
Concurrent Constraint Programming withProcess MobilityDavid Gilbert1 and Catuscia Palamidessi21 Department of Computing, City University drg@soi.city.ac.uk2 Department of Computer Science and Engineering, Penn State Universitycatuscia@cse.psu.eduAbstract. We propose an extension of concurrent constraint program-ming with primitives for process migration within a hierarchical network,and we study its semantics.To this purpose, we �rst investigate a \pure" paradigm for process mi-gration, namely a paradigm where the only actions are those dealingwith transmissions of processes. Our goal is to give a structural def-inition of the semantics of migration; namely, we want to describe thebehaviour of the system, during the transmission of a process, in terms ofthe behaviour of the components. We achieve this goal by using a labeledtransition system where the e�ects of sending a process, and requestinga process, are modeled by symmetric rules (similar to handshaking-rulesfor synchronous communication) between the two partner nodes in thenetwork.Next, we extend our paradigm with the primitives of concurrent con-straint programming, and we show how to enrich the semantics to copewith the notions of environment and constraint store.Finally, we show how the operational semantics can be used to de�ne aninterpreter for the basic calculus.1 IntroductionConcurrent constraint programming (ccp) [16] is a computational paradigmwhich combines the notions of concurrency and constraints. Classical ccp is basedon a shared (constraint) store and, as such, it implies a centralized computationalmodel.In this work, we aim at enriching the ccp paradigm with the notion of local-ities, local stores and environments, and process migration. More precisely, weconsider a distributed version of ccp where processes (or agents) run at speci�csites, and have associated a local environment of procedure declarations, and alocal store of constraints. The sites are organized hierarchically, and therefore anagent may contain sub-agents. The computation of a process only depends on itslocal code and data; however, a crucial characteristic that we wish to describe isthe ability of an agent to move from site to site in the network, and bring alongits environment and store.Our main goal is to provide a Structural Operational Semantics for suchan extension of ccp, namely a semantics in which the behaviour of complex

processes is de�ned in terms of the behaviour of their components. This resultsin the usual advantages for reasoning and for the de�nition of formal tools. Inthe long-term our motivation is to be able to describe and reason about themigration of software agents in a distributed system.1.1 Process migration versus link mobilityThe term \mobility" has become associated with two meanings { �rstly thatof recon�guring a network by changing the links or connections between nodes,and secondly the ability of a node within a network to migrate its position, thusalso recon�guring the topology of the network. In order to avoid confusion, weuse link mobility to describe the former, and process mobility , or migration, forthe latter. In this work, we are concerned with process mobility.The classical work on link mobility is Milner's �-calculus [12]. Migration hasbeen described by Cardelli [3, 7], and formalized in work on agent-passing calculi,for example Plain CHOCS [17] and Strictly-Higher-Order �-calculus [14]. For astudy of the correspondence between the two concepts, see Sangiorgi [15].An important consideration in migration is that of locality, namely the ex-plicit association between agents and speci�c sites. Several calculi supportingthis notion have been presented recently; see for instance [5, 6, 10]. Of these,however, only Fournet et al's Distributed Join Calculus [10] treats locality incombination with migration. This is done in style of the Chemical Abstract Ma-chine, by creating a
at model of local solutions with associated local names,and organising them as an implicit tree of nested locations. In contrast with[10], we describe migration in the SOS style, maintaining the network structureexplicitly as it is done in [5]. Another di�erence with [10] is that we are able todescribe migration to a sublocation, while this is not possible in [10].1.2 Models of mobile computationOne can distinguish various types of mobile computation, which depend on theway the environment is treated under migration.Following Cardelli [7], we regard a closure as the run-time description of arunning procedure, i.e. the code plus the context of its execution. In general thiscontext may include data, active network connections which are preserved ontransmission, and new connections that are created to keep the closure in touchwith the site that it has left behind.With respect to the notion of closure, we can distinguish three increasinglyricher models of mobility:1. Code mobility only.2. Mobility of agents , which are closures with contexts which lack link infor-mation. These agents do not communicate remotely with other agents, butmove to some location and communicate locally there.3. Mobility of general closures which include network connections (links), likein Obliq [8].

