
Interaction of agents and environmentsAlexander Letichevsky1, David Gilbert21 Glushkov Institute of Cybernetics, National Academy of Sciences of Ukrainelet@d105.icyb.kiev.ua2 Department of Computer Science, City University, London EC1V 0HB, UKdrg@cs.city.ac.ukAbstract. A new abstract model of interaction between agents and en-vironments considered as objects of di�erent types is introduced. Agentsare represented by means of labelled transition systems considered upto bisimilarity. The equivalence of agents is characterised in terms of analgebra of behaviours which is a continuous algebra with approximationand two operations: nondeterministic choice and pre�xing. Environmentsare introduced as agents supplied with an insertion function which takesthe behaviour of an agent and the behaviour of an environment as argu-ments and returns the new behaviour of an environment. Arbitrary con-tinuous functions can be used as insertion functions, and we use functionsde�ned by means of rewriting logic as computable ones. The transfor-mation of environment behaviours de�ned by the insertion function alsode�nes a new type of agent equivalence | insertion equivalence. Twobehaviours are insertion equivalent if they de�ne the same transforma-tion of an environment. The properties of this equivalence are studied.Three main types of insertion functions are used to develop interestingapplications: one-step insertion, head insertion, and look-ahead insertionfunctions.Keywords: agents, behaviour, distribution, environments, interaction,semantics1 IntroductionThe majority of traditional theories of interaction including CCS [19], CSP [9],ACP [3], TLA [17], and more recent theories such as game semantics [2], andtile model [6], consider interaction between agents in the environment. Howeverthe notion of an environment is used implicitly or its elements are introduced aselements of process algebra expressions undistinguished from agent expressions.In those models where the environment is considered explicitly such as programsover shared memory or Linda based models, the notion of an environment isvery special. In this paper we consider agents and environments as objects ofdi�erent types. Agents are represented by means of labelled transition systemswith divergence and termination, considered up to bisimilarity. The equivalenceof agents is characterised in terms of an algebra of behaviours which is a twosorted (actions and behaviours) continuous algebra with approximation and twooperations: nondeterministic choice and pre�xing (like basic ACP). The notion



of an abstract agent can be introduced as a transition closed set of behaviours.All known compositions in various kinds of process algebras can be then de�nedby means of continuous functions over agents.Environments are introduced as agents supplied with functions used for theinsertion of other agents into these environments. An insertion function has twoarguments: the behaviour of an agent and the behaviour of an environment.The value of an insertion function is a new behaviour of an environment. Thenotion of an environment gives the possibility of de�ning a new type of agentequivalence | insertion equivalence. Two behaviours are insertion equivalentif they de�ne the same transformation of an environment. Most of the knownequivalences for processes can be characterised as insertion equivalence.In earlier publications [13, 14, 16] the model has been considered in the con-text of language representation. The generic (Parameterised) Action Language(AL), introduced there was considered as a general model of computation andinteraction covering a wide class of nondeterministic concurrent programminglanguages. The interaction semantics of AL has been de�ned in terms of trans-formations of environment behaviours and has been used for the de�nition of acomputational semantics as well. In [15] a new, more abstract model of inter-action between agents and environments has been introduced. This paper gen-eralises the approach of previous ones, allowing the use of arbitrary continuousfunctions for the de�nition of insertion of an agent into an environment.Three main types of insertion functions are used to develop interesting appli-cations: one-step insertion, head insertion, and look-ahead insertion functions.They are introduced by means of rewriting logic [10]. We study insertion equiva-lence for one-step insertion using algebraic