparator), HCLP-Solutions ),transform-HP( (LabelledConstraints, Comparator),(Constraints, DF) )PCSP( (Constraints, DF), PCSP-Solutions ),equiv( HCLP-Solutions, PCSP-Solutions ).Figure 3: Equivalencethat strength labels, associated with constraints in HCLP, contain information whichis necessary to de�ne the global distance function in PCSP.HCLP and PCSP each have advantages when modelling problems, and each haveadvantages when implementing models and solving them. Using the work presentedin this paper, the appropriate paradigm can be used for each of these steps, with ameaning-preserving transformation in between if necessary.7.2 Further workWe would like to investigate issues of algorithmic complexitywithin the two paradigms.AcknowledgementsThanks to Alan Borning, Thomas Schiex, Rob Scott, and Roland Yap for many helpfuldiscussions about CLP.Thanks to City University for funding Michael Jampel's PhD for three years, andto the European Community for a TMR grant. Thanks to the Belgian National Fundfor Scienti�c Research, and to the European Community INTAS project 93-1702, forfunding Jean-Marie Jacquet's research. 14
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