In this paper we focus on the agent mobility only. At the end of Section 3we discuss possible extensions towards the last, most general model.1.3 Distributed concurrent constraint programmingTo our knowledge, there have been only two previous proposals for distributedextensions of ccp: Distributed Oz [18] and Distributed ccp [13].The proposal in [13] is based on the notion of agents computing within theirlocal stores of constraints, and exchanging constraint abstractions through chan-nels. A process receiving an abstraction applies it to its local variables, thusmaking a sort of local version of the received constraint. The dependency onglobal information is avoided by a static analysis of the program, giving thesu�cient conditions under which the store of two agents can be divided in twolocal (independent) stores.In [18] the notion of global and local information coexist: the computationof an agent mainly depend on local data, but the bindings on the shared logicalvariables are global and require handling by a distributed constraint solvingalgorithm. The main kind of mobility is cell mobility, namely the informationcontent of a cell (a sort of imperative variable) can be exchanged between agents.Neither [18] nor [13] deal with distribution and agent migration in our sense,i.e. by using an explicit notion of site, in a network organized hierarchically, andby transferring environment and store along with the code.1.4 Structure of the paperThe next section presents an abstract paradigm for the description of processmigration between any two sites within a hierarchical network. Section 3 showshow the paradigm can be enriched to cope with the concepts of environment andconstraint store, thus laying the foundations of concurrent constraint program-ming with process migration. Section 4 presents a simple (centralized) interpreterfor the paradigm described in Section 3, and Section 5 discusses future work.2 The basic paradigm for migrationIn this section we present our methodology for describing migrating agents withina hierarchically organized network. Our basic assumption is that the topologyof such a network can be described as a tree, where each node is associated witha name n and contains an agent A. Names are unique only amongst peer nodes(sharing the same parent), and the unique address (location) of a node is givenby the string � formed by concatenating the names of the nodes on the directpath from the root to that node. Thus we permit the same name to be used morethan once in a system, and our calculus ensures that no ambiguity concerningaddresses can raise when an agent migrates within the network.An agent A in a node n can migrate to any other node m in the network.In this migration A is relocated together with all its subnodes and is inserted

in m together with the agent B of m. The structure of the network can changeas a result of this migration, for instance when a process which contains nestednodes migrates to a leaf node.We assume two basic actions for migration: go and fetch. The �rst sends anagent to a node n at a speci�ed location; the second gets a copy of an agent froma node n at a speci�ed location, leaving the agent available for another request.We think that this naturally formulates \go" instructions and \fetch" requests.In both cases we specify the location by giving the path to n starting from the�rst (i.e. lowest in the tree) common ancestor of n and the node m which isperforming the action. We will call this path the relative address from the pointof view of m, and the sub-address from the point of view of the ancestor.The syntax of our basic calculus is speci�ed by the following grammar, wherethe symbol k represents the usual parallel operator and 0 represents inaction:Agents A ::= 0 j node(n;A) j go(�;A) j fetch(�) j A k AWe assume the usual structural equivalences for the parallel operator:A k 0 � AA1 k A2 � A2 k A1(A1 k A2) k A3 � A1 k (A2 k A3)The operational semantics is de�ned by a labeled transition systems whosecon�gurations are agents and labels have the following form, where A is an agent:� s(�f ; �t; A) : send A from sub-address �f to relative address �t� r(�f ; �t; A) : receive A from relative address �f to sub-address �t� vs(�f ; �t; A) : virtual send A from sub-address �f to relative address �t� vr(�f ; �t; A) : virtual receive A from relative address �f to sub-address �t� as(�f ; �t; A) : actual send A from sub-address �f to sub-address �t� ar (�f ; �t; A) : actual receive A from sub-address �f to sub-address �t� migrate(�f ; �t; A) : relocate A from sub-address �f to sub-address �tThe last three kinds of labels correspond to transitions that can be performedonly by the �rst common ancestor of the nodes m and n between which themigration takes place. Basically, the idea is the following: when a node m exe-cutes an action go(�t; A), it performs a send transition s(m;�t; A). Correspond-ingly, the node n at the relative address �t performs a virtual receive transitionvr(�f ; n; A), where �f is the relative address of m from the point of view of n.This virtual transition is a \spontaneous initiative", i.e. it is generated by theagent 0 (always present in a node because of the equivalence A � A k 0).These transitions propagate upwards in the tree until they hit a commonancestor. At this point the send becomes an actual send, matches with the virtualreceive, and the migration takes place.During the upward propagation of vr(�f ; �; A) the sub-address � of the vir-tual receiver is incrementally constructed, until it becomes �t. Analogously, dur-ing the upward propagation of s(�0; �t; A), the sub-address �0 of the sender isconstructed, until it becomes �f . The actual send and the virtual receive canmatch only if the sub-addresses correspond, i.e. only if they are of the form

