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Abstract

Flavin adenine dinucleotide (FAD) and its derivatives play a crucial role in
biological processes.  They are major organic cofactors and electron carriers
in both enzymatic activities and biochemical pathways.  We have analysed
the relationships between sequence and structure of FAD-containing proteins
using a machine learning approach.  Decision trees were generated using the
C4.5 algorithm as a means of automatically generating rules from biological
databases (TOPS, CATH and PDB).  These rules were then used as
background knowledge for an ILP system to characterise the four different
classes of FAD-family folds classified in Dym and Eisenberg (2001).  These
FAD-family folds are: glutathione reductase (GR), ferredoxin reductase (FR),
p-cresol methylhydroxylase (PCMH) and pyruvate oxidase (PO).  Each FAD-
family was characterised by a set of rules. The “knowledge patterns”
generated from this approach are a set of rules containing conserved sequence
motifs, secondary structure sequence elements and folding information.
Every rule was then verified using statistical evaluation on the measured
significance of each rule.  We show that this machine learning approach is
capable of learning and discovering interesting patterns from large biological
databases and can generate “knowledge patterns” that characterise the FAD-
containing proteins, and at the same time classify these proteins into four
different families.

Keywords: flavin adenine dinucleotide (FAD); protein structure-sequence-
function; machine learning; decision tree; inductive logic programming;
knowledge discovery in biological databases.
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1. Introduction
It is generally believed that the three-dimensional structure of a protein is
determined by its amino acid sequence.  On the other hand, similar protein
folds can have very different sequences (Doolittle, 1986).  Although some
similar protein structures may have low sequence similarity, the consensus
sequence pattern exhibited in the particular protein family usually plays an
important role in protein function or structure properties.  In the post-genome
era, one of the ‘holy-grails’ for the bioinformatics community is to predict the
structure and function of a protein from its amino acid sequence.  Current
factual biological databases are overwhelmed by experimental data, this has
motivated the first step to understanding the complex relation between
protein sequence, structure and function.

In this paper, we characterise FAD-binding proteins into four different
families using a machine learning approach. We have adapted the machine
learning algorithm C4.5 (Quinlan, 1993) which outputs a decision tree that is
equivalent to a set of symbolic rules.  We induced the decision trees in a
parallel fashion to output a decision forest which contains rules from different
biological databases.  These rules were then converted into background
knowledge for the second learning system CProgol4.4 (Muggleton, 2001),
which derived a rule-set output which was more accurate and comprehensible
than the conventional combined data single tree approach.

2. FAD-(Flavin Adenine Dinucleotide) binding protein families
In this study, we focused on flavin adenine dinucleotide (FAD) binding
proteins. This is because FAD, and other cofactors such as nicotinamide
adenine dinucleotide (NADH) and adeninosine triphosphate (ATP), appear in
many biological processes and represent the major fuel molecules in the cell.
The main function of flavin-binding proteins is to carry out redox reactions in
the cell.  The unique structure of flavin enables it to take up one or two
electrons from the substrate.  The intermediate radical state of flavin
(FADH!) is able to react with the most powerful oxidising agent in biological
systems: molecular oxygen.  This has made flavin different from the other
coenzymes (NADH and ATP) and thus it plays an important role in cell
metabolism.

Using the Combinatorial Extension (CE) program, Dym and Eisenberg
(2001) have classified the FAD-binding proteins into four different structural
families.  They characterised each family using several conserved sequence
and structure motifs, which involves in the cofactor binding site.  The four
major structural families are:
(a) Glutathione reductase (GR) which adopts a Rossmann fold with

xhxhGxGxxGxxxhxxh(x)8hxhE(D) as the most conserved sequence
motif.  All the family members share the same 3-D structure.
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(b) Ferredoxin reductase (FR), having a cylindrical "-domain as the central
structure with RxYS(T) as the most conserved sequence motif.

(c) p-cresol methylhydroxylase (PCMH) consisting of two #+" sub-domains
and the most conserved sequence motif being P(x)6G(A)xN.

(d) Pyruvate oxidase (PO) with a structure consisting of five parallel "-
strands interspersed by #-helices that lie on both sides of the "-sheet with
KxLxxLxxxL(x)6S(T)(x)6GxV as the most conserved sequence motif.