representation of agents and provingcongruence property for the main operations of behaviour algebra. The imple-mentation of the model on a base of algebraic programming system APS isconsidered.2 Preliminaries2.1 Transition systemsDe�nition 1. (Park [5]) A transition system over a set of actions A is a set Sof states with a transition relation s a! s0; s; s0 2 S; a 2 A, and two subsetsS� and S? called correspondingly sets of terminal and divergent states.The original de�nition of D.Park does not contains terminal and divergentstates. The former is used for the de�nition of computational semantics of agents,and the later for introducing the approximation relation and the technicallyimportant construction of in�nite objects from �nite ones by passing to limits.De�nition 2. A binary relation R � S�S is called a partial bisimulation if forall s and t such that sRt and for all a 2 A{ s 2 S� ) t 2 S�



{ s a! s0 ) 9t0:t a! t0 ^ s0Rt0{ s 62 S? ) (t 62 S? ^ (t a! t0 ) 9s0:s a! s0 ^ s0Rs))This de�nition is a slight modi�cation of the de�nition in [1]. A state s of atransition system S is called a bisimilar approximation of t denoted as svBt ifthere exists a partial bisimulation R such that sRt. Symmetric closure of partialbisimulation is a bisimulation equivalence denoted s�Bt. The de�nition of partialbisimulation can be easily extended to the case when R is de�ned as a relationbetween the states of two di�erent systems, considering the disjoint union oftheir sets of states. Two transition systems are bisimilarily equivalent if eachstate of one of them is bisimilarily equivalent to some state of another.We give some consequences from this de�nition in order to help the readerto understand it better. The divergent state without transitions approximatesarbitrary other state. If s approximates t and t is convergent (not divergent)then s is also convergent, s and t have transitions for the same sets of actionsand satisfy the same conditions as for usual bisimulation without divergence.Otherwise if s is divergent (and therefore so is t) the set of actions for which shas transitions is only included in the set of actions for which t has transitions,i.e. s is less de�ned than t.2.2 Behaviour algebraA behaviour algebra (or an algebra of behaviours) over an action set A is a con-tinuous algebra [8] or an algebra with approximation (a poset with a minimalelement and continuous operations [12]). It has two operations, the �rst beingdenoted by + is an internal binary aci-operation (idempotent associative andcommutative operation). This operation corresponds to nondeterministic choice.The second operation is pre�xing a:u, a being an action, u being a behaviour.The minimal element of a behaviour algebra is denoted by ?. The empty be-haviour � performs no actions and usually denotes the successful terminationof a (computational) process. The impossible behaviour 0 is the neutral elementfor nondeterministic choice. There is also the impossible (empty) action ; in A.The identities of a behaviour algebra are shown in Figure 1.u+ v = v + u(u+ v) + w = u+ (v + w)u+ u = uu+ 0 = 0 + u = u;:u = 0Fig. 1. Relations of an algebra of behavioursThe approximation relation of the algebra of behaviours over A is a partialorder which satis�es the relations presented in Figure 2.



?v uu v v ) u+ w v v + wu v v ) a:u v a:vFig. 2. Approximation for behavioursIf all relations of a behaviour algebra are consequences of those presentedin Figure 1 and the approximation relation is a minimal partial order satisfyingthe relations in Figure 2 then this algebra is called a free algebra. The elementsof the minimal (initial) sub-algebra Ffin(A) of a free behaviour algebra over A(i.e. a sub-algebra generated by the empty behaviour, the impossible behaviourand the bottom element) are called �nite behaviours. All other behaviours (of afree behaviour algebra) are assumed to be the limits (least upper bounds) of thedirected sets of �nite elements. The free behaviour algebra which includes all suchlimits is denoted F (A). It is de�ned uniquely up to a continuous isomorphism.Note that in F (A) the �xed point theorem is true, so we can use it forconstructing new behaviours from already built ones by means of equations ofthe form X = F (X), where X is a vector of variables and F (X) is an algebraicfunctional, that is a functional constructed from variables and constants � and? by means of nondeterministic choice