` Cond `0s(�f ; �t; B) hd(�t) 6= n s(n�f ; �t; B)s(�f ; �t; B) hd(�t) = n as(n�f ; �t; B)r(�f ; �t; B) hd(�f) 6= n r(�f ; n�t; B)r(�f ; �t; B) hd(�f) = n ar(�f ; n�t; B)vs(�f ; �t; B) � vs(n�f ; �t; B)vr(�f ; �t; B) � vr(�f ; n�t; B)migrate(�f ; �t; B) � migrate(n�f ; n�t; B)Table 1. Speci�cation of labels and conditions for the propagation rule. The functionhd gives the �rst element of a string.as(�f ; �t; A) and vr(�f ; �t; A) respectively. Note that, strictly speaking, onlyone of these constructed address is necessary to test if the two actions match;we do it this way just for the sake of symmetry.The mechanism for the fetch(�) action is analogous: in this case its node willperform a receive transition and the node at the relative address � will performa corresponding virtual send transition. Note however that fetch and go are notsymmetric to each other: go does not cause a duplication of the agent, whilefetch does.The above ideas are formalized by the following rules, which specify thetransition relation. � represents the empty string.The following four axioms introduce the send and receive, and their virtualcounterparts. (send) go(�t; A) s(�;�t;A)�! 0(receive) fetch(�f) r(�f ;�;A)�! A(virtual send) A vs(�;�t;A)�! A(virtual receive) 0 vr(�f ;�;A)�! AThe following rule speci�es the upwards propagation of transitions in the treestructure: (propagation) A �̀! A0node(n;A) `0�! node(n;A0) CondIn this rule, `0 and the side condition Cond depend on ` as speci�ed in Table 1.The following two symmetric rules describe the actual migration:(migratego) A1 as(�f ;�t;B)�! A2 A2 vr(�f ;�t;B)�! A3A1 migrate(�f ;�t;B)�! A3(migrate fetch) A1 ar(�f ;�t;B)�! A2 A2 vs(�f ;�t;B)�! A3A1 migrate(�f ;�t;B)�! A3

Note that, if the two nodes between which the relocation takes place are notalong the same branch, then one can use more elegant rules for migration, mod-eling it as handshaking between the real and the virtual actions. More formally,the migratego could be replaced by the following:(migrate 0go) A1 s(�f ;n�t;B)�! A01 A2 vr(n�f ;�t;B)�! A02node(n;A1 k A2) migrate(n�f ;n�t;B)�! node(n;A01 k A02)and analogously for the migratefetch .This rule however does not cover the case of relocation between ancestor anddescendant, because that situation cannot be described, in our paradigm, byusing the parallel operator.Finally, the rule for the parallel operator is the standard interleaving rule,re�ned by a condition intended to maintain the uniqueness of names amongsibling nodes:(parallel) A1 �̀! A01A1 k A2 �̀! A01 k A2 namesA01 \ namesA2 = ;where the function names(A) gives all the names of top-level nodes in A. For-mally: names(0) = ;names(node(n;A)) = fngnames(go(�;A)) = ;names(fetch(�)) = ;names(A1 k A2) = names(A1) [names(A2)We conclude this section with some examples illustrating how our modelworks.ExamplesIn the following examples, for the sake of simplicity we omit null agents andrepresent the agent node(n; 0) by node(n), or (in the �gures) by n:(1) Reorganising a branched network to a linear networkx