3. Machine learning approach
In most application domains we are more concerned with the predictive
accuracy than the explanatory power of the learning output.  This is not the
case in bioinformatics because we believe that the comprehension of a rule
(pattern) is as important as the accuracy of the learning system.  Biology is an
“understanding” orientated subject, and because biological databases are
accumulating vast amount of data, human experts find it harder to identify the
relationship between properties of the data (e.g. protein structure-sequence-
function). Thus, we agree with Muggleton et. al. (1998) when comparing the
performance of learning system in a  bioinformatics context:

“If the predictive accuracies of two hypotheses are statistically
equivalent then the hypothesis with better explanatory power will be
preferred. Otherwise the one with higher accuracy will be preferred.
(Muggleton et. al. 1998)”.

The first machine learning algorithm we chose to adapt for this work was
C4.5 release 8 (Quinlan, 1993), the successor of the ID3 learning algorithm
(Quinlan, 1986).  The decision tree algorithm is well known for its
robustness, and learning efficiency with learning time complexity of
O(nlog2n) where n is the number of attributes. The output of the algorithm is
a decision tree, which can be converted into a set of symbolic rules
(IF…THEN…).  The symbolic rules can be directly interpreted and
compared with existing biological knowledge.  Thus, decision trees have high
expressive power in their patterns (rules).

The second learning system applied in this study was CProgol 4.4
(Muggleton, 2001), which is an inductive learning programming (ILP)
program.  ILP algorithms take examples E of a concept (e.g. FAD-binding
protein family), together with background knowledge B (e.g. relation between
a consensus sequence motif and structure) and construct a hypothesis H
which explains E in terms of B.  The hypothesis H can be translated into an
(IF…THEN…) rule-set that can characterise E with relation to B.  Thus, we
believe that our final rule-set can have a high comprehensibility and accuracy
in characterising protein (e.g. the FAD-binding families).
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4. Methodology
The approach applied here is to derive n decision trees from n data sets.  Each
decision tree was induced from an individual data set.  These decision trees
individually represent different information (e.g. sequence, structure and
function) for the FAD-binding protein families in m data sets.  After growing
the m decision trees individually, they must be combined to produce some
final rules that characterise the protein families.  In our approach, we used
C4.5 to grow the m decision trees, and C4.5 rules to extract the rules from the
m trees. These rules were used as the additional background knowledge for
the ILP system when learning on the training examples. ILP outputs a final
rule-set (hypothesis) that has high comprehensibility and accuracy in
characterising the protein examples. The rule set will contain relationships
between sequence, structure and function.

The data-set that we used in this study consisted of 42 fad-binding
proteins which have 3 different attribute properties (m=3 in this study).  The
properties are sequence motifs, structure motifs and enzymatic functional
classes.   For each family, we divided the training set into positive and
negative examples then learned a rule from that group (e.g. for GR family,
GR will be the TPs; FR, PCMH and PO are the TNs).

Our research methodology can be summarised as the following steps:
Step 1: Select the target data sets (sequence, structures, function).
Step 2: Clean up the target data sets.
Step 3: Divide-and-conquer search strategy.
Step3a: Divide: For every data set, grow an individual decision tree.
Step3b: Extract: For every decision tree, derive the rules from the trees.
Step3c: Merge: Use the rules induced from the various data sets as the

background knowledge for the ILP system.
Step3d:Conquer: Apply ILP to “combine” the rules.
Step4: Evaluate the goodness of the rules.
Step5: Repeat step 3 and 4 to obtain the “best” rule-set that characterises the

FAD-binding families.

The goodness of the rules can be evaluated using the confusion
matrix in table 1. We evaluate the statistical significant of the rule-set by
measuring their sensitivity (Sn)1, specificity (Sp)2, coefficient correlation
(cc)3, positive predictive value (PPV)4.
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Table 1: Confusion matrix showing true positives, true negatives, false
positives and false negatives covered by the rules.

Positive Examples Negative Examples
Covered True Positive (TP) False Positive (FP)
Not covered False Negative (FN) True Negative (TN)

5. Results and Discussions
We performed two different experiments. The first experiment used our
combination method, while the second experiment was conventional data
combination, where different data sets were combined into one large table
and a single tree induced from the data. The results from these two
experiments are shown in table 2 (our combination approach) and table 3
(data combination single tree approach).  The rule-set of our approach are
shown in figure 1 at the protein topological level with the colouring
secondary structure elements represents the sequence-structure relationship.