and pre�xing. An alternative approachis to consider F (A) as a �nal coalgebra and use coinduction for reasoning andconstructing behaviours [4].Each behaviour u 2 F (A) can be represented in the formu =Xi2I ai:ui + " (1)where ai are di�erent from impossible action, ui are behaviours, I is a �nite(for �nite elements) or in�nite set of indices, " = �;?; �+ ?; 0 (terminationconstants). If all summands in the representation (1) are di�erent then this rep-resentation is unique up to the associativity and commutativity of nondetermin-istic choice. A behaviour u is called divergent if " =?; �+ ? and convergentotherwise. Note that u is always divergent for in�nite I as a limit of �nite diver-gent sums. Convergent in�nite sums can be introduced by extending the notionof a �nite element. Namely, termination constants, pre�xed �nite elements andarbitrary (�nite or in�nite) sums of �nite elements are also considered as �niteelements.2.3 Behaviours and transition systemsFor each state s 2 S of a transition system let us consider a behaviour beh(s) =us (of a system in a given state s) de�ned as a component of a minimal solution



of a system us = Xs a!s0 ai:us0 + "s (2)where termination constants "s are de�ned in Figure 3.s 62 S� [ S? ) "s = 0s 2 S� n S? ) "s = �s 2 S? n S� ) "s =?s 2 S� \ S? ) "s = �+ ?Fig. 3. Termination constants for the behaviour of a system in a given stateA set U of behaviours is called transition closed if from a:u+v 2 U and a 6= ;it follows that also u 2 U . Each transition closed set U can be considered as aset of states of a transition system with transitions a:u+ v a! u; a 6= ;, the setof terminal states U� = fu = v +�g and divergent states U? = fu = v+ ?g.Therefore the relations vB and �B can be considered for behaviours as well asfor the states of a transition system.Theorem3. Let s and s0 are states of a transition system, u and v are be-haviours. Then:1. svBs0 , us v us0 ;2. s�Bs0 , us = us0 ;3. u = v , u�Bv.In the following we shall use � instead of �B .2.4 Compositions of behavioursThere are many useful compositions de�ned in concurrency theory as operationson processes or agents represented as transition systems. The majority of thempreserve bisimilarity and can therefore be de�ned as operations on behaviours.Another useful property of these compositions is continuity. To de�ne a continu-ous function over behaviours it is su�cient to de�ne it on �nite behaviours andextend to all others by passing to limits. De�nitions in the style of SOS seman-tics [20] or employing conditional rewriting systems always produce continuousfunctions. In this section two main compositions { sequential and parallel { willbe de�ned.Sequential composition of behaviours. u and v is a new behaviour de-noted as (u; v) and de�ned by means of the inference rules and equations pre-sented in Figure 4.



u a! u0 ` (u; v) a! (u0; v)(�;u) = (u;�) = u; (0; u) = 0; (?;u) =?Fig. 4. Sequential composition of behavioursIn the following we shall also use the notation uv instead of (u; v) and (au)instead of (a:u). This notation is not ambiguous if we identify an action a withthe behaviour a:�.Parallel composition of behaviours. Up to now the set of actions Awas considered as a 
at set without any structure. Now we de�ne an algebraicstructure on this set introducing the combination a� b of actions a and b. Thisoperation is commutative and associative with the empty action as annulator(a� ; = ;). Thus the set A becomes an algebra of actions.The inference rules and equations for the de�nition of the parallel composi-tion ukv of behaviours u and v are presented in Figure 5. Commutativity andassociativity of parallel composition are consequences of this de�nition.u a! u0; v b! v0; a� b 6= ;ukv a�b! u0kv0u a! u0 ` ukv a! u0kv; uk(v +�) a! u0v a! v0 ` ukv a! ukv0; (u+�)kv a! v0(u+�)k(v +�) = (u+�)k(v +�) +�(u+ ?)kv = (u+ ?)kv+ ?uk(v+ ?) = uk(v+ ?)+ ?Fig. 5. Parallel composition of behaviours3 Agents and environmentsThe previous section contains fairly standard de�nitions and constructions whichare used as the mathematical foundation of concurrency theory. Our approachis close to that of ACP [3], and we use the continuous algebra of behavioursas a domain for the characterisation of transition systems up to bisimilarityinstead of power-domains as in [1] or [18]. In this section we introduce the mainconstruction of our theory, namely the insertion of an agent into an environment.