 JJJJJgo(x.b,a) b go(x.b.a,c) - xbac

There is only one (strict) order of migrations:node(x;node(x; go(x:b;node(a)) k node(b) k go(x:b:a;node(c))))migrate(x;x:b;node(a))�!node(x;node(b;node(a) k go(x:b:a;node(c))))migrate(x;x:b:a;node(c))�!node(x;node(b;node(a;node(c))))(2) Using fetcha�� @@b d@@fetch(a.b)��e�� @@f g - a�� @@b d@@ e��f g@@��e�� @@f gAgain the reader can verify that there is only one order for migration com-mands to be executed(3) Swapping children nodes using two agentsIn this case two di�erent migration histories are possible:1. migrate(a:b;a:c;node(d))�! : : : migrate(a:c;a:b;node(e))�!2. migrate(a:c;a:b;node(e))�! : : : migrate(a:b;a:c;node(d))�!a�� @@b c@@go(a.b,e)��go(a.c,d) - a�� @@b c@@ d��e
3 Enhancing ccp with migrationIn the previous section we have dealt with the simple case of agents withoutenvironment or store. Of course, this is a very simplistic assumption. One of themain issues about migration is the formalization of the way a migrating process

is inserted in to the environment of the host, how it interacts with the resourcesof the host, what are the scoping rules, etc.In this section we investigate how the basic calculus for migration can beenriched with the notions of environment and constraint store, laying the foun-dations for concurrent constraint programming with process mobility.Let us �rst recall the de�nition of ccp [16]:Agents A ::= 0 j tell(c) jPni=1 ask(ci)! Ai j A k A j p(x) j 9xAThe c and ci's are constraints, i.e. elements of a given constraint system(C;`). We recall that ` represents a relation of entailment between elementsof C, that C is closed under logical conjunction ^, and that a cylindri�cationoperator 9x : C ! C is de�ned for any variable x.Brie
y, the computational meaning of this paradigm is the following: theagents interact via a common store which ranges over C. The execution of tell(c)adds c to the current store, i.e. if the current store is s then the resulting store iss ^ c. The guarded choice agent Pni=1 ask (ci) ! Ai selects nondeterministicallyone j such that ask(cj) is enabled in the current store s, i.e. s ` cj , and thenbehaves like Aj . The agent 9xA behaves like A, with x considered local to A.Finally, the agent p(x) is a procedure call. Its meaning is given by a declarationof the form p(y) :- A.In this presentation, taken from [16], there is a unique global set of decla-rations. Furthermore, although in the course of the computation some agentsmight obtain a local store, initially there is only a unique global store (this as-sumption makes it easier to describe the semantics). Since our purpose here is tostudy agent migration in the presence of a structure of environments and stores,we will enrich this paradigm with the possibility of associating local declarationsand a local store with an agent (besides a local variable). More precisely, we willsubstitute the hiding construct 9xA with the more general block construct:block (D;X; s;A)whereD is a (possibly empty) set of local procedure declarations,X is a (possiblyempty) set of local variables, and s is the initial (possibly empty) local store.Thus the syntax of this extended ccp, enhanced with the migration con-structs, will be:Agents A ::= 0 j tell(c) jPni=1 ask (ci)! Ai j A k A j p(x) jblock (D;X; s;A) j node(n;A) j go(�;A) j fetch(�)The operational semantics is de�ned via a labeled transition system as fol-lows: the basic con�gurations are the blocks, the labels are only those introducedin Section 2, plus � , which will label the transitions corresponding to the stan-dard (unlabeled) ccp transitions. The transition rule for tell is similar to the onefor standard ccp:block(D;X; s; tell(c)) ��! block (D;X; s t c;0)