From table 2 and table 3 we can see that our approach has more
accuracy over the GR and FR family and the rule set produced was more
comprehensible.  This is because our rule-set included structural information
that helps to distinguish the noises in the training set. Therefore, our approach
increases Sp, cc and PPV of the rules. Furthermore, our rules also indicate the
location of the sequence motif in the protein structure, which we believed it is
more meaningful for the biologists in understanding the protein sequence-
structure relationship.  For example, in the case of class GR in our method
produces a rule set that can be translated into natural language as follows:

If the protein has a sequence motif GxG(x)2G(x)16-19[DE] in "1-#1-"2 of the 3-
layer "-"-# sandwich structure  and carried out oxidoreductases reaction
Then it  is GR family.

The data combination approach rule only identified the sequence motif
for this family.  The rule from the data combination approach can be
translated into:

If the protein has a sequence motif GxG(x)2G(x)16-19[DE] Then it is class GR.

Thus the rule induced from the second experiment is less informative
compared to our approach.  This is because in data combination, the learning
algorithm only finds the shortest rule that discriminates between two classes
and ignores other ‘important’ features in the data.  For this example, the
sequence are more conserved in the family members because these motifs
involved in the cofactor binding site.  Although the conventional method does
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successfully classify the proteins using the most discriminative patterns, it
ignores other (structure and function) information in the input data-set.  The
results will be less useful for knowledge acquisition purposes, because
biologists tend to prefer more comprehensive rules that can help them to
explain the complex relationship between protein sequence-structure-function
properties.

The other advantage of our method compared to data combination using a
single-tree is that our approach reduces the learning time complexity and
memory space requirements of the algorithm.  Most of the learning
algorithms receive the input file as a flat file format, thus if the input data-set
is very large, the memory space will be taken up by the input files.  Thus, the
computational demands will increase. At the same time, the learning time for
the algorithm will decrease if the input n is a large value.  In our approach,
we divide the various data sources into sub-tables (n/m), the learning time
complexity is O(mlog2(n/m)) + ILP learning time, and thus retain the fast
efficient learning time of the learning algorithms (decision trees).

Table 2: Rule-set generated from the combination of decision trees and ILP.
Rule Sn Sp cc PPV

GR Class(‘GR’,A):-protein(A,B,C,D),Sequence(B,GxG(x)2G(x)16-

19[DE]),Structure(C,bbasandwich),Has_seq(strand1_helix1_str
and2,B,C),Function(D,oxidoreductases).

1.0 1.0 1.0 1.0

FR Class(‘FR’,A):-protein(A,B,C,D),Sequence(B,RxY[ST]),
Structure(C,betabarrel),Has_seq(strand4,B,C),
Function(D,oxidoreductases).

1.0 1.0 1.0 1.0

PCMH Class(‘PCMH’,A):-protein(A,B,C,D),Sequence(B,[AP](x)6-

8[AG]xN),Structure(C,abasandwich),Has_seq(helix1_strand2,
B,C),Function(D,oxidoreductases).

1.0 1.0 1.0 1.0

PO Class(‘PO’,A):-protein(A,B,C,D),Sequence(B,KxL(x)2(x)3L),
Structure(C,abasandwich),has_seq(helix1_strand2,B,C),
Function(D,oxidoreductases).

1.0 1.0 1.0 1.0

Table 3: Rule-set generated from single decision trees derived from data
combination.

Rule Sn Sp cc PPV
GR GxG(x)2G(x)16-19[DE]=yes ) class GR 1.0 .97 .91 .86
FR RxY[ST] = yes ) class FR 1.0 .91 .91 .91
PCMH [AP](x)6-8[AG]xN = yes ) class PCMH 1.0 1.0 1.0 1.0
PO K(x)7I(x)2D(x)10D = yes ) class PO 1.0 1.0 1.0 1.0

6. Conclusions
When trying to learn from large and diverse data sets (e.g. biological
databases) it is important to produce a rule-set that encapsulates all the
information from different sources.  In this work we investigated an approach
where decision trees were derived individually from various data sets and the
rules from the decision trees were given to the ILP as background knowledge.
The ILP system induces rules by combining the additional background
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knowledge and the training examples to produce a “knowledge” rule-set.  We
have shown that the rules produced from our approach are more informative
than the conventional method.  Our current work is to apply this approach to
larger data sets in order to learn significant relationships between protein
sequence-structure-function.

Figure 1: The TOPS (Westhead et. al., 1998) cartoons showing four FAD-
binding families. The coloured SSEs are the sequence-structure relationship
in the protein.
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