An abstract agent U over an action algebra A is a transition closed set ofbehaviours over A. An agent can be initialized by distinguishing the set U0 � Uof possible initial states so that each other state of an agent is reachable fromsome of the initial states.Usually agents are represented by a transition systems and are identi�edwith these systems. In this case the corresponding abstract agent is the set of allbehaviours of the states of its representation. Two representations of the sameagent are therefore bisimilarily equivalent.The set of behaviours of an agent can be considered as a transition systemas well (the standard representation of an agent) and we can speak about theset of states when considering the behaviours of an agent. We should distinguishbetween an agent as a set of states or behaviours and an agent in a given state.In the latter case we consider each individual state or behaviour of an agent asthe same agent in a given state.An Environment E is an agent over an environment algebra of actions Cwith an insertion function. The insertion function Ins of an environment is afunction of two arguments: Ins(e; u) = e[u]. The �rst argument e is a behaviourof an environment, the second is a behaviour of an agent over an action algebraA in a given state u (the action algebra of agents can be a parameter of anenvironment). An insertion function is an arbitrary function continuous in bothof its arguments. The result is a new behaviour of the same environment.For the de�nition of insertion functions we can use the same methods asfor the de�nition of operations over behaviours, but the semantics of agents isdi�erent. They are considered up to an equivalence which is in general weakerthan bisimilarity. This is insertion equivalence which depends on an environmentand its insertion function. Two agents (in given states) or behaviours u and vare insertion equivalent with respect to an environment E, written u �E v if forall e 2 E e[u] = e[v]. Each agent u de�nes the transformation TrEu : E ! E ofits environment: TrEu (e) = e[u] and u �E v i� TrEu = TrEv . We shall also use thenotation [u] for TrEu .After inserting an agent into an environment, the new environment can acceptnew agents to be inserted, and the insertion of several agents is something thatwe will often wish to describe. We shall use the notatione[u1; : : : ; un] = e[u1] : : : [un]for the insertion of several agents.Note that in this expression u1; : : : ; un are agents inserted into the environ-ment simultaneously, but the order can be essential for some environments. Ifyou want agent u to be inserted after agent v, you must compute some transitione[u] a! s and consider expression s[v]. Some environments can move indepen-dently, suspending the movement of an agent inserted into them. In this case ife[u] a! e0[u] then e0[u; v] describes the simultaneous insertion of v and u into theenvironment in a state e0 as well as the insertion of u at the moment when anenvironment is in state e and after this the insertion of v.An environment e[u] with containing an inserted agent u can be used for theinsertion of another agent using the insertion function Ins, or can be considered



as a new agent which can be inserted into a new environment e0 with anotherinsertion function Ins0. In this case e0[e[u]] = Ins0(e0; Ins(e; u)), and we canassociate with the behaviour u not only transformation TrEu but also a functionF = TrE�E0!E0u : E �E0 ! E0 de�ned by equation F (e; e0) = e0[e[u]].In the sequel the notation e[u] will be used not only for the case when u ande are behaviours (or expressions which take values in the behaviour algebra) butalso states of transition systems used to represent corresponding behaviours. Inthis case we must prove the correctness of an expression, or its independencefrom the representation of a state, that is e � e0 ) e[u] � e0[u].Let us now consider some important cases of environments and insertionfunctions.3.1 Parallel and sequential environmentsThe insertion function for a parallel environment ise[u] = ekuIn this case all agents inserted into an environment interact in parallel ande[u1; : : : ; un] does not depend on the order of insertion.Another important case is a sequential environment:e[u] = euIn this case the performance of agents is sequential.If � 2 E then the insertion equivalence of agents is a bisimulation. A weakerequivalence can be obtained if the de�nition of the insertion function is modi�edin the following way: e[u] = '(eku)for a parallel environment or e[u] = '(eu)for a sequential one. In this modi�cation ' is an arbitrary continuous transfor-mation of E. The restriction function of CCS or the hiding function of CSP ortheir combinations are useful special cases of '.3.2 One-step insertionThe class of one-step insertion functions consists of insertion functions that de�nethe interaction between environment and inserted agents in such a way that thecurrent observable action of a resulting environment depends on the behaviourof an environment and agents in the current moment of time only (one-stepbehaviour). This dependency is de�ned by means of a hiding function h : A �C ! 2C (in [16] the similar function was called a residual function). The formalde�nition is presented in Figure 6. In this �gure "u is a termination constant inthe canonical representation of u =Pai:ui + "u, " is an arbitrary terminationconstant.