The symbol t here represents concatenation, and will be interpreted as logicalconjunction when the store is checked for entailment. In [16] the correspondingrule uses logical conjunction directly. We need to distinguish the contributionmade by an agent essentially to deal with the presence of an initial local store.This will become apparent in the rule for nested blocks.The guarded choice rule is just the same as in standard ccp.block (D;X; s;Pni=1 ask (ci)! Ai) ��! block (D;X; s;Aj) s ` cjFor the parallel operator, we have to add the condition on uniqueness ofsibling names. The function names extends to ccp in the obvious way (for theprocedure call it gives the empty set and for the choice it gives the union of thenames of all branches).block (D;X; s;A1) �̀! block (D;X; s0; A01)block (D;X; s;A1 k A2) �̀! block (D;X; s0; A01 k A2) names(A01) \ names(A2) = ;The procedure call is just the same as in standard ccp. In this rule, �xy is anelegant mechanism which links the formal and the actual parameter, and avoidsclashes with other variable names in the network. See [16] for details. In ourcase, we will have to enrich it so that it also avoids clashes with sibling nodenames block (D;X; s; p(x)) ��! block (D;X; s;�xy(A)) p(y) :- A 2 DThe rule for the block construct enriches the rule for hiding in [16] with thetreatment of de�nitions in nested blocks, and with the distinction of the agent'scontribution to the store, which is necessary for coping with the possibility ofan initial (non empty) local store.block (D1 / D2; X2; (9X2s1) t s2; A)�̀!block (D1 / D2; X2; (9X2s1) t s3; A)block (D1; X1; s1 t 9X2s2; block (D2; X2; s2; A))�̀!block (D1; X1; s1 t 9X2s3; block (D2; X2; s3; A))Here, D1 / D2 represents the hierarchical union of D1 and D2, i.e. in case p isde�ned both in D1 and in D2, the declarations for p in D2 override those in D1.The intuition behind the above rule is the following: In the internal block, theprocedure declarationsD1 of the external block are visible, except for those whichare \shadowed" by local declarations of the same procedure name (standardrule of scoping). The external store (s1) is also entirely visible, except for theconstraints involving variables with the same name as the local ones (X2). Theinformation about the shadowed external variables (X2) is be �ltered away byusing the cylindri�cation operator 9X2 . Conversely, in the external block the

information produced in the internal block (s2 and s3) is entirely visible, exceptfor the constraints involving the local variables. Again, this information is �lteredaway by using 9X2 . This way of treating the store is inspired by [16].The rule for the node expresses that the environment of an agent in a nodeis the same as the environment of the node1:node(n; block (D;X; s;A)) �̀! node(n; block (D;X; s0; A0))block (D;X; s;node(n;A)) �̀! block (D;X; s0;node(n;A0))Note that the premise of this rule is a transition between node agents. Thesewill be considered auxiliary con�gurations and the rules for their transitions arethe rules propagation, migratego and migratefetch of Section 2. The rule parallelis not needed.Finally we have to adapt the rules send, receive, and their virtual counter-parts. The following de�nitions formalize migration with dynamic scope, i.e.when a migrating agent brings with it only its internal environment, not itsexternal one: block (D;X; s; go(�t; A)) s(�;�t;A)�! block (D;X; s;0)block (D;X; s; fetch(�)) r(�f ;�;A)�! block (D;X; s;A)block (D;X; s;A) vs(�;�t;A)�! block (D;X; s;A)block (D;X; s;0) vr(�f ;�;A)�! block (D;X; s;A)Note that we could model a more lexical kind of scoping rule by modifyingthe label of the send and the receive actions. For instance, the send rule wouldbe written asblock (D;X; s; go(�t; A)) s(�;�t;block(D;X;s;A))�! block (D;X; s;0)In this way we export also the local environment and the store of the father.However note that this is a mixture of dynamic and lexical scope: to representa purely lexical scoping rule, we would need closures.3.1 An exampleWe illustrate now our extension of ccp with an example. We assume dynamicscope, although in this example it does not really matter.Assume that a seller, at address root :a, is willing to sell a certain good tothe best o�erer, by auction. Three potential buyers, at nodes root :b, root :c, and1 We could have simpli�ed the syntax and the semantics by unifying the concept ofnode and block, i.e. we could have considered only one construct containing a nodename, local declarations, local variables, local store and an agent. The reason whywe did not do this is because we think of a node as a physical site which can hostmany parallel agents, each one with its own environment.

root :d respectively, are willing to buy the product, but are too busy to participatedirectly in the auction process. Instead, they send an agent to the site where theauction takes place. The agent will have certain parameters speci�ed, like theincrement for raising the bidding each time, and the maximum price the buyer iswilling to pay. At the end, the auctioneer will send an agent back to each buyerto tell whether he has won the bidding or not.The following process represents the auctioneer. For simplicity, we assumea very simple kind of auction, with only one round: all the o�ers are collected,compared, and the best one wins. We use askX (c) ! A to represent the agentask (9Xc)! tell(c) k A.node(root :a;block (;; fpb; pc; pdg; ;;ask (o�er (b; pb) ^ o�er(c; pc) ^ o�er(d; pd))!askpb;pc;pd(pb � pc ^ pb � pd)!go(root :b; tell(winner(yes)))kgo(root :c; tell(winner (no)))kgo(root :d; tell(winner (no)))+askpb;pc;pd(pc � pb ^ pc � pd)!go(root :b; tell(winner(no)))kgo(root :c; tell(winner (yes)))kgo(root :d; tell(winner (no)))+askpb;pc;pd(pd � pb ^ pd � pc)!go(root :b; tell(winner(no)))kgo(root :c; tell(winner (no)))kgo(root :d; tell(winner (yes)))))The following process represents the potential buyer at site root :b. The otherbuyers are similar, except possibly for the price o�ered (100) and the continua-tion process (A).node(root :b;block (;; fprice; answerg; fprice = 100g;go(root :a; o�er(b; price)) k ask (winner(answer)! A)Note that, thanks to the mobility of the store, the information can be trans-mitted from the buyer to the auctioneer and viceversa. Thanks to the localityof the stores, there is no need of distributed constraint solving, and we can also

ensure a certain privacy of the information; for instance, the winner's identitywill not be available to the other buyers.4 InterpreterWe have implemented an interpreter in SICStus Prolog based on the operationsemantics de�ned in previous sections; the interpreter can be obtained over theWeb at www.soi.city.ac.uk/~drg/migration. The software has been used aspart of an undergraduate module on Software Agents given to �nal year Com-puting and Software Engineering students at City University.Our implementation technique involves representing a transition rule in theform: A1 l1!A01 ::: Anln!A0nA1 l!A0n Conditionby the Prolog clausetrans(A1,Label,name(Label,ObsA1,...,ObsAn),An'):-trans(A1,L1,ObsA1,A1'), ..., trans(An,Ln,ObsAn,An'),Condition.Thus, for instance, the axiom go(�t; A) s(�;�t;A)�! 0is represented by the unit clausetrans(go(To,A), s([],To,A), send(s([],To,A)),0).and the rule A1 as(�f ;�t;B)�! A2 A2 vr(�f ;�t;B)�! A3A1 migrate(�f ;�t;B)�! A3is represented by the clausetrans(A1, migrate(Fr,To,B), migrate_go(migrate(Fr,To,B),OA,OB), A3):-trans(A1, as(Fr,To,B), OA,A2),trans(A2, vr(Fr,To,B), OB,A3).Users can input an agent description as a Prolog term at the prompt; theinterpreter will process this term and output a trace ofagent0 migration action1 agent1 . . .migration actionn agentn

and will o�er to display alternative traces and �nal states (if these exist). The�nal state of the agent is also reported, which can be either inactive (contains nomigration instructions) or stuck (contains migration instructions which cannotbe processed, for example references to addresses which do not exist).For instance, Example 3 of Section 2 is represented by the termnode(a,node(b,go([a,c],node(d,0)))//node(c,go([a,b],node(e,0))))where the symbol\//" represents parallel composition.If we give this term to the prompt, the interpreter responds in the followingway:History:Scene: 1 node(a,node(b,go([a,c],node(d,0)))//node(c,go([a,b],node(e,0))))Move: 2 migrate([a,b],[a,c],node(d,0))Scene: 3 node(a,node(b,0)//node(c,node(d,0)//go([a,b],node(e,0))))Move: 4 migrate([a,c],[a,b],node(e,0))Scene: 5 node(a,node(b,node(e,0))//node(c,node(d,0)//0))Inactive final stateNew Network=node(a,node(b,node(e,0))//node(c,node(d,0)))More solutions? ;History:Scene: 1 node(a,node(b,go([a,c],node(d,0)))//node(c,go([a,b],node(e,0))))Move: 2 migrate([a,c],[a,b],node(e,0))Scene: 3 node(a,node(b,node(e,0)//go([a,c],node(d,0)))//node(c,0))Move: 4 migrate([a,b],[a,c],node(d,0))Scene: 5 node(a,node(b,node(e,0)//0)//node(c,node(d,0)))Inactive final stateNew Network=node(a,node(b,node(e,0))//node(c,node(d,0)))More solutions? ;No (more) solutions5 Future workIn the present proposal names are \static entities". One might want to relax theside condition of the parallel rule and provide instead a renaming mechanismthat renames a migrating node when it is going to be inserted in parallel withanother node having the same name.In our approach the paths contained in an agent do not change during mi-gration. This means that the relative address speci�ed by a path inside an agentwill refer, after migration, to a location di�erent than the one before migration.This might be regarded as undesirable. One direction of future work is to enrichthe calculus so to ensure location invariance during migration.One of the advantages of SOS semantics is that it helps in developing analgebraic theory of the language, based on the concept of bisimulation. This task