u a! u0; e c! e0; d 2 h(a; e)e[u] d! e0[u0]e c! e0 ` e[u] c! e0[u]e[u+�] = e[u+�] + e; e[u+ ?] = e[u+ ?] + ek ?; (e+ ?)[u] = e[u]+ ?"[u] = "k"uFig. 6. One-step insertion functionIn order to prove the properties of one-step insertion it is useful to introduceits algebraic representation. Let us consider the canonical forms of the state (be-haviour) e =Pi2I ci:ei+"e of an environment and the state u =Pj2J aj :uj+"uof an agent. The following representation of e[u] is a consequence of its de�nitionin Figure 6: e[u] = Xd2h(aj ;ci) d:ei[uj ] +Xi2I ci:ei[u] + �("u; e) (3)where �("+"0; e) = �("; e)+�("0; e); �(0; e) = 0k"e; �(�; e) = e; �(?; e) = ek ?.This representation provides the computation of pre�xing and nondeterministicchoice: e[a:u] = Xd2h(a;ci) d:ei[u] +Xi2I ci:ei[a:u] + �(0; e) (4)e[u+ v] = e� [u] + e� [v] +Xi2I ci:ei[u+ v] + �("u; e) + �("v ; e) (5)where e� [u] = Xd2h(aj;ci) d:ei[uj ]The equations (4) and (5) show that transformations [a:u] and [u + v] canbe expressed in terms of [u] and [v] (as a minimal �xed point). Thus one-stepinsertion equivalence is a congruence (with respect to pre�xing and nondeter-ministic choice) and these equations can be used for the de�nition of pre�xinga:[u] = [a:u] and nondeterministic choice [u]+ [v] = [u+v] on the set of continu-ous transformations of E. As a result the mapping u! [u] is a homomorphism.A natural special case of a one-step insertion environment is a memory oversome set R of names or variables. A state of this environment is a mappinge : DR ! DR. Actions c 2 C correspond to statements over R such as (parallel)assignments and conditions. If c is a statement then e c! e0 is a functional relationon E, and if c is a condition then e c! e i� c is true on e. A combination over theset of actions c� c0 can be de�ned as an action equivalent to the simultaneousperformance of c and c0. In this case c � c0 6= ; i� c and c0 are consistent.Consistency can be de�ned for the synchronous or asynchronous combination of



actions, and for synchronous combination consistency means that each of twostatements c and c0 change the same variables. For asynchronous combinationa stronger condition is used: neither of two statements can use the variableschanged by the other one.A hiding function h for a memory environment can be de�ned in the followingway: h(a; c) = fdjc = a � dg, if a 6= c and h(a; a) = f�g, where � is a specialatomic action (empty statement) such that � � a = a � � = a for an arbitraryaction a and e �! e. A memory environment extended by input/output andinterface statements can be used for modeling (deterministic or nondeterministic)sequential imperative programs over shared memory.A useful extension of one-step insertion can be obtained by introducing toolsfor making some of the interactions of agents and environments unobservable.For this purpose let us introduce a special symbol o to denote the unobservableaction and let h : A� C ! C [ fog. De�ne the unlabeled transitions on the setof states e[u]: u a! u0; e c! e0; o 2 h(a; c)e[u]! e0[u0]and the rule: e[u] �! e0[u0]; e0[u0] d! e00[u00]e[u] d! e00[u00]A one-step environment with these two extra rules is called an extended one-step environment. For this environment a summand Po2h(aj ;ci) ei[uj ] must beadded to representation (3) and the congruence properties for the operations ofbehaviour algebra are still valid.3.3 Head insertionWhen we study the interaction of a client and a server the latter can be con-sidered as the main part of an environment into which several clients can beinserted. An environment in this case can observe only the current action ofa client (query, message, pushing buttons and so on). At the same time theserver knows its internal state and can make a decision by analysing its futurebehaviour. This situation can be captured by head insertion.A head insertion function is de�ned by means of three systems of rewritingrules. The rules of the �rst system have the form(a;G(x1; x2; : : :))! (d;G0(x1; x2; : : :))where a 2 A; d 2 C, G(x1; x2; : : :) and G0(x1; x2; : : :) are terms of a behaviouralgebra over C with variables x1; x2; : : : considered up to the identities of thisalgebra. The relation de�ned by this system is called the interaction move andis denoted by (a; e) interact! (d; e0) The rule for this relation is:(a;G(x1; x2; : : :))! (d;G0(x1; x2; : : :))(a;G(e1; e2; : : :))! (d;G0(e1; e2; : : :))



The rules of the second system have the form(a;G(x1; x2; : : :))! G0(x1; x2; : : :)They de�ne the hidden move relation which is denoted as (a; e) hidden! e0 Therules of the third system have the formG(x1; x2; : : :)! (d;G0(x1; x2; : : :))They de�ne the environment move which is denoted as (a; e) env�move! (d; e0).u a! u0; (a; e) interact! (d; e0)e[u] d! e0[u0]u a! u0; (a; e) hidden! e0e[u]! e0[u]e env�move! (d; e0)e[u] d! e0[u]; e[u+�] d! e0; e[u+ ?] d! e0k ?e[u] �! e0[u0]; e0[u0] d! e00[u00]e[u] d! e00[u00]e[u] d! e0[u0] _ e[u] �! e0[u0]; f v e; f [u] 6!f [u] =?"[u] = "k"uFig. 7. Head insertion functionThe rules for transitions of e[u] are presented in Figure 7. They include theunlabeled transitions de�ned by the hidden moves. An expression of the types 6! means that there is no transitions s d! s0 or s! s0.The insertion function de�ned by the rules of Figure 7 is continuous. In orderto prove this statement note that the knowledge of all �nite approximations ofe and u is su�cient for computing the transition e[u] d! e0[u0].3.4 Look-ahead insertionA more general situation in comparison with head insertion occurs if an envi-ronment contains the interpreter for some programming language and an agentis a software agent written in this language. In this case an environment cananalyse not only its own future behaviour but the behaviour of an interpreted



program as well. This situation can be described by means of look-ahead inser-tion. This function is also de�ned by means of rewriting rules of only one type| interaction rules(F (x1; x2; : : :); G(y1; y2; : : :))! (d; F 0(x1; x2; : : :); G0(x1; x2; : : :))These rules de�ne an interaction relation denoted as(u; e) interact! (d; u0; e0)It can be proved that this general type of rewriting rules also covers hiddenand environment moves (if we admit the possibility of an in�nite number ofrules which may be required to implement the transitive closure of unlabeledtransitions).(F (x1; x2; : : :); G(y1; y2; : : :)) interact! (d; F 0(x1; x2; : : :); G0(y1; y2; : : :))G(e1; e2; : : :)[F (u1; u2; : : :)] d! G0(e1; e2; : : :)[F 0(u1; u2; : : :)]e[u] = G(e1; e2; : : :)[F (u1; u2; : : :)] d! G0(e1; e2; : : :)[F 0(u1; u2; : : :)); v v u; f v e; f [v] 6!f [v] =?"[u] = "k"uFig. 8. Look-ahead insertion functionThe rules for look-ahead insertion function are presented in Figure 8. A look-ahead insertion function is also continuous; the proof is the same as that for ahead insertion.3.5 Distributed environmentsWe can obtain multilevel distributed structures using recursive insertion anddi�erent environments used on di�erent levels. Let E1 be some environment usedas a local environment shared by several agents (shared memory or constraintstore, for instance). An environment e[u1; : : : ; un] can be closed by applying toit some continuous function ' and changed to an agent which can be insertedto the environment E2 of the next level. Several agents v1; : : : ; vm constructedthis way can be inserted to E2 and a new environment e[v1; : : : ; vm] can beconsidered as a distributed environment with local components (environments)v1; : : : ; vm. This construction can be repeated recursively. Look-ahead insertioncan use the low level insertion function for computation of transitions of lowlevel components.