is particularly facilitated when the rules are in the so-called De-Simone format[9, 11], or similar formats [4], since such formats ensures that bisimulation is acongruence. In our case the labels of the transitions contain agents and thereforewe need to consider a sort of higher-order extension of the De-Simone formatalong the lines of [2]. In the future we intend to check whether the format of ourrules is in some sort of extended De-Simone format for which the congruencetheorem holds, and then try to determine the algebraic laws of the languagefollowing similar work done in �rst-order process algebras [1].References1. Luca Aceto, Bard Bloom, and Frits Vaandrager. Turning SOS rules into equations.Information and Computation, 111(1):1{52, 1994.2. Karen L. Bernstein. A congruence theorem for structured operational semanticsof higher-order languages. In Thirteenth Annual IEEE Symposium on Logic inComputer Science, pages 153{164, 1998.3. K. Bharat and L. Cardelli. Migratory applications. In J. Vitek and C. Tschudin,editors, Mobile Object Systems: Towards the Programmable Internet, LNCS 1222,pages 131{148. Springer-Verlag, 1997.4. Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can't be traced.Journal of the ACM, 42(1):232{268, 1995.5. Chiara Bodei, Pierpaolo Degano, and Corrado Priami. Names of the �-calculusagents handled locally. Theoretical Computer Science.6. G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. TCS,114(1):31{61, June 1993.7. L. Cardelli. Mobile computation. In J. Vitek and C. Tschudin, editors, Mo-bile Object Systems: Towards the Programmable Internet, LNCS 1222, pages 3{6.Springer-Verlag, 1997.8. Luca Cardelli. A Language with Distributed Scope. Computing Systems, 8(1):27{59, Winter 1995.9. R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. TheoreticalComputer Science, 37(3):245{267, 1985.10. C. Fournet, G. Gonthier, JJ. Levy, L. Maranget, and D. Remy. A Calculus ofMobile Agents. In U. Montanari and V. Sassone, editors, Proc. CONCUR'97,LNCS 1119, pages 406{421, Pisa, Italy, August 1996. Springer-Verlag.11. Jan Friso Groote and Frits Vaandrager. Structured operational semantics andbisimulation as a congruence. Information and Computation, 100(2):202{260, 1992.12. R. Milner, J. Parrow, and D Walker. A Calculus of Mobile Processes. Informationand Control, 100:1{77, 1992.13. Jean-Hugues R�ety. Distributed concurrent constraint programming. FundamentaInformaticae, 34(3):323{346, 1998.14. Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis, Department of Computer Science, Edinburgh Uni-versity, 1993.15. Davide Sangiorgi. �-Calculus, Internal Mobility and Agent-Passing Calculi. TCS,167(1,2):235{274, 1996.16. Vijay Saraswat, Martin Rinard, and Prakash Panangaden. Semantic Foundationsof Concurrent Constraint Programming. In POPL 91, pages 333{352. ACM Press,1991.

17. Bent Thomsen. Plain CHOCS. A second generation calculus for higher orderprocesses. Acta Informatica, 30(1):1{59, 1993.18. Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and RalfScheidhauer. Mobile objects in distributed Oz. ACM Transactions on ProgrammingLanguages and Systems, 19(5):804{851, 1997.