4 Insertion equivalenceIn this section we shall study a one-step equivalence. First the notion of nor-malised behaviour representation will be introduced and the criteria of one-stepinsertion equivalence of agents will be established. Then we shall study the con-gruence properties of sequential and parallel composition of agents.Let E be a one-step environment with a hiding function h. First, let us notethat if u �E v that is [u] = [v] then [au+ bv] = [(a+ b)u]. This relation is alsovalid for an in�nite number of summands:[Xi2I ai:ui] = [(Xi2I ai)u]if all ui are equivalent to u. A behaviour which is a sum of actions will be called aone-step behaviour. An arbitrary behaviour can be represented up to equivalence(wrt E) as a sum Xi2I piui + " (6)where pi are one-step behaviours and [ui] 6= [uj ] if i 6= j. To obtain this represen-tation for the behaviourPi2I ai:ui+ " it is su�cient to partition all summandsai:ui collecting together those of them for which ui are mutually equivalent andapply the equation above.Let us extend the hiding function to one-step behaviours by de�ning forp = Pi2I ai, h(p; c) = Si2I h(ai; c) and h(p) = Sc2C h(p; c). For a one-stepbehaviour p if h(p) = ; then [pu] = [0] and [pu + v] = [v]. Therefore, therepresentation (6) can be restricted so that for all i 2 I h(pi) 6= ;. Such arepresentation is called a normal form of an agent for the environment E.De�nition 4. A one-step environment is called regular if:1. For all a 2 A and c 2 C c 62 h(a; c);2. E is a subalgebra of F (C).One-step behaviours p and q are called equivalent wrt a hiding function h(p �h q) if for all c 2 C h(p; c) = h(q; c). If p and q are equivalent then [pu] = [qu].Theorem5. For a regular one-step environment the normal form of a behaviouris unique up to the commutativity of nondeterministic choice and equivalence ofthe one-step behaviour coe�cients.To prove the theorem let us �rst prove that if h(p) 6= ; and [pu] = [qv] thenp �h q and [u] = [v] (the inverse is evident). Let d 2 h(p), then for some a 2 Aand c 2 C d 2 h(a; c). Let us take an arbitrary state (behaviour) e 2 E. SinceE is an algebra, ce 2 E. We have c 6= d therefore (ce)[pu] d! e[u]. From theequivalence of pu and qv it follows that (ce)[pu] � (ce)[qv] ) (ce)[qv] d! e[v]and this is the only transition from (ce)[qv] labelled by d. Therefore d 2 h(q) ande[u] � e[v]. From the arbitrariness of e we have [u] = [v]. Symmetric reasoninggives also d 2 h(q)) d 2 h(p)) p �h q.



Next we show that if u =Pi2I piui+"u; v =Pj2J qjvj+"v are two normalforms and [u] = [v] then for each i 2 I there exists j 2 J such that [piui] = [qjvj ]and from symmetry these forms are the same up to the commutativity andequivalence of coe�cients. Again, as above if (ce)[piui] d! e[ui]; c 6= d thereexists only one j such that (ce)[qjvj ] d! e[vj ] and vice versa. Therefore pi �hqj ; [ui] = [vj ] and [piui] = [qjuj ]. The equality of "u and "v is obvious. 2Sequential composition has a congruence property for regular one-step envi-ronments, as shown by the following theorem.Theorem6. Let E be a regular one-step environment. Then [u] = [u0] ^ [v] =[v0]) [uv] = [u0v0].To prove this theorem we prove that the relation e[uv] �R e[u0v0] de�ned for anarbitrary e 2 E; u; v; u0; v0 2 F (A) by the condition [u] = [u0] ^ [v] = [v0] is abisimilarity. In order to compute transitions, normal forms for the representationof agent behaviours must be used. We omit the details of this proof for reasonsof space.Parallel composition does not in general have a congruence property. To �ndthe condition when it does, let us extend the combination of actions to one-stepbehaviours assuming that p� q = Xp=a+p0; q=b+q0 a� bThe equivalence of one-step behaviours is a congruence if h(p) = h(q) ) h(p�r) = h(q � r).Theorem7. Let E be a regular one-step environment and the equivalence ofone-step behaviours is a congruence. Then [u] = [u0]^[v] = [v0]) [ukv] = [u0kv0].As for the previous theorem we prove that the relation e[ukv] �R e[u0kv0] is de-�ned for an arbitrary e 2 E; u; v; u0; v0 2 F (A) by the condition [u] = [u0]^ [v] =[v0] is a bisimilarity. To compute transitions, normal forms for the representa-tion of agent behaviours must be used as well as the algebraic representation ofparallel composition: ukv = u� v + ubbv + vbbuThe details are also omitted.5 ImplementationThe model described in the paper has been implemented in algebraic program-ming system APS [11] based on rewriting logic. The Action Language has beenused as a language for the description of agents. The main compositions inthe Action Language (AL) are nondeterministic choice, parallel and sequentialcompositions. Actions are considered as primitive statements. The syntax andsemantics of combinations and other operations in the algebra of actions are



parameters of AL which is considered as a generic model for a class of nondeter-ministic concurrent programming languages. Procedure calls are another kind ofprimitive statement. The syntax of these kind of statements is also a parameterof AL as well as their intensional semantics which is de�ned by means of theunfold operator represented in the form of a rewriting system (recursion). Theintensional semantics of a program is de�ned as the behaviour of an agent, andthe interaction semantics is a parameter of a language and de�ned by means ofrewriting rules for the insertion function for a given environment.The language also has the possibility to describe variables and localisingthem within local program components which can be used for the description ofdistributed agents. Variables are considered as variables of a memory state or aconstraint store considered as a local environment for agents, and the meaningof a local component is an agent inserted into its local environment. The parallelcomposition of local components is considered as a set of agents inserted intothe higher level environment which is a shared memory or a shared constraintstore.The �rst implementation of AL by means of an interpreter written in APLAN(the source language of APS) has been described in [7]. The next step was thedevelopment of a simulator which has been used to study the semantics of con-current constraint and probabilistic concurrent constraint languages [21]. Theseearly implementations used one-step insertion only. The current implementationis based on head insertion and can be easily extended to look-ahead insertion.The simulator is an interactive program which can explore the behaviourof an environment with agents inserted into it step-by-step, with branching atnondeterministic points and return back to previous states. In automatic modeit can search for states with speci�c properties, such as successful terminationor dead-lock states.6 ConclusionsA model of interaction between agents and environments based on insertionfunctions has been presented in this paper. The set of behaviour transformationshas been introduced as a domain for the semantic description of agents insertedinto a corresponding environment. This description re
ects the interaction ofagents and environments and mathematically is represented by a continuousmapping from behaviours to transformations. For a regular one-step insertionthis mapping is a continuous homomorphism.The model has been implemented in the algebraic programming system APSand this implementation is being used to study interaction and computation indeclarative programming paradigms.References1. S. Abramsky. A domain equation for bisimulation. Information and Computation,92(2):161{218, 1991